
We thank the reviewers for their constructive feedback and suggested corrections.
Below we have addressed each individual comment from reviewers 1 and 2, as well
as comments by the executive editor (reviewer and editor comments are shown in
italics; our responses are shown in bold). All manuscript changes are highlighted
as ‘tracked changes’ in the revised manuscript (the bracketed line numbers denote
the corresponding line numbers in the revised manuscript). We believe that the fol-
lowing revisions have substantially improved the overall quality of our manuscript.

Referee 1

The authors aim at providing a dataset for methane emissions by wetlands which
includes not only estimates of fluxes by biogeochemical models (the bottom-up ap-
proach) but also information on error covariance patterns. This information may
be useful for performing inversions of methane fluxes through atmospheric data
assimilation (i.e. for the top-down approach).

General comments

Tomy knowledge, this is the first time it is explicitly attempted to provide information
on the uncertainty patterns together with bottom-up estimates of methane fluxes. As
I am working with atmospheric data assimilation, I think the method and results of
this study are very interesting. I have nevertheless two main remarks:

(1.1) the 6-member ensemble is too small to allow for statistics, so I would recom-
mend only mentioning that “more classical” (i.e without the uncertainty patterns)
methane flux estimates are available in EE for those who need a long period of time
- and simplifying the text and figures accordingly in the Results and Discussion
Sections

We acknowledge that relative to FE, the EE ensemble size may limit statistical rep-
resentations of wetland CH4 model uncertainty. We now elaborate on this point in
the discussion section of the revised manuscript: “due to the smaller ensemble size
and the use of only one carbon model (see Table 1), the 2001-2015 EE emission vari-
ability should be interpreted with caution, and - where possible - evaluated against
the FE ensemble during the 2009-2010 period” (P16 L3-6).

However, we have chosen to keep the EE evaluations, as these may be beneficial for
the users of EE. We also note that - in response to comment 1.8 - we have expanded
the EE ensemble (EE ensemble size = 18) to explicitly represent the uncertainty of
the global wetland CH4 source. Finally, at the request of the second reviewer, we
have now included an evaluation of the EE emission inter-annual variability in the
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revised manuscript (see response to comment 2.2). Given these changes, we are
confident that the inclusion of EE evaluations is fitting for the main body of the
manuscript.

(1.2) The figures are potentially very nice and informative but presently difficult to
read, even with a large zoom on a screen (see below for more specific comments on
each).

We have addressed the reviewer’s comments relating to figures below; where ap-
propriate, we have also increased font and panel sizes to improve figure legibility.

Specific Comments

General

(1.3) The means of the ensembles are used. Why not use the median?

For gridded and zonal emission estimates (Figures 1-3 and GEOS-Chem simula-
tions), we chose to report the mean values in order to maintain consistency with
the prescribed global wetland CH4 source (166 Tg CH4 yr−1 during 2009-2010; see
comment 1.4). We found that gridded and zonal FE and EE median values amount
to substantially less than 166 CH4 yr−1; in contrast, mean FE and EE emissions
amount to exactly 166 CH4 yr−1 during 2009-2010.

(1.4) See if it is possible to update your Kirschke et al. (2013) reference with Saunois
et al. (2016) (available at http://www.earth-syst-sci-data-discuss.net/essd-2016-
25/) in the whole text. In Section 2.1, p.7, l.17-18: would propagating the new
smaller uncertainty for global mean wetland methane emissions (i) take much time
and (ii) significantly change the results?

As suggested by the reviewer, we have now updated the global mean wetland CH4

emission estimate and the associated uncertainty (166 Tg/yr +/- 25% or 124.5 - 207.5
Tg/yr), which spans the Saunois et al., (2016) mean (166 Tg/yr) and range (125 - 204
Tg/yr) of 2000-2009 wetland CH4 emission estimates. We have updated the text
(P5 L22-25; P7 L16-19; P15 L10-13), figures, Table 1 and the GEOS-Chem model
simulations accordingly. We did not find any substantial changes in the results or
evaluation of our dataset.

Section 1 Introduction

(1.5) p.3, l.20-21: uncertainties are often formulated using correlation lengths in
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space (e.g. at the global scale, 500 km on land) and sometimes also in time (e.g,
still at the global scale, one or two months) over a percentage of the prior emis-
sions. This is especially done to take into account large patterns in the errors due
to underlying controls as is the case with wetland emissions. Please check your
references here and adapt the text. This does not change the fact that correlation
lengths are always an issue because the value at which they are set is derived from
expert-knowledge, which is mainly valid at the global scale.

We acknowledge our oversight: we omitted to mention the use of prior spatial and
temporal correlations on total CH4 emissions, such as those used in the Bousquet
et al., (2011) and Pison et al., (2013) studies. We have rephrased the sentence to
better summarize the use of prior error covariances among inversion efforts: “typ-
ically CH4 inversions do not explicitly formulate wetland CH4 emission uncertainty
correlations: rather, prior wetland CH4 uncertainty correlations are either absent
or implicitly prescribed through space-time correlation lengths on total CH4 emis-
sions” (P3 L21-23).

(1.6) p.4, l.8-11: I don’t understand here what is meant by the “further constrained”
ensemble. Do you mean that the top-down approach could retrieve the controls of
biogeochemical processes instead of fluxes from atmospheric data assimilation? It
seems it is what is meant in Section 4.2, p.15, l.6-8.

We have now re-worded this sentence: “Top-down CH4 emission estimates can then
be used to quantify (a) the probability of individual ensemble members; and (b) the
combined probability distribution of carbon models, CH4:C temperature depen-
dencies and wetland extent scenarios” (P4 L12-14).

Section 2.1

(1.7) p.5, l.20: using the word “ensemble” for a six-member sub-set and deriving
statistics over such a small number of members does not seem very appropriate.
See if it is possible to leave EE aside for most of the paper and only mention it as a
“more classical” set of estimates (see also General comments).

We have revised our manuscript text and figures to better convey the limitations
of the extended ensemble (see response to comment 1.1). We also note that the EE
ensemble is now comprised of 18 members (see response to comment 1.8)

(1.8) p.7, l.18-19: why 1000 perturbations?

In response to the reviewer’s question, we investigated the impact of the number of
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perturbations, and found no substantial impact on reported FE percentile intervals
and error correlation values. In light of this, we now use a simpler approach to
explicitly represent global wetland source uncertainty: we expand both FE and EE
emission ensembles by deriving three scaling factors corresponding to global annual
wetland emissions of 124.5, 166 and 207.5 Tg/yr; these span the range of the Saunois
et al., (2016) emission estimates. The number of ensemble members for FE and EE
are now 324 and 18. We have amended Table 1 and the methods section (P5 L22-25;
P7 L16-19), and we have removed the description and calculation of FEexp, since it
is now obsolete.

Section 2.2

(1.9) p.9, l.4-6: I understand the idea of keeping mostly sites where the vertical
mixing in the model is not too much of an issue but using only the altitude (a.s.l.?)
of the site seems to be too simple. Could you detail a bit more?

Our statement was erroneous, as we did not actually use an altitude threshold (the
text was a remnant of a previous analysis); we have modified the sentence accord-
ingly (P9 L1).

Section 3

(1.10) see if it is possible to leave EE aside (see above and General comments)

See response to comment (1.1).

(1.11) p.10, l.5: could you quantify “considerable”?

Wenow explicitly state the peak CH4 emissionmonth for each dataset (P10 L12-13).

(1.12) p.10, l.19-21: could you explain in more detail why you expect inter-annual
variability to be smaller than your uncertainty?

We have now revised this sentence to clarify that our expectation is based on previ-
ous wetland CH4 process modelling efforts. For the sake of clarity, we also support
our statement with a quantitative comparison between the FE and EE uncertainties
and the maximum inter-annual variability of the 1993-2004 WETCHIMP models
(P10 L26 - P11 L4).

(1.13) p.11, l.16-seq.: this paragraph is difficult to read with all the figures embed-
ded in the text. Could you put them in a Figure or Table?
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In the revisedmanuscript, we have split the paragraph into two, as two separate fig-
ures are being presented (P12 L10-24), and we have omitted the 5th - 95th percentile
results, as these are depicted graphically in Figure 8.

Section 4.1

(1.14) p.14, l.8-11: more and more atmospheric data of mixing ratios of methane
isotopes are available and data assimilation systems try to make use of these and
isotopic signatures of the various sources to improve the inversion of methane fluxes.
Do you think not only the total methane fluxes but also the isotopic composition
could be improved?

