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Abstract. The shallow water equations provide a useful analogue of the fully compressible Eu-
ler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby
waves and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable
that numerical models have discrete analogues of these properties. Two prototypical examples of

5 such schemes are the 1981 Arakawa and Lamb (ALS81) C-grid total energy and potential enstrophy
conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserv-
ing scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids; and
the SO7 scheme is restricted to uniform square grids. The current work extends the AL81 scheme

to arbitrary non-orthogonal polygonal grids and the SO7 scheme to arbitrary orthogonal spherical

10 polygonal grids in a manner that allows both total energy and potential enstrophy conservation, by
combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete
Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). Detailed results

of the schemes applied to standard test cases are deferred to Part 2 of this series of papers.

1 Introduction

15 Consider the motion of a (multi-component) fluid on a rotating spheroid under influence of gravity
and radiation. This is the fundamental subject of inquiry for geophysical fluid dynamics, covering
fields such as weather prediction, climate dynamics and planetary atmospheres. Central to our cur-
rent understanding of these subjects is the use of numerical models to solve the otherwise intractable
equations (such as the fully compressible Euler equations) that result. As a first step towards devel-

20 oping a numerical model for simulating geophysical fluid dynamics, schemes are usually developed
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for the rotating shallow water equations (RSWs). The RSWs provide a useful analogue of the fully
compressible Euler equations since they have similar conservation laws, many of the same types of
waves and a similar (quasi-) balanced state. It is desirable that a numerical model posses as least
some these same properties (see Figure[T] and the discussion in[Staniforth and Thuburn| (2012)).

In fact, there exists some evidence (Dubinkina and Frank| (2007)) that schemes without the ap-
propriate conservation properties can fail to correctly capture long-term statistical behaviour, at least
for simplified models without any dissipative effects. However, questions remain as to the relative
importance of various conservation properties for a full atmospheric model, especially in the pres-
ence of forcing and dissipation (Thuburn (2008)). This subject deserves further study, but a key first
step is the development of a numerical scheme that posses the relevant conserved quantities; and is
capable of being run at realistic resolutions on the types of grids that are used in operational weather
and climate models.

A pioneering scheme developed over 30 years ago possesses many of these properties (includ-
ing both total energy and potential enstrophy conservation): the 1981 Arakawa and Lamb scheme
(ALS81,|Arakawa and Lamb|(1981)). Unfortunately, this scheme is restricted to logically square, or-
thogonal grids (an orthogonal grid has a dual grid with edges orthogonal to the primal grid edges)
such as the lat-lon or conformal cubed-sphere grid. These grids are not quasi-uniform under re-
finement of resolution, and this leads to clustering at typieally-typical target resolutions for next
generation weather and climate models (such as 2-3km for weather; and 10-15km for climate). Such
clustering will introduce strong CFL limits, and in the case of the lat-lon grid requires polar filtering
(which is not scalable on current computational architectures) in order to take realistie-practical time
steps. For these reasons, it is desirable to be able to use quasi-uniform grids such as the icosahedral
grid (orthogonal but non-square) or gnomic cubed-sphere (square but non-orthogonal). In addition
to the restriction to logically square, orthogonal grids, the AL81 scheme also suffers from poor wave
dispersion properties when the Rossby radius is underresolved (Randall|(1994)). In fact, the unavoid-
able averaging required for the Coriolis term in a C grid scheme is expected to lead to poor wave
dispersion properties for an underresolved Rossby radius regardless of the specific discretization
employed.

Recently, there has been an effort to extend the AL81 scheme to more general grids, using tools
from discrete exterior calculus (commonly referred to as the TRiSK scheme, [Thuburn et al.| (2009)),
Ringler et al.| (2010), [Thuburn and Cotter| (2012), [Weller| (2013)), Thuburn et al.| (2013)). This has
lead to the development of a family of schemes on general non-orthogonal (spherical) polygonal
meshes that posses all of the desirable properties of AL81 except for: extra modes branches on non
quadrilateral meshes, which are unavoidable for C grid schemes; and lack of either total energy
or potential enstrophy conservation. It is possible to obtain one or the other, but not both at the
same time. Along different lines, Salmon (Salmon| (2004)) showed that AL81 and other doubly-

conservative schemes (such as [Takano and Wurtele| (1982)) are all members of a-another family
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of schemes on logically square orthogonal meshes. This was done using tools from Hamiltonian

methods, which are an area of active research in atmospheric model development.

Rather than using finite differences, it is also possible to extend the AL81 scheme to arbitrary grids

Methods based on compatible finite elements are capable of achieving most of the properties listed in
Figure 1, and with the appropriate selection of spaces and careful mass lumping can have good linear

e NS L Y P R e e N

However, these methods require the solution of elliptic problems at every time step, and so it is still

useful to investigate a finite difference based approach.
As an alternative to the AL81 scheme that preserves many of its valuable mimetic properties,

but has good wave dispersion properties independent of Rossby radius, Randall| (1994) introduced a
scheme for uniform square grids based on the vorticity-divergence formulation (termed the Z grid) of
the continuous equations. Subsequently, this approach was extended to arbitrary (spherical) orthog-
onal polygonal grids with a triangular dual in [Heikes and Randall| (1995a)) and Heikes and Randall
(1995b)), which included the important case of an icosahedral-hexagonal grid. Although this scheme
posses-possesses many of the desirable properties from ALS81, it does not conserve total energy or
potential enstrophy. However, a similar Z grid scheme based on a Helmholtz decomposition of the
momentum instead of the wind that does conserve both total energy and potential enstrophy was
developed by Salmon (Salmon| (2007));Salmon| (2005))) using techniques from Hamiltonian mechan-
ics (specifically, Nambu brackets). The idea of using Hamiltonian mechanics to derive conservative
models for atmospheric dynamical cores has seen a great deal of interest and progress in the past
10 years (see (Gassmann and Herzog| (2008)),Gassmann| (2013));Sommer and Névir| (2009).Nevir and
Sommer| (2009)Dubos and Tort| (2014)),Dubos et al.| (2015)/Tort et al.| (2015))/Salmon| (1988));Shep-
herd| (2003))).). With the recent development of Hamiltonian formulations for essentially all of the
equation sets and vertical coordinates used in atmospheric dynamics, it seems likely that this ap-
proach will continue to be employed in the future. Unfortunately, the scheme in S07 is defined only
for planar grids, and in the key case of general polygonal grids no expression for discrete Hamil-
tonian or Casimirs was given. This precludes its further development for implementation into an
operational dynamical core.

This work combines the discrete exterior calculus approach from|Thuburn and Cotter (2012} and
the Hamiltonian approach from|Salmon| (2004)) to extend AL81 to general non-orthgonal (spherical)
polygonal grids in a manner that conserves both total energy and potential enstrophy; and to extend
S07 to arbitrary (spherical) orthogonal polygonal grids. The extension of AL81 is done through the
development of a new Q (the discretization of qIAcx, which is also known as the nonlinear poten-
tial vorticity flux) operator, using tools from Hamiltonian methods. SO7 is extended by combining
the Nambu bracket based approach from Salmon| (2007) with the discrete exterior calculus tools in-

troduced in [Thuburn and Cotter] (2012). It should be noted that this work deals only with spatially
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Figure 1. A diagram of some desirable model properties for the shallow water equations, organized thematically
into groups. Similar considerations apply for the Euler, hydrostatic primitive and other equation sets used in
atmospheric models. There is vigorous discussion in the literature and between model designers about the
importance of various properties for different applications (such as weather forecasting or long-term climate
prediction). The schemes presented here satisfy all of these properties, with the exception of accuracy. There are
additional desirable model properties, such as consistent physics-dynamics coupling, compatible and accurate

tracer advection, and tractable treatment of acoustic waves that are not presented.

conservative discretization. Conservation errors introduced due to time discretization are typically
much smaller than those due to space discretization. However, the extension of this approach to fully
conservative discretization would be a useful contribution.

