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Abstract. Wetland emissions remain one of the principal sources of uncertainty in the global 

atmospheric methane (CH4) budget, largely due to poorly constrained process controls on CH4 

production in waterlogged soils. Process-based estimates of global wetland CH4 emissions and their 

associated uncertainties can provide crucial prior information for model-based top-down CH4 emission 15 

estimates. Here we construct a global wetland CH4 emission model ensemble for use in atmospheric 

chemical transport models. Our 0.5°×0.5° resolution model ensemble is based on satellite-derived 

surface water extent and precipitation re-analyses, nine heterotrophic respiration simulations (eight 

carbon cycle models and a data-constrained terrestrial carbon cycle analysis) and three temperature 

parameterizations for the period 2009-2010; an extended ensemble subset – based solely on 20 

precipitation and the data-constrained terrestrial carbon cycle analysis – is derived for the period 2001-

2015. We incorporate the mean of the full and extended model ensembles into GEOS-Chem and 

compare model against surface measurements of atmospheric CH4; model performance (site-level and 

zonal mean anomaly residuals) compares favourably against published wetland CH4 emissions 

scenarios. We find that uncertainties in carbon decomposition rates and wetland extent together account 25 

for more than 80% of the primary uncertainty in the timing, magnitude and seasonal variability of 

wetland CH4 emissions, although uncertainty in the temperature CH4:C dependence is a significant 
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contributor to seasonal variations in mid-latitude wetland CH4 emissions. The combination of satellite, 

carbon cycle models and temperature dependence parameterizations provides a physically informed 

structural a priori uncertainty critical for top-down estimates of wetland CH4 fluxes: specifically, our 

ensemble can provide enhanced information on the prior CH4 emissions uncertainty and the error 

covariance structure, as well as a means for using posterior flux estimates and their uncertainties to 5 

quantitatively constrain global wetland CH4 emission biogeochemical process controls. 

 

1 Introduction 

 

Methane (CH4) is a potent greenhouse gas, with a global warming potential of more than 25 10 

times that of CO2 on a 100-year time horizon (Myhre et al., 2013). The global CH4 budget and growth 

rate remain poorly understood, largely due to poorly resolved evolution of atmospheric CH4 sources and 

sinks (Nisbet et al., 2014). Wetland CH4 emissions are the largest natural source of atmospheric CH4, 

amounting to roughly 20 – 40% of global CH4 emissions (Ciais et al., 2013). The large disparities 

between a range of top-down and bottom up wetland CH4 estimates (Kirschke et al., 2013; Melton et al., 15 

2013) arise from large uncertainties in the timing, distribution and the underlying processes controlling 

net wetland CH4 production. 

In wetland soils, CH4 is produced by the decomposition of organic matter in anaerobic (oxygen 

depleted) environments. The dominant processes controlling the seasonal and inter-annual variations 

include carbon availability (soil C substrate) and decomposition rate, wetland inundation extent, and 20 

temperature (Yvon-Durocher et al., 2014). Other important controls on wetland CH4 emissions include 

the presence of macrophytes (Laanbroek 2010), organic C decomposition rates (Miyajima et al., 1997) 

and soil pH (Singh et al., 2000), amongst other factors. The link between terrestrial carbon-water 

cycling and wetland CH4 emissions is of particular interest from a terrestrial greenhouse gas emissions 

standpoint: inter-annual variations in terrestrial carbon cycling (Le Quéré et al., 2013) can affect 25 

wetland CH4 emissions on seasonal-to-century timescales (Hodson et al., 2011). The role of carbon 

cycle dynamics in global wetland CH4 emissions is increasingly recognized: temporal variations in 

gross primary production influence short-term carbon supply (such as carbon inputs from root exudates 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-224, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 7 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



3 
 

and fine litter), as well as long-lived carbon stores (such as wood litter turnover or soil organic C) in 

wetland soils (Riley et al., 2011; Bloom et al., 2012; Melton et al., 2013). The combined response of 

CO2 and CH4 fluxes to climatic variability remains poorly characterized. For example, increasing 

temperatures in boreal ecosystems could lead to higher carbon uptake, increased respiration and drier 

soils (Watts et al., 2014), and it is currently unclear whether these processes amount to an amplifying or 5 

dampening effect on boreal CH4 emissions. From a greenhouse gas balance standpoint, quantifying the 

global-scale process links between terrestrial carbon cycling and wetland CH4 emissions is crucial to 

characterizing the combined terrestrial biosphere CO2 and CH4 flux response to climatic variability.  

Quantification of regional wetland CH4 emissions remains challenging. While wetland CH4 

emissions are relatively well constrained on a global scale (Kirschke et al., 2013), regional CH4 fluxes 10 

are difficult to detect, due to their comparatively diffuse nature – relative to anthropogenic point sources 

– and the scarcity of direct measurements of wetland CH4 emissions. From a bottom-up perspective, 

challenges in wetland CH4 modelling stem from order-of-magnitude uncertainties on wetland CH4 

emissions factors and their spatio-temporal dependence on biogeochemical process controls. 

Nonetheless, for top-down CH4 emission estimates, prior knowledge of wetland CH4 emissions and 15 

their associated uncertainty is critical in the formulation of Bayesian atmospheric CH4 inversions. 

