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We	are	grateful	for	this	careful	review,	which	has	certainly	improved	the	clarity	
of	both	the	model	description	and	presentation	of	results.	
	
This	 paper	 introduces	 a	 Bayesian	 model	 (nicely	 acronymed	 ‘BUMPER’)	 to	
reconstruct	palaeo-environmental	variables	from	various	proxies	given	modern	
training	 data	 and	 fossil	 samples.	 The	 model	 contains	 two	 neat	 ideas	 which	 I	
haven’t	 seen	 before,	 namely	 that	 of	 using	 a	 mixture	 likelihood	 to	 model	 both	
abundance	and	presence/absence,	and	the	idea	of	scoring	training	sets	according	
to	their	richness	and	diversity.		
	
I	do	have	concerns	about	the	mathematical	model	and	the	way	it	is	described.	As	
somebody	who	lives	and	breathes	these	types	of	models	I	found	the	mathematics	
confusing	and	my	guess	is	that	they	will	go	straight	over	the	head	of	the	average	
reader	of	this	journal.		
	
We	believe	the	confusion	was	most	likely	due	to	misleading	notation	in	Eq	1	and	
Eq	2,	and	we	are	grateful	to	the	referee	for	pointing	this	out.	We	have	corrected	
this	as	detailed	below.	
	
-	Starting	with	Equation	1,	it	seems	to	be	missing	a	product	term,	which	I	think	
should	appear	after	the	proportionality	constant.	Either	that	or	each	SRC	is	being	
calculated	for	each	taxa,	species	and	site	combination.	This	seems	unlikely.		
	
Our	approach	in	Eq	1	was	an	attempt	to	describe	how	the	SRC	probabilities	are	
progressively	 refined	 by	 sequential	 consideration	 of	 each	 training	 site.	 i.e.	 we	
were	describing	the	calculation	of	prob(SRC_jk|	y_ik,	x_i),	not	prob(SRC_jk|	Y_k,	
X).	The	accompanying	text	used	to	read	“Equation	1	is	applied	sequentially	across	
all	 training-set	 sites.	At	each	application,	 the	posterior	derived	 from	the	previous	
training-set	 site	 becomes	 the	 prior	 for	 application	 to	 the	 next	 site,	 so	 that	 the	
probabilities	assigned	to	each	SRC	become	progressively	better	defined.”		
	
However,	 we	 agree	 this	 has	 resulted	 in	 imprecise	 and	 confusing	 notation.	 As	
suggested	by	the	referee,	we	have	revised	Eq	1	to	express	the	product	explicitly	
	

𝑝𝑟𝑜𝑏 𝑆𝑅𝐶!"|𝑌! ,𝑋 ∝ 𝑝𝑟𝑜𝑏 𝑆𝑅𝐶!" × 𝑝𝑟𝑜𝑏 𝑦!"|𝑆𝑅𝐶!" , 𝑥!
!

	

	
and	have	modified	the	text	accordingly	(the	descriptive	text	in	italics	above	is	no	
longer	required).	
	



-	Equation	2	seems	to	suggest	that	this	is	the	normalising	constant,	but	that	can’t	
be	 the	 case	 as	 the	Bayes	 equation	 is	p(SRC|y)	=	p(y|SRC)p(SRC)/p(y).	 It’s	 p(y)	
that	needs	to	be	in	the	normalising	constant.		
	
Apologies,	 this	 is	 a	 consequence	 of	 the	 same	 confusing	 notation,	 i.e.	 using	
prob(SRC_jk)	interchangeably	for	the	prior	and	the	posterior.	We	have	corrected	
this	to	show	that	it	is	the	posteriors	that	are	normalised	using	the	constraint:	
	

𝑝𝑟𝑜𝑏 𝑆𝑅𝐶!"|𝑌! ,𝑋
!

= 1	

	
After	 this	 point	 we	 revert	 to	 the	 prob(SRC_jk)	 notation,	 with	 clarification	 as	
suggested	by	the	other	referee,	Cajo	ter	Braak.	“From	now	on	𝑝𝑟𝑜𝑏 𝑆𝑅𝐶!" 	is	the	
posterior	probability,	the	probability	of	the	SRC	given	the	training	data	Y	and	X.”	
	
-	 Equations	 3	 and	 4	 suggest	 that	 the	 likelihoods	 are	 all	 only	 known	 up	 to	
proportionality	and	the	proportionality	component	isn’t	mentioned.	I	think	these	
should	all	be	equals	signs.		
	