The remainder of this paper is structured as follows: Section [2] introduces the rotating shallow
water equations in both their familiar vector-invariant form and the less familiar Hamiltonian forms.
Section [3] presents a family of C grid numerical schemes that posses many of the desirable prop-
erties, and discusses the specific member of this family introduced here. Section [ introduces the
new operator Q that enables the conservation of both total energy and potential enstrophy in the
C grid scheme. Section [5] presents the Z grid scheme and discusses its key mimetic and conserva-
tion properties.
results. Finally, some conclusions (Section are drawn. The appendices discuss various ancillary
topics such as the computational grid used (Appendix [A), the specific discrete operators employed

(Appendices [B] [C|and [D), and the discrete variables used in the C and Z grid schemes (Appendices
and [F).
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2 Rotating Shallow Water Equations

The rotating shallow water equations (RSWs) for both planar and spherical domains are presented
below in several forms: the vector invariant formulation, the vorticity-divergence formulation, the
symplectic Hamiltonian formulation based on the vector-invariant form and both Poisson bracket
and Nambu bracket formulations based on the vorticity-divergence formulations. Although all of

these formulations are equivalent in the continuous case, they lead to very different discretizations.
2.1 Vector Invariant Formulation

The mass continuity equation for the RSWs is expressed in vector invariant form as:

oh
—+ V- (F)=0 1

ot TV F) (1)
where h is the fluid height and w is the fluid velocity. Similarly, the momentum equation is expressed

as:

0

a—?+q@x(F)+v¢=o 2)
where F' = hu is the mass flux, ¢ = ¢ is the potential vorticity, 7 = ( + f is the absolute vorticity,
(= k- ¥V x u is the relative vorticity, f is the Coriolis force, ® = gh + K + gh; is the Bernoulli

function, h is the topography height, g is gravity and K = *5* is the kinetic energy.
2.2 Poisson Bracket Formulation (Vector Invariant)

As discussed in Salmon| (2004)), let the Hamiltonian H be given by

H:/%(h|u|2) +%gh(h+2hs)dﬂ 3)
Q

andletx = (h, ). Then-the Note that ) denotes the entire domain of interest- restricted here to either

a doubly periodic plane or the sphere. Therefore, there are no boundary condition to consider. The
Hamiltonian formulation can be used in the presence of boundaries, but it becomes more complicated

and is not treated here. The time evolution of an arbitrary functional F can be written as

dF
— ={FH) @)

where the Poisson bracket { F,} (which is a bilinear, antisymmetric operator that satifies the Jacobi

identity) is

oH 0F OF _0H ~ (O0H OF
Q
It is useful to split this into two separate brackets as
{.F,H}:{f,H}RJr{]:,H}Q (6)
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where

SH _oF OF _oH SH _ SF. OF _ oM
{}',’H}R—/d§2<5u-vah—M-VM>_/dQ(5h(V-5u)—(Sh(V-(su)> ™
Q Q

encompasses the gradient and divergence terms; and
~ (O0H OF
Q

encompasses the nonlinear PV flux term. The functional derivatives % of the Hamiltonian are given
by

oM o
S = ©

T F

This formulation is useful for development of a scheme that pesses-possesses discrete conservation
properties, as discussed below. A functional derivative of some functional F|x] is defined as
OF Flx + ep) — Flz]

— = lim
oxr  e—0 €

(10)
2.3 Conserved Quantities

Since the rotating shallow water equations form a (non-canonical) Hamiltonian system, we know
from Noether’s theorem and other considerations (such as the singular nature of the symplectic

operator) that there are at least two categories of conserved quantities: Hamiltonian and Casimirs.
2.3.1 Energy (Hamiltonian)

The first is simply the Hamiltonian itself. In this case, the Hamiltonian is the total energy of the
system. Conservation of the Hamiltonian arises due to the skew-symmetric nature of the Poisson
bracket. In particular, using (4) the evolution of H is given by

d
Ty =y =0 an

since {, } is skew-symmetric. For the rotating shallow water equations, the Hamiltonian is the total
energy of the system. The elegant derivation of energy conservation and its simplicity (relying ONLY
on the skew-symmetry of {, }) motivates the use of the Hamiltonian formulation for development of

numerical schemes that conserve energy.
2.3.2 Casimirs

The second category of conserved quantities consists of Casimir invariants. Since the rotating shal-
low water equations are a non-canonical Hamiltonian system, the Poisson bracket {,} is singular

and thus it possesses Casimir invariants C that satisfy

{F.Cr=0 12)



165 for any functional F. Note that from above, this implies that

c

ey (13)

For the rotating shallow water equations, the Casimirs take the form

= / hF(q)d0 (14)
Q

where F'(q) is an arbitrary function of the potential vorticity and

0C _ (F(q)—qF'(q)
70 == (") (15)

Impertanteases-with V-1 the skew-gradient operator. On the plane it is k x V, and it has a coordinate-independent
definition on more general manifolds such as the sphere. Important cases for F' include F' = 1 (mass

2
conservation), F' = ¢ (circulation or mass-weighted potential vorticity) and ' = %- (potential en-

strophy).
175 2.4 Vorticity-Divergence Formulation

By taking the divergence (V) and curl (V+) of , we obtain the vorticity-divergence form of the

equations:

)

S — V() =~V (hqu) 16)
180 % =V (u) = V2@ = V- (hqu) - V?® an

where ;1 =V -u is the divergence. The mass flux can then be split into rotational and divergent

components (ie a Helmholtz decomposition) as:
hu = (hw) gin + (htt)por = VX + V0 (18)

where (hut)gi, = Vx and (hu),o; = V*1. The streamfunction ¢ and velocity potential y can be

185 related to the vorticity and divergence as

(=n—f=V-(h""'V)+J(h™ ' X) (19)

p=V-(h='Vx)+J(,h7") (20)

where J(a,b) = V - (aVTh) = VT . (aVb) is the Jacobian operator. The Hemholtz decomposition
190 connects the vorticity-divergence formulation and the vector invariant formulations. In the preceding,

we have neglected the possibility of a harmonic component (a component A for which V2A = 0),
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which works because the harmonic component on the sphere is zero. On the doubly periodic plane,
it would be possible to have a constant harmonic component. Finally, (T) and (Z) can be re-written

in terms of x and v directly as

oh o

A ey
0

s =J(a4) -V 4V @)
0

5 = @)+ V- (V) - VP @3)

2.5 Poisson Bracket Formulation (Vorticity-Divergence)

As shown in [Salmon| (2007), the preceding equations (21), (22) and (23) can be also be written in

terms of a Poisson bracket. Let @ = (h,(, 1) and define the Hamiltonian

1 1
H:/ﬁ(|VX|2+|V1&|2+2J(X,¢))+§9h(h+2hs)d9 (24)
Q
Note that
SH — / dQ (=8¢ — Sp1+ D5h) (25)
Q
where
VX2 + VY% +2J(x,
(I):K+gh:| XI®+| 2th2+ (xw)wh% (26)
which gives
oH ®
5= () 7

(this is the functional derivative of the Hamiltonian with respect to @). Also define a Poisson bracket

(which is bilinear, anti-symmetric and satisfies the Jacobi identity) as

{A’B} = {Aa B}#H + {AaB}CC + {A>B}HC}I (28)

where

{A.B}ec = /quJ(Achc) 29)
Q

{AaB}uu = /quJ(A/LaBH) (30)
Q
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{A’B}Cuh = /qu(V.AN ~ VBC — V.AC . VBM) + (V.AH -VB;, — VA, - VBM) 31
Q

for arbitrary functionals A and B. As before, the time evolution of an arbitrary functional A is then

given by
dA
P {A,H} (32)

It is easy to see that (1)), and are recovered when A is set equal to h,{ or p, respectively.
Note that each of the brackets ([29), (30) and (31) are anti-symmetric, and that the Casimirs C =
Jo hF (q)d<2 satisfy {A,C} =0 (where F is an arbitrary function and A is an arbitrary functional)
independently for each bracket.

