The authors would like to start by thanking Dr. Cotter for his helpful and thorough
review, which has greatly improved the clarity, presentation and content of the manuscript.
Responses to specific points raised in the review are given below.

In this paper, the authors introduce some new aspects of C-grid and Z-grid schemes for
the rotating shallow water equations on polygonal grids. The paper starts each section by
collecting together quite a few bits of mathematical structure and previous results about
C-grid and Z-grid schemes. These can be found elsewhere but it is nice to see them collected
together in this context.

For C-grid schemes, they introduce a new methodology for obtaining schemes that si-
multaneously conserve energy and enstrophy on arbitrary orthogonal grids, a previously
unsolved problem. The authors take the approach of writing out the (possibly over- or
under-determined) system of equations that form the constraints, applying the Thuburn et
al (2009) decoupling formula and solving the resulting system numerically. There is no proof
of solvability for this system but the authors report that a unique solution is obtained in
their numerical tests. For Z-grid schemes, the authors extend the Nambu bracket approach to
arbitrary orthogonal grids, obtaining energy-enstrophy conserving schemes by construction.

As described in the introduction, this paper is Part I of a series of 3 papers with Part
IT containing numerical tests and Part III containing linear dispersion analysis. Part I
concentrates on exposition of the methods and discussion of their properties. Given the
focus of GMD on documenting and describing models and model software, I think that Part
I requires:

(a) some evidence that the schemes are practically useful, i.e. that they do not do
anything obviously weird. Having conservation properties is a good sign, but I have built
plenty of schemes before that have good conservation properties but still lead to terrible
numerics. If Part II promises to be a detailed comparison and analysis of results then
Part I should at least have some provisional examples that show that things are working as
expected.

(b) some evidence that the code provided is a correct implementation of the algorithms
described.

A short section (Section 6) has been added the paper with results from the Galewsky et.
al ([3]) test case. The simulations look very similar to those obtained with other members
of the TRiSK family, indicating that the new schemes are at least comparable. A detailed
comparison will be performed in [2]. Evidence of the correctness of the implementation
can be found in [1] (through an examination of the conservation properties), and this is
mentioned in the revised manuscript.

(c) for GMD, I would expect some discussion as to how the numerical methods were
implemented and expressed as code. This is not the same as code documentation, but should
describe the main data structures used and how they form an efficient implementation. It
may actually be that a merge of Parts I and II makes sense, or some partial repetition
between Parts I and II to achieve (a) and (b). Perhaps the solid rotation test plus something
else where we can easily check that things are working, like the mountain after the usual 12
days (or however long it is).



Also in Section 6, a brief discussion of the actual implementation has been added. It uses
a combination of Python as a driver language with Fortran kernels for the numerics, and
employs indirect addressing on a fully unstructured grid. Some thread-level parallelism in
the numerics through OpenMP has also been added. This is not a particularly efficient im-
plementation, although it served the purpose of demonstrating the properties of the proposed
schemes.

A few other remarks: (1) Its bad form for a referee to ask for a reference to their own
paper so feel free to ignore, but you might like to mention that the problem of simultaneously
conserving enstrophy and energy on arbitrary grids was solved in the context of compatible
finite element methods in McRae, Andrew TT, and Colin J. Cotter. ”Energy and enstrophy
conserving schemes for the shallow water equations, based on mimetic finite elements”

A reference to this paper has been added to the introduction, and some discussion of
compatible finite elements also been included. The present work has been differentiated
by emphasizing its use of finite-differences and explicit time stepping that does not require
the inversion of a mass-matrix to compute the time tendency terms (although the vorticity-
divergence scheme does require the solution of a Poisson problem at each time step to
diagnose y and ).

(2) The paper suddenly jumps in with 1-forms, 2-forms, Hodge stars etc without any
warning to the reader! You should at least provide some references and a bit of a guide to
what is going on, and maybe consider whether the language of differential forms is really
necessary for this paper in terms of accessibility to a more general numerics audience.

To clarify the presentation, the references to differential forms and Hodge stars have been
removed, and the relevant quantities have been redefined as integrals over the relevant geo-
metric entities. A short section noting the relationship between the proposed C grid scheme
and discrete exterior calculus has been added to provide more information for interested
readers.

(3) I would like to see some more description of how Equation (61) decouples the problem
and how big the resulting uncoupled systems are. Why does it take so long to solve these
systems? Why cant they be analysed to check if there is a unique solution?

Some additional discussion of the solution process for Q has been added to Section 4.
Once uncoupled, the resulting systems are quite small (24 coefficients for a square grid cell,
90 coefficients for a hexagonal grid cell), and they are very fast to solve. Although the
systems are overdetermined, an exact numerical solution is found. This implies the existence
of a solvability condition. As mentioned by reviewer 1, it seems likely that determining
solvability condition would enable an explicit, analytic solution for the coefficients in terms
of R; , and n. ;. Unfortunately, the authors were unable to determine the solvability condition
for the case of general grids. This did not prevent, however, the successful use of a numerical
solution to determine the coefficients.

(4) Please can you do a consistency test e.g. on the sphere for the Q operator? That
is, take an analytic formula for uh, interpolate to the grid and apply the Q operator, then
analytically compute QQ and interpolate to the grid, and compare errors in the L2 norm. Id
be especially interested in the cubed sphere case, where we observed lack of consistency for



the Coriolis operator in our non-orthogonal scheme.

(5) If Im thinking about this correctly, then the @ operator should imply a Coriolis
reconstruction operator for the linear equations. Is this operator consistent in the limit as
dx—0 on e.g. a cubed sphere mesh?

The Q operator is designed to reduce (in the linear case) to the Coriolis operator W
from [4], since for a given R that is the unique operator that preserves steady geostrophic
modes. The new Q therefore inherits all of the drawbacks of this operator, and in particular
as you mentioned its inconsistency. This is a major issue with all TRiSK type schemes. This
point has been clarified and further emphasized in the manuscript. A consistency check for
Q is included in [2] and [1], confirming that it is indeed inconsistent on both icosahedral and
cubed-sphere grids.

(6) There is no mention of timestepping anywhere. What do you do about timestepping
in the code? How do time series of energy and enstrophy look?

This paper concerns itself only with spatial semi-discretization, and any stable time
scheme can be employed with the spatial schemes presented here. For the tests performed
in [2] and [1], 3rd order Adams-Bashford time stepping was used. The time series of energy
and potential enstrophy look quite good, but of course the exact conservation implied by the
spatial semi-discretization presented in this manuscript is lost.

(7) What is the relationship of the Z-grid scheme to Heikes et al (2013)? Is it a straight
forward extension of the same formulae to arbitrary grids or is another idea needed?

The operators of the Z-grid scheme are the same as those of Heikes et. al (2013), simply
with different arguments; and with a different Poisson problem used to diagnose y and 1 from
¢ and p. These differences arise fundamentally from the use of a Hemholtz decomposition
of the mass flux hu rather than the velocity @. This point has been further emphasized and
clarified in the revised manuscript.
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