We	 have	 clarified	 this	 with	 additional	 text.	 We	 prefer	 to	 use	 normalised	
likelihood	 functions	 (and	 now	 name	 them	 accordingly)	 so	 that	 we	 can	 regard	
them	 as	 pdfs.	 In	 effect	 we	 are	 describing	 the	 reconstruction	 that	 would	 be	
derived	from	a	single	species	with	a	uniform	prior.	
		
To	reconstruct	the	environment	from	an	observed	fossil	count	𝑦!!	of	each	taxon	
𝑘	within	the	fossil	assemblage,	the	probability-weighted	SRCs	are	used	to	derive	
likelihood	 functions	 for	 each	 taxon	 of	 the	 reconstructed	 variable	𝑥.	 Here	 we	
again	 use	 the	 Bayes	 relationship,	 this	 time	 stating	 that	 the	 probability	 that	 a	
reconstructed	 value	 is	 correct	 in	 the	 light	 of	 an	 observed	 species	 count	 is	
proportional	to	the	probability	that	the	species	count	would	be	observed	in	that	
environment.	Considering	a	single	observed	species	in	isolation,	Bayes’	equation	
can	be	written:	
	
𝑝𝑟𝑜𝑏 𝑥|𝑦!! ∝ 𝑝𝑟𝑜𝑏 𝑦!!|𝑥  × 𝑝𝑟𝑜𝑏(𝑥)	 	 	 	 	 (3)	
	
We	derive	a	normalised	 likelihood	 function	 for	 the	 taxon,	 considering	only	 the	
first	term	on	the	right	hand	side	of	Eq.	3.	This	allows	us	to	treat	the	function	as	a	
probability	distribution	of	the	environmental	variable,	given	no	prior	knowledge	
and	a	count	of	this	single	taxon	in	isolation.		As	we	do	not	know	the	true	SRC	of	
the	 taxon	with	certainty	 (in	general,	 the	calibration	will	have	resulted	 in	many	
SRCs	 with	 non-zero	 probability),	 the	 likelihood	 function	 is	 derived	 from	 all	
significant	 SRCs,	 combined	 using	 the	 probability	 weights	 calculated	 in	 Section	
2.1,	as	follows:	
	
𝐿! 𝑥|𝑦!! ∝ 𝑝𝑟𝑜𝑏 𝑦!!|𝑥 = 𝑝𝑟𝑜𝑏 𝑆𝑅𝐶!" ×𝑝𝑟𝑜𝑏 𝑦!!|𝑆𝑅𝐶!" , 𝑥! 	 (4)	

	
	



	This	 expression	 is	 evaluated	 at	 100	 evenly	 spaced	 points	 across	 a	 range	 that	
comfortably	spans	the	training	set	environmental	range	(see	section	2.4),	and	is	
normalised	to	1.	 It	defines	 the	probability	density	 function	of	 the	environment,	
given	no	prior	information	and	some	observed	count	𝑦!!	of	species	k.	
	
	And,	at	the	end	of	section	2.4	
	
“We	 note	 that	 the	 indicative	 tolerance	 is	 also	 used	 to	 define	 the	 range	 of	
environment	 considered	 in	 the	 reconstruction	 (Section	 2.2),	 from	 𝑥!"# −
6𝑡!  𝑡𝑜 𝑥!"# + 6𝑡! .	 Significant	 probabilities	 beyond	 this	 range	 are	 unlikely	
given	the	constraints	imposed	upon	the	optima	and	tolerances.	In	any	event,	as	
with	 any	 transfer	 function,	 the	 model	 should	 not	 be	 applied	 under	 suspected	
extrapolation	far	beyond	the	training	set	environment.”	
	
		-	Equation	6	suggests	that	there	is	another	Bayesian	model	being	fitted.	It’s	thus	
not	clear	whether	there	is	one	model	being	fitted	(which	is	all	that	is	required)	or	
whether	multiple	Bayesian	models	are	being	stitched	together.		
	