The use of the Poisson (and Nambu) bracket formulation of the shallow water equations is mo-
tivated by the intimate connection between these formulations and the conserved quantities. As is
well-known, the conservation of energy H rests solely on the anti-symmetry of the Poisson bracket,
and a numerical scheme that retains this feature will automatically conserve energy. However, po-
tential enstrophy is a Casimir, and therefore developing a numerical scheme using the Poisson for-
mulation that conserves it requires that the discrete potential enstrophy lies in the null space of the
resulting discrete bracket. This can be difficult, especially on arbitrary grids, and this motivates the

use of a continuous formulation that does not contain a null space, which is discussed below.
2.6 Nambu Bracket Formulation (Vorticity-Divergence)

Fortunately, there is a closely related formulation of the shallow water equations in terms of Nambu

brackets (see Salmon|(2007))):

(FAH,Z)eee = / A2 T (Fo He) 33)
Q
{-7:77'[72}##( = /dQZ{J(FMHu) (34)
Q
(FAH,Z) pen = /dQ <Vzh VF, VH- Viq - VZ, VF VH,- V1q> +eye(F 1, Z)
Q
(35)

where cyc is a cyclic permutation, Z%jﬁe}%%z = [ dQhT is the potential enstrophy, and the

multipart dot product is simply the product of the individual components, summed over each basis

Op Zh 02 F50:H¢

(for example, in 2D doubly periodic flow the first term is Bog

). The time evolution of an

arbitrary functional .4 is now given by

dA
E = {A7H7Z} = {A,H,Z}ggg + {A’Hvz}lm( + {A)H’Z}MC’I (36)
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These brackets are useful because they are triply anti-symmetric (which ensures the conservation of
‘H and Z) and non-degenerate (they have no Casimirs). In fact, discrete conservation of both total
energy and potential enstrophy requires only the triply anti-symmetric nature is retained. It is also
possible to generalize these brackets to ANY Casimir (as shown in[Salmon! (2003)), but since we are
interested mostly in potential enstrophy conservation this is not necessary. These brackets will form

the basis of the Z grid discretization method discussed below.

3 C Grid Scheme

Following [Thuburn and Cotter| (2012), the prognostic variables for the C grid scheme are the mass

={m5uluid height integrated over a primal grid cell (equivalent to the mass in that grid cell) M
and the wind integrated over a dual edge (equivalent to the circulation along a dual edge) U. Lettin

QEAA:ALMA;QL the vector-invariant Poisson bracket can be discretized in a manner that preserves its
anti-symmetric character (which ensures total energy conservation) and a subset of the Casimir in-
variants (specifically: mass, potential vorticity and potential enstrophy). Combined with a choice for
the discrete Hamiltonian, this constitutes a complete discretization for the nonlinear rotating shallow
water equations. Ideally, one would use a Nambu bracket formulation of the vector invariant shallow
water equations rather than the Poisson bracket formulation in order to avoid the difficulties associ-
ated with developing a discretization that has the correct Casimirs, since in the Nambu bracket case
only anti-symmetry must be enforced. Unfortunately, the only known Nambu bracket for the vector

invariant shallow water equations possesses intractable singularities and is not suitable as the basis

for developing a discretization (Fhuburnand-Woolings(2005)--{Salmon| (2003)) ). In what follows
uppercase letters will denote the entire (column) vector of degrees of freedom, while lowercase
letters will denote a specific degree of freedom. A hat on a variable indicates that the quantity is

defined on the dual grid.
Specifically, the brackets Fand{8(7) and (8) are discretized using the operators from Appendices

and Bl as:

B 0A JA oB OB 0A OB A r~ OB
{AaB}R - = @@ DZ*L(;U IEE HNDl@ 37
0B oA 0B
ABlo=|—.Q—= |aTQ— 38
N s g o

where the dis

derivatives are simply the partial derivatives with respect to the appropriate quantity. Note that these
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discrete brackets are only bilinear and anti-symmetric, they do not satisfy the Jacobi identity. In ad-
dition, they posses only a subset of the Casimirs of the continuous brackets. Therefore they should
be properly be termed quasi-Poisson brackets. The brackets given in (37) and (38) are essentially a
generalization of the brackets introduced in S04 from uniform square grids to arbitrary polygonal

grids, using op

the operators from

[Thuburn and Cotter] (2012)) . The Hamiltonian H is discretized as:

1 1 1ge s
H=3 gM " T(mi, gmi)tM + 5 (te; Ce2B)m + (mi, gb,,;)liUng (39)

where g is the acceleration due to gravity,

7B is the topographic height

integrated over a primal grid cell, ' = MU is the mass flux on dual edges and M€ = oIM, with

an interpolation operator. Taking functional derivatives yields

)
OH _ (40)
ox F

where ®;- is the Bernoulli function dual-O-form-and-F.-sampled at dual vertices and F is the mass
flux primat-d-formintegrated over primal edges. Computing actual values yields:

LT U? Hu, x

K

<
=

+
=
+\:
S

2 B 1 7

with K = ¢7 Y*HU where K is the kinetic energy primat2-form:-andF—HCintegrated over
rimal grid cells and F = HC' A detailed description of these discrete variables and their stagger-

ing on the computational grid can be found in Appendix [E] and a diagram of their staggering is in

Figure[2] The resulting discrete evolution equations are

S+ DyF. =0 (1)

— —Q(F.,q,) + D19, =0 (42)

In fact, by making alternative choices for #¢F', Q and @rg}N(along with the operators discussed
below) it is possible to recover a wide range of C grid schemes present in the literature (such as
Ringler et al.| (2010), Thuburn et al.| (2013) and [Weller| (2013)), see (2013)) for more
details). The operators D5, D1, D1, D5, 1, J, R, W and H are defined in Appendicesand(and
can also be found in a general form in[Thuburn and Cotter|(2012))). The novelty of the current scheme

is a new definition of Q, such that the properties of total energy conservation, potential enstrophy

conservation and steady geostrophic modes hold simultaneously. This is the subject of SectionE} A

otential vorticity equation can be obtained from by taking D- to yield:

5 ~DQF =0 (43)

11
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integrated over dual grid cells,and ¥ = I 4 f = M * Q where M = R is the mass integrated over
integrated over dual grid cells and @) is the potential vorticity sampled at primal grid vertices.

3.1 Relationship to Discrete Exterior Calculus

As discussed in[Thuburn and Cotter| (2012) , these operators have an interpretation in terms of discrete
exterior calculus. In fact, Do, D1, Do, D; are discrete exterior derivatives, I, J and H are Hodge

stars and the various prognostic and diagnostic quantities can be interpreted as discrete differential
forms. This connection is further explored in

3.2 Linearized Scheme

As is well-known, the linearized version of a Hamiltonian system about a steady state can be found
by evaluating the brackets at that state and using the quadratic approximation to the associated
psuedo-energy-pseudo-energy as the Hamiltonian (1993)). Following this procedure and
letting the Coriolis feree-parameter f be a constant, =0-B = 0 and assuming a background state
of & = (H,0), we obtain

0A 6A N\ 0B 6B  [JA GBIA - 0B

Bin=— 2222 |Tp, 22 22 [ 22 22020 Tp, 22 44
{AB}r m; M |~ 2“711_@(]& ue mi §U He lcj/\]\l “4)
;oA 0B oA Te, OB

Blwag =+ W — — W— 45
MBhwe=1 W Vi so )" Vag )
for the brackets (where W = Q, —, is the linearized version of Q) and

1 1 - N

H = 5 gM L(mi, gmiM + 2B)1+ 5 H (e, uc)nUTHU (46)
for the Hamiltonian, which has associated functional derivatives of
) IM
o _ [ atM (47)
oz \ HHU
The resulting evolution equations are
ﬁm,,' 8M ~

-—— +HDsHu U =0 48
ot oL + oHu,. (48)
. OU L
;'@z—fWHuiU—nglI@M:O (49)

12
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Figure 2. A subset of discrete variables and their staggering on the computational grid for the C grid scheme. A
subscript ¢ indicates quantities defined at primal grid cells or dual grid vertices, a subscript e indicates quantities
defined at primal or dual grid edges, and a subscript v indicates quantities defined at primal grid vertices or dual
grid cells. The prognestie-prognostic (red) quantities are the mass integrated over primal 2-form-#:-grid cells

my;_and the wind integrated along dual +-ferm=grid edges u., the other quantities are diagnostiediagnostic
(blue). More details can be found in Appendix E]

3.3 Properties of Scheme

This scheme has many important properties, including:

1. Mass and potential vorticity conservation: Both mass ##—) and mass-weighted potential

vorticity WM&HC conserved in both a local (flux-form) and global (integral) sense.