Atmospheric inversions combine CH4 measurements from surface, aircraft and satellites (Wecht et al., 

2014b; Jacob et al., 2016) and the prior probability on the magnitude and uncertainty characteristics of 

CH4 emissions (Bousquet et al., 2011; Pison et al., 2013; Fraser et al., 2014; Turner et al., 2015): these 

CH4 inversions typically formulate wetland CH4 emission uncertainty as a spatio-temporally 20 

uncorrelated and normally distributed CH4 prior. However, inter-model similarities reveal significant 

levels of emergent correlations in the timing, magnitude and spatial variability of wetland CH4 

emissions. For example, the Wetland CH4 Inter-comparison of Models Project (WETCHIMP) model 

ensemble (Melton et al., 2013) reveals varying levels of spatial and temporal agreement between 

models; these correlations stem from large-scale patterns in biogeochemical process controls (such as 25 

temperature, inundation and carbon cycling). Given the relatively large WETCHIMP CH4 emission 

uncertainties (model range is typically 150-300% of model mean over major wetland areas, and greater 

elsewhere), this prior ‘biogeochemical covariance’ can potentially amount to a critical constraint on 
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atmospheric CH4 inversions: such a covariance structure can be incorporated in an atmospheric 

inversion cost-function (Michalak et al., 2005) or as a means for improving attribution of posterior CH4 

fluxes to wetland CH4 emissions (Wecht et al., 2014a). 

Here we propose a process-informed wetland CH4 emission ensemble based on multiple 

terrestrial biosphere models, wetland extent scenarios and CH4:C temperature dependencies. In contrast 5 

to a conventional process-based model inter-comparison approach, our ensemble statistics are derived 

by exhaustively combining a range of temperature, carbon and wetland extent parameterizations. An 

advantage of our approach is that it provides a prior probability distribution of biogeochemical process 

control uncertainty: our ensemble can be further constrained – based top-down CH4 emission estimates 

– to quantify the combined probability distribution of carbon models, CH4:C temperature dependencies 10 

and wetland extent scenarios.  

 We formulate a full (2009-2010) and extended (2001-2015) estimate of wetland CH4 emission 

magnitude and its associated biogeochemical covariance structure, based on knowledge of the global 

wetland CH4 source and the primary biogeochemical process controls. We validate and compare the 

wetland CH4 emissions ensemble against a suite of regional studies, and we use a global atmospheric 15 

chemical transport model (GEOS-Chem, Bey et al., 2001) to evaluate the CH4 emissions ensemble 

relative to existing wetland CH4 emission models (sections 2 and 3). Finally, we summarize the 

strengths and limitations of our wetland emissions ensemble and outline its potential applications in 

global atmospheric inversion frameworks (section 4).  

 20 

2. Wetland CH4 model ensemble 

 

The wetland CH4 emissions ensemble provides CH4 fluxes and associated uncertainty estimates 

based on four wetland extent parameterizations, nine terrestrial biosphere models of heterotrophic 

respiration and three CH4:C temperature parameterization. Global monthly 0.5°×0.5° emissions and 25 

their associated uncertainty structure span 2009-2010 (full ensemble, henceforth FE); we also evaluate a 

subset of the model ensemble spanning 2001-2015 (extended ensemble, henceforth EE). We validate FE 
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and EE emissions against a range of regional CH4 emission estimates, and we test the updated GEOS-

Chem model against 104 surface CH4 measurement sites. 

 

2.1 Wetland CH4 emissions & uncertainty 

 5 

We derive wetland CH4 emissions F (mg CH4 m-2 day-1) at time t and location x as: 

 

𝐹(𝑡, 𝑥)  =  𝑠 𝐴 𝑡, 𝑥 𝑅 𝑡, 𝑥 𝑞!"
! !,!
!"         (1) 

 

where A(t,x) is the wetland extent fraction, R(t,x) is the total C heterotrophic respiration at time for a 10 

unit area at time t, q10 T(t,x)/10 is the temperature dependence of the ratio of C respired as CH4 (where q10 

represents the relative CH4:C respiration for a 10°C increase) and s is a global scale factor. This 

empirical parameterization provides first order constraints on the role of carbon, water and temperature 

variability on the global spatial and temporal variability of wetland CH4 emissions. Variants of the 

equation 1 parameterization have been used within a range of wetland CH4 emission models (e.g., 15 

Hodson et al., 2011, Pickett-Heaps et al., 2011, Melton et al., 2013 amongst others).  

In our approach, wetland CH4 emissions statistics within each 0.5°×0.5° gridcell are derived 

based on a 108-member ensemble of wetland CH4 emission simulations. The 108-member FE is based 

on 3 CH4:C temperature dependencies, 9 heterotrophic respiration configurations and 4 wetland extent 

scenarios (3×9×4 = 108); the six-member EE ensemble is a subset of FE, based on data availability 20 

during 2001-2015 (see table 1 for summary). For each ensemble member, the magnitude and 

uncertainty of s is optimized to match global estimates of the annual wetland CH4 source (Kirshke et al., 

2013). 

The heterotrophic respiration configurations are derived from 8 terrestrial biosphere models used 

in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project  (MsTMIP BG1 simulations, 25 

see Huntzinger et al., 2013 and Wei et al., 2014 for model and experiment details) and the global 

CARbon DAta-MOdel fraMework (CARDAMOM) terrestrial carbon analysis (Bloom et al., 2016). 