We agree that our ensemble estimates can be used to better represent the biogeo-
chemical process uncertainty in isotopic CH4 studies; however, we have chosen not
describe the potential advantages of using our datasets in isotopic CH4 investiga-
tions, as these are beyond the scope of our manuscript. In case the reviewer is
specifically referring to lakes and wetlands: to the best of our knowledge, lake and
wetland isotopic CH4 signatures are not sufficiently distinct to resolve between the
two sources.

(1.15) p.14, l.16: the global uncertainty is always smaller than the smaller scale
uncertainties, could you quantify “substantially”?

We have revised this sentence and now explicitly state that regional scale uncertain-
ties (shown in Figure 4) span a factor of 2 – 156 (P15 L8).

Technical Corrections

General

(1.16) check “Kirschke” everywhere (and not “Kirshke”)

Done

(1.17) check all references in the form of “based on the Bloom et al., (2016) method-
ology”: it looks like there shouldn’t be a comma before the year between parenthe-
sis.

Done

(1.18) “primary” is used for “main” or “dominant” e.g. p.7, l.26 or p.11, l.20, and
it seems a bit strange to me, non-native English speaker.
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In reference to the “primary uncertainty” estimates, we have now replaced “pri-
mary” by “dominant” throughout the revised manuscript.

Section 1 Introduction

(1.19) p.4, l.9: “based top-down CH4 emission estimates” → based ON top-down
CH4 emission estimates?

This sentence has been edited in the revised manuscript.

Section 2.1

(1.20) p.5, l.10: “heterotrophic respiration at time for a” → delete “at time”?

Now changed to “heterotrophic respiration per unit area at time t” (P5 L13).

(1.21) p.6, l.18: h should be h?

h is now written in bold-italics as “h∗,j” is a vector. We note that in the revised
manuscript mathematical notations are now consistent with the Geophysical Model
Development journal requirements.

(1.22) p.7, l.4: “freshwater bodies in wi(x) section 4” → delete wi(x)?

Typo corrected (P7 L8)

Section 3

(1.23) p.9, l.18: if FE emissions are intended, it seems that it should be Figure 1a;
if it is Figure 1b which is commented, it should be “High-latitude EE emissions”.

In the revised manuscript we have re-worded this paragraph in order to (a) cor-
rectly reference the spatial distributions of FE and EE emissions; (b) add explicit
references to panels c and d, as recommended by the reviewer in comment 1.24 (P9
L21 - P10 L3).

(1.24) p.9, l.19-20: add references to panels c and d in Figure 1 to guide the reader.

Done (P9 L25)

(1.25) p.9, l.22: “(EE) s; the FE” → delete “s”?

Typo corrected
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(1.26) p.10, l.14: Chang et al. (2014) should be “Alaska Wetlands” to be consistent
with the whole sentence.

Done (P10 L20-21)

(1.27) p.10, l.24-25: “dominated carbon decomposition”→ “dominated BY carbon
de- composition”

Done (P11 L19)

(1.28) p.13, l.8: “is able capture” → “is able TO capture”

Done (P13 L28)

Figures

(1.29)Figure 1: difficult to read, even on a screen. Larger maps and discrete colour
scales would make it easier. It seems that panels e and f are never referred to in the
text.

As recommended by the reviewer, we have now enlarged the fontsizes, increased the
map sizes, and have used a discrete (9-color) scale. We have also included explicit
references to panels e and f in the results section of the revised manuscript (P9 L16-
19).

(1.30) Figure 2: - it is almost impossible to distinguish pale grey fine lines from
darker grey larger lines! - put FE ensemble and FE mean in the legend since it is
used in the whole text (instead of “Ensemble” / “Mean” alone in the top panel or
“This study” in the bottom panel) - if following the recommendation of not com-
menting too much on EE in the body of the article, the top panel could be in Sup-
plementary material (or Appendix?)

For the sake of clarity, we have now removed the top panel in Figure 2; we now
show the means and full ranges of FE and EE emissions in a single panel along with
GC and BL emissions. We have updated the figure legend accordingly.

(1.31) Figure 3: a discrete colour scale would make it easier to read, together with
larger panels if possible.

We have now revised the figure to include a discrete color scale; as recommended,
we have also expanded the panel sizes.
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(1.32)Figure 4: you may use box plots to make the legend clearer and shorter; could
you enlarge the map?

As recommended, we have substantially enlarged the map in the revised figure and
shortened the legend.

(1.33) Figure 6: the colour scale is a bit strange since the ticks every 0.2 do not fit
the limits of shades

We have revised the color scale to match the ticks (now Figure 7).

(1.34) Figure 8: a discrete colour scale would make it easier to read C6

The revised figure (now Figure 9) includes a discrete color scheme.

(1.35) Appendix B: - p.16, l.10: “ensemble. the “cor()”” → “ensemble. The
“cor()””

Typo corrected

- p.16, l.11: “For Figure 6, Al,m we aggregate”: do you mean that Fig 6 shows the
Al,m coefficients?

Sentence revised: the start of this sentence now reads “For Figure 7, we aggre-
gated...” (P17 L25).

(1.36) Appendix C: p.17, l.4: “R100,1,1” should probably be R100,3,1

Typo corrected (P18 L18)

Anonymous Referee 2

This study describes and evaluates a new global dataset of CH4 emissions from
natural wetlands. The method follows an ensemble approach, which has the advan-
tage that the computation of uncertainties, including spatio-temporal covariances,
is straightforward. The dataset as meant to serve as a first guess in inverse modeling
for which the uncertainty quantification has a clear advantage over other methods.

(2.1) It is not entirely clear what the evaluation using the GEOS-CHEM model
brings, other than the notion that this dataset is in reasonable agreement with datasets
that were used in the past. Obviously, flux measurements are better suited to test
the performance of a methane emission model, although scale dependencies com-
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plicate that approach also. Since this holds for the other datasets as well, it would
nevertheless provide additional information.

We agree with the reviewer that - relative to the regional flux constraints (Figure 4)
- the GEOS-Chem evaluation only provides supporting evidence on the plausibility
of wetland CH4 emissions relative to previous datasets: we now clarify this point in
the revised manuscript (P9 L3-5). In addition, we now recognize the value of in-situ
methane CH4 measurements in the revised manuscript: while the direct compari-
son between global-scale fluxes and in-situ measurements is a challenging task (and
beyond the scope of our work), we now highlight the importance of measurement-
based regional estimates for the evaluation and improvement of future global wet-
land CH4 emission ensembles (P15 L10-13).

(2.2)Otherwise I wasmissing the dimension of inter-annual variability, which brings
a clear advantage for the EE dataset - although it remains unclear what that vari-
ation looks like and how realistic it is.

We have now incorporated an evaluation of the EE inter-annual variability (IAV),
including an additional manuscript figure: in particular, we compare 2001-2015 EE
IAV against 2009-2010 FE emissions and the WETCHIMP model ensemble during
2001-2004 (see Figure 5 and P11 L6-11). We also include an evaluation EE IAV
against observationally constrained Alaska CH4 emissions during 2012-2014 and
Amazon emissions during 2010-2011 (P11 L11-15). Our evaluation indicates that
EE IAV is broadly consistent with both modeled and observationally constrained
wetland CH4 emission estimates.

Otherwise I have only a list of technical corrections, which should be relatively easy
to tackle.

(2.3) page 4, line 9: ‘based top down’

This sentence has been edited in the revised manuscript

(2.4) page 5, eq. 20: Mention that there are 6 scenarios for EE (which helps the
reader to make sure he/she understands table 1 correctly)

Done (P5 L24): we note that EE now consists of 18 ensemble members (see response
to comment 1.8)

(2.5) eq 2: what is done when w(x) is not covered by h(x) and vice verse?
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We have revised the description of equation 2 to clarify that w(x) represents the
wetland extent fraction, while h(t,x) is the relative temporal variability (P6 L15-16).
In the revised manuscript, we also clarify that when h(t,x)w(x) > 1, A(t,x) is set to a
maximum value of 1 (P6 L22-24).

(2.6) eq 3: how is this done for the EE time series, every year 175Tg/yr or just
the mean over the whole period? In the latter case: how do the global emissions
compare for 2009-2010? It would also be useful to know how much of a correction
is needed to get to 175 Tg/yr.

For both EE and FE, sc is derived such that each ensemble member’s global emis-
sions amount to an average annual flux of 124.5, 166 or 207.5 Tg/yr during the 2009-
2010 time period (previously 175 Tg/yr; see comment 1.8). We have now clarified
this in the revised manuscript (P7 L16-17). In response to comment 2.2, we also in-
clude an evaluation of EE throughout 2001-2015 (P11 L6-11 and Figure 5). For the
sake of brevity, individual FE and EE sc values (spanning 4 - 100% relative to the
maximum sc value) are not reported in the main body of the manuscript; however,
we highlight that individual sc values can be derived using the WetCHARTs code
(now included in the supplementary material).