. No spurious vorticity production: By construction, Dy D; = 0 and there is no spurious pro-

duction of vorticity due to the gradient term in the wind equation.

. Linear stability (pressure gradient force and Coriolis force conserve energy): This is due to

the fact that I, J and H are all symmetric positive-definite; DI =_Dy: EQT =D;and W =
-WT,

. Steady geostrophic modes: By construction, —R Dy = W D5 (noting that W is the same for

all members of this family), which gives steady geostrophic modes.

. PV Compatibility: again by construction —R Dy = W Dy with Q,,—. — ¢W, and therefore

the potential vorticity equation is compatible with the diagnostic mass equation (a constant PV
field remains constant). Note that this is same as the condition required for steady geostrophic

modes.

. Other conservation properties: see below for a discussion on total energy and potential enstro-

phy conservation.

Table |1| shows a summary of the required properties in order for the resulting scheme to have all of

the mimetic and conservation properties discussed above.

13



Table 1. Summary of required operator properties for obtaining the desirable mimetic properties along with

total energy and potential enstrophy conservation. For-A example Fis-a-diserete Hodgestarof operators that
s 355 forms forms; st-satisfy these properties can be symmetrie-posttivefound in

Appendix [Tl : planatio & usec-to-construct-mass-atedeg

for-use-More details can be found in determining/Thuburn and Cotter] (2012) or [Eldred| (2015) . Note that the
mass-fuxmapping column indicates which types of quantities the operator accepts as inputs, and its-transpese
#"-what it produces as output, with p or d denoting the primal and dual grids; while the number (0.1,2) denotes.
example, the seheme-conservesenergyR operator takes as input quantities integrated over primal grid cells, see

grid cells.
Operator | Properties Notes Mapping
I Symmetric Positive Definite Hodge Star p2 ->d0
J Symmetric Positive Definite Hodge star d2 ->p0
H Symmetric Positive Definite Hodge star dl ->pl
A%\% RDy = DoW Interior product (contraction) pl ->dl1
W=-W" .
R Identity operator p2 ->d2
Q=-Q"
Q Q — qoQ when g, = qo is constant | Interior product (contraction) | pl ->dl
— 2
—-DiR"% +QD1gy =0 Vg,
Dy DyD; =0and DI =—-D, Exterior Derivative pl >p2
Do D>D1 =0 and DQT =D Exterior Derivative dl ->d2
Dy DyD; =0and DI = —D; Exterior Derivative p0 ->pl
D, D2D; =0and D¥ =Dy Exterior Derivative do ->d1
10} see text see text see text

3.3.1 Total Energy Conservation

Following S04, total energy will be conserved for any choice of H if the discrete brackets retain
their anti-symmetric character. This requires that DI = — D, and that Q = —Q7. The first con-
dition is satisfied by construction of the discrete exterior-derivative operators Dy and D;. The
360 second condition is satisfied only for certain choices of Q. One example is Q:—éqc—“#%
Q= 3Q°W + WQ° (as used in Ringler et al.| (2010)), where ¢ is any function that, given the

set of g, at primal vertices, computes a unique ¢=Q° at primal edges (such as ¢-—=—> = eyt %@M@Q@)-
Flexibility in the choice of ¢--Q)¢ allows a wide variety of stabilization methods such as CLUST or

APVM (Weller (2012) and [Weller et al.| (2012))). Unfortunately, this choice does not conserve poten-
365 tial enstrophy.
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3.3.2 Potential Enstrophy Conservation

Following S04, potential enstrophy is a Casimir and therefore will be conserved when

{Z,A}=0 (50)
holds for any choice of functional A. Nete-that-

Z= (Q’mmuqu).] - (n1)37]'1;/7n’u)J

3 27 O S0

2-ferm—Define potential enstrophy as

Z=(QT=

T
5 (H)TT (51)

N =

Its functional derivatives are

iz [-R%S

e 2 (52)
oz D:Q

Using the chain rule for functional derivatives, it suffices to show that equation (50) holds for A =

>-;miand A=3"_u.. Therefore equation (50) reduces to

DQDl&Q =0 (53)
B 2
DREL QD=0 (54)

which must hold for any choice of ¢;(Q). The first of these is again satisfied by construction for Do
and D;. The second is much trickier, and is the main subject of section 4. One example is Q@=-=W-
Q = Q°W (as used in Ringler et al. (2010)), where ¢e=—4>—, =y 1@ = 3 . Un-

fortunately, this choice does not conserve total energy. It would be possible to explore alternative

definitions of Z, but these would lead to different, less natural stencils for ¢;0).
3.4 Arakawa and Lamb 1981

In the case of a uniform square grid, the C scheme grid above reduces to the well-known Arakawa
and Lamb 1981 total energy and potential enstrophy scheme (modified to prognose m,; and . if their
choice of Q is used. Unfortunately, the definition of Q presented in AL81 works only for logically
square, orthogonal grids. For more general, non-orthogonal polygonal grids, a new operator Q must

be found. This is the subject of the next section.
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3.5 Hollingsworth Instability

Since this is an extension of Arakawa and Lamb 1981 scheme, it seems extremely likely that the
proposed scheme will suffer from the Hollingsworth instability, especially if applied in a height

coordinate framework using a Lorenz staggering in the vertical (as discussed in (2016)
and [Hollingsworth et al| (1983)). ft-also-seems+ sed-s il-avoid-However

other similar schemes have been able to mitigate the Hollingsworth instability when used with

an isentropic or Lagrangian vertical coordinate, or when a Charney-Phillips staggering is used

in the vertical.

the-Hamiltonian—itsel);—which-On a uniform square grid using ALS8I, it is possible to rigorously
modify the kinetic energy stencil to eliminate the non-cancellation error that is at the heart of the
instability. Furthermore, this modification can be done in such a way as to conserve total energy.
by expressing it as a modification to _the Hamiltonian 7 itself and then deriving the associated
consistent mass flux Ie. A similar modification of the Kinetic energy stencil for a similar C grid
scheme on non-square grids (Gassmann/(2013] has been shown to be-suffictent—to—prevent-the

instability- (Hollingsworth-etal{1983)-mitigate the Hollingsworth instability even without rigorous
elimination of the non-cancellation error. Therefore, given the many possible mitigation strategies

the possible presence of the instability is not expected to prevent use of this scheme in a ful-3D

modelmodel solving the hydrostatic or non-hydrostatic equations.

4 Operator Q

The principal novelty of the new C grid scheme is the specification of a Q operator that simultane-
ously conserves total energy and potential enstrophy, and also supports PV compatibility. Previous
work found choices for Q that conserved either total energy or potential enstrophy, but not both.
The key lies in S04, showing that the AL81 approach could be extended to more general stencils
(although retaining a logically square, orthogonal grid). This work takes the Salmon 2004 approach

in a different direction, keeping the same stencil as AL81 but considering a general polygonal grid.
4.1 Definition of Q

Loosely following S04, define Q as
QFe = Z Z qvae,e’,vFe (55)
e’€ECP(e)veVC (i)

where 1 is the primal grid cell covered by both ¢ and €’. A diagram of this operator is shown in Figure
Bl An equivalent alternative form for Q given in terms of the Poisson bracket that closely mimics the

one found in S04 can be found in the-appendix(
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Figure 3. A diagram of the stencil of Q when applied to an edge ¢ (green). The nonlinear PV flux QF at
edge < (green) is a linear combination of the mass fluxes F. at the edges e~cFEP{eye’ € ECP(e) (red),

where the weights a. .+ , are themselves a linear combination of the potential vorticity g, at vertices +-c V-G
v € V.C(7) (blue) and 5 is the cell shared between edges < (green) and €’¢’ (red). By choosing the weights

Qe,e’ v appropriately, an operator Q can be found that simultaneously conserves both total energy and potential

enstrophy; and supports steady geostrophic modes.