V1.0 outputs from the MsTMIP are available for the period 1900-2010 (Huntzinger et al., 2015); the 
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CARDAMOM analysis was extended to span 2001-2015 based on the Bloom et al., (2016) 

methodology (see Appendix A for details).  Since MsTMIP and CARDAMOM respiration estimates 

vary intrinsically as a function of temperature, q10 only accounts for the temperature dependence of the 

fraction of C respired as CH4. We prescribe three CH4:C temperature dependencies (table 1) which are 

broadly equivalent to a ±50% range on the CH4:CO2 temperature dependence reported by Yvon-5 

Durocher et al., (2014).  

Here we use two spatial (i = 1,2) and two temporal (j = 1,2) wetland extent parameterizations 

approaches to represent the uncertainty associated with the role of hydrology on wetland CH4 

emissions. We parameterize wetland extent as the product of a static extent constraint wi(x) and a 

normalized time-varying scale factor hij(x,t), in the following manner 10 

 

𝐴 𝑥, 𝑡 = 𝑤! 𝑥 ℎ!" 𝑥, 𝑡  ,       (2) 

  

w1(x) is the sum of all GLOBCOVER wetland and freshwater land cover types (all flooded, 

water-logged, and inland water body land-cover types; Bontemps et al., 2011) and w2(x) the Global 15 

Wetland and Lakes Database (GLWD) maximum recorded wetland and freshwater body extent map by 

Lehner & Doll (2004).  

 For h*j(x,t), we use (a) the Surface WAter Microwave Product Series (SWAMPS) multi-

satellite surface water product (Schroeder et al., 2015; j=1), and (b) monthly ERA-interim precipitation 

(j=2): for i = 1 (i = 2), hij(x,t) is normalized such that mean (maximum) hij(x,t) is equal to 1. We note 20 

that the two hydrological proxies provide contrasting advantages and disadvantages. Satellite-retrieved 

surface water extent provides an observation-based constraint on the spatial and temporal extent of 

wetlands and freshwater bodies. While our temporal scaling of static wetland and freshwater extent 

mitigates the role of spatial biases in satellite-retrieved inundation, vegetation cover remains a major 

confounding variable in satellite-constrained wetland extent (Schroeder et al., 2015). Moreover, 25 

satellites cannot directly observe subsurface soil saturation, even though these soils amount to 

significant CH4 fluxes to the atmosphere (Turetsky et al., 2014). On the other hand, precipitation does 

not provide a direct constraint on the wetland and freshwater extent; however, it provides an aggregate 
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constraint on ecosystem hydrological variability and wall-to-wall coverage across the globe. We 

henceforth refer F as “wetland CH4 emissions”; however, we recognize that lakes, rivers and reservoirs 

account for ~20% of the total wetland and freshwater body extend (Lehner and Döll, 2004). We discuss 

the implications of including non-wetland freshwater bodies in wi(x) section 4. 

For each of the 108 FE ensemble configurations (c = 1 – 108), and 6 EE ensemble 5 

configurations (c = 1-6), we derive sc such that: 

 

𝑠! =
!

!!!! !!,!,! !!
!"
!

       (3) 

 

where 𝐹!,!,! are the cth ensemble member fluxes at grid-cell x and time t, Ax is the area of grid-cell x, Δt 10 

is the timestep (1 month), n is the number of years, and G is the global total CH4 emitted from wetlands. 

We derive sc such that each ensemble members are scaled to G = 175 Tg CH4 yr-1 throughout the 

duration of FE (2009-2010): this is consistent with the Kirschke et al., (2013) mean 2000-2009 top-

down wetland CH4 emission estimates (175 Tg CH4 yr-1).  

 We derive the CH4 flux ensemble mean and 5th – 95th percentile ranges at location x and time t 15 

based on all 108 𝐹!,!,! ensemble members. For the percentile range calculations, we propagate the 

global mean wetland CH4
 emission uncertainty by Kirschke et al., (2013) (minimum-to-maximum range 

= 142 – 208 Tg CH4 yr-1, or 175 Tg CH4 yr-1 ±19%). We create an expanded ensemble (FEexp) by 

randomly perturbing all 108 model sc values by a factor of U(0.81,1.19) 1000 times, where U() denotes 

a random number sampled from a continuous uniform distribution spanning the bracketed numbers. We 20 

use the expanded ensemble FEexp to derive the ensemble’s spatiotemporal error covariance structure: the 

quantitative derivation and qualitative interpretation of the error covariance structure is fully described 

in appendix B. 

We attribute the uncertainty of the timing and magnitude of F(x,t) (maximum CH4 emission 

month, mean CH4 emissions and CH4 emission variability) to carbon decomposition, wetland extent and 25 

CH4:C temperature dependence uncertainty; the derivation of the “primary uncertainty” within each 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-224, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 7 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



8 
 

zonal band (i.e. the dominance of carbon, water or temperature as the dominant source of uncertainty) is 

fully described in Appendix C.  

 

2.2 GEOS-Chem atmospheric CH4 simulations 

 5 

We evaluate the FE and EE wetland CH4 emission means against the World Data Centre for 

Greenhouse Gases (WDCGG) CH4 measurement sites by incorporating these into the 4°×5° resolution 

GEOS-Chem atmospheric chemical and transport model (version 10.01; acmg.seas.harvard.edu/geos). 