	Separate	 models	 are	 fitted	 for	 all	 species	 k	 (Eq	 1).	 	 Equation	 6	 (now	 Eq	 7)	
describes	how	the	likelihood	functions	generated	from	all	considered	species	are	
combined	 to	with	 a	 prior	 for	 the	 environment	 to	 generate	 the	 reconstruction.	
Additional	text	to	clarify	
	
	“The	posterior	probability	distribution	for	the	reconstructed	variable	is	derived	
by	combining	any	prior	knowledge	with	the	product	of	likelihood	functions	of	all	
considered	species	in	the	assemblage,	as	follows:”	
	
		All	 this	 points	 to	 a	 more	 fundamental	 problem,	 namely	 that	 of	 the	 lack	 of	 a	
statistical	collaborator.	These	authors	are	world-renowned	experts	in	the	field	of	
collecting	 and	 understanding	 the	 nuances	 of	 proxy	 data	 and	 how	 it	 links	with	
climate.	There	are	statisticians	and	groups	out	there	(for	example	the	Past	Earth	
Network)	who	can	help.		
	
		Yes,	 we	 agree	 that	 an	 experienced	 Bayesian	 collaborator	 would	 have	 been	
useful.	However,	we	hope	we	have	convinced	the	reviewer	that	problems	were	
only	in	the	exposition,	and	have	been	satisfactorily	addressed.		
	
	Models	 like	 these	 are	 now	being	 studied	 by	 statisticians	 in	 collaboration	with	
proxy	 experts.	 One	 that	 is	 not	 yet	 in	 the	 palaeoclimate	 literature	 (which	 is	
perhaps	why	 the	 authors	might	 have	missed	 it)	 is	 that	 of	 Ilvonen	 et	 al	 which	
seems	 very	 similar	 to	 what	 the	 authors	 are	 trying	 to	 achieve	 here.	 A	 more	
flexible	 version	 can	 be	 found	 in	 Cahill	 et	 al	 which	 is	 in	 the	 palaeoclimate	
literature	and	uses	multiple	proxies	(forams	and	d13C)	in	a	Bayesian	model	for	
sea	 level	 reconstruction.	A	more	 recent	model	 is	my	own	Bclim	 (Parnell	 et	 al)	
which	 allows	 for	 joint	 inference	 (i.e.	 all	 fossil	 slices,	 all	 taxa,	 multiple	 climate	
variables)	to	be	estimated	together,	with	the	aim	of	reducing	uncertainty.		
	
	Thank	 you,	 we	 have	 added	 these	 references	 and	 accompanying	 text	 in	 the	
introduction:	



	
“The	 field	 of	 Bayesian	 palaeoenvironmental	 statistics	 is	 rapidly	 developing.	
Recent	work	includes	the	development	of	a	pollen-based	multinomial	regression	
model	that	assumes	a	Gaussian	species	response,	with	joint	inference	across	core	
time-slices	 (Ilvonen	 et	 al	 2016)	 and	 a	 foraminifera-based	 multinomial	 non-
parametric	response	model	that	allows	for	multi-modal	and	non-Gaussian	taxon	
response	curves	(Cahill	et	al	2016).	Parnell	et	al	(2016)	have	published	an	open	
source	R	package	Bclim	(Parnell	et	al	2015)	that	uses	pollen	response	surfaces	to	
generate	a	series	of	equally	probable	joint	multivariate	climate	trajectories.”	
	
	and	
	
“though	 we	 note	 that	 Cahill	 et	 al	 (2016)	 incorporate	 a	 second	 proxy	 (δ13C)	
through	 a	 prior,	 assuming	 a	 normal	 likelihood	𝑁 𝜇! , 𝜏 	with	 constant	 precision	
𝜏.”	
	
	Lastly	a	note	on	the	figures.	Again	I	found	these	hard	to	follow.	
	
Figure	 1	 has	 three	 lines	 on	 three	 panels	with	 two	 different	 y-axes.	 The	 x-axis	
runs	 from	different	values	 for	each	of	 the	 three	panels.	My	guess	 is	 that	 this	 is	
each	SRC	above	the	1%	threshold	but	it’s	not	clear.	I	found	matching	this	to	the	
text	very	hard.	
	
We	do	not	plot	individual	SRCs,	rather	we	plot	the	probability-weighted	SRCs	for	
each	 taxon	 (59	 chironomid	 taxa,	 225	 diatom	 taxa	 and	 553	 pollen	 taxa)	 as	 an	
indicative	measure.	We	have	modified	the	caption	to	read	
	
	“Figure	1:	Probability-weighted	SRC	parameters	Nk	(left-hand	axis),	pk	(left-hand	
axis)	 and	 Pk	 (right-hand	 axis)	 are	 plotted	 for	 all	 taxa.	 Three	 training-sets	 are	
considered:	 chironomid-based	 temperature	 (Matthews-Bird	 et	 al.,	 2016),	
diatom-based	pH	(Stevenson	et	al.,	1991)	and	pollen-based	temperature	(Bush	et	
al.,	 in	 prep).	 The	 x-axes	 represent	 the	 distinct	 taxa	 in	 the	 training	 sets	 (59	
chironomid	taxa,	225	diatom	taxa	and	553	pollen	taxa).	For	each	of	the	three	SRC	
parameters,	 probability-weighted	 values	 are	 derived	 for	 each	 taxon.	 These	 are	
ordered	 by	 increasing	 value	 and	 are	 plotted	 sequentially.	 Horizontal	 gridlines	
represent	the	discrete	values	allowed	within	individual	SRCs.”	
	
