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Abstract. Global Circulation Models (GCMs) are the best tool to understand climate change, as they attempt to represent all 10 

the important Earth system processes, including anthropogenic perturbation through fossil fuel burning. However, GCMs are 

computationally very expensive, which limits the number of simulations that can be made. Pattern-scaling is an emulation 

technique that takes advantage of the fact that local and seasonal changes in surface climate are often approximately linear in 

amount of warming over land and globe. This allows interpolation away from a limited number of available GCM 

simulations, to assess alternative future emissions scenarios. In this paper, we present a pattern-scaling set consisting of 15 

spatial climate change patterns along with parameters for an energy balance model that calculates the amount of global 

warming. The set, available for download, is derived from 22 GCMs of the WCRP CMIP3 database, setting the basis for 

similar eventual pattern development for the CMIP5 ensemble. Critically, it extends the use of the IMOGEN (Integrated 

Model Of Global Effects of climatic aNomalies) framework to enable scanning across full uncertainty in GCMs for impacts 

studies. Across models, the presented climate patterns represent consistent global mean trends, with maximum four GCMs 20 

exhibiting opposite sign of the global trend per variable (relative humidity). The described new climate regimes are generally 

warmer, wetter (but with less snowfall), cloudier and windier, and with decreased relative humidity. Overall, when averaging 

individual performance across all variables, and without considering co-variance, the patterns explain one-third of regional 

change in decadal averages (mean Percentage Variance Explained, PVE, 34.25±5.21), but the signal in some models exhibits 

much more linearity (e.g. MIROC3.2(hires):41.53) than in others (GISS_ER: 22.67). The two most often considered 25 

variables: near-surface temperature and precipitation have a PVE of 85.44±4.37 and 14.98±4.61, respectively. We also 

provide an example assessment of a terrestrial impact: changes in mean runoff, and compare projections by the IMOGEN 

system which has one land surface model, versus direct GCM outputs which all have alternative representations of land 

functioning. The latter is noted as an additional source of uncertainty. Finally, current and potential future applications of the 

IMOGEN vn 2.0 modelling system in the areas of ecosystem modelling and climate change impact assessment are presented 30 

and discussed. 
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1 Introduction 

Global Climate Models (GCMs) are the primary tool to understand and to estimate future climate regimes resulting from 

anthropogenic Greenhouse Gas emissions (GHGs). However, the use of these tools is limited by their requirements for 

computing power, and the complexity of the task, in particular when wishing to scan across different future scenarios. 

“Pattern-scaling” (Huntingford & Cox 2000, Mitchell et al 2003), is a methodology that takes advantage of the fact that, to a 5 

reasonable approximation, local and seasonal changes in surface climate are linear in amount of warming over land and 

globe. It allows interpolation away from a limited number of available GCM simulations, enabling a time-efficient 

assessment of surface meteorological changes for alternative non-standard future scenarios of changed GHG concentrations. 

This can include, for example, new scenarios that fall between the current Representative Concentration Pathways (RCP, 

Taylor et al., 2012), and potentially to investigate pre-defined future temperature thresholds such as two degrees of global 10 

warming above pre-industrial levels. Pattern-scaling has been suggested as a key methodology to understand the differences 

between climate stabilisation at either 1.5°C or 2.0°C (James et al. 2017). 

“Climate-change patterns” (or “patterns”) are coefficients of the regression between areal mean warming over Earth’s land 

regions, ΔTl (K) and local changes in surface climatology. They are derived by comparison against outputs from GCMs, and 

presented as local monthly mean changes over land per degree of mean warming over land. “Pattern-scaling” is a simple 15 

procedure in which these patterns are multiplied by ΔTl to give local monthly changes in climatology. A global Energy 

Balance Model (EBM; e.g. Wigley et al. 2000) is applied to model how the GHG concentrations translate in to changes in 

radiative forcing, Q (Wm-2) and then in to required temperature increase over land regions (ΔTl). 

The IMOGEN framework (Integrated Model Of Global Effects of climatic aNomalies; Huntingford et al. 2010) is a 

computationally efficient tool for modelling impacts of future climate change on terrestrial ecosystems. It consists of the 20 

JULES land surface model (Best et al., 2011; Clark et al., 2011) linked to a pattern-scaling module (Huntingford and Cox, 

2000). The scaling provides monthly mean changes in climate variables over land, notably temperature, relative humidity, 

precipitation, shortwave and longwave radiation, wind speed and pressure – quantities used to drive ecosystem models such 

as JULES. In addition, a simple oceanic global carbon cycle model is included (Joos et al., 1996 and Appendix of 

Huntingford et al., 2004), which expands the typical usage of pattern-scaling by allowing consideration of oceanic climate-25 

carbon cycle feedbacks, alongside land-based feedbacks. All simulations use an hourly time step and a spatial resolution of 

2.5° latitudinal x 3.75° longitudinal, or 72 by 96 grid boxes, as in the UKMO-HadCM3 GCM. Over land, but excluding 

Antarctica, this corresponds to 1631 grid-boxes.  

Linking forcings to mean warming over land, ΔTl, is achieved with the IMOGEN EBM which requires five parameters 

(Huntingford and Cox (2000), also listed in Section 2.2) which, as in the case of patterns, are also derived by fitting to GCM 30 

runs. These calibration parameters and the previously-described patterns together form a “patterns-scaling set”. 