(2.7) page 7, line 26: ‘uncertainty. The derivation’ i.o. ‘uncertainty; the derivation’

Done (P8 L1).

(2.8) page 8, line 11: ‘been in a’

Sentence revised (P8 L8)

(2.9) page 8, line 15: ‘Commission’ i.o. ‘Comission’

Typo corrected (P8 L12).

(2.10) page 8, line 17: ’). The non-wetland’ i.o. ‘) .The non-wetland’

Done (P8 L13).

(2.11) page 9, line 23: ‘significantly lower (with’ i.o. ‘significantly (with’ and re-
move ‘lower’ in the next line.

Done (P10 L1)

(2.12) page 10, line 20: ‘estimated’ i.o. ‘estimate’
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Changed to “emission uncertainty estimates are” (P10 L23).

(2.12) page 10, line 25: ‘by carbon’ i.o. ‘carbon’

Done (P11 L19)

(2.13) page 11, line 15 - bottom: This part is hard to read due to all the numbers. It
would be better to put the numbers in a Table.

See response to reviewer comment 1.13

(2.14) page 13-14: How much emissions are derived from rivers/lakes using the
current approach?

As discussed in the “model limitations” section, we are unable to report emissions
from rivers and lakes as we have insufficient information to disentangle the relative
CH4 contribution of non-wetland freshwater bodies within each grid-cell. We have
re-worded this section to clarify this point in the revised manuscript (P14 L24 - P15
L1).

(2.15) page 28: ‘Contribution’ i.o. ‘Contri- bution’

Done

(2.16) figure 1: bottom panels: how can the units be compared?

All color bar labels now include units in the revised version of Figure 1.

(2.17) figure 3: the legend title misses a unit area

Wetland CH4 emissions (Tg/month) are reported as total emissions across 5-degree
binswithin each region shown on the insetmap. Wehavemodified the figure caption
to clarify this.

Astrid Kerkweg

(3.1) In my role as Executive editor of GMD, I would like to bring to your atten-
tion our Editorial version 1.1: http://www.geosci-model-dev.net/8/3487/2015/gmd-
8-3487-2015.html. This highlights some requirements of papers published in GMD,
which is also available on the GMD website in the ‘Manuscript Types’ section:
http://www.geoscientific-model-development.net/submission/manuscript_types.html.
In particular, please note that for your paper, the following requirements have not
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been met in the Discussions paper:

“Inclusion of Code and/or data availability sections is mandatory for all papers
and should be located at the end of the article, after the conclusions, and before
any appendices or acknowledgments. For more details refer to the code and data
policy” (Editorial v1.1, Appendix A1)

“Papers describing data sets designed for the support and evaluation of model sim-
ulations are within scope. These data sets may be syntheses of data which have been
published elsewhere. The data sets must also be made available, and any code used
to create the syntheses should also be made available.” (Editorial v1.1, Appendix
A5).

For these papers the same criteria as for model description papers apply, i.e., “The
main paper must give the model name and version number (or other unique iden-
tifier) in the title.” (Editorial v1.1, Appendix A2) In this case the “model” is the
“data set”

Please add a data availability section and include the data sets name and version
number in the title in your revised submission to GMD.

The data availability section is now positioned at the end of the article before the
acknowledgments and appendices sections (P16 L21). We have now added a model
name and version number (WetCHARTs version 1.0) in the title of our manuscript.
We have included the WetCHARTs matlab code in the supplementary material of
our revised manuscript. The final dataset (>50 MB) has been submitted to the Oak
Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC): the
dataset is linked to the manuscript via a digital object identifier (Bloom et al., 2017;
doi: 10.3334/ORNLDAAC/1502) and will become publicly accessible upon publica-
tion. The data availability section has been expanded to include information on the
ancillary datasets used in this study.

Additional changes

–We identified aminor bug in our code related to the timingMsTMIP heterotrophic
respiration outputs; we have updated the results throughout themanuscript accord-
ingly. We note that the outcome had a mininmal impact on the results presented in
our manuscript. However, for the sake of clarity, the WetCHARTs code – now in-
cluded in the supplementary material of the revised manuscript – also includes the
subroutines used to read MsTMIP heterotrophic respiration outputs.
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– We now report the correct CH4 emission units in Figure 3 (Tg/month, instead of
Tg/yr).

– In the revised manuscript, Figure 1e now correctly shows the FE 5th - 95th per-
centile values (in the discussion manuscript, the figure was inadvertently showing
FE standard deviation values).
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Abstract. Wetland emissions remain one of the principal sources of uncertainty in the global 

atmospheric methane (CH4) budget, largely due to poorly constrained process controls on CH4 

production in waterlogged soils. Process-based estimates of global wetland CH4 emissions and their 

associated uncertainties can provide crucial prior information for model-based top-down CH4 emission 15 

estimates. Here we construct a global wetland CH4 emission model ensemble for use in atmospheric 

chemical transport models (WetCHARTs version 1.0). Our 0.5°×0.5° resolution model ensemble is 

based on satellite-derived surface water extent and precipitation re-analyses, nine heterotrophic 

respiration simulations (eight carbon cycle models and a data-constrained terrestrial carbon cycle 

analysis) and three temperature dependence parameterizations for the period 2009-2010; an extended 20 

ensemble subset – based solely on precipitation and the data-constrained terrestrial carbon cycle 

analysis – is derived for the period 2001-2015. We incorporate the mean of the full and extended model 

ensembles into GEOS-Chem and compare model against surface measurements of atmospheric CH4; 

model performance (site-level and zonal mean anomaly residuals) compares favourably against 

published wetland CH4 emissions scenarios. We find that uncertainties in carbon decomposition rates 25 

and wetland extent together account for more than 80% of the dominant uncertainty in the timing, 

magnitude and seasonal variability of wetland CH4 emissions, although uncertainty in the temperature 
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CH4:C dependence is a significant contributor to seasonal variations in mid-latitude wetland CH4 

emissions. The combination of satellite, carbon cycle models and temperature dependence 

parameterizations provides a physically informed structural a priori uncertainty critical for top-down 

estimates of wetland CH4 fluxes: specifically, our ensemble can provide enhanced information on the 

prior CH4 emissions uncertainty and the error covariance structure, as well as a means for using 5 

posterior flux estimates and their uncertainties to quantitatively constrain global wetland CH4 emission 

biogeochemical process controls. 

 

1 Introduction 

 10 

Methane (CH4) is a potent greenhouse gas, with a global warming potential of more than 25 

times that of CO2 on a 100-year time horizon (Myhre et al., 2013). The global CH4 budget and growth 

rate remain poorly understood, largely due to poorly resolved evolution of atmospheric CH4 sources and 

sinks (Nisbet et al., 2014). Wetland CH4 emissions are the largest natural source of atmospheric CH4, 

amounting to roughly 20 – 40% of global CH4 emissions (Ciais et al., 2013). The large disparities 15 

between a range of top-down and bottom up wetland CH4 estimates (Kirschke et al., 2013; Melton et al., 

2013) arise from large uncertainties in the timing, distribution and the underlying processes controlling 

net wetland CH4 production. 

In wetland soils, CH4 is produced by the decomposition of organic matter in anaerobic (oxygen 

depleted) environments. The dominant processes controlling the seasonal and inter-annual variations 20 

include carbon availability (soil C substrate) and decomposition rate, wetland inundation extent, and 

temperature (Yvon-Durocher et al., 2014). Other important controls on wetland CH4 emissions include 

the presence of macrophytes (Laanbroek 2010), organic C decomposition rates (Miyajima et al., 1997) 

and soil pH (Singh et al., 2000), amongst other factors. The link between terrestrial carbon-water 

cycling and wetland CH4 emissions is of particular interest from a terrestrial greenhouse gas emissions 25 

standpoint: inter-annual variations in terrestrial carbon cycling (Le Quéré et al., 2013) can affect 

wetland CH4 emissions on seasonal-to-century timescales (Hodson et al., 2011). The role of carbon 

cycle dynamics in global wetland CH4 emissions is increasingly recognized: temporal variations in 
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gross primary production influence short-term carbon supply (such as carbon inputs from root exudates 

and fine litter), as well as long-lived carbon stores (such as wood litter turnover or soil organic C) in 

wetland soils (Riley et al., 2011; Bloom et al., 2012; Melton et al., 2013). The combined response of 

CO2 and CH4 fluxes to climatic variability remains poorly characterized. For example, increasing 

temperatures in boreal ecosystems could lead to higher carbon uptake, increased respiration and drier 5 

soils (Watts et al., 2014), and it is currently unclear whether these processes amount to an amplifying or 

dampening effect on boreal CH4 emissions. From a greenhouse gas balance standpoint, quantifying the 

global-scale process links between terrestrial carbon cycling and wetland CH4 emissions is crucial to 

characterizing the combined terrestrial biosphere CO2 and CH4 flux response to climatic variability.  