Figure	2	contains	lines,	candlesticks,	points,	crosses,	and	three	different	colours.	
I’ve	read	the	caption	multiple	times,	and	the	text	associated	with	it	(which	covers	
3	 different	 sections),	 and	 still	 cannot	 work	 out	 what’s	 being	 learnt	 from	 this	
picture.	
	
We	 have	 added	 some	 additional	 text	 that	 attempts	 to	 summarise	 the	 main	
lessons	of	the	picture.	
	
“In	summary	(see	section	3.2),	this	plot	demonstrates:	1)	Reconstruction	errors	
of	WAPLS1	 (circles)	 and	BUMPER	 (crosses)	 are	 similar	 for	 all	 assemblages.	 2)	
Increasing	the	sampling	density	of	a	training	set	reduces	both	the	reconstruction	
errors	 (circles	 and	 crosses)	 and	 the	BUMPER	reconstruction	uncertainty	 (solid	



lines).	 However,	 continued	 benefits	 beyond	 a	 sampling	 density	 of	 ~10	 are	
modest.	 3)	 Reconstructions	 from	 assemblages	 that	 benefit	 neither	 from	 high	
richness	 nor	 from	 low	 tolerances	 (high	 species	 turnover)	 are	 associated	 with	
significantly	 greater	 error	 and	 reconstruction	 uncertainty.	 We	 note	 that	 the	
overstatement	of	BUMPER	uncertainty	relative	to	the	reconstruction	error	(solid	
lines	compared	to	crosses)	is	expected	for	this	application	to	idealised	data	(see	
Section	3.2.3).	
”	
	
Additionally,	we	have	 expanded	 the	 text	 in	 Section	3.2	 in	 an	 attempt	 to	 better	
explain	these	data	in	detail.	
	
Figure	3	is	much	more	useful,	but	seems	to	be	hardly	mentioned	aside	from	the	
end	of	the	last	paragraph	of	Section	4.		
	
We	now	refer	to	Fig	3	where	relevant	in	the	text	(sections	4.1,	4.2	and	4.3)	and	
have	added	some	additional	text	in	section	4:	
	
“Notably,	 Figure	 3	 illustrates	 the	 reconstruction-specific	 uncertainty	 ∆	 (±2∆	 is	
plotted),	which	in	general	differs	significantly	from	the	training-set	RMSEP	that	
is	usually	assumed	to	describe	the	uncertainty	of	WA-PLS	approaches.”	
	
It	was	a	shame	not	to	see	any	actual	reconstructions	of	climate	over	time	for	any	
of	the	sites.		
	
We	decided	not	 to	 include	paleo-reconstructions,	 but	 rather	 to	 focus	 solely	 on	
the	 transfer	 function	 performance,	 using	 both	 idealised	 and	 real	 training	 sets.	
BUMPER	 has	 been	 previously	 applied	 (albeit	 without	 automated	 priors)	 to	
temporal	 reconstructions.	 These	 have	 been	 compared	 with	 alternative	
reconstruction	methodologies	(Holden	et	al	2008,	Matthews-Bird	et	al	2016)	and	
also	with	observational	data	(Holden	et	al	2008).		
	
References	used:		
	
Ilvonen,	L.,	Holmström,	L.,	Seppä,	H.,	and	Veski,	S.	(2016)	A	Bayesian	multinomial	
regression	 model	 for	 palaeoclimate	 reconstruction	 with	 time	 uncertainty.	
Environmetrics,	27:	409–422.	doi:	10.1002/env.2393.		
	
Cahill,	 N.,	 Kemp,	 A.	 C.,	 Horton,	 B.	 P.,	 &	 Parnell,	 A.	 C.	 (2016).	 A	 Bayesian	
hierarchical	model	for	reconstructing	relative	sea	level:	from	raw	data	to	rates	of	
change.	Climate	of	the	Past,	12(2),	525-542.		
	