IMOGEN was originally established to allow rapid assessment of a range of alternative GHG emission scenarios, e.g. 

corresponding to any standard Special Report on Emissions Scenarios, (SRES, Nakićenović et al, 2000) or Representative 
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Concentration Pathways (RCP, Taylor et al., 2012) for which a GCM simulation is unavailable. Hence IMOGEN enables 

interpolation away from what GCM simulations do exist to new user-prescribed emissions or concentration pathways.  

The general application of IMOGEN is to prescribe carbon dioxide (CO2) emissions, along with further prescription of non-

CO2 radiative forcings for other GHGs and aerosols. From this, the model calculates evolving atmospheric CO2 

concentrations as a consequence of driving CO2 emissions. The related and also evolving overall radiative forcing Q (Wm-2) 5 

is calculated to drive the EBM. This has similarities to how GCMs have been forced with the SRES scenarios and in the 

third Coupled Model Intercomparison Project (CMIP3) archive, upon which this analysis is based. Alternatively, the full 

radiative forcing Q can be prescribed directly as a future forcing pathway, dependent on prescription of all atmospheric gas 

changes and in which case CO2 concentrations are therefore given. This has similarities to the more recent forcing of GCMs 

with RCPs, in part recognising that not all climate models have a fully interactive carbon cycle. RCPs were used to inform 10 

the 5th IPCC report (IPCC, 2013), via the set of climate model simulations available at that time in the CMIP5 dataset 

(Taylor et al 2012). CMIP5 has evolved further since year 2013 and to hold more simulations; the exercise to calibrate an 

EBM and patterns-scaling set for CMIP5 is under way.  

In practice, though, IMOGEN has been used much more to assess the effects of new parameterisations, adjustment or 

inclusion of new processes into the JULES land surface model. This is as a precursor for any eventual placement of land 15 

surface model improvements in to a full GCM. IMOGEN allows easy and fast assessment of ranges of parameterisations, 

numerical stability checks and critically the relative importance of new understanding of ecological and hydrological 

responses globally, and including feedbacks on the carbon cycle. Examples include the impacts of changes in diffuse 

radiation on the land carbon sink (Mercado et al., 2009), the effects of ozone damage on plant productivity (Sitch et al., 

2007) and climate-carbon cycle feedbacks by permafrost melt (Burke et al., 2017). 20 

Until recently, offline studies were performed with patterns of climate change from a single model, UKMO-HadCM3 

(IMOGEN version 1.0, Huntingford et al., 2010). The purpose of this paper is to present a patterns-scaling set which 

emulates a broad range of GCMs, and nearly the complete set of those held in the WCRP CMIP3 database (Meehl et al., 

2007). This extends the use of IMOGEN for assessment of climate change, or land surface response, to scan across 

uncertainty in both global response and local features of climate models. Such uncertainty can then be readily evaluated 25 

against the magnitude of any further uncertainty in any terrestrial surface impacts of interest. In Section 2 we describe the 

methods which lead to the patterns-scaling set. Section 3 describes the actual set, including discussion of inter-GCM 

differences. We include metrics describing the accuracy of the linearity assumption of meteorological changes against level 

of global warming, as implicit in the scaling method. Section 4 reviews existing applications of the IMOGEN pattern-scaling 

system and comments on the future general benefits of inclusion of climate model uncertainty in impacts assessments. 30 

Finally, Section 5 discusses the strengths and caveats of the pattern-scaling approach. 
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2. Data and Methods 

2.1 The WCRP CMIP3 multi-model dataset and data pre-processing 

Spatial patterns (i.e. maps) of climate change and energy balance model calibration parameters, together forming the 

“climate-patterns set”, are derived from GCM data available through the World Climate Research Programme Coupled 

Model Intercomparison Project, phase three (WCRP CMIP3; Meehl et al., 2007). The WCRP CMIP3 multi-model dataset 5 

resulted from an international effort to run a coordinated set of twentieth- and twenty-first-century climate GCM simulations 

for a limited number of future scenarios, covering many aspects of climate variability and change. All these simulations were 

subsequently analysed and formed the basis of much that is reported in the Fourth Assessment (AR4) of the 

Intergovernmental Panel on Climate Change (IPCC, 2007). The dataset consists of data from 24 GCMs, representing 17 

modelling groups from 12 countries. The climate patterns set presented here (Table 1) corresponds to 22 GCMs, because 10 

GISS_AOM is an atmosphere-ocean model without surface meteorological projections over land and key data from 

CGCM3.1(T63) GCM were missing (see below). In the case of GISS-EH and GISS-ER GCM, WCRP CMIP3 data were 

supplemented with the formally associated pool provided by National Aeronautics and Space Administration Goddard 

Institute for Space Studies (http://data.giss.nasa.gov/pub/pcmdi). 