Quantification of regional wetland CH4 emissions remains challenging. While wetland CH4 10 

emissions are relatively well constrained on a global scale (Kirschke et al., 2013; Saunois et al., 2016), 

regional CH4 fluxes are difficult to detect, due to their comparatively diffuse nature – relative to 

anthropogenic point sources – and the scarcity of direct measurements of wetland CH4 emissions. From 

a bottom-up perspective, challenges in wetland CH4 modelling stem from order-of-magnitude 

uncertainties on wetland CH4 emissions factors and their spatio-temporal dependence on 15 

biogeochemical process controls. Nonetheless, for top-down CH4 emission estimates, prior knowledge 

of wetland CH4 emissions and their associated uncertainty is critical in the formulation of Bayesian 

atmospheric CH4 inversions. Atmospheric inversions combine CH4 measurements from surface, aircraft 

and satellites (Wecht et al., 2014b; Jacob et al., 2016) and the prior probability on the magnitude and 

uncertainty characteristics of CH4 emissions (Bousquet et al., 2011; Pison et al., 2013; Fraser et al., 20 

2013; Turner et al., 2015): typically CH4 inversions do not explicitly formulate wetland CH4 emission 

uncertainty correlations: rather, prior wetland CH4 uncertainty correlations are either absent or 

implicitly prescribed through space-time correlation lengths on CH4 emissions. However, inter-model 

similarities reveal significant levels of emergent correlations in the timing, magnitude and spatial 

variability of wetland CH4 emissions. For example, the Wetland CH4 Inter-comparison of Models 25 

Project (WETCHIMP) model ensemble (Melton et al., 2013) reveals varying levels of spatial and 

temporal agreement between models; these correlations stem from large-scale patterns in 

biogeochemical process controls (such as temperature, inundation and carbon cycling). Given the 
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relatively large WETCHIMP CH4 emission uncertainties (model range is typically 150-300% of model 

mean over major wetland areas, and greater elsewhere), this prior ‘biogeochemical covariance’ can 

potentially amount to a critical constraint on atmospheric CH4 inversions: such a covariance structure 

can be incorporated in an atmospheric inversion cost-function (Michalak et al., 2005) or as a means for 

improving attribution of posterior CH4 fluxes to wetland CH4 emissions (Wecht et al., 2014a). 5 

Here we propose a process-informed wetland CH4 emission and uncertainty dataset for 

atmospheric chemistry and transport modelling (WetCHARTs) based on multiple terrestrial biosphere 

models, wetland extent scenarios and CH4:C temperature dependencies. In contrast to a conventional 

process-based model inter-comparison approach, our wetland CH4 emission ensemble members are 

derived by exhaustively combining a range of temperature, carbon and wetland extent 10 

parameterizations. An advantage of our approach is that it provides a prior probability distribution of 

biogeochemical process control uncertainty. Top-down CH4 emission estimates can then be used to 

quantify (a) the probability of individual ensemble members; and (b) the combined probability 

distribution of carbon models, CH4:C temperature dependencies and wetland extent scenarios.  

 We formulate a full (2009-2010) and extended (2001-2015) estimate of wetland CH4 emission 15 

magnitude and its associated biogeochemical covariance structure, based on knowledge of the global 

wetland CH4 source and the primary biogeochemical process controls. We validate and compare the 

wetland CH4 emissions ensemble against a suite of regional flux estimates; we use a global atmospheric 

chemical transport model (GEOS-Chem, Bey et al., 2001) to evaluate the CH4 emissions ensemble 

mean relative to existing wetland CH4 emission models (sections 2 and 3). Finally, we summarize the 20 

strengths and limitations of our wetland emissions ensemble and outline its potential applications in 

global atmospheric inversion frameworks (section 4).  

 

2. Wetland CH4 model ensemble 

 25 

The wetland CH4 emissions ensemble provides CH4 fluxes and associated uncertainty estimates 

based on four wetland extent parameterizations, nine terrestrial biosphere models of heterotrophic 

respiration and three CH4:C temperature parameterization. Global monthly 0.5°×0.5° emissions and 
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their associated uncertainty structure span 2009-2010 (full ensemble, henceforth FE); we also evaluate a 

subset of the model ensemble spanning 2001-2015 (extended ensemble, henceforth EE). We validate FE 

and EE emissions against a range of regional CH4 emission estimates. Finally, we incorporate FE, EE 

and existing wetland emission inventories into GEOS-Chem and evaluate the atmospheric CH4 

simulations against 104 surface CH4 measurement sites. 5 

 

2.1 Wetland CH4 emissions & uncertainty 

 

We derive wetland CH4 emissions F (mg CH4 m-2 day-1) at time t and location x as: 

 10 

𝐹(𝑡, 𝑥)  =  𝑠 𝐴 𝑡, 𝑥  𝑅 𝑡, 𝑥  𝑞!"
!(!,!)
!"         (1) 

 

where A(t,x) is the wetland extent fraction, R(t,x) is the C heterotrophic respiration per unit area at time 

t, q10 T(t,x)/10 is the temperature dependence of the ratio of C respired as CH4 (where q10 is the relative 

CH4:C respiration for a 10°C increase and T(t,x) is the surface skin temperature) and s is a global scale 15 

factor. This empirical parameterization provides first order constraints on the role of carbon, water and 

temperature variability on the global spatial and temporal variability of wetland CH4 emissions. 

Variants of the equation 1 parameterization have been used within a range of wetland CH4 emission 

models (e.g., Hodson et al., 2011, Pickett-Heaps et al., 2011, Bloom et al., 2012; Melton et al., 2013 

amongst others).  20 

In our approach, wetland CH4 emissions statistics within and across 0.5°×0.5° gridcells are 

derived based on an ensemble of wetland CH4 emission simulations: the 324-member FE is based on 3 

CH4:C temperature dependencies, 9 heterotrophic respiration configurations, 4 wetland extent scenarios 

and 3 global scale factor configurations (3×9×4×3 = 324); the 18-member EE ensemble is a subset of 

FE, based on data availability during 2001-2015 (see Table 1 for details).  25 

The heterotrophic respiration configurations are derived from 8 terrestrial biosphere models used 

in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project  (MsTMIP BG1 simulations, 

see Huntzinger et al. 2013 and Wei et al. 2014 for model and experiment details) and the global 
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CARbon DAta-MOdel fraMework (CARDAMOM) terrestrial carbon analysis (Bloom et al., 2016). 

V1.0 outputs from the MsTMIP are available for the period 1900-2010 (Huntzinger et al., 2016); the 

CARDAMOM analysis was extended to span 2001-2015 based on the Bloom et al. (2016) methodology 

(see Appendix A for details).  Since MsTMIP and CARDAMOM respiration estimates vary intrinsically 

as a function of temperature, q10 only accounts for the temperature dependence of the fraction of C 5 

respired as CH4. We prescribe three CH4:C temperature dependencies (Table 1) which are broadly 

equivalent to a ±50% range on the CH4:CO2 temperature dependence reported by Yvon-Durocher et al. 

(2014).  

Here we use two spatial (i = 1,2) and two temporal (j = 1,2) wetland extent parameterizations 

approaches to represent the uncertainty associated with the role of hydrology on wetland CH4 10 

emissions. Each temporal and spatial wetland extent parameterization, Ai,j(t,x) is derived as: 

 

𝐴!,! 𝑡, 𝑥 = 𝑤! 𝑥 ℎ!,! 𝑡, 𝑥  ,       (2) 

  

where wi(x) represents the wetland extent fraction, and hi,j(t,x) represents the temporal variability 15 

relative to wi(x). w1(x) is the sum of all GLOBCOVER wetland and freshwater land cover types (all 

flooded, water-logged, and inland water body land-cover types; Bontemps et al., 2011); w2(x) is the 

Global Wetland and Lakes Database (GLWD) maximum recorded wetland and freshwater body extent 

map by Lehner & Doll (2004).  