We benchmark the FE and EE runs against GEOS-Chem simulations with the GEOS-Chem wetland 

CH4 emission inventory (Pickett-Heaps et al., 2011; henceforth GC) and the Bloom et al., (2012) 10 

satellite-constrained wetland emissions (henceforth BL), as these emission estimates have been in a 

range of atmospheric chemical transport model simulations (Fraser et al., 2013; Turner et al., 2015; 

Wilson et al., 2016 amongst others). We perform each GEOS-Chem forward run for the period 2009-

2010 with a four-year (2005-2009) spin-up period. The non-wetland CH4 sources in GEOS-Chem 

consist of biofuel, fossil fuel, livestock, waste, Rice (EDGAR v4.2; European Comission, 2011), fires 15 

(Global Fire Emissions Database version 4; van der Werf  et al., 2010), soil C sinks and termites (Fung 

et al., 1991) .The non-wetland CH4 fluxes are the same in each run, with the exception of rice source in 

run BL (as global wetland and rice emissions are treated as one source by Bloom et al., 2012). While 

model CH4 surface concentrations are strongly influenced by wetland CH4 magnitude, timing and 

distribution (Bloom et al., 2012, Meng et al., 2015), comparisons between GEOS-Chem outputs and 20 

surface CH4 measurement may also be affected by errors in non-wetland CH4 emissions and in 

transport. However, Wecht et al. (2012) and Turner et al. (2015) show that the GEOS-Chem emissions 

and transport provide an unbiased representation of the observed latitudinal background. The global 

inversion of Turner et al. (2015) using GEOS-Chem emissions as prior further shows no large errors in 

non-wetland emissions that would confound the analysis presented here. 25 

For each of the four runs (FE, EE, GC and BL), we use the Wecht et al., (2014a) 1st Jan 2005 

initial conditions for atmospheric CH4 concentrations in GEOS-Chem. For each simulation, we 

performed a four-year spin-up period (2005-2009) using 2009 emissions to reduce the potential 
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inconsistency between initial conditions and the global distribution of wetland CH4 emissions; this spin-

up ensures that the relative variations in Jan 1st 2009 CH4 concentrations for each run are broadly 

consistent with each emission scenario. We save GEOS-Chem atmospheric CH4 concentrations every 3 

hours. We compare mean monthly GEOS-Chem output against all WDCGG sites below 500m altitude 

(104 sites with monthly 2009-2010 data in total); this minimizes the topographic mismatch due to 5 

vertical CH4 representation in the model. For each site, the nearest 4°×5° GEOS-Chem grid-cell is used 

for comparison.  

 

3. Results, Comparison and Validation  

 10 

Mean full ensemble (FE) global wetland emissions are largely accounted for by three high-latitude 

regions, three tropical regions, and sub-tropical southeast Asia (Figure 1a). North America, Scandinavia 

and Siberia median (5th – 95th percentiles) CH4 fluxes amount to 8% (3 – 30%), 2% (0 – 6%) and 2% 

(1 – 6%) of global emissions; Amazon wetland emissions amount (30%; 21 – 38%) account for the 

largest tropical emission source, followed by the Indonesian archipelago (13%; 7 – 22%), and central 15 

Africa (12%; 7 –24%); subtropical southeast Asia emissions account for 5% (1 – 10%). High-latitude 

(>50°N) and tropical emissions amount to 11% (4 – 29%) and 68% (43 – 84%) of global wetland CH4 

emissions, respectively. High-latitude FE emissions exhibit a peak at 60°N (Figure 1b) similar to the 

GEOS-Chem wetland CH4 emissions inventory (Pickett-Heaps et al., 2011; GC) and further north than 

the Bloom et al., (2012) emissions (BL). Tropical emissions for all three emission datasets peak within 20 

0° – 5°S. A comparison between zonal mean emissions (Figure 2) reveals differences of less than 1 

Tg/yr/°lat between FE and the extended ensemble (EE) s; the FE zonal mean is comparable to the BL in 

the near-equatorial tropics and significantly (with respect to the FE model ensemble 90% confidence 

range) lower everywhere else; the FE zonal mean is comparable to GC in high-latitude and temperate 

regions, but significantly lower than GC in the tropics and southern hemisphere.  25 

 

All CH4 emission models show similar patterns in the temporal distribution of CH4 emissions in high-

latitude and temperate regions (with CH4 emissions peaking between July and September, Figure 3). 
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We note that the larger CH4 fluxes in the BL emissions over Asia and Oceania are due to rice paddy 

CH4 emissions. The CH4 emission models exhibit 1-month differences in the timing of maximum 

seasonal CH4 emission across the high-latitudes (generally between June and August). In tropical South 

America 0° – 20°S latitudes, FE and EE emissions peak March –May, which is comparable to BL 

(March); and overall earlier than GC (5°S – 20°S emission peak in September). There is a considerable 5 

disagreement between northern tropical Africa emission variability amongst all models. Subtropical 

Asia FE and EE emissions (20°N – 30°N) peak in June-August, earlier than BL emissions (August-

September) and comparable to GC emissions (June). 

 

We compare mean FE and EE (2009-2010) wetland emissions against a range of independent wetland 10 

CH4 regional emission estimates (Figure 4). Emissions from Siberian wetlands (Glagolev et al., 2011) 

Hudson bay lowlands (Pickett-Heaps et al., 2011), and Amazon river basin (Melack et al., 2004) are 

within 25th – 75th percentile estimates of FE and EE wetland CH4 emissions; Chang et al., (2014)(May-

September 2012) wetlands are higher (2.1 Tg CH4 yr-1) but within the 5th -95th percentile range of FE 

and EE wetland CH4 emission estimates. BL (2009-2010) and GC (2009-2010) estimates are also within 15 

5th – 95th percentile ranges. With the exception of Amazon river basin estimates, the FE and EE 

emission estimate uncertainty is larger than the Melton et al., (2013) wetland CH4 emission model 

(WETCHIMP 1993-2004) range. We note the temporal mismatch between the wetland emission 

estimates shown in Figure 4: however, we expect inter-annual variation in wetland CH4 emissions (e.g. 