The analysed model runs represent scenarios of four types: (i) control experiments: either pre-industrial or present day 15 

(Picntrl, or Pdcntrl; the codes are the file name conventions used in the WCRP database), (ii) the idealized 1% yr–1 CO2 

increase up to doubled and quadrupled levels (1pctto2x, 1pctto4x), (iii) the twentieth-century run (20C3M) representing 

modelled period from pre-industrial to present-day and (iv) the high- (A2) and mid-emission (A1B) future scenarios defined 

by the Special Report on Emission Scenarios (SRES, Nakicenovic et al. 2000). When multiple simulations are available of 

any particular scenario, then the analysis is limited to the first available, as the inter-run variability has been reported to be 20 

small (Frieler et al 2012).  

Variables analysed for each GCM are those representing land surface climatology: 1.5 m air temperature (TAS), 1.5 m 

relative humidity (HURS), 10 m wind speed (UAS and VAS, combined into a direction-less “UA”), precipitation (PR, 

including snow PRSN), downward shortwave (RSDS) and long-wave (RLDS) radiation fluxes and surface pressure (PS). 

The codes in brackets are the file name conventions used in the WCRP database for individual variables. These seven 25 

variables are required to run the JULES land surface scheme inside the IMOGEN framework. Additionally, Net Radiative 

Flux at the top of the atmosphere (positive downwards); Top of Model (RTMT); is also processed. This is required to drive 

the global energy balance model. 

There were some discrepancies between data requirements to run the IMOGEN system and the actual data availability in 

WCRP CMIP3. They are listed in Table 1. For all GCMs, surface relative humidity (HURS) data were not available, but a 30 

4D representation of this variable at pre-defined pressure levels (HUR) was generally available. This allowed extrapolation 

of surface relative humidity from two nearest available pressure levels. In the case of INGV-SXG, PCM and CCSM3 GCMs, 
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surface wind was obtained in the same procedure. For two cases, the required surface data was available, but suffered from 

quality and other issues. In UKMO-HadGEM1 dataset, the last month of the SRES A2 simulation was missing (and in this 

study it was filled-in with interpolated values), and surface wind data was presented on non-standard grid (and it was 

interpolated onto a standard UKMO-HadGEM1 grid). For MRI-CGCM2.3.2, many values in snow precipitation data 

(PRSN) were missing (the data were not used in this study) and there was no land mask available (SFTLF, later obtained 5 

from the Japanese modelling group). Additional details are given in Table 1. 

GCMs differ significantly between each other in the spatial grid resolution and generally how they represent the Earth 

surface’s detail, as represented in the land mask variable SFTLF which reports gridbox land fraction. Spatial resolution 

varies between hundreds of kilometres (e.g. GISS models, or INM-CM3.0) to around 100 km (e.g. MIROC3.2hires model, 

mid-latitudes, Table 1). Data are mapped on to either a regular or a Gaussian grid, and gridbox classification into land and 10 

water is either binary (100% or 0%) or continuous. Furthermore only some GCMs explicitly depict freshwater bodies in their 

land masks. This diversity of output spatial properties alone imposes a challenge for data end-users, including policymakers, 

especially when it comes to multi-model assessments of a pre-defined geographical domain. Hence, to force our common 

land surface model within the IMOGEN system using alternative GCM-based estimates of climate change, we harmonised 

all types of WCRP CMIP3 grids into one, which is chosen to be the UKMO-HadCM3, although land points for Antarctica 15 

are excluded. This ensures compatibility with previous applications of the IMOGEN tool, with resolution of 2.5° latitudinal x 

3.75° longitudinal. The common grid allows, in a systematic way, to capture the impact of climate uncertainty that remains 

within GCMs. Details of the re-gridding procedure is provided in the Supplementary Material. 

2.2 Climate pattern scaling set and post-processing 

The presented climate patterns are a set of regression coefficients, each representing the change in a given meteorological 20 

variable per degree of mean global warming over land, while the fitting is done with decadal averages, as predicted by each 

GCM. The simple form of the analogue model for an anomaly (∆) that is changing over decade and in one of the considered 

land surface variables V is described as: 

𝛥𝛥𝛥𝛥(𝑐𝑐,𝑔𝑔,𝑚𝑚, 𝑖𝑖) = 𝛥𝛥𝑇𝑇𝑙𝑙(𝑐𝑐, 𝑖𝑖)𝛥𝛥𝑥𝑥(𝑔𝑔,𝑚𝑚, 𝑖𝑖)        (1) 

where the anomaly is linked to a single location on the UKMO-HadCM3 grid (g), month of the annual cycle (m), GCM (i) 25 

and decadal time index (c). Regressions to find (time-invariant) patterns Vx use global land warmings Δ𝑇𝑇l  directly from 

original GCMs to regress against. When the IMOGEN model is used predictively, then these values are derived using an 

Energy Balance Model (EBM) component, calibrated against different climate models (see below). 

Regressing local climate with mean land warming is done with the assumption that climate is stable before the anthropogenic 

impact – often referred to as the pre-industrial period. This implies that the regression line starts at the origin of the 30 

coordinate system, so the intercept equals zero. Hence there is a fit with just one regression co-efficient; the slope fitted to 

modelled perturbed climate. This starting point is represented by an average of three decades from the twentieth-century run 
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(20C3M, years 1961-1990, Figure 1, panel C). This is also a period corresponding to the Climate Research Unit’s Time 

Series 2.1 (CRU TS 2.1) dataset describing Earth’s climatology (or “climate normals”, Mitchell and Jones 2005); patterns 

calculated by Eqn. (1) are generally added to the CRU dataset, rather than individual GCM estimates of pre-industrial times. 