 For h*,j(t,x), we use (a) the Surface WAter Microwave Product Series (SWAMPS) multi-20 

satellite surface water product (Schroeder et al., 2015; j = 1), and (b) monthly ERA-interim precipitation 

(j = 2): for i = 1 (i = 2), h,ij(t,x) is normalized such that mean (maximum) hi,j(t,x) is equal to 1. In order 

avoid physically unrealistic outcomes, we derive A1,j(t,x) as min{w1(x) h1,j(t,x), 1}, where the “min{}” 

function represents the minimum between the two bracketed values. 

We note that the two hydrological proxies provide contrasting advantages and disadvantages. 25 

Satellite-retrieved surface water extent provides an observation-based constraint on the spatial and 

temporal extent of wetlands and freshwater bodies. While our temporal scaling of static wetland and 

freshwater extent mitigates the role of spatial biases in satellite-retrieved inundation, vegetation cover 
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remains a major confounding variable in satellite-constrained wetland extent (Schroeder et al., 2015). 

Moreover, satellites cannot directly observe subsurface soil saturation, even though these soils amount 

to significant CH4 fluxes to the atmosphere (Turetsky et al., 2014). On the other hand, precipitation does 

not provide a direct constraint on the wetland and freshwater extent; however, it provides an aggregate 

constraint on ecosystem hydrological variability and wall-to-wall coverage across the globe. We 5 

henceforth refer F as “wetland CH4 emissions”; however, we recognize that lakes, rivers and reservoirs 

account for ~20% of the total wetland and freshwater body extend (Lehner and Döll, 2004). We discuss 

the implications of including non-wetland freshwater bodies in section 4. 

For each of the 324 FE ensemble configurations (c = 1 – 324), and 18 EE ensemble 

configurations (c = 1 – 18), we derive sc such that: 10 

 

𝑠! =
!

!!!! !!(!,!)!(!)
!!
!

       (3) 

 

where Fc(t,x) are the cth ensemble member emissions at grid-cell x and time t, a(x) is the area of grid-

cell x, Δt is the timestep (1 month), n is the number of years, and G is the global total CH4 emitted from 15 

wetlands. We derive sc such that FE and EE ensemble members amount to a mean global annual flux of 

G = 124.5, 166 or 207.5 Tg CH4 yr-1 during 2009-2010. The prescribed range of total wetland CH4 

emissions spans the Saunois et al. (2016) mean 2000-2009 top-down wetland CH4 emission estimates 

(166 Tg CH4 yr-1; 125 – 204 Tg CH4 yr-1).  

We attribute the uncertainty of the timing and magnitude of 𝑭∗ 𝑡, 𝑥  (namely maximum CH4 20 

emission month, mean CH4 emissions and CH4 emission variability) to carbon decomposition, wetland 

extent and CH4:C temperature dependence uncertainty. The derivation of the “dominant uncertainty” 

within each zonal band (i.e. the dominance of carbon, water or temperature as the dominant source of 

uncertainty) is fully described in Appendix C.  

 25 

2.2 GEOS-Chem atmospheric CH4 simulations 
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We evaluate the FE and EE wetland CH4 emission means against the World Data Centre for 

Greenhouse Gases (WDCGG) CH4 measurement sites by incorporating these into the 4°×5° resolution 

GEOS-Chem atmospheric chemical and transport model (version 10.01; acmg.seas.harvard.edu/geos).  

We benchmark the FE and EE runs against GEOS-Chem simulations with the GEOS-Chem wetland 5 

CH4 emission inventory (Pickett-Heaps et al., 2011; 2009-2010 derivation described in Turner et al., 

2015; henceforth GC) and the Bloom et al. (2012) satellite-constrained wetland emissions (henceforth 

BL), as these emission estimates have been used in a range of atmospheric chemical transport model 

simulations (Fraser et al., 2013; Turner et al., 2015; Wilson et al., 2016 amongst others). We perform 

each GEOS-Chem forward run for the period 2009-2010 with a four-year (2005-2009) spin-up period. 10 

The non-wetland CH4 sources in GEOS-Chem consist of biofuel, fossil fuel, livestock, waste, Rice 

(EDGAR v4.2; European Commission, 2011), fires (Global Fire Emissions Database version 4; van der 

Werf  et al., 2010), soil C sinks and termites (Fung et al., 1991). The non-wetland CH4 fluxes are the 

same in each run, with the exception of rice source in run BL (as global wetland and rice emissions are 

treated as one source by Bloom et al., 2012). While model CH4 surface concentrations are strongly 15 

influenced by wetland CH4 magnitude, timing and distribution (Bloom et al., 2012, Meng et al., 2015), 

comparisons between GEOS-Chem outputs and surface CH4 measurement may also be affected by 

errors in non-wetland CH4 emissions and in transport. However, Wecht et al. (2012) and Turner et al. 

(2015) show that the GEOS-Chem emissions and transport provide an unbiased representation of the 

observed latitudinal background. The global inversion of Turner et al. (2015) using GEOS-Chem 20 

emissions as prior further shows no large errors in non-wetland emissions that would confound the 

analysis presented here.  

For each of the four runs (FE, EE, GC and BL), we use the Wecht et al. (2014a) 1st Jan 2005 

initial conditions for atmospheric CH4 concentrations in GEOS-Chem. For each simulation, we 

performed a four-year spin-up period (2005-2009) using 2009 emissions to reduce the potential 25 

inconsistency between initial conditions and the global distribution of wetland CH4 emissions; this spin-

up ensures that the relative variations in Jan 1st 2009 CH4 concentrations for each run are broadly 

consistent with each emission scenario. We save GEOS-Chem atmospheric CH4 concentrations every 3 



9 
 

hours. We compare mean monthly GEOS-Chem output against all WDCGG sites (104 sites with 

monthly 2009-2010 data in total). For each site, the nearest 4°×5° GEOS-Chem grid-cell is used for 

comparison. We note that the GEOS-Chem analysis outlined here is not a direct validation of FE and 

EE; rather, it provides supporting evidence on the plausibility of FE and EE emissions relative to 

existing wetland CH4 emissions datasets. 5 

 

3. Results, Comparison and Validation  

 

Mean full ensemble (FE) global wetland emissions are largely accounted for by three high-latitude 

regions, three tropical regions, and sub-tropical southeast Asia (Figure 1). North America, Scandinavia 10 

and Siberia median (5th – 95th percentiles) CH4 fluxes amount to 10% (3 – 30%), 2% (1 – 6%) and 2% 

(1 – 6%) of global emissions; Amazon wetland emissions amount (29%; 20 – 37%) account for the 

largest tropical emission source, followed by the Indonesian archipelago (13%; 7 – 23%), and central 

Africa (12%; 7 –23%); subtropical southeast Asia emissions account for 5% (1 – 10%). High-latitude 

(>50°N) and tropical emissions amount to 12% (5 – 31%) and 66% (43 – 83%) of global wetland CH4 15 

emissions, respectively. Gridded FE uncertainties (shown as the 5th – 95th percentile ranges; Figure 1e) 

are largely comparable in magnitude to FE emissions (Figure 1a). Relative FE uncertainties (shown as 

the ratio of 90% confidence range to mean emissions in Figure 1f) are lowest in high-emission areas, 

notably wetland regions in the Amazon and Congo basins, North America and western Eurasia.   

 20 

Mean FE and extended ensemble (EE) CH4 emission patterns exhibit close agreement across all tropical 

continents and the high northern latitude wetland regions (Figures 1a and 1b). The comparison between 

zonal mean emissions (Figure 2) reveals differences of less than 1 Tg/yr/°lat between FE and EE. On 

Continental scale FE and EE emission patterns are in broad agreement with the Pickett-Heaps et al., 

(2011) wetland CH4 emissions (GC; Figure 1c) and the Bloom et al. (2012) emissions (BL; Figure 1d). 25 

High-latitude FE and EE emissions peak roughly between 45 - 60°N (Figure 2), in agreement with GC 

and BL emission peaks (~60°N and ~50°N respectively), and tropical emissions for all four emission 

datasets peak within 0° – 5°S. The FE zonal mean is comparable to the BL in the near-equatorial tropics 
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and significantly lower (with respect to the FE model ensemble 90% confidence range) everywhere 

else; the FE zonal mean is comparable to GC in high-latitude and temperate regions, but significantly 

lower than GC in the tropics and southern hemisphere.  

 

All CH4 emission models show similar patterns in the temporal distribution of CH4 emissions in high-5 

latitude and temperate regions (with CH4 emissions peaking between July and September, Figure 3). 