Bloom et al., 2010; Melton et al., 2013) to be substantially smaller than the FE and EE estimate 20 

uncertainty. 

 

On a zonal basis, the “primary uncertainty” – i.e. the dominant source of uncertainty within each band – 

in mean CH4 emissions and the timing of maximum CH4 emissions is almost completely dominated 

carbon decomposition and wetland extent uncertainties (Figure 5). Seasonal variability of CH4 25 

emissions is also largely dominated by carbon and extent uncertainties, although the temperature CH4:C 

dependence is the dominant source of uncertainty in temperate latitudes. At latitudes > 20°N, wetland 

extent is the dominant source of uncertainty in mean CH4 emissions, while temperature CH4:C 
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dependence accounts for less than 10% of the primary uncertainty attribution. At all latitudes > 10°S, 

carbon decomposition accounts for the vast majority of the primary uncertainty in the timing of wetland 

CH4 emissions. 

 

We summarizing the FEexp global error covariance structure as an error correlation matrix between 5 

mean monthly 2009-2010 emissions across boreal & arctic (>55°N) temperate (23°N – 55°N), tropical 

(23°S – 23°N) and southern hemisphere (<23°S) latitudes (Figure 6); the error correlation matrix 

quantitatively summarizes similarities in the spatial and temporal patterns between ensemble members, 

relative to the ensemble mean (see appendix B for description and interpretation). The FEexp error 

correlation matrix highlights positively correlated ensemble member CH4 emissions within each region, 10 

with larger correlations (generally r>0.8) between emissions separated by 1-2 months; tropical 

emissions exhibiting the largest overall temporal correlations (r>0.5). Tropical and boreal & arctic CH4 

emissions are overall anti-correlated, however no temporal patterns emerge between these anti-

correlations.  

 15 

Mean 2009-2010 observed and GEOS-Chem forward model run CH4 concentrations (with FE, EE, BL 

and GC wetland emissions) are broadly consistent on a latitudinal basis. The observed and modelled 

zonal atmospheric CH4 concentration anomaly (relative to mean global 2009-2010 CH4 concentrations) 

is shown in Figure 7 (zonal profile root-mean-square errors – RMSE – are 6.4 ppb, 6.6 pbb, 8.4 ppb, 9.2 

ppb for FE, EE, BL and GC relative to the observed CH4 anomaly zonal profile). Within the primary 20 

wetland CH4 emission latitudes (10°S – 80°N; Figure 2), all mean CH4 model estimates are within the 

mean standard deviation of observed CH4, except GC at >60°N and all models at 80°N. The median 

site-level correlation (Pearson’s r) between observed and model de-trended CH4 concentrations for FE 

(0.79; 5th – 95th percentiles = -0.15 - 0.97) is highest, followed by EE (0.77; 5th - 95th percentiles = -

0.24 - 0.96), BL (0.75; 5th - 95th percentiles = -0.08 - 0.99) and GC (0.72; 5th  - 95th percentiles = -25 

0.24 - 0.93). The median RMSE between observed and model de-trended CH4 concentrations for FE 

(10.98 ppb; 5th - 95th percentiles = 2.81 - 53.11 ppb) and EE (11.61ppb 5th - 95th percentiles = 4.01 - 

51.69) are lower than BL (12.29 ppb; 5th - 95th percentiles = 2.35 - 49.31 ppb) and GC (median = 
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12.95 ppb; 5th  - 95th percentiles = 5.06 - 50.98). FE and EE improvements (relative to GC and BL 

Pearson’s r and RMSE) are primarily in northern hemisphere high-latitudes latitudes (>50°N; Figure 8). 

FE Pearson’s r and RMSE suggest better performance than GC in southern hemisphere extra-tropical 

latitudes (<23°S); BL is comparable to FE and outperforms EE across southern hemisphere latitudes.  

 5 

4. Discussion  

 

4.1 Model limitations  

 

Densely vegetated wetland areas are likely to amount to a large component of the global wetland CH4 10 

sources; high-carbon density (and high temperatures in the case of tropical wetlands) result in high CH4 

emissions under inundated conditions. However, satellite-derived observations of surface water area 

(Schroeder et al., 2015) are ill-equipped to observe densely vegetated wetland areas, as the passive 

microwave sensors become increasingly sensitive to vegetation moisture within high biomass 

ecosystems (Sippel et al., 1994). For example, estimates of Amazon river basin wetland CH4 emissions 15 

range between 16%  - 29% (5th – 95th percentiles) of the global wetland emissions source; high 

biomass density in this region (Saatchi et al., 2011) may be a significant source of inundation area bias. 

Therefore, while we incorporate prior information on the mean and maximum wetland extent to scale 

the satellite-derived inundation fraction, we anticipate that errors in seasonal and inter-annual 

inundation variability are likely to be larger within densely vegetated wetland areas. We are optimistic 20 

that current and upcoming missions such as SMAP and BIOMASS (Entekhabi et al., 2010; Le Toan et 

al., 2011) combined with data integration approaches (Schroeder et al., 2015; Fluet-Chouinard et al., 

2015) can potentially provide additional constraints required to extend current inundation datasets and 

to improve current surface inundation detection capabilities.  