In the WCRP CMIP3 dataset, the historical 20C3M GCM simulations are normally followed by a future transient run, driven 

by one of SRES scenarios that describe potential pathways ahead in emissions. In the presented work, for most of GCMs, a 5 

high-emissions “business-as-usual” SRES A2 run was analysed to give patterns ∆V of Eqn (1). In a few cases when these 

data were not available the SRES A1B run was used (Table 2), which represents relatively lower levels of warming 

(Nakicenovic et al. 2000).  

Emulating an ensemble of GCMs requires that the relationship between anthropogenic climate forcings, global warming and 

mean warming over land is established for each GCM separately. The EBM employed for this task, described in full in 10 

Huntingford and Cox (2000), requires the fitting of five calibration parameters: (i) an ocean effective thermal diffusivity, κ 

(Wm-1K-1), (ii) a constant ratio of mean land and ocean surface (SST) rate of warming, ν, (iii-iv) climate sensitivity over land 

λl and ocean λo (W m-2 K-1), and (v) land fraction f (based on variable SFTLF, including Antarctica). All the energy retained 

in the planetary system, as seen in any difference in top-of-the-atmosphere radiation, is assumed to enter the oceans in a 

diffusive process, thus changing SSTs and then ΔTl via ν. Estimation of EBM parameters was done by fitting them against an 15 

independent set of scenarios: the idealised CO2 increase scenario (1pctto2x or 1pctto4x), preceded by a control experiment: 

(Picntrl or Pdcntrl). Subsequently, functioning of the parameterised EBM was validated by using it predictively against data 

from one of the available runs corresponding to SRES scenarios (SRES A2 or SRES A1B, Table 2). Figure 1 illustrates the 

key components of the process of deriving a pattern-scaling set in the case of the example UKMO-HadGEM1 GCM. 

In general, our climate patterns represent absolute changes. However, for precipitation, we make one additional calculation 20 

which results in data normalisation. This is to circumvent the problem of particularly large biases in the description of the 

current precipitation regime by some GCMs (Ines and Hansen 2006). For each calculated precipitation pattern (𝛥𝛥P), this is 

then multiplied by the ratio of the observed precipitation (PCRU_XXc) from the CRU TS 2.1 dataset (Mitchell and Jones 2005) 

and the one simulated by the GCM (PGCM_XXc) for the control period. This follows Ines and Hansen (2006), and Malhi et al. 

(2009): 25 

𝛥𝛥𝛥𝛥′(𝑔𝑔,𝑚𝑚, 𝑖𝑖) = 𝛥𝛥𝛥𝛥(𝑔𝑔,𝑚𝑚, 𝑖𝑖) ×
𝑃𝑃CRUXXc(𝑖𝑖,𝑚𝑚𝑆𝑆,𝑔𝑔𝑆𝑆)

𝑃𝑃GCMXXc(𝑖𝑖,𝑚𝑚𝑆𝑆,𝑔𝑔𝑆𝑆)
        (2) 

Furthermore, the adjustment described by Eqn. (2) was performed for each grid box g, month m and GCM i, after smoothing 

in time and space (averaging over the grid box and its immediate neighbourhood: gS, and across three months mS). This 

smoothing mitigates the minor shifts in seasonality and spatial positioning of climatic phenomena and reduces significantly 

the number of artefacts caused by occasional division by near zero. The remaining few cases of high and low divergence (i.e. 30 

PCRU,XXc/PGCM,XXc) were capped at 5 and 0.2. Snow was scaled according to the same scaling factor as for total precipitation. 

The final patterns set is available in two versions: with precipitation normalised by Eqn. (2), and without this. 
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As a last step, in four cases when available GCMs data had one or two non-key variables missing (Table 1), the gaps were 

filled in with across-ensemble means. 

3 Results 

3.1 Energy balance parameters 

The five key EBM parameters are presented in Table 2. In most cases (17) climate sensitivity over ocean (λo, Wm-2K-1) is 5 

higher than over the land (λl, Wm-2K-1). The reverse trend is well pronounced in three models (CSIRO-Mk3.5, 

MIROC3.2highres, MRI-CGCM2.3.2). Climate sensitivity over land varies five-fold between models and is the lowest in 

ECHO-G, UKMO-HadCM3, CGCM3.1(T47) and the highest in BCCR-BCM2.0, PCM, FGOALS-g1.0, although 2/3rds of 

the models have a much narrower range 0.9-1.7 Wm-2K-1. The most varying variable is ocean diffusivity (κ, Wm-1K-1), 

which determines the ability of the ocean to extract heat from the climate system through diffusion. Even after excluding the 10 

two most extreme cases, the range remains high: from 270 (HadCM3, CGCM3.1(T47)) to 2800 Wm-1K-1 (CSIRO-Mk3.0). 