We note that the larger CH4 fluxes in the BL emissions over Asia and Oceania are due to rice paddy 

CH4 emissions. All emission models exhibit high-latitude (>50°N) maximum CH4 emissions between 

June and August. In tropical South America (0° – 20°S), FE and EE emissions peak between February 

and April, which is comparable to BL (February – March); and overall earlier than GC (5°S – 20°S 10 

emission peak in September). There is a considerable disagreement between northern tropical Africa 

emission variability amongst all models, with 0° – 15°N emissions peaking in February (GC), April – 

October (FE, EE), and September- November (BL). Subtropical Asia FE and EE emissions (20°N – 

30°N) peak in June-July, earlier than BL emissions (August-September) and comparable to GC 

emissions (June). 15 

 

We compare mean FE and EE (2009-2010) wetland emissions against a range of independent wetland 

CH4 regional emission estimates (Figure 4). Emissions from Siberian wetlands (Glagolev et al., 2011) 

Hudson bay lowlands (Pickett-Heaps et al., 2011), and Amazon river basin (Melack et al., 2004) are 

within 25th – 75th percentile estimates of FE and EE wetland CH4 emissions; Alaska wetland emissions 20 

(Chang et al., 2014; May-September) are higher (2.1 Tg CH4 yr-1) but within the 5th – 95th percentile 

range of FE and EE wetland CH4 emission estimates. With the exception of Amazon river basin 

estimates, the FE and EE emission uncertainty estimates are larger than the Melton et al. (2013) wetland 

CH4 emission model (WETCHIMP 1993-2004) range. BL (2009-2010) and GC (2009-2010) estimates 

are also within all regional 5th – 95th percentile ranges. We note the temporal mismatch between 25 

modelled and regional wetland CH4 emission estimates in Figure 4: however, based on a range of 

process model approaches (e.g. Bloom et al., 2010; Melton et al., 2013), we expect inter-annual 

variation in wetland CH4 emissions to be substantially smaller than the FE and EE estimate uncertainty. 
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For example, the maximum-to-minimum ratios of WETCHIMP 1993-2004 annual emissions are ≤ 5.1 

across the three extratropical regions and ≤ 1.4 in the Amazon river basin; in contrast, FE and EE 

uncertainty intervals span factors of 5.8 – 156.3 in the extratropics and 2.3 – 3.9 in the Amazon river 

basin.  

 5 

FE and EE ensemble models exhibit a median of 6.7% and 7.2% increase in global emissions between 

2009 and 2010 (Figure 5). BL and GC 2009-to-2010 changes (+1.8% and +3.2%) are within the FE 

uncertainty range (-2.6% to +13.4%). Uncertainties in the WETCHIMP inter-annual variations (IAV, 

relative to the 2001-2004 model means) are larger than EE IAV uncertainty throughout 2001-2015 

(relative to 2009) and smaller than the 2009-to-2010 FE change uncertainty. For the 2003-2013 period, 10 

BL IAV is generally lower or within the range of EE IAV. In comparison to regional top-down 

constraints, we find that regional EE IAV is comparable to the Miller et al., (2016) 2012-2014 annual 

Alaska wetland emission variability (coefficient of variation: observed = 4.9%; EE = 4.2 – 6.9%), and 

within the Wilson et al. (2016) constraints on 2010-to-2011 change in annual Amazon wetland 

emissions (coefficient of variation: observed < 20%; EE = 0.5 – 2.9%). 15 

  

On a zonal basis, the “dominant uncertainty” – i.e. the dominant source of uncertainty within each band 

– in mean CH4 emissions and the timing of maximum CH4 emissions is almost completely dominated 

by carbon decomposition and wetland extent uncertainties (Figure 6). Seasonal variability of CH4 

emissions is also largely dominated by carbon and extent uncertainties, although the temperature CH4:C 20 

dependence is the dominant source of uncertainty in temperate latitudes. At latitudes > 20°N, wetland 

extent is the dominant source of uncertainty in mean CH4 emissions, while temperature CH4:C 

dependence accounts for <5% of the dominant uncertainty attribution. Across tropical latitudes (23°S – 

23N) and northern high latitudes (>45°N), carbon decomposition is the dominant source of uncertainty 

in the timing of wetland CH4 emissions. 25 

 

We summarizing the FE global error covariance structure as an error correlation matrix between mean 

monthly 2009-2010 emissions across boreal & arctic (>55°N) temperate (23°N – 55°N), tropical (23°S 
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– 23°N) and southern hemisphere (<23°S) latitudes (Figure 7); the error correlation matrix 

quantitatively summarizes similarities in the spatial and temporal patterns between ensemble members, 

relative to the ensemble mean (see appendix B for description and interpretation). The FE error 

correlation matrix highlights positively correlated ensemble member CH4 emissions within each region, 

with larger correlations (generally Pearson’s r > 0.8) between emissions separated by 1-2 months. 5 

Tropical emissions exhibit the largest overall temporal correlations (r > 0.5). Tropical emissions exhibit 

negative correlations against temperate emissions (r < -0.3) and boreal & arctic CH4 emissions (r < -

0.1). 

 

Mean 2009-2010 observed and GEOS-Chem forward model run CH4 concentrations (with FE, EE, BL 10 

and GC wetland emissions) are broadly consistent on a latitudinal basis. The observed and modelled 

zonal atmospheric CH4 concentration anomaly (relative to mean global 2009-2010 CH4 concentrations) 

is shown in Figure 8 (zonal profile root-mean-square errors – RMSE – are 6.5 ppb, 6.6 pbb, 8.4 ppb, 9.2 

ppb for FE, EE, BL and GC relative to the observed CH4 anomaly zonal profile). Within the primary 

wetland CH4 emission latitudes (10°S – 80°N; Figure 2), all mean CH4 model estimates are within the 15 

mean standard deviation of observed CH4, except for GC at >60°N and all models at 80°N.  

 

The median site-level correlation (Pearson’s r) between observed and model de-trended CH4 

concentrations (Figure 9) is highest for BL (0.75), followed by EE (0.74), FE (0.73) and GC (0.72). The 

median RMSE between observed and model de-trended CH4 concentrations for FE (11.78 ppb) and EE 20 

(11.89ppb) are lower than BL (12.42 ppb) and GC (median = 13.27 ppb). FE and EE improvements 

(relative to GC and BL Pearson’s r and RMSE) are primarily in northern hemisphere high-latitudes 

latitudes (>50°N; Figure 9). In southern hemisphere extra-tropical latitudes (<23°S) FE and EE exhibit a 

comparable performance relative GC, while BL outperforms both FE and EE. 

 25 

4. Discussion  

 

4.1 Model limitations  
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Densely vegetated wetland areas are likely to amount to a large component of the global wetland CH4 

sources; high-carbon density (and high temperatures in the case of tropical wetlands) result in high CH4 

emissions under inundated conditions. However, satellite-derived observations of surface water area 

(Schroeder et al., 2015) are ill-equipped to observe densely vegetated wetland areas, as the passive 5 

microwave sensors become increasingly sensitive to vegetation moisture within high biomass 

ecosystems (Sippel et al., 1994). For example, FE estimates of Amazon river basin wetland CH4 

emissions amount to 16%  - 29% (5th – 95th percentiles) of the global wetland emissions source; high 

biomass density in this region (Saatchi et al., 2011) may be a significant source of inundation area bias. 

Therefore, while we incorporate prior information on the mean and maximum wetland extent to scale 10 

the satellite-derived inundation fraction, we anticipate that errors in seasonal and inter-annual 

inundation variability are likely to be larger within densely vegetated wetland areas. We are optimistic 

that current and upcoming missions such as SMAP and BIOMASS (Entekhabi et al., 2010; Le Toan et 

al., 2011) combined with data integration approaches (Schroeder et al., 2015; Fluet-Chouinard et al., 

2015) can potentially provide additional constraints required to extend current inundation datasets and 15 

to improve current surface inundation detection capabilities.  