 25 

The MsTMIP model ensemble provides a first-order estimate of the magnitude and variability of C 

decomposition within each 0.5°×0.5° grid-cell. Here we highlight 4 potentially major sources of error: 

(a) differences in aerobic:anaerobic turnover rates of major (labile and recalcitrant) C pools (b) 
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systematic differences in wetland and non-inundated area carbon uptake within each 0.5°×0.5° grid-cell, 

(c) systematic differences in dead organic matter C stocks and accumulation between wetland and non-

inundated areas, and (d) lateral flows of C into (or out of) wetland areas. Top-down estimates of 

seasonal and inter-annual terrestrial CO2 fluxes (e.g. Liu et al., 2014) could be used to independently 

assess the validity of heterotrophic respiration from the MsTMIP models and CARDAMOM. In turn, 5 

top-down CH4 and CO2 flux retrievals, and range of in-situ and regional-scale CH4 flux estimates 

(Schriel-Uijl et al., 2011; Chang et al., 2014; Budishchev et al., 2014; amongst others) can be combined 

to assess whether our empirical parameterization is able capture regional, seasonal and inter-annual 

wetland CH4 emission variability and their link to the broader terrestrial carbon cycle. Finally, in 

succession to eddy covariance tower site analyses of CO2 respiration dependence on temperature 10 

(Mahecha et al., 2010), we anticipate that CH4 eddy covariance measurements will provide critical site-

level constraints on the temperature dependence of wetland CH4 emissions.  

 

Rice paddies likely amount to <20% of wetland CH4 emissions, and the majority of rice paddy areas are 

implicitly excluded from our analysis: GLOBCOVER distinguishes between natural and irrigated water 15 

bodies, and GLWD explicitly excludes rice paddy extents in China (which alone accounts for a large 

portion of global rice paddy CH4 emissions). However, satellite-based inundation fraction retrievals are 

unable to distinguish the temporal variability of co-located agriculture and natural wetland inundation 

extent; moreover 0.5°×0.5° carbon cycle model resolution may be insufficient to resolve spatial 

differences in wetland and agricultural C cycling. Inadvertent inclusion of co-located rice CH4 20 

emissions is therefore a potential source of bias in our approach. We note that the distinction between 

wetland and rice CH4 emissions has yet to be consistently addressed in global wetland CH4 emission 

quantification efforts (see Bloom et al., 2010; Hodson et al., 2011; Melton et al., 2013, and references 

therein). 

 25 

CH4 production in non-wetland freshwater bodies, such as very small ponds (Holgerson and Raymond 

2016), lakes (Wik et al., 2016) and rivers (Bastviken et al., 2011) is potentially a significant – albeit 

highly uncertain – term in the global CH4 budget (Kirshke et al., 2013; Bridgham et al., 2013). Our 
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approach implicitly accounts for non-wetland freshwater body emissions, since their extent is 

incorporated in grid-cell scaling factors (see Eq. 2). We recognise the challenge in explicitly 

distinguishing between wetlands and non-wetland freshwater body CH4 emissions, as well as the 

associated physical and biogeochemical process controls: the spatial and temporal characterization of 

wetland and non-wetland freshwater extent remains challenging from the current spatial resolution 5 

(~25km) of surface inundation retrievals (Prigent et al., 2007; Schroeder et al., 2015). Equally, from a 

carbon perspective, 0.5°×0.5° carbon cycle model resolution is insufficient to resolve spatial variability 

in wetland and non-wetland freshwater body extent (Lehner and Döll, 2004). Contingent on future 

resolution enhancements in surface inundation and carbon cycle models, we recommend further 

investigation on the adequate distinction and estimation of non-wetland freshwater CH4 emissions for 10 

atmospheric CH4 chemical transport modelling applications.  

 

By constraining global emission estimates to the Kirshke et al., (2013) model range, our approach does 

not challenge the global annual CH4 source and uncertainty (175 Tg CH4 yr-1; range = 142 – 206 Tg 

CH4 yr-1 or ±19%); rather, it places constraints on spatial and temporal wetland CH4 source variability. 15 

Since the global uncertainty is substantially smaller than regional, zonal and grid scale uncertainties 

(Figures 1,2 and 4), we highlight that new or improved constraints on the global wetland CH4 source are 

unlikely to substantially influence our regional or grid-scale CH4 flux confidence range estimates. 

 

4.2 Applications 20 

Based on comparisons against measured CH4 concentrations and a range of regional and global CH4 

emission estimates (Figures 2-4, 7-8), we have shown that the FE and EE wetland CH4 emission 

ensembles robustly represent the global magnitude and uncertainty of wetland CH4 emissions. The 

ensemble configurations of inundation extent, carbon decomposition and temperature dependence have 

together provided a characterization of the dominant source of uncertainty in global wetland CH4 25 

estimates (Figure 5). The approach outlined here provides a framework for producing prior emission 

estimates and associated uncertainty. The error covariance structure – along with the CH4 observing 

system capabilities (Wecht et al., 2014a) – can be used to devise an optimal strategy for spatially and/or 
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temporally aggregating CH4 fluxes in an atmospheric inversion framework. Retrieved CH4 flux from 

assimilating atmospheric CH4 observations in an inverse modelling framework (e.g. Fraser et al., 2013) 

could in turn provide a quantitative constraint on the wetland ensemble: the FE and EE model members 

can be treated as an ensemble of probable biogeochemical process hypotheses that can be weighted 

against atmospheric constraints. In contrast to conventional wetland CH4 emission estimates (Riley et 5 

al., 2011; Pickett-Heaps et al., 2011) and model inter-comparisons (Melton et al., 2013), top-down CH4 

flux estimates can constrain the joint probability distribution of FE and EE carbon models, wetland 

extent parameterizations, and temperature dependencies.  