The most extreme value of 11000 Wm-1K-1 is for the FGOALS-g1.0 GCM, which clearly stands out from the ensemble. This 

spread reflects the fact that a full understanding of oceanic flows and deeper overturning, which affects mean vertical heat 

transport, is still required to reduce model spread. In comparison, the land/ocean temperature increase contrast (ν) is a 

remarkably stable parameter, with a range 1.40-1.78 across all models. 15 

3.2. Patterns across models, space and seasons 

Across models, patterns of particular variables represent consistent trends when averaged spatially and across months (Table 

3), with maximum four exceptions per variable (relative humidity), i.e. cases when average pattern is of opposite sign than in 

the majority of GCMs. The patterns capture the nature of a new emerging climate regimes, which can be characterised as 

warmer, wetter (but with less snowfall), cloudier and windier, with decreased relative humidity, and increased atmospheric 20 

pressure. Globally, relative humidity is the variable with the highest uncertainty in the magnitude of change, with standard 

deviation (SD) of the across-ensemble mean exceeding the mean. In the case of other variables, apart from longwave 

downward radiation and air temperature near surface (RLDS, TAS, with very small spread), the magnitude of SD is similar 

(62-88 % of the mean). 

In the case of each GCM, the patterns represent a unique regional and seasonal distribution of change in surface climatology 25 

in a greenhouse-gas enriched atmosphere. To present these differences, we focus on two of the strongest drivers of terrestrial 

ecosystems change (and co-incidentally, which also have strong influence on society in general) – that is adjustments to 

temperature and precipitation. The annual mean rate of warming per degree of global warming over land (Figure 2) in some 

models is much more evenly distributed geographically (e.g. BCCR-BCM2.0) than in others (e.g. NCAR-PCM1). However, 

all of the models exhibit the majority of warming in northern latitudes. The smallest warming occurs in tropical Africa and 30 



8 
 
 

Asia, while in tropical South America the magnitude is much more uncertain. The spatial pattern of warming is either well 

stratified with latitude (e.g. FGOALS-g1.0 model), or more nuanced (GISS models). The patterns of precipitation change 

(Figure 3) are more complex than in the case of temperature. The lack of across-ensemble consistency is particularly 

apparent in parts of the Tropics , e.g. in South America). However, in other areas the signal is very consistent, such as drying 

of Southern Europe, or more precipitation in high northern latitudes.  5 

Across-model seasonal averages (Figure 4 and 5, for temperature and precipitation, respectively) reveal a more spatially and 

temporally consistent picture than when considering models individually. These figures show that the majority of warming 

occurs at Northern latitudes and during colder seasons. Moreover, there is a strong summer warming trend over mid-West 

North America, Mediterranean region, Middle East and Central Asia. The seasonal patterns of precipitation change appear as 

linked to those of temperature, but are generally more uncertain. Winter warming in the North is accompanied by more 10 

precipitation which contrasts with lower summer warming and reduced rainfall. Changes in tropical rainfall appear as much 

more uncertain. Western and Central Africa north of equator is a zone with particularly high uncertainty regarding summer 

warming.  

Stippling in Figure 5 provides additional measure of uncertainty - it indicates when there is agreement in 90% of the models, 

as to whether precipitation is going to increase or decrease. This is the case over most of the land area and seasons. However, 15 

in many dry areas and seasons where this measure is not robust due to low precipitation levels (and the signal is difficult to 

detect), the agreement is uncertain. Some areas stand out in this regard: large parts of South America in northern winter and 

summer, high northern latitudes in the summer and central Asia in autumn. That rainfall changes remain a large uncertainty 

in climate model projections is noted in the 4th IPCC report (IPCC 2007). 

3.3. Performance of linear approximation assumption in “pattern-scaling” for individual variables 20 

The robustness of climate patterns is assessed by their ability to reproduce the decadal GCM data. Such ability varies widely 

between variables, which can be split into four categories, according to the mean Percentage Variance Explained (PVE) 

metric (Table 3). PVE is a simple way to assess each variable separately through the analysis of decadal means against the 

pattern. The most robust are the patterns which represent the drivers of global warming: temperature (TAS) and long-wave 

radiation (RLDS;  PVE 85.44±4.37, and 84.74±4.97, respectively). The next group consists of variables which explain 25 

around one quarter of variance: short-wave radiation (RSDS) and air pressure (PS). Variables linked to availability of water: 

precipitation (PR), snowfall (PRSN), relative humidity (HURS), form the third group (PVE 14.98±4.61, 17.96±4.67, 

16.92±5.71, respectively). The last category is represented by wind patterns (of combined variables UAS and VAS), which 

represent only 7.11±3.32 PVE. Wind patterns also contain the highest proportion of negative PVE (4.9%) cases, for which a 

one-parameter regression line is a worse fit than a multi-decadal mean (bottom row of Table 3).  30 

Overall (i.e. when per-variable results are averaged, without considering co-variance), climate patterns explain one-third of 

regional climate change (PVE 34.25±5.21); however, the signal in some models exhibits much more linearity (e.g. 
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MIROC3.2(hires): 41.53) than in others (GISS_ER: 22.67). These estimates exclude cases where the PVE statistic could not 

be calculated due to either a lack of data (2.8%, Table 1), or null (e.g. short-wave radiation during polar night) or extremely 

low values (e.g. precipitation in the dry season), accounting for 6.7% of cases. 