 

The MsTMIP model ensemble provides a first-order estimate of the magnitude and variability of C 

decomposition within each 0.5°×0.5° grid-cell. Here we highlight 4 potentially major sources of error: 

(a) differences in aerobic:anaerobic turnover rates of major (labile and recalcitrant) C pools (b) 20 

systematic differences in wetland and non-inundated area carbon uptake within each 0.5°×0.5° grid-cell, 

(c) systematic differences in dead organic matter C stocks and accumulation between wetland and non-

inundated areas, and (d) lateral flows of C into (or out of) wetland areas. Top-down estimates of 

seasonal and inter-annual terrestrial CO2 fluxes (e.g. Liu et al., 2014) could be used to independently 

assess the validity of heterotrophic respiration from the MsTMIP models and CARDAMOM. In turn, 25 

top-down CH4 and CO2 flux retrievals, and range of in-situ and regional-scale CH4 flux estimates 

(Schriel-Uijl et al., 2011; Chang et al., 2014; Budishchev et al., 2014; amongst others) can be combined 

to assess whether our empirical parameterization is able to capture regional, seasonal and inter-annual 
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wetland CH4 emission variability and their link to the broader terrestrial carbon cycle. Finally, in 

succession to eddy covariance tower site analyses of CO2 respiration dependence on temperature 

(Mahecha et al., 2010), we anticipate that CH4 eddy covariance measurements will provide critical site-

level constraints on the temperature dependence of wetland CH4 emissions.  

 5 

Rice paddies likely amount to <20% of wetland CH4 emissions, and the majority of rice paddy areas are 

implicitly excluded from our analysis: GLOBCOVER distinguishes between natural and irrigated water 

bodies, and GLWD explicitly excludes rice paddy extents in China (which alone accounts for a large 

portion of global rice paddy CH4 emissions). However, satellite-based inundation fraction retrievals are 

unable to distinguish the temporal variability of co-located agriculture and natural wetland inundation 10 

extent; moreover 0.5°×0.5° carbon cycle model resolution may be insufficient to resolve spatial 

differences in wetland and agricultural C cycling. Inadvertent inclusion of co-located rice CH4 

emissions is therefore a potential source of bias in our approach. We note that the distinction between 

wetland and rice CH4 emissions has yet to be consistently addressed in global wetland CH4 emission 

quantification efforts (see Bloom et al., 2010; Hodson et al., 2011; Melton et al., 2013, and references 15 

therein). 

 

CH4 production in non-wetland freshwater bodies, such as very small ponds (Holgerson and Raymond 

2016), lakes (Wik et al., 2016) and rivers (Bastviken et al., 2011) is potentially a significant – albeit 

highly uncertain – term in the global CH4 budget (Kirschke et al., 2013; Bridgham et al., 2013). Our 20 

approach implicitly accounts for non-wetland freshwater body emissions, since their extent is 

incorporated in grid-cell scaling factors (see Eq. 2). We recognise the challenge in explicitly 

distinguishing between wetlands and non-wetland freshwater body CH4 emissions, as well as the 

associated physical and biogeochemical process controls: the quantitative distinction of CH4 emissions 

from of wetland and non-wetland freshwater extent remains challenging from the current spatial 25 

resolution (~25km) of surface inundation retrievals (Prigent et al., 2007; Schroeder et al., 2015). 

Equally, the current global carbon cycle model resolutions (≥0.5°) is insufficient to resolve spatial 

variations of heterotrophic processes across ≤1km wetland and freshwater land cover definitions 
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(Lehner and Döll, 2004). Contingent on future resolution enhancements in surface inundation and 

carbon cycle models, we recommend further investigation on the adequate distinction and estimation of 

non-wetland freshwater CH4 emissions for atmospheric CH4 chemical transport modelling applications.  

 

By constraining global emission estimates to the Saunois et al. (2016) model range, our approach does 5 

not challenge the global annual CH4 source and uncertainty; rather, it places constraints on spatial and 

temporal wetland CH4 source variability. Since the global uncertainty (166 Tg CH4 yr-1; range = ±25%) 

is substantially smaller than regional uncertainties (spanning a factor of 2 – 156; see Figure 4), new or 

improved constraints on the global wetland CH4 source are unlikely to significantly influence our 

regional CH4 flux confidence range estimates. We therefore anticipate that wetland CH4 in-situ 10 

measurements and associated up-scaling efforts (e.g. Olefeldt et al., 2013; Turetsky et al., 2014; 

Sjörgesten et al., 2014; amongst others) will undoubtedly become critical for reducing emission and 

process uncertainty in future wetland emission model ensembles.  

 

4.2 Applications 15 

Based on comparisons against measured CH4 concentrations and a range of regional and global CH4 

emission estimates (Figures 2-4, 7-8), we have shown that the FE and EE wetland CH4 emission 

ensembles robustly represent the global magnitude and uncertainty of wetland CH4 emissions. The 

ensemble configurations of inundation extent, carbon decomposition and temperature dependence have 

together provided a characterization of the dominant source of uncertainty in global wetland CH4 20 

estimates (Figure 6). The approach outlined here provides a framework for producing prior emission 

estimates and associated uncertainty. The error covariance structure – along with the CH4 observing 

system capabilities (Wecht et al., 2014a) – can be used to devise an optimal strategy for spatially and/or 

temporally aggregating CH4 fluxes in an atmospheric inversion framework. Retrieved CH4 flux from 

assimilating atmospheric CH4 observations in an inverse modelling framework (e.g. Fraser et al., 2013) 25 

could in turn provide a quantitative constraint on the wetland ensemble: the FE and EE model members 

can be treated as an ensemble of probable biogeochemical process hypotheses that can be weighted 

against atmospheric constraints. In contrast to conventional wetland CH4 emission estimates (Riley et 
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al., 2011; Pickett-Heaps et al., 2011) and model inter-comparisons (Melton et al., 2013), top-down CH4 

flux estimates can constrain the joint probability distribution of FE carbon models, wetland extent 

parameterizations, and temperature dependencies. We note that due to the smaller ensemble size and the 

use of only one carbon model (see Table 1), the 2001-2015 EE emission variability should be 

interpreted with caution, and – where possible – evaluated against the FE ensemble during the 2009-5 

2010 period.  

 

We anticipate extensions of the FE beyond the 2009-2010 time period, contingent on the extensions of 

the MsTMIP and SWAMPS dataset beyond 2010 and 2012 respectively. In light of continued satellite 

CH4 retrievals from GOSAT (Parker et al., 2011; Butz et al., 2011) and upcoming satellite CH4 10 

measurement from TROPOMI on-board ESA Sentinel 5 precursor (Veefkind et al., 2012), we anticipate 

that the FE and EE datasets will provide key process-based prior knowledge in future atmospheric CH4 

inversions.  

 

Data availability 15 

 

The full ensemble (FE), extended ensemble (EE) datasets (Bloom et al., 2017) are available on the Oak 

Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC; 

http://dx.doi.org/10.3334/ORNLDAAC/1502). MsTMIP monthly 0.5°×0.5° datasets (Huntzinger et al., 

2016) were obtained from nacp.ornl.gov/MsTMIP.shtml. ERA-interim datasets were obtained from 20 

apps.ecmwf.int/datasets/data/interim-full-mnth. CARDAMOM 2001-2010 heterotrophic respiration 

outputs are available at datashare.is.ed.ac.uk/handle/10283/875; the complete 2001-2015 heterotrophic 

extensions outputs are included in the supplementary material.  Inundation datasets were obtained from 

wetlands.jpl.nasa.gov. The GLWD dataset was obtained from gcmd.gsfc.nasa.gov. The GLOBCOVER 

dataset was obtained from due.esrin.esa.int. The WDCGG data was obtained from 25 

ds.data.jma.go.jp/gmd/wdcgg. The Surface WAter Microwave Product Series inundation dataset 

(described by Schroeder et al., 2015) was obtained from http://wetlands.jpl.nasa.gov (accessed on 5 

June 2014); European Centre for Medium-Range Weather Forecasts reanalysis (ECMWF ERA-Interim) 
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synoptic monthly means were downloaded from http://apps.ecmwf.int. The code used to generate the 

FE and EE datasets is included in the supplementary material.  

 

Appendix A: CARDAMOM extension  

 5 

CARDAMOM heterotrophic respiration was derived from the Bloom et al., (2016) global terrestrial C 

cycle 1°×1° analysis. CARDAMOM retrieved C state and process variables for the period 2001-2010 

were used to run the ecosystem carbon balance model DALEC2 (Bloom & Williams 2015) to span 

2001-2015. The 2011-2015 ERA-interim meteorological drivers and MODIS burned area were obtained 

as described by Bloom et al., (2016). The CARDAMOM output consists of 4000 heterotrophic 10 

respiration realisations at each monthly time-step: for each time-step, we use the median CARDAMOM 

heterotrophic respiration output. We downscale the data to a 0.5°×0.5° resolution using a nearest 

neighbour interpolation. 