425 logically square orthogonal grid, this approach reduces to the same stencil considered by AL81. At

this point, the coefficients a s ,, are undetermined.
4.2 Linear System for o

It remains to determine the coefficients a ¢/, in a manner such that the resulting operator Q con-

serves both total energy and potential enstrophy, and satisfies PV consistency.

430 4.2.1 Requirements introduced by energy conservation

Following S04, in order for Q to be energy conserving then Q = —Q7". In terms of the coefficients,
this implies that cce ¢/ y = —Qer ¢, OF in other words, they are anti-symmetric under an interchange
of eand €’

4.2.2 Requirements introduced by potential enstrophy conservation

435 From || ,in order for Q to conserve potential enstrophy —éTR%f—QBTqU—:(}—D R 1 QD,Q=0
must hold for any choice of ¢;(). Expanding this out yields

2
Z Z Qe e’ vqv Z te’,’u/q;: Z (_ne,i) Z Ri,v% (56)

e’€ECP(e) \vEEVC(e,e’) v'eEVE(e) 1€CE(e) veVC (i)

for every e, which must hold for any choice of q,. For a given edge e, the vertices in question are
v € CV E(e) (shown in Figure[d) where CV E(e) = VE(il) UV E(i2) and (i1,i2) = CE(e). Both
440 the left and right hand side of these equations are a quadratic form in this set of vertices, and for this

to hold for arbitrary g, the coefficients in these two quadratic forms must be equal. These coefficients
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Figure 4. A diagram of the stencil »-c-EVE{eyr=VFE (V20 € CVE(e) =V E(1) UV E(i2
with {542y =CFee)(il,i2) = C'E(e), which is simply the union of all vertices v+—v (blue) in the cells on
either side of edge ¢ (green).

are linear combinations of the s, and therefore the equality of these quadratic forms implies a set
of linear equations for the a’s.

Specifically, for each grid cell ¢ with n. edges and n,, vertices (note that n, = n, for a polygonal

grid cell, but it is useful to keep distinct notation to ease exposition), there are n, W

Ne(ne—1)
2

equations
(coefficients in the quadratic forms) and n,, unknowns (the coefficients o o/ ,,). Fhis-Since
T, = N, this is therefore an overdetermined system, and the coefficient will be found through a

least squares procedure.

operational-grids—The equations come from equating the coefficients in the two quadratic forms:
ny (ny+1)
2

there are independent vertex pairs, and n. edges. The unknowns are the coefficients o ¢/ 4

that are associated with the grid cell: there are % independent unique edge pairs, and n,
vertices. Note that this has already taken into account the fact that v ¢/, = —Qter e, (hence the
wording unique edge pair) which reduces the number of independent coefficients in half. Letting
v and v’ loop over the vertices in the cell (they are the unique members of VC (i) x VC (1)), the

equations are given by

AU,U = Z ae,e’,vte/,vsgn(eye/) (57)
e’€EV E(v,e,i)

R; R;
Buw=3 neimy™ == (58)

where the sum for B,, ,, occurs only when v € V E(e); and

/ /
Av,v’ == E ae,e/,vte’,v’sgn(eae ) + E ae,e’,v/te’,vsgn(676 ) (59)
e’€EVE(v'e,i) e’€EV E(v,e,i)

By =0 (60)
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Figure 5. A diagram of the stencil EV E(v,e,i) = EC(i) N EV (v) — e. Consider the set {3 (v,e,1) de-

noted in green: then ZV FE{{+=+-EV E(v,e,1) are the two red edgesedges. Now consider the set {ve;4)
(v, e,1) denoted in blue: then BV -E{({vres4)-EV E(v, e, 1) is the brown edge.

where e loops over each edge in ¢ and EV E(v,e,i) = EC(i) N EV (v) —e; and sgn(e,e’) =1=
—sgn(e’,e) (which ensures that the scheme is also energy conservative). A diagram of EV E(v, e, 1)
is provided in Figure [5] Note that coefficients in one cell are coupled with adjacent cells when
v e VE(e) orv' € VE(e); that is to say, the equations involve coefficients that are associated with
other grid cells. On a non-uniform mesh, this means that the entire set of coefficients must be solved
for at the same time.

The solution procedure outlined above gives a large matrix system
Aa=b (61)

where each row in A represents an equation obtained by equating coefficients in the quadratic forms,
and « is the vector of unknown coefficients. This system can be solved (via a least-squares approach)
to yield a set of coefficients a such that Q conserves potential enstrophy, provided the system can
be solved exactly. This procedure is essentially identical to the one employed in SO4;-when-applied

< A Q and n aca tatal anarg and

7. In addition, the

coefficients ontyhave—te-can be computed once, and then stored for later use. Unfortunately, the
system that results directly from this procedure is impractical to solve for realistic non-uniform
meshes: it is too large and ill-conditioned. For example, on an icosahedral-hexagonal mesh with O(1

million) grid cells, there will be O(90 million) coupled coefficients that need to be solved for.

4.3 Practical Solution

Instead, following Thuburn et al.|(2009), the coefficients can be uncoupled by defining

Buw= ("2 + (62

Bv,v’ = C’nm (63)
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when v € VE(e) orv' € VE(e), where C' = —1/6. On-all-meshes-tested-(inecluding-uniform-square
i i is; This will produce an independent
subsystem for each grid cell, with for example 90 unknowns on a hexagonal grid cell and 24
490 unknowns on a square grid cell. When this procedure is applied to a uniform square grid it reproduces
the AL31 scheme, and on a uniform hexagonal grid it produces a total energy and potential enstrophy
conserving scheme (not shown, verified numerically). In all cases, including the non-uniform meshes
tested (icosahedral and cubed-sphere grids). the least squares problem is solved exactly, in the
sense that the coefficients exactly satisfy the relationships for potential enstrophy and total energy.
495  conservation. Since each subsystem s still overdetermined., this implies the existence of an associated
solvability condition. It seems likely that the solvability condition is the key to writing down an
explicit formula for the coefficients in terms of R;,, and the-least-squares-problem-has-a-unique;
exact-solution—This-has-enabled-the-n, ;. Unfortunately, we were unable to derive such a condition.
However, this does not prevent the numerical solution of the system-for least square problems, which

500 is sufficient for practical use of the scheme. We were able to solve the systems on cubed-sphere
meshes with up to 884736 grid cells and on icosahedral-hexagonal meshes with up to 655363 grid

cells in a few hours using an unoptimized, serial algorithm on a laptop computer. Furthermore, the

uncoupled nature of the problem (one small independent least-squares problem per grid cell) would

facilitate easy-trivial parallelism if needed for larger meshestand-again;-the-coefficients-onlyneed-to
505 be-computed-onece).

4.3.1 PV Compatibility

The astute reader will note that nothing has been said yet about enforcing PV compatibility (Qq, = =
cW. It was originally believed that PV compatibility would have to added as additional equations
in the matrix-vector system. However, it was found that enforcing potential enstrophy conservation

510 (even using the eelsplituncoupled form) was sufficient to ensure that Q was PV compatible. This
corresponds with the results of S04 (2004)), who did not explicitly add PV compatibility,
yet all of his schemes had this property. The reasons behind this result are not yet understood. If PV
compatibility had to be added explicitly, it would simply mean that

> aeev—wee (64)

veVC(i

515 for every edge pair (e,e’); which could be easily added to the independent system of equations

solved in each grid cell. Although enforcing Q, —. = ¢W ensures PV compatibility, it also requires
the use of the W operator from Thuburn et al.| (2009) . Therefore, Q will share the same limitations
including inconsistency on general grids. The consequences of this are explored more in[Eldred and Randalll (20016a) .
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5 Z Grid Scheme

Unlike the C grid scheme, the Z grid scheme starts with Nambu brackets rather than Poisson brackets.
This greatly simplifies the derivation, since only the triply anti-symmetric nature of the brackets must
be retained to ensure total energy and potential enstrophy conservation: there is no consideration of

Casimirs. Start by defining a set of collocated discrete variables

which are pointwise values of h, ¢ and p at primal grid centers. We will also use the More details

about the grid, discrete operators and discrete variables can be found in Appendices and[{
5.1 Functional Derivatives