 

We anticipate extensions of the FE beyond the 2009-2010 time period, contingent on the extensions of 10 

the MsTMIP and SWAMPS dataset beyond 2010 and 2012 respectively. In light of continued satellite 

CH4 retrievals from GOSAT (Parker et al., 2011; Butz et al., 2011) and upcoming satellite CH4 

measurement from TROPOMI on-board ESA Sentinel 5 precursor (Veefkind et al., 2012), we anticipate 

that the FE and EE datasets will provide key process-based prior knowledge in future atmospheric CH4 

inversions.  15 

 

 

Appendix A: CARDAMOM extension  

 

CARDAMOM heterotrophic respiration was derived from the Bloom et al., (2016) global terrestrial C 20 

cycle 1°×1° analysis. CARDAMOM retrieved C state and process variables for the period 2001-2010 

were used to run the ecosystem carbon balance model DALEC2 (Bloom & Williams 2015) to span 

2001-2015. The 2011-2015 ERA-interim meteorological drivers and MODIS burned area were obtained 

as described by Bloom et al., (2016). The CARDAMOM output consists of 4000 heterotrophic 

respiration realisations at each monthly time-step: for each time-step, we use the median CARDAMOM 25 

heterotrophic respiration output. We downscale the data to a 0.5°×0.5° resolution using a nearest 

neighbour interpolation. 
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Appendix B: Error correlation structure 

 

We derive the model ensembles’ space-time n × n error correlation matrix M as follows: 

 

Mij = cor(Ai,* | Aj,*)       (A1) 5 

 

where n corresponds to the number of space and time wetland CH4 emission aggregations, and i, j span 

1–n,. A(i,m) and A(j,m) correspond to the total CH4 flux for model m within the ith and jth space-time 

aggregations (i.e. total wetland CH4 emissions within a given time & area); Ai,* and Aj,* are 1×N 

vectors, where N is the number of models within the ensemble.  the “cor()” operator denotes the 10 

Pearson’s correlation coefficient between the two bracketed vectors. For Figure 6, A1,m we aggregate 

model wetland CH4 emissions for each month across four zonal bands: Boreal & Arctic (>55°N) 

Temperate (23°N – 55°N), Tropical (23°S – 23°N) and Southern Hemisphere (<23°S). Interpretation: 

a perfect correlation between the ith and jth indices (Mij =1) indicates that models are consistently over- 

or under-predicting CH4 emissions at times-and-locations i and j relative to the ensemble mean; a 15 

perfect anti-correlation (Mij =-1) indicates that models consistently over-predicting CH4 emissions at 

time-and-location i consistently under-predict CH4 emissions at time-and-location j (relative to the 

ensemble mean) and vice versa. 

 

Appendix C: Primary process uncertainty 20 

 

We quantify the primary process uncertainty of wetland CH4 emission state variables (s = 1-3; 1. 

maximum emission month, 2. mean CH4 emissions and 3. seasonal variability (standard deviation)) to 

wetland emission controls  (e = 1-3; 1. model carbon decomposition, 2. CH4:C temperature dependence 

and 3. wetland extent parameterization) at location x as follows: 25 

 

𝑅!,!,! =
!"# 𝐌!,!,𝒎! !!"# 𝐌!,!,𝒎!

!
!
!!!      (A2) 
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where 𝑅!,!,! is the mean range of state variable s across the ensemble given a fixed emission control e; 

𝐌!,!,∗ is a vector of all ensemble member state variables s at location x; mc denotes the indices of 

ensemble subset driven by cth emission control e; N are the number of configurations for each e (the 

ensemble configuration details are show in Table 1). For example, 𝑅!"",!,! is the mean range of seasonal 

CH4 variability (s=3) for a fixed carbon model configuration (e=1) at the 100th gridcell (x=100). We 5 

attribute the zonal primary uncertainty of state variable s to emission control e as:   

 

𝑃!,!,! =  !!!,!,! !!!  !!
 !!!  !!

×100%     (A3) 

 

where xz are the pixels x within 5° zonal band z, 𝐹!!  is the mean 2009-2010 area-integrated CH4 flux 10 

(Eq. 1 in main text). 𝑟!!,!,!  = 1 if 𝑅!!,!,! = min (𝐑!!,!,∗) otherwise 𝑟!!,!,!  = 0; the “min()” function 

denotes the minimum element of the bracketed vector; i.e. e is the largest source of uncertainty when 

the mean range in state variable s is smallest for a fixed e. 𝑃!,!,! denotes the percentage of zonal band z 

where emission control e is the greatest source of uncertainty for each s.  