 

Appendix B: Error correlation structure 15 

 

We derive the model ensembles’ space-time n × n error correlation matrix M as follows: 

 

Mij = cor(Ai,* | Aj,*)       (A1) 

 20 

where n corresponds to the number of space and time wetland CH4 emission aggregations, and i, j span 

1-to-n. A(i,m) and A(j,m) correspond to the total CH4 flux for model m within the ith and jth space-time 

aggregations (i.e. total wetland CH4 emissions within a given time & area); Ai,* and Aj,* are 1×N 

vectors, where N is the number of models within the ensemble.  The “cor()” operator denotes the 

Pearson’s correlation coefficient between the two bracketed vectors. For Figure 7, we aggregated model 25 

wetland CH4 emissions for each month across four zonal bands: Boreal & Arctic (>55°N) Temperate 

(23°N – 55°N), Tropical (23°S – 23°N) and Southern Hemisphere (<23°S). Interpretation: a perfect 

correlation between the ith and jth indices (Mij =1) indicates that models are consistently over- or under-
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predicting CH4 emissions at times-and-locations i and j relative to the ensemble mean; a perfect anti-

correlation (Mij =-1) indicates that models consistently over-predicting CH4 emissions at time-and-

location i consistently under-predict CH4 emissions at time-and-location j (relative to the ensemble 

mean) and vice versa. 

 5 

Appendix C: Dominant process uncertainty 

 

We quantify the dominant process uncertainty of wetland CH4 emission state variables (s = 1-3; 1. 

maximum emission month, 2. mean CH4 emissions and 3. seasonal variability (standard deviation)) to 

wetland emission controls  (e = 1-3; 1. model carbon decomposition, 2. CH4:C temperature dependence 10 

and 3. wetland extent parameterization) at location x as follows: 

 

𝑅!,!,! =
!"# 𝑴!,!,𝒎! !!"# 𝑴!,!,𝒎!

!
!
!!!      (A2) 

 

where 𝑅!,!,! is the mean range of state variable s across the ensemble given a fixed emission control e; 15 

𝑴!,!,∗ is a vector of all ensemble member state variables s at location x; mc denotes the indices of 

ensemble subset driven by cth emission control e; N are the number of configurations for each e (the 

ensemble configuration details are show in Table 1). For example, 𝑅!"",!,! is the mean range of seasonal 

CH4 variability (s = 3) for a fixed carbon model configuration (e = 1) at the 100th gridcell (x=100). We 

attribute the zonal dominant uncertainty of state variable s to emission control e as:   20 

 

𝑃!,!,! =  !!!,!,! !!!  !!
 !!!  !!

×100%     (A3) 

 

where xz are the pixels x within 5° zonal band z, 𝐹!!  is the mean 2009-2010 area-integrated CH4 flux 

(Eq. 1 in main text). 𝑟!!,!,!  = 1 if 𝑅!!,!,! = min (𝑹!!,!,∗) otherwise 𝑟!!,!,!  = 0; the “min()” function 25 

denotes the minimum element of the bracketed vector; i.e. e is the largest source of uncertainty when 
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the mean range in state variable s is smallest for a fixed e. 𝑃!,!,! denotes the percentage of zonal band z 

where emission control e is the greatest source of uncertainty for each s.  
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Figure 1. Top row: 2009-2010 full model ensemble (FE, left) and extended model ensemble (EE, 

right) mean wetland CH4 emission. Middle row: 2009-2010 emissions from the GEOS-Chem wetland 

CH4 emissions inventory (GC, left) model and satellite-constrained estimates by Bloom et al., (2012) 

(BL, right). Bottom row: Mean 2009-2010 FE 5th – 95th percentile range (left) and uncertainty factor 5 

(5th – 95th percentile range normalized by mean 2009-2010 emissions, right). 
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Figure 2.  Top: Zonal profile of full ensemble (FE, red) extended ensemble (EE, black dashed line) and 

mean wetland CH4 emissions from 108 ensemble members (grey). Bottom: mean FE (red), mean EE 

(black dashed line) and 90% FE confidence range (pink), GEOS-Chem wetland emission inventory 

(GC) and the Bloom et al., (2012) emissions (BL). 5 
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Figure 3. Seasonally averaged 2009-2010 wetland CH4 emissions for this study (full ensemble: FE; 

extended ensemble: EE) Bloom et al., (2012) wetland emissions (BL) and GEOS-Chem wetland 

emissions inventory (GC) across North & South America (left column; 180°W – 35°W); Europe & 

Africa (center column; 35°W – 55°E) and Asia & Oceania (right column; 55°E – 180°E); emission for 5 



35 
 

each region are reported as total monthly fluxes across 5° latitude bins. The black dotted line denotes 

the maximum emissions month within each 5° latitude bin. 

 

Figure 4. Comparison between mean annual regional wetland CH4 emission estimates (1. Glagolev et 

al., 2011; 2. Picket Heaps et al., 2011; 3. Chang et al., 2014; 4. Melack et al., 2004) and global wetland 5 

emission datasets by Bloom et al., 2012 emissions (BL), the GEOS-Chem wetland CH4 emission 

inventory (GC); this study (full ensemble: FE; extended ensemble: EE), and the range of WETCHIMP 

models (Melton et al., 2013). Wetland emissions (horizontal axis) correspond to mean annual totals 

within the regions shown in the inset map.  

 10 
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Figure 5. Global wetland CH4 emission inter-annual variability range of the FE (2009-2010) and EE 

(2001-2015) emission models, normalized relative to 2009 emissions; the WETCHIMP (Melton et al., 

2013) model ensemble inter-annual variability is normalized relative to 2001-2004 mean emissions. 

 5 
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Figure 6 Dominant uncertainty attribution of maximum CH4 emissions month (left), magnitude (center) 

and seasonal variability (right), to carbon decomposition, temperature CH4:C dependence (q10) and 

wetland extent parameterization, within 5° latitude bins. The derivation of dominant uncertainties is 

described in Appendix C.  5 
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Figure 7. Full ensemble (FE) spatial and temporal error covariance, summarized as monthly error 

correlation across boreal & arctic (>55°N) temperate (23°N – 55°N), tropical (23°S – 23°N) and 

southern hemisphere (<23°S) latitudes. A correlation between two location-and-time indices indicates 

the degree to which models consistently over- or under-predict wetland CH4 emissions relative to the 5 

ensemble mean. The non-zero off-diagonal correlation patterns emerge as a function of varying 

biogeochemical commonalities across ensemble members, such as wetland CH4 dependencies on 

temperature, carbon availability and wetland extent. Negative correlations between tropical and 

northern hemisphere extratropical (i.e. temperate, boreal and arctic) wetlands emerge as a function of a 

global constraint on wetland CH4 emissions (166 Tg CH4 yr-1 ± 25%).  10 
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Figure 8. Mean 2009-2010 CH4 measurements and model CH4 zonal anomalies (ΔCH4), relative to the 

mean 2009-2010 global CH4 concentration. The black dots denote mean WDCGG network observed 5 

CH4 concentrations within 5° latitude bins; the grey envelope denotes the mean 2009-2010 standard 

deviation across all sites within 5° latitude bins. The coloured symbols and error bars denote the GEOS-

Chem equivalent model concentrations statistics based on the FE and EE ensembles (this study), Bloom 

et al., (2012) (BL) and the GEOS-Chem emission inventory (GC) wetland CH4 emissions datasets.  

 10 
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Figure 9. Symbol colours denote the monthly de-trended CH4 model-observation Pearson’s r 

correlation (left column) and RMSE (right column) for the FE (top-row) and EE (bottom-row) wetland 

CH4 emissions (monthly CH4 observations are from the WDCGG measurement site network). The y-

axis denotes the difference between FE/EE and model runs with Bloom et al., (2012) wetland CH4 5 

emissions (BL) and the GEOS-Chem wetland CH4 emissions inventory (GC).  
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Tables 

 

Table 1: Wetland CH4 model ensemble configurations 5 

Parameter Description 
Ensemble configurations 

s 
Global scaling factor 

3 configurations: emissions are scaled such 

that 2009-2010 emissions amount to 124.5, 

166 or 207.5 Tg CH4 yr-1 

A 
Wetland 

extent Spatial 

Extent 

 2 spatial extent parameterization (scaled 

using GLOBCOVER and GLWD) 

Temporal 

Variability  

SWAMPS inundation extent(*) 

ERA-interim precipitation 

R Heterotrophic respiration 8 MsTMIP terrestrial C models(*) 

CARDAMOM terrestrial C cycle analysis  

q10(c) Temperature-dependent 

CH4 respiration fraction. 

3 CH4:C temperature parameterizations: 

q10(c) = [1,2,3] 

 (*) These datasets are only used in the 2009-2010 “Full Ensemble” (FE). 