The functional derivative of a general functional F with respect to discrete variable x; is then defined

as

0F 1 oF

where A; is the area of primal grid cell 7. The diagnostic variables ®;, x;, ¥; and ¢; are defined

through the functional derivatives of the discrete Hamiltonian H and discrete Potential Enstrophy Z

as:

b=y, )
= %f& (68)
= %: , (69)

At this point the discrete Hamiltonian  and discrete Potential Enstrophy Z are left unspecified.
5.2 Discrete Nambu Brackets

Following [Salmon| (2007), the general discretization starts from the Nambu brackets (33)), (34) and
(35) for the shallow water equations in vorticity-divergence form. As long as these brackets retain
their triply anti-symmetric structure when discretized, total energy and potential enstrophy will be

automatically conserved for any definition of the total energy and potential enstrophy (with one
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caveat explained below). In addition, the bracket structure ensures that this conservation is local
as well as global. That is, the evolution of a conserved quantity can be written in flux-form for
each grid cell, where cancellation of fluxes between adjacent cells leads to the global integral being
invariant. This is in contrast to a method that conserves the global integral, but cannot be written in
flux-form for each grid cell. In what follows below, we will consider only the case where Z is the
potential enstrophy, although this approach could be easily generalized to arbitrary Casimirs (see

Salmon| (2005) for an example of this on a uniform square grid). In discretizing the Nambu bracket

the operators Dy, D>, Dy and D from the C erid scheme are needed. In addition to these, the
additional operators J(A. B), K, X, and X, are also needed, and they are given in Appendix[Dl

5.2.1 Jacobian Brackets

Loosely following SO07, the {F,H, Z}¢¢¢ bracket can be discretized as

1
{vavz}CCC =3

1
5 D 5(D1(B)n) T (Fe, He) +eye(F.H, 2) (1)

edges
Note that this bracket is triply anti-symmetric (due to the cyclic permutation), as required. The

{F,H,Z},uc bracket can be similarly discretized as

FH 2= Y 5(DUE))T(Furt) )

edges

This bracket is only doubly anti-symmetric (in /{ and F due to the anti-symmetry of .J), but it will
conserve Z as well provided that g—i =0 (since J(A, B) =0 when either A =0 or B = 0). These
brackets are essentially those encountered when discretizing the Arakawa Jacobian, as detailed in
Salmon/(2005)).

5.2.2 Mixed Bracket

The mixed bracket is trickier since it contains an apparent singularity (%) On closer inspection,
q

in the continuous case this singularity cancels out when combined with the functional derivative

of the potential enstrophy. This is the caveat mentioned above- the discrete mixed bracket must be

constructed such that the apparent singularity cancels out with the discrete functional derivative of

the potential enstrophy. With this in mind, the general form of the discrete mixed bracket is chosen

as:

Fzha= Y I (0500 - D)D) FeeFE) a9

where, from before, ¢; = gTZ‘

~. The quantities e and de are the edge lengths on the primal and dual
rid, as defined in Appendix A. This bracket is triply anti-symmetric (again due to the cyclic permu-

tation), and the apparent singularity will cancel if Z is chosen with care.
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5.2.3 Conservation

Since the {F,H, Z}¢¢c and {F, H, Z},,¢h brackets are triply anti-symmetric, and the { F, H, Z}¢,.
580 bracket is doubly anti-symmetric, both total energy and potential enstrophy will be conserved for any

choice of H and Z; provided that the caveats mentioned above are obeyed. Those are:

1. g—i =0 (ensures that the {F,H, Z},,, bracket conserves potential enstrophy)

2. Z chosen such that the apparent singularity (lj;%jh) term + cyc(F, H, Z) terms) in the {F,H, Z} .ch

bracket cancels out
585 These are fairly minimal requirements, and many reasonable choices for Z satisfy them.
5.3 Discrete Hamiltonian and Helmholtz Decomposition

The Hamiltonian H can be split into three parts: Hrp, H; and H pg, where the first two are the
kinetic energy due to flux-divergence terms and Jacobian terms, and the last is the potential energy.

In the continuous system we have

500 H=Hrp+H;+HpE (74)
where
1
Hep = / A5 (VX Vx+ V- V] (75)
Q
_ 2J (x,%) _/ JOx¥) —J (@, x)
H]—/inQh = [ dQ) 5% (76)
Q Q
595
1
HPEZ/dQ§gh(h+2hs) 77)
Q

These can be discretized as

1 le (Dixi)? | le (D1vi)®

Hro=5 2. G he Tde ke (78)
edges
1
600 Hpp= igmAighi(hi +bi) (79)
Hy=2 3 (D) (i) (80)
J — 9 1h Xi Wi
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5.4 Helmholtz Decompositions and Bernoulli Function

By taking variations of H we obtain
605 6Hpr= Y  gAi(hi+bi)oh; (81)

cells

le (Dixi)* + (D1¢4)® le (51X¢)(E15Xi)+ le (D1vi)(D16%;)

5IHFD——* Ohe+—

edges de hg o edges de he edges de he
(82)
oHy = Z D, 25h J(xi, i) + Z D1—6J (xi> i) (83)
edges edges

610 After a lot of algebra, these can be grouped (half of each term involving dh; goes to ®; and half to
1i/¢;) to obtain

OH = —Xi0pi + —1i0G; + P;oh; (84)

where (using the definition of functional derivative)

(57‘[ 1 g(h+b )—|—**K le (D].XZ) (Dlwz)
A 1

+ < fKD1 (85)

tT Sh 44, de h2 2 A, 0 %)
615
1 1 le - 11 1
i = XiDzhfe%DIXi - §X1D2(Dlh7v)¢e (86)
1 1 le 11 1
Cz'f* h de Dﬂ/’z QEDQ(DlhTJ)XG 87)

The latter two equations (86] and [87) are the discrete version of the Helmholtz decomposition, and

620 form a pair of non-singular elliptic equations. They can be combined into a single equation as

AlX) FDH —JA ) (xi)| _ (H (88)
¥ JA FDH/ \¢; Gi
where, for example, FDx;=——Py7—=DPr- FDHY; = Do 12 Dy y; and JAw; = § - Do(D17-)ibe.
Note that (without the A% factors) FB-FDH is symmetric and JA is anti-symmetric, which means
that A = —AT (ie A itself is skew-symmetric). Also note that when h; = H is a constant (and
625 therefore he = H), they reduce to
11 le - 1

i = EED2%D1Xi = ELXi (89)
11 le 1
Gi= T D11h; = T Ly (90)

where L = A%DQ %Dl, which is the eerreet-expected linearization behaviour.
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5.5 Discrete Potential Enstrophy

A natural definition of the discrete potential enstrophy is

2

Z:EZA/’—” 1)

where 7; = (; + f;. Taking variations of this yields

Z
oz, o2
0Z 17?

=—-li_z
Sh;  2h2~A ©3)

0Z
—=—=2Z 4
5~ s ©9

Then the natural definition for ¢; = Z— works, and the above simplifies to

1 2
Z=3 z”: Aihiq 95)
0Z 1,
ohy —5% (96)
0Z
57@ qi (Ch)

By plugging these back into the {F, 7, 2}, bracket, it is seen that this choice of Z also ensures

that the singularity cancels.
5.6 Independence between choices for H/Z and Nambu Brackets

As noted before, the mimetic and conservation properties of the discrete scheme are completely in-
dependent of the choice of discrete Hamiltonian H, provided the Hamiltonian is positive definite
and produces invertible elliptic equations for the Helmholtz decomposition. If the resulting ellip-
tic equations were singular, then the scheme would have a computational mode (as discussed in
Salmon| (2007))). Additionally, the discrete Helmholtz decomposition should also simplify to a pair
of uncoupled Poisson problems when linearized. The mimetic and conservation properties are also
independent of the specific choice of Z, provided that the singularity in the mixed bracket cancels
and Z5=406Z2, = 0. The given choices of H and Z were selected to have these properties, and also
correspond with those in SO7 for the special cases of a uniform planar square grid and an orthogonal

polygonal planar grid with a triangular dual.
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5.7 Discrete Evolution Equations

By setting F' = (h;,(;, ;) in turn, the following evolution equations are obtained:

ohi
or X o%
oG
ai =Jc(gi, i) —FD(qi, xi) (99)
s
8‘; = —L®; + J5(gi, i) + FD(gi, 1) (100)

where L is the Laplacian, FD is the Flux-Divergence and J is the Jacobian. Nete-thatthese-eperators
©a-On an icosahedral hexagonal-pentagonal grid these operators are the same as those from
land Randall| (1995a)—The-only-difference-is-in-the-arguments—, and will therefore share the same
limitations as those operators, such as the inconsistency of the Jacobian on general grids. The
consequences of this are explored more in [Eldred and Randalll (200164) . The differences between
the schemes arise from the use of different arguments to the operators (¢; instead of 7;;ane-) and the
use of different definitions for ; and 1); -{(which in turns induces a different Poisson problem and
different expression for ®;).