Parnell,	A.	C.,	Haslett,	J.,	Sweeney,	J.,	Doan,	T.	K.,	Allen,	J.	R.,	&	Huntley,	B.	(2016).	
Joint	 palaeoclimate	 reconstruction	 from	 pollen	 data	 via	 forward	 models	 and	
climate	histories.	Quaternary	Science	Reviews,	151,	111-126.		
	
	
	
	



BUMPER,	Holden	et	al,	GMDD	
Response	to	C.	ter	Braak	(Referee)		
	
Referee	comments	black.	
Author	responses	red.		
Manuscript	changes	green.		
	
We	 are	 grateful	 for	 this	 careful	 review,	 which	 has	 certainly	 improved	 the	
mathematical	rigour	of	the	model	description.	
	
General	comments		
	
The	 first	 aim	of	 this	 paper	 is	 to	 alleviate	 a	 difficult	 problem	 in	 every	Bayesian	
analysis:	 that	of	setting	priors.	 In	this	case	for	the	Bayesian	approach	to	palaeo	
environment	reconstruction	using	Gaussian	response	curves.	This	approach	was	
first	proposed	in	Holden	et	al.	2008.	The	priors	are	partly	based	on	the	data	to	be	
analyzed	(as	in	Empirical	Bayes),	so	that	the	approach	is	not	fully	Bayesian	in	the	
strict	sense;	but	it	practical	and	appealing.		
	
The	 second	aim	 is	 to	provide	a	more	general	 evaluation	of	 this	approach,	with	
the	new	priors,	to	simulated	data	sets	and	a	number	of	(famous	and	newer)	data	
sets.	 The	 approach	 is	 compared	with	 the	 simple	 approach	 based	 on	weighted	
averaging	with	deshrinking	using	inverse	regression,	aka	WAPLS1.			
	
The	 computation	 approach	 avoids	 the	 usual	 MCMC	 computation,	 or	
approximations	thereof	(e.g.	INLA),	in	Bayesian	analysis	by	limiting	the	approach	
to	 one-dimensional	 modelling	 and	 reconstruction	 and	 by	 discretising	 the	
parameters,	 so	 that	 in	 fact	 2,560	 possible	 parameter	 combinations	 remain.	
Thereby	a	 fully	Bayesian	analysis	 is	possible	without	MCMC.	The	posteriors	 for	
these	models	act	as	 if	 they	are	weights	 in	a	model	averaging	exercise.	 It	 is	well	
known	that	simple	models	when	averaged	can	solve	complex	problems.	 	 In	my	
view,	the	paper	fits	in	the	journal,	has	a	clear	aim	and	fulfils	the	claims.		
	
Specific	comments		
	
In	one	place,	it	looks	like	the	distinction	between	prior	and	posterior	is	lost	in	the	
notation/formulas.	In	section	2.2	prob(SRC_jk)	is	surely	the	posterior	denoted	by	
prob(SRC_jk|Y,X),	where	Y	and	X	are	the	training	data	(as	in	eq	(1)).	Note	that	the	
model	 setup	also	belongs	 to	 the	 condition.	 In	eq(	2),	 the	posterior	weights	 are	
meant,	is	it	not?	Instead	of	adapting	all	formulas	(when	I	am	right	in	this)	state	
explicitly	 that	 "From	 now	 on	 prob(SRC_jk)	 is	 the	 posterior	 probability,	 the	
probability	of	the	SRC	given	the	training	data	Y	and	X.		
	
Yes,	we	agree	and	have	made	this	change	(correcting	Eq.	2,	and	after	then	adding	
the	suggested	sentence).	The	mathematics	should	also	be	simpler	to	follow	now	
we	have	 changed	Eq.	1	 to	 reflect	 the	 application	of	 the	 entire	 training	 set	 (see	
response	to	the	other	referee,	Andrew	Parnell)	.	Eq	1	and	2	now	read	
	
𝑝𝑟𝑜𝑏 𝑆𝑅𝐶!"|𝑌! ,𝑋 ∝ 𝑝𝑟𝑜𝑏 𝑆𝑅𝐶!" × 𝑝𝑟𝑜𝑏 𝑦!"|𝑆𝑅𝐶!" , 𝑥!! 	 Eq.	1	



	
	
𝑝𝑟𝑜𝑏 𝑆𝑅𝐶!"|𝑌! ,𝑋! = 1	 	 	 	 	 	 Eq.	2	

	
	
The	probability	distributions	 in	 section	2.3	 form	a	hurdle	model	 (zero	 inflated	
distribution	wit	 truncation	 at	 0	 of	 the	 count	 distribution.	 If	 I	 am	 right	 in	 this,	
please	mention	this.		
	