In terms of spatial distribution of robustness of the two key variables: temperature and precipitation (Figure 6), it is generally 

the opposite. For temperature, lower PVE values occur in the North, with minimum over Greenland and North-West North 5 

America (but still above 50%). The highest values occur across the Tropics. In the case of precipitation, the highest PVE 

occurs over the northern latitudes (above 50°N), particularly in Asia. In some tropical regions (sub-saharan Africa, South-

East Amazon), areas with relatively robust signal (PVE ~20%) are adjacent to regions where the robustness could not be 

estimated due to very small and erratic rainfall in the dry season. 

4. Applications 10 

The “pattern-scaling” concept was originally designed as a tool for scientists to inform policymakers, enabling investigation 

of expected changes in surface climatology for a broader range of scenarios of atmospheric greenhouse gas concentrations 

than are available in archived GCM runs. The technique has been studied in depth, and one study recently concluded that 

“Overall, the well-established validity of the technique in approximating the forced signal of change under increasing 

concentrations of greenhouse gases is confirmed” (Tebaldi and Arblaster, 2014). The first version of the framework 15 

presented here was based around a single climate model. That is, to interpolate to new future greenhouse gas scenarios from 

the existing simulations by the UKMO-HadCM3 GCM (Huntingford and Cox, 2000). However, once the IMOGEN system 

(Huntingford et al., 2010) linked such scaling of meteorological drivers to force directly a land surface model (JULES), the 

main application of this system has been predominantly to undertake global analyses of new ecosystem process responses in 

a changing climate. This is often for similar forcing scenarios as GCMs have been operated for, but with the full climate 20 

models not yet running with the new land surface descriptions modelled in IMOGEN. Particular examples include 

quantification of wetland methane feedbacks (Gedney et al., 2004), the impacts of changes in diffuse radiation to the land 

carbon sink (Mercado et al., 2009), the effects of tropospheric ozone on plant productivity (Sitch et al., 2007), the 

significance of energy crop planting on future atmospheric CO2 concentration (Hughes et al., 2010), how alternative 

mixtures of changes in atmospheric composition, even corresponding to identical radiative forcing changes, can have very 25 

contrasting impacts on land surface carbon stocks (Huntingford et al., 2011), and permafrost climate-carbon cycle feedbacks 

in a warming world (Burke et al., 2017).  

The potential for Amazon forest collapse, or “die-back”, remains an iconic concern for potential climate change impacts. 

Such a possibility has been identified in a combined climate-carbon cycle climate model UKMO-HadCM3LC (Cox et al., 

2000, 2004). Later, the robustness of predictions of Amazon ‘dieback’ were investigated with IMOGEN (version 1.0) and 30 

the original UKMO-HadCM3 patterns (Huntingford et al. 2008), by analysing the vegetation response to (i) some limited 
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uncertainty via prescribed bounds in the parameterisations of the atmospheric component of UKMO-HadCM3 (related to 

HadCM3LC), (ii) description of canopy radiation interception – “big leaf” versus “multilayer” (Mercado et al., 2007) and 

(iii) representation of vegetation dynamics using an area based model and an individual based model (Moorcroft et al., 

2001). All simulations show a fairly robust risk of dieback. More recently, a set of the climate patterns described in this 

paper were used to re-analyse the potential for tropical rainforest “die-back”. Zelazowski et al. (2011) combined the patterns 5 

and global contemporary climatology to produce high resolution maps of the future extent of humid tropical forests, while 

Huntingford et al. (2013c) forced the IMOGEN framework with the full set of patterns. Both studies found that climate 

models other than UKMO-HadCM3 are less likely to project such rainforest losses, which reflects the particularly strong 

climatic signal for the Amazon region temperature and precipitation changes for UKMO-HadCM3, as noted in Figures 2 and 

3.  10 

In order to exemplify the ability of IMOGEN to project changes to impacts, we report results of the mean annual total runoff 

(Rtot, mm day-1) simulation based on the SRESA1B emissions forcing scenario (Figure 7), and compare them directly to 

GCM estimates of change in the same quantity. Hence this is comparing the IMOGEN simulations that emulate multiple 

GCMs but with a single land surface model (JULES), versus runoff values directly from the GCMs. The latter therefore 

contain alternative estimates of climate change, as well as the responses of different land surface models. During modelled 15 

pre-industrial control “spin-up” period, and modelled period centred on year 2090, total runoff values are recorded for each 

GCM (both emulated in IMOGEN, and directly from GCMs). Then in each case, the change is calculated. In the top panels 

of Figure 7, the mean of these changes are shown, whilst the bottom panels are the standard deviations of these change 

values. Although there are similarities between left and right-hand panels (over northern latitudes, in particular), there are 

important differences too, and notably the drying signal in GCM output for Africa and Australia is not reflected in the 20 

IMOGEN framework. For SDs, in some locations there is higher variability for IMOGEN than for the GCMs themselves; 

however, this pertains mainly to the regions where IMOGEN predicts higher runoff. The latter may be surprising, as 

considering that GCMs directly introduce another level of uncertainty i.e. inter-land surface model differences. Our finding 

is suggestive that JULES has a particularly sensitive response of runoff to imposed climatic changes. Runoff provides a 

challenge for comparison, as it is frequently a relatively small number between two larger fluxes of precipitation and 25 

evapotranspiration (transpiration, plus soil evaporation and interception loses) and so sensitive to change in those fluxes. 