5.7.1 Laplacian and Flux-Div Operators

The Laplacian and Flux-Divergence operators (which come from the mixed bracket) can be written

as
1 le -
Loa; = —Dy—Dq; 101
W= Qe (101)
1 le -
FD(w, ;) = ED2046%D151' (102)

— (67
where a, = ZZ—GCE(S) 5

5.7.2 Jacobian Operators

The Jacobian operators (which come from the Jacobian brackets) can be written as

Js(qixi) = —%Dz[(quu)(xe)] (103)

T 1 Dal(D1) (62 + 5 Dal(Drb) @) (104)

Note that on a polygonal grid with a purely triangular dual (including the important case of an

Je(qishi) =

icosahedral grid), Js = J¢.
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5.8 Linearized Version

Under the assumption of linear variations around a state of rest (h; = H, (; = u; =0, ¢; = %) ona

f-plane, this scheme reduces to:

Oh; _ _ ‘

o = Lxi=-Hu (105)
G _ Jy g

ot HLXz =—fu; (106)
O o F o L e

9% gLh; + HLt/Jz = —gLh; + [ (107)

where the Helmholtz equations given by (89) and (90) have been used to simplify the scheme (to the
point that it no longer requires solving any elliptic equations). In the case of a uniform square grid
(uniform hexagonal grid) this scheme is identical to the one studied in |[Randall| (1994) (Nickovic

(2002)), and it shares the same excellent linear wave properties found for those schemes.
5.9 Relation to Salmon Schemes

For the cases of a uniform planar square grid and a general orthogonal planar polygonal grid with
triangular dual, the general discretization scheme presented above reduces to the schemes given in
S07. However, this discretization scheme is more general, and it also makes specific choices for the

total energy H and potential enstrophy Z when using a general polygonal grid.
5.10 Properties of Scheme

The discrete scheme as outlined above posses the following (among others) key properties:

1. Linear stability (Coriolis and pressure gradient forces conserve energy): Provided that L = LT
(which is satisfied for the L given above, and the majority of discrete Laplacians), the scheme

will conserve energy in the linear case.

2. No spurious vorticity production: By construction, the pressure gradient term does not produce

spurious vorticity since the curl is taken in the continuous system, prior to discretization.

3. Conservation: By construction, this scheme conserves mass, potential vorticity, total energy

and potential enstrophy in both a local (flux-form) sense and global (integral) sense.

4. PV compatibility and consistency: By inspection, the mass-weighted potential vorticity equa-
tion is a flux-form equation that ensures both local and global conservation of mass-weighted
potential vorticity. In addition, an initially uniform potential vorticity field will remain uni-
form. This rests on the fact that J:(g;,%;) = 0 and FD(g;, x;) = cL; when ¢; = ¢ is con-

stant.
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5. Steady geostrophic modes: Since the same divergence (; appears in both the linearized vor-

ticity and continuity equations, the scheme posses steady geostrophic modes.

6. Linear properties (dispersion relations, computational modes): As expected, the scheme pos-
sesses the same linear mode properties on uniform planar grids as those presented in
(1994) and Nickovic| (2002)); and it does not have any computational modes. More details of
the linear mode properties of the scheme on both uniform planar and quasi-uniform spherical

grids can be found in a forthcoming paper [Eldred and Randalll (20016b).

7. Accuracy: Unfortunately, as shown in [Heikes et al| (2013, the Jacobian operator as given is

inconsistent on general grids. Even more unfortunately, the fix proposed in that paper breaks

key properties of the Jacobian necessary to retain total energy and potential enstrophy con-

servation. Surprisingly, as shown in [Eldred and Randall| (20016a), the inconsistency of the

Jacobian operator does not appear to cause issues in the test cases that were run. More details

on possible fixes to the accuracy issue are discussed in|Eldred and Randall| (20016a).

6 Implementation and Results
6.1 Implementation

To test the utility of the C and Z grid schemes developed above, they were implemented in a
combination of Python as a driver language along with Fortran kernels for the numerics. Although
only tested on quasi-uniform grids that admit a structured approach, for simplicity the code uses
an unstructured mesh with indirect addressing. Due to this highly unoptimized implementation, no
cost comparisons were made with other codes; instead, we simply note that both the C and Z grid
schemes are structurally similar to other schemes used in existing models such as MPAS, Dynamico
and UZIM: and can be expected to share similar performance characteristics.

6.2 Results

As a short preview of the more detailed results in [Eldred (2015) and [Eldred and Randall 200163) .
a run of the Galewksy et. al (Galewksy et al|(2004) ) test case using the C and Z grid scheme is
inherent damping in the time scheme was applied. The C grid scheme was run on both a cubed-sphere
Figure [6] and the results from both the C and Z grid schemes are broadly similar to both each other
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Figure 6. A plot of the absolute vorticity from the Galewsky et. al test case at Day 6 for the C grid scheme

on a cubed-sphere grid (top panel), C grid scheme an icosahedral grid (middle panel) and Z grid scheme on an

icosahedral grid (bottom panel). The developed region of the jet is very similar for all three schemes, and is

uite similar to other results in the literature. Some differences can be seen in the undeveloped region of the jet.

that these differences are due to the underlying grid structure, since the the C and Z grid scheme

on the icosahedral grid produce the same pattern for the inactive region (and a very similar C grid

scheme on the cubed-sphere that conserves only enstrophy produces an extremely similar pattern to

cubed-sphere grid. Plots of the time series of total energy and potential enstrophy are available in
[Eldred and Randalll (20016a)) and [Eldred (2013) , and verify that the schemes are conserving both

energy and potential enstrophy in the spatial semi-discretization limit.

7 Conclusions

This paper presents an extension of AL81 to arbitrary non-orthogonal (spherical) polygonal grids in
a manner that preserves almost all of the desirable properties of that scheme (including both total
energy and potential enstrophy conservation) through a new Q operator. Unfortunately, on non-
quadrilateral grids such as the icosahedral grid there will be extra branches of the dispersion rela-
tionship due to a mismatch in the number of degrees of freedom in the wind and mass fields inherent

to the C grid approach. Switching from a C grid type staggering (to an A grid staggering, for exam-
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ple) is undesirable for many reasons, foremost among them being the natural association of physical
variables with geometric entities in a staggered grid as suggested by exterior calculus and differen-
tial geometry (see Tonti| (2014) and Blair Perot and Zusi| (2014))). Fortunately, other than these extra
mode branches on the icosahedral grid the proposed C grid scheme does not posses any additional
computational modes. Furthermore, extensive testing has thus far been unable to show negative im-
pacts from this extra mode branch, especially when running full-physics simulations with realistic
topography and initial conditions (John Thuburn and Bill Skamarock, personal communication).
This work has also presented an extension of the total energy and potential enstrophy conserving
Z grid scheme in SO7 from planar grids to arbitrary orthogonal (spherical) polygonal grids, using
the same toolkit of Nambu brackets and Hamiltonian methods. The restriction to orthogonal grids
rather
than more general non-orthogonal grids (such as a cubed-sphere) is a drawback. However, the major

motivations for using a cubed-sphere grid are the ability to properly balance degrees of freedom

when using a staggered C grid methods (and therefore avoid spurious branches of the dispersion re-
lationship), a tensor-product grid structure for spectral or finite element type methods (which ensures
a diagonal mass matrix for spectral element methods and eases-efficient implementation of finite el-
ement methods) and higher-order finite volume methods (enabling easy dimension splitting), and an
underlying piecewise continuous coordinate system for higher-order finite volume methods (allow-
ing extended stencils). None of these considerations apply to a Z grid method, so the restriction to
icosahedral grids is not anticipated to be a significant hurdle.