 15 

Data availability 

 

The full ensemble (FE), extended ensemble (EE) presented here are currently available upon request 

and will become publicly available through the NASA DAAC. MsTMIP monthly 0.5°×0.5° datasets 

were obtained from nacp.ornl.gov/MsTMIP.shtml. ERA-interim datasets were obtained from 20 

apps.ecmwf.int/datasets/data/interim-full-mnth. CARDAMOM 2001-2010 heterotrophic respiration 

outputs are available at datashare.is.ed.ac.uk/handle/10283/875; 2011-2015 heterotrophic extensions 

outputs are available upon request.  Inundation datasets were obtained from wetlands.jpl.nasa.gov. The 

GLWD dataset was obtained from gcmd.gsfc.nasa.gov. The GLOBCOVER dataset was obtained from 

due.esrin.esa.int. The WDCGG data was obtained from ds.data.jma.go.jp/gmd/wdcgg. 25 
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Figure 1. Top row: 2009-2010 full model ensemble (FE, left) and extended model ensemble (EE, 10 

right) mean wetland CH4 emissions; Middle row: 2009-2010 emissions from the GEOS-Chem wetland 
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CH4 emissions inventory (GC, left) model and satellite-constrained estimates by Bloom et al., (2012) 

(BL, right). Bottom row: Mean 2009-2010 FE 5th – 95th percentile range (left) and uncertainty factor 

(5th – 95th percentile range normalized by mean 2009-2010 emissions, right). 

 

 5 
Figure 2.  Top: Zonal profile of full ensemble (FE, red) extended ensemble (EE, black dashed line) and 

mean wetland CH4 emissions from 108 ensemble members (grey). Bottom: mean FE (red), mean EE 

(black dashed line) and 90% FE confidence range (pink), GEOS-Chem wetland emission inventory 

(GC) and the Bloom et al., (2012) emissions (BL). 
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Figure 3. Seasonal mean zonal profiles for this study (full ensemble: FE; extended ensemble: EE) 

Bloom et al., (2012) wetland emissions (BL) and GEOS-Chem wetland emissions inventory (GC) for 

North & South America (left column; 180°W – 35°W); Europe & Africa (center column; 35°W – 55°E) 

and Asia & Oceania (right column; 55°E – 180°E). The black dotted line denotes the maximum 5 

emissions month within each 5° latitude bin. 

 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-224, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 7 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



32 
 

 
Figure 4. Comparison between mean annual regional wetland CH4 emission estimates (1. Glagolev et 

al., 2011; 2. Picket Heaps et al., 2011; 3. Chang et al., 2014; 4. Melack et al., 2004) and global wetland 

emission datasets by Bloom et al., 2012 emissions (BL), the GEOS-Chem wetland CH4 emission 

inventory (GC); this study (full ensemble: FE; extended ensemble: EE), and the range of WETCHIMP 5 

models (Melton et al., 2013). The regions (1-4) are shown in the inset map. 
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Figure 5. Primary uncertainty attribution of maximum CH4 emissions month (left), magnitude (center) 

and seasonal variability (right), to carbon decomposition, temperature CH4:C dependence (q10) and 

wetland extent parameterization, within 5° latitude bins. The derivation of primary uncertainties is 

described in Appendix C.  5 
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Figure 6. Full ensemble (FE) spatial and temporal error covariance, summarized as monthly error 

correlation across boreal & arctic (>55°N) temperate (23°N – 55°N), tropical (23°S – 23°N) and 

southern hemisphere (<23°S) latitudes. A correlation between two location-and-time indices indicates 

the degree to which models consistently over- or under-predict wetland CH4 emissions relative to the 5 

ensemble mean. The non-zero off-diagonal correlation patterns emerge as a function of varying 

biogeochemical commonalities across ensemble members, such as wetland CH4 dependencies on 

temperature, carbon availability and wetland extent. Negative correlations between tropical and 

northern hemisphere extratropical (i.e. temperate, boreal and arctic) wetlands emerge as a function of a 

global constraint on wetland CH4 emissions (175 Tg CH4 yr-1 ± 19%).  10 
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Figure 7. Mean 2009-2010 CH4 measurements and model CH4 zonal anomalies (ΔCH4), relative to the 

mean 2009-2010 global CH4 concentration. The black dots denote mean WDCGG network observed 

CH4 concentrations within 5° latitude bins; the grey envelope denotes the mean 2009-2010 standard 5 

deviation across all sites within 5° latitude bins. The coloured symbols and error bars denote the GEOS-

Chem equivalent model concentrations statistics based on the FE and EE ensembles (this study), Bloom 

et al., (2012) (BL) and the GEOS-Chem emission inventory (GC) wetland CH4 emissions datasets.  
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Figure 8. Symbol colours denote the monthly de-trended CH4 model-observation Pearson’s r 

correlation (left column) and RMSE (right column) for the FE (top-row) and EE (bottom-row) wetland 

CH4 emissions (CH4 observations are from the WDCGG measurement site network). The y-axis 

denotes the difference between FE/EE and model runs with Bloom et al., (2012) wetland CH4 emissions 5 

(BL) and the GEOS-Chem wetland CH4 emissions inventory (GC).  
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Tables 

 

Table 1: Wetland CH4 model ensemble configurations 

Parameter Description 
Ensemble configurations 

s Global scaling factor(*) N/A (all configurations are scaled to 175 Tg 

CH4 yr-1) 

A Wetland 

extent Spatial 

Extent 

 2 spatial extent parameterization (scaled 

using GLOBCOVER and GLWD) 

Temporal 

Variability  

SWAMPS inundation extent(**) 

ERA-interim precipitation 

R Heterotrophic respiration 8 MsTMIP terrestrial C models(**) 

CARDAMOM terrestrial C cycle analysis  

q10(c) Temperature-dependent 

CH4 respiration fraction. 

3 CH4:C temperature parameterizations: 

q10(c) = [1,2,3] 
(*)Global scaling factor is derived such that the global annual CH4 emissions amount to 175 Tg CH4 yr-1. 
(**) These datasets are only used in the 2009-2010 “Full Ensemble” (FE). 5 
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