Any direct comparison also needs to account for IMOGEN being initialised with a climatology based on the CRU dataset, 

and temporal dis-aggregation to sub-daily drivers of JULES having not been calibrated against any particular GCM. 

Nevertheless, to be a useful tool for impacts assessment, then IMOGEN must capture the general features of GCM 

projections of quantities such as runoff when operated for similar emissions scenarios.  30 

Looking ahead to further model development, one possibility is, for different GCMs, to pattern-scale directly impact 

variables of interest such as runoff against global land temperature change. This could be beneficial for two reasons. First, it 

would remove the current IMOGEN mismatch of many GCMs emulated based on their climate projections only, while the 
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emulating system is coupled to just one land surface model. Instead, a more accurate representation would be gained of the 

spread of runoff uncertainty. Second, it would make model calculations computationally very fast, as full operation of the 

JULES system would not be required. Such an approach would be applicable when using IMOGEN to estimate changes for 

different future greenhouse gas concentrations, rather than land surface modelling development. A further possibility is to 

connect the meteorological pattern-scaling structure to alternative land surface models. The analysis of Sitch et al. (2008) 5 

used the IMOGEN system to diagnose uncertainty in representation of future plant biogeography and climate-carbon cycle 

feedbacks using five Dynamical Global Vegetation Models (DGVMs), but then combined with only a single set of climate 

model patterns based on UKMO-HadCM3. This could be re-visited. If each DGVM modelling centre could operate their 

latest DGVM configuration, across the range of emulated GCMs, then this would give a fuller estimate of the balance 

between implications of uncertainty in climate and uncertainty in terrestrial ecosystem response and its feedbacks on the 10 

global carbon cycle. A full set of calculations would entail 5 times 22 simulations, for a single future atmospheric 

greenhouse gas concentration pathway or emissions pathway.  

In some regards, land surface models in GCMs are still in their infancy, considering the growing knowledge of how 

vegetation responds physiologically to imposed climatic changes. For this reason, there are future plans to use IMOGEN as 

an intermediate step, before inclusion in a full GCM, to test and demonstrate the relative importance of new process 15 

descriptions. For example, we have used the patterns derived in this paper on an analysis of the sensitivity of the future land 

carbon storage to thermal acclimation of plant photosynthesis (Mercado et al., in preparation). This is a noted major 

deficiency in current large-scale terrestrial models (Booth et al 2012; Huntingford et al., 2013b; Smith and Dukes 2013). In 

addition, the assessment of newly available enhanced description of leaf dark respiration (Atkin et al., 2015) is needed, as 

well as the inclusion of both Nitrogen and Phosphorus constraints to plant productivity in tropical ecosystems (e.g. Mercado 20 

et al., 2011), and inclusion of a full representation of a coupled Carbon-Nitrogen cycle in JULES (Zaehle et al 2010). 

Furthermore, it is desirable to test the effects of adding height competition into the vegetation dynamics module of JULES, 

in order to add ecological succession modelling (Smith et al 2001; Moorecroft et al 2001), along with assessing the impacts 

of improved representation of stomatal conductance (Medlyn et al 2011; Kala et al 2015) and plant hydraulics (Sperry et al. 

2015) on simulated land carbon and water cycles couplings to climate. The latter could extend as far as testing any hormonal 25 

signalling in the hydraulic linkages between soil moisture and stomata response; an effect well known by the physiological 

community but hereto never tested in a full large-scale gridded land surface model (Huntingford et al., 2015). Finally, 

impacts of introducing a better representation of plant functional types and plant trait variation across space and time 

(Verheijen et al 2015) on simulated land carbon could also be considered.  
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5. Discussion 

In this paper we present a “pattern scaling set”, consisting of spatially explicit climate change patterns and EBM calibration 

parameters, which together represent 22 GCMs of the WCRP CMIP3 database (Meehl et al., 2007). This data set extends the 

use of the IMOGEN climate impacts assessment tool to scan across uncertainty in climate models. Despite relying on a set of 

simple assumptions, the tool can capture a significant part of the predicted changes in surface climatology. Terrestrial 5 

ecosystem response studies have used this modelling framework to gain new insights into how the land surface component 

of the Earth system functions. A new version of the pattern scaling set, based on the CMIP5 dataset, will build on those 

available here.  

The IMOGEN modelling system is available to determine future climate change, now with uncertainty, and forced by either 

a future pathway in either CO2 emissions or CO2 concentrations. A further and rapidly emerging application is to understand 10 

regional climate impacts during transition to different global thermal limits, with an emphasis on eventual stabilisation at 

1.5°C or 2.0°C of global warming above pre-industrial levels. In this instance, most of the EBM in IMOGEN is overridden 

with a global temperature pathway (the land-ocean contrast and oceanic fraction cover only used to obtain ΔTl), but relying 

on the remaining spatial and monthly patterns to give detailed local climatic implications. It is planned to use different global 

temperature pathways to those two stabilised limits (Huntingford et al, 2017) to force IMOGEN in this configuration. A 15 

further advantage of the IMOGEN system is that the projected anomalies of meteorological change are generally added to 

known gridded climatologies, rather than to any GCM-based baseline estimates. One such dataset is the routinely updated 