A detailed comparison of the two schemes, including an analysis of the accuracy of the operators
used and results from a variety of test cases can be found in second part of this series |[Eldred and|
Randall| (20016a). In addition, an analysis of the linear mode properties of these two schemes on
various quasi-uniform grids is undertaken in the third part of this paper series |Eldred and Randall

(20016b).

8 Code Availability

The schemes described in this manuscript have been implemented in a Python/Fortran mixed lan-
guage code, and are freely available at https://bitbucket.org/chris_eldred/phd_thesis under a GNU

Lesser General Public License Version 3.

Appendix A: Discrete Grid

The schemes described above are designed to work on arbitrary (spherical) polygonal grids along
with an associated dual grid. In the case of the C grid scheme, the grid can be either orthogonal or
non-orthgonal, while the Z grid scheme is restricted to orthogonal grids. A description of the this

grid framework is given in what follows.
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Figure 7. The geometric quantities on a planar grid. Primal grid edge lengths are denoted as de, dual grid edge
lengths are denoted as le, the area associated with an edge by A, the overlap between primal grid cell ¢ and
edge e by A;e and the overlap between dual grid cell v and edge e by A;,. Note that the same definitions can
be used on a spherical grid, provided the appropriate measures are used (such as geodesic lengths for distances,

and spherical polygonal areas for areas). See|Weller| (2013)) for more details.

Al General Non-Orthogonal Polygonal Grid

Consider a (primal) conformal grid constructed of polygons (or spherical polygons). A dual grid is
constructed such that there is a unique one to one relationship between elements of the primal grid
and element of the dual grid: primal grid cells are associated with dual grid vertices, primal grid
edges are associated with dual grid edges and primal grid vertices are associated with dual grid cells.
This grid configuration covers the majority of grids that are used in current and upcoming atmo-
spheric dynamical cores, including cubed-sphere and icosahedral grids (both hexagonal-pentagonal
and triangular variants). Once the dual grid vertices have been placed, there are several important
geometric quantities that are needed in order to construct the discrete operators (shown graphically
in Figure[7). Specifically, we need the primal cell area A;, the dual cell area A,, the distance between
primal grid centers le, the distance between dual grid centers de and the overlap areas A;, and A;..
On a planar grid, these are easily defined using the standard Euclidean metric and formulas. On a
spherical grid, distances must be calculated using geodesic arcs; and areas are calculated by subdi-
viding into spherical triangles as needed and then applying the relevant spherical area formulas. See

the discussion in|[Weller| (2013)) for more details.

Appendix B: Discrete Exterior-Caleulus-Derivative Operators

Following |[Thuburn and Cotter| (2012)), a set of discrete exterier-derivative operators can be defined

as:

Di= Y te (B1)
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820 Dy = Z e (B2)

i€CE(e)

DQZ Z Ne,i (B3)
e€EC(4)

Dy= ) tew (B4)
e€EV (v)

825 where n.; is an indicator that is 1 when e is oriented out of a primal grid cell and -1 when e is
oriented into a primal grid cell, and ¢, , is an indicator that is 1 when e is oriented into a dual grid
cell and -1 when e is oriented out of a dual grid cell. Note-that-by-Dj is the divergence, D is the
curl, D is the skew-gradient and Dy is the gradient; and by the Gauss theorem these are exact (since.
they operate on integrated quantities). By construction, these satisfy Dy D1 =0, Do Dy =0, DI =

830 —D; and Dy” = D; for arbitrary polygonal grids. These identities are the discrete analogues of
V..V =0,V V =0,and adjointness between divergence and gradient; and curl and skew-gradient,
The operators can also be identified as the discrete exterior derivative operators from discrete exterior

caleulus.

Appendix C: Specific Choices for Various C Grid Operators

835 In order to close the C grid scheme presented in Section [3] specific choices must be made for I, J,
H, R, ¢ and W. The ones used here (and in Ringler et al.|(2010) and Thuburn et al|(2013))) are:

1
) - C1
1 (@)
le
Ho= > — (€2)
i€CE(e)
840
Hyo= Y Hee (C3)
e'#ecS(e)
1
J=— C4
a1 (C4)
Aie
845 o= »_ (C5)
i€CE(e) = ©
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R= Y Aiv (C6)

9

1€CV (v)

and

W= Y W €
e’€ECP(e)

where I, J and Hy are diagonal matrices, Ho is used on orthogonal grids such as the icosahedral
grid ;-and H ¢ is used on non-orthogonal grids such as the cubed-sphere gridtthe-. The details of
the construction of this operator, including the stencil S(e) and the weights H, ., can be found in
Thuburn et al.| (2013))and-the-. The weights W, ./ are chosen such that W = —WT7T and —RD, =
DyW (the details for this operator can be found in Thuburn et al.| (2009)). I, H and J transform

AAANAAANANAARARANAAAA

quantities between the primal and the dual grids, and are in fact what are known as discrete Hodge
star operators. R is a discrete analogue of the identity operator that maps quantities integrated over
primal cells to quantities integrated over dual cells, while W can in fact be identified as a discrete
analogue of the interior product (or contraction) operator. On an orthogonal grid, the choices given

for I, J, H correspond to the ehoiee-of-a-Voronoi hodge star from discrete exterior calculus.

Appendix D: Specific Choices for Various Z Grid Operators

For the Z grid scheme, the following operators are needed:

K= Z (D1)

e€EC(3)
which is the sum of edges for a given grid cell, and

J(A,B) =ne2AsB1 +ne1 A1 By (D2)

which is used to build a discrete Jacobian operator. Note that J( A, B) is anti-symmetric (J(A,B) =
—J(B,A)) and satisfies J(A,0) = J(B,0) = J(A, A) = 0. In addition, two different interpolations

(from cell centers to vertices and to edges, respectively) are defined:

X, = Z CX; (D3)
1€CV (v)
Xe= Y Ly, (D4)
e — 2 K
i€CE(e)

where C' is a constant given by %, where n is the size of CV (v) (equal to 4 for quadrilateral dual

grid cells and 3 for triangular dual grid cells).
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Appendix E: Discrete Variables {for the C Grid Scheme)

Table[2]gives the discrete variables used in the C grid scheme, their type (which indicates the stagger-
ing on the grid), and their diagnostic equation (where applicable). For the type, the first designator

indicates the ferm-location on the grid type (primal or dual) and the second designator indicates the
ferm-degree-degree of the geometric entity the quantity is integrated over (0,1 or 2). For example, &=

(' is a quantity on the dual grid integrated over edges.

Table 2. List of discrete C grid variables and their diagnostic equations

Variable

ol

&t

Appendix F: Discrete Variables (for the Z Grid Scheme)

Table 3] gives the discrete variables used in the Z grid scheme and their type (either prognostic or

diagnostic).

Acknowledgements. The authors would like to thank Colin Cotter and an anonymous reviewer for their helpful
and thorough reviews, which greatly improved the clarity, presentation and content of this manuscript. The

authors would also like to thank Pedro Peixoto for his helpful-comments and suggestions on an earlier draft

of this manuscript. This work has been supported by the National Science Foundation Science and Technology

34




890

Table 3. List of discrete Z grid variables and their diagnostic equations

Variable Type Description

hi Prognostic | Fluid Height

G Prognostic | Relative Vorticity
i Prognostic | Divergence
nm=C+fi Diagnostic | Absolute Vorticity
@i =ni/hi Diagnostic | Potential Vorticity
®;, = K; 4+ gh; | Diagnostic | Bernoulli Function
K; Diagnostic | Kinetic Energy

Xi Diagnostic | Velocity Potential
Vi Diagnostic | Streamfunction
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