Thank	you,	we	have	made	this	clarification.	
	
“Species	 counts	 distributions	 are	 represented	 with	 a	 hurdle	 model	 (a	 zero	
inflated	 distribution	 with	 truncation	 at	 zero	 of	 the	 distribution	 of	 percentage	
counts).”	
	
I	numbered	the	pages	from	1-20.		
	
P2L4:	in	the	model?	It	depends	of	course	what	you	mean	with	model	here.	But	in	
the	natural	sense,	 the	model	 is	 fixed	and	only	 the	parameters	of	 the	model	are	
uncertain,	 and	 for	 discrete	 parameters	 their	 distribution	 (weights).	 So,	 say	 so.	
Even	although	the	approach	has	aspects	of	model	averaging,	it	is	best	viewed	as	
defining	one	model...,		which	is	then	fixed.		
	
Agreed.	We	 have	 changed	 the	 text	 (“uncertainty	 in	 the	 data	 and	 in	 the	model	
parameters”)	to	clarify	that	we	are	referring	only	to	the	parametric	uncertainty	
of	 the	 model	 here	 (not	 the	 structural	 uncertainty	 arising	 from	 choice	 of	
mathematical	 structure).	 Additionally,	 we	 have	 changed	 the	 description	 of	 the	
parameter	selection	process	from	“model	selection”	to	“parameter	estimation”.	
	
P4L14	(end	section	2.2)	At	how	many	points	is	x	evaluated?		
	
New	text	added	
	
“The	 likelihood	 functions	 are	 evaluated	 at	 100	 evenly	 spaced	 points	 across	 a	
range	that	comfortably	spans	the	training	set	environmental	range	(see	section	
2.4),	and	are	normalised	to	1.”	
	
and	
	
“The	 reconstruction	 is	 evaluated	 at	 the	 same	 100	 points	 as	 the	 likelihood	
function,	and	the	probabilities	normalised	to	1.”	
	
and	(in	Section	2.4)	
	
“We	 note	 that	 the	 indicative	 tolerance	 is	 also	 used	 to	 define	 the	 range	 of	
environment	 considered	 in	 the	 reconstruction	 (Section	 2.2),	 from	 𝑥!"# −
6𝑡!  𝑡𝑜 𝑥!"# + 6𝑡! .	 Significant	 probabilities	 beyond	 this	 range	 are	 unlikely	
given	the	constraints	imposed	upon	the	optima	and	tolerances.	In	any	event,	as	



with	 any	 transfer	 function,	 the	 model	 should	 not	 be	 applied	 under	 suspected	
extrapolation	beyond	the	training	set	environment.”	
	
P4L19	 The	 expected	 abundance	 follows	 a	 distribution???	 This	 is	 not	 a	
distribution	in	any	of	the	senses	you	use	in	this	paper;	it	is	a	Gaussian	response	
curve	model;	see	ter	Braak	&	Barendregt	1986	http://dx.doi.org/10.1016/0025	
5564(86)90031-3	when	it	has	aspects	of	a	distribution.		
	
Change	made	and	citation	added	
	
“can	be	fitted	by	a	Gaussian	response	curve	(ter	Braak	and	Barendregt,	1986)”	
	
P4L39-41.	Eq	(11)	Note	it	relation	to	the	exponential	distribution	and	geometric	
distribution.	 https://en.wikipedia.org/wiki/Exponential_distribution.	 Probably	
you	treat	is	as	a	discrete	distribution	and	truncate	is	at	0	(or	y<1).		On	P5L1	we	
learn	that	you	made	an	assumption	on	the	data	y:	between	0	and	100.	Please	be	
more	explicit	and/or	give	a	more	general	denominator	 in	(11).	Such	things	can	
lead	to	strange	errors	later	on,	when	used	without	further	scrutiny.		
	
Clarified	
	
“is	expressed	as	a	continuous	distribution,	truncated	at	0	and	100:”	
	
P13L40	To	make	 the	program	even	more	user-friendly	 a	wrapper	 in	R	 and/or	
Python	appears	much	wanted.	Make	it	a	priority.		
	
Thank	you	for	this	suggestion,	we	will	look	into	this.	
	
Technical	corrections	
	
P2L21.	The	two	->	Two	(they	were	not	mentioned	before)		
	
Change	made	
	
	
	
	