Climate Research Unit (CRU) climatology (Harris et al., 2014). A typical estimate of pre-industrial conditions may be 

regarded as the mean climatology of a period such as 1960-1989, a time when weather stations had become much more 

available worldwide to guide the dataset construction. Although this will fail to capture warming effects between pre-20 

industrial times and that period, such offsets may be much smaller than the biases removed by not using GCMs to estimate a 

baseline climatology to which IMOGEN anomalies are added. An important aspect of the presented work is the 

comprehensive study of the pattern’s robustness, i.e. their ability to capture variability of climate simulated by GCMs. That 

across all variables considered, 1/3rd of decadal variability in monthly averages is captured, suggests that it is a technique 

with a significant potential. This is especially since it allows a large reduction in input data and computation requirements 25 

compared to full GCMs. Overall, the presented patterns are in good agreement with the results presented in the Fourth 

Assessment Report of the Intergovernmental Panel on Climate Change (e.g. for precipitation SI Fig. 2 and Figure 10.9 in 

Meehl et al., 2007). This applies to both the multi-model mean changes in surface climate, as well as the degree of 

agreement between the models (stippling in Figure 5).  

However, the ability of climate patterns to capture the course of changes varies significantly between the modelled climate 30 

variables. In contrast to temperature change (85.44±4.37% of variability explained by climate patterns), change in 

precipitation is usually more difficult to capture in this linear methodology. Overall 85% of precipitation variability remains 

unexplained, although it should be noted that in some regions seasonal precipitation patterns explain up to 75% of variability 
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(generally at high northern latitudes). The relatively weak explanatory power of the precipitation patterns can be partly 

explained by poor trend estimation over dry zones.. In these areas, the mean change over decades gives low PVE values, as 

any change in very small current absolute precipitation can result in high relative deviations from preindustrial levels. In 

such circumstances, precipitation is very much dominated by inter-annual fluctuations. 

In addition to uncertainty linked to methods and assumptions (such as linearity), there is some uncertainty linked directly to 5 

driving and calibrating input data. The decision to use 20C3M and SRES scenarios to derive patterns, and the idealised 

scenario of 1% annual CO2 increase to calibrate the EBM model, reflects a compromise between the accuracy of patterns and 

forcings. It could be argued that both the patterns and the EBM parameters should be derived from the same set of GCM 

runs. However, since the SRES runs are on average longer (12 decades, with part of the 20C3M run), therefore they are a 

better source for linear fitting of the spatial patterns (Mitchel 2003). However the idealised CO2 increase scenarios are a 10 

better basis for energy balance model calibration as the definition of SRES forcings varies between modelling groups (they 

often encompass atmospheric aerosols) and are less well documented.  

Although placing climate data on a common grid brings strong benefits to the IMOGEN tool, there is also a compromise. For 

the re-gridding method combined with land mapping (see Supplementary Material), the calculated regional patterns 

represent areas that are comprised fully of land, while in much of original GCM data grid-boxes represents a mix of land and 15 

ocean. The total land fraction in the presented spatial patterns is slightly increased due to this (see Figure S1). This increases 

the average grid-box warming, due to diminished representation of the oceanic heat uptake. As a result, the fitting procedure 

yields regional warming patterns (column “TAS” in Table 3) which, when area-weighted, overall return a value slightly 

larger than 1.0 K/K. However, this effect has no impact on the global energy budget in the IMOGEN framework, which is 

resolved independently with EBM. 20 

There are a number of potential methodological enhancements that can be implemented in the next IMOGEN version and 

beyond just fitting to the CMIP5 dataset (Taylor et al 2012). For example, so far the natural variability around the trend in 

IMOGEN is simulated through a daily “weather generator” component with invariant properties, and with no representation 

of inter-annual variability. However variability might also change in a warming world, and at a range of timescales from 

sub-daily through to major alteration at inter-annual timescales (e.g. Huntingford et al., 2013a). This suggests that in future 25 

research, at least for some variables, additional patterns might be added that capture such variability changes, and including 

any inter-annual variability and adjustment for different warming levels.  

In IMOGEN, global temperature changes due to atmospheric gas composition that adjusts radiative forcing is achieved 

through a small number of parameters in a global energy balance model. However aerosols in particular cause problems for 

this, as they are not well-mixed, unlike greenhouse gases. Instead, they show strong spatial variation and thus make strong 30 

regional variation in radiative forcing. Shiogama et al. (2010) showed that pattern-scaling is less reliable in the case of 

precipitation than for temperature, in part because precipitation is more sensitive to aerosol forcing. A potential improvement 

in the presented method in this regard is to use additional spatial masks for aerosol-affected regions. Other limitations to 
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linear scaling have been identified (Good et al., 2015). For example, local climatic feedbacks are not constant in time, and 

different components of the climate system respond on different timescales (Chadwick & Good, 2013). This implies that 

should IMOGEN be used to test significantly different land surface parameterisations, projected local and regional 

meteorological changes might no longer be compatible. 

Nevertheless, as long as used aware of its limitations, IMOGEN does offer a simple, available and computational fast way to 5 

emulate GCMs. This can be operated to estimate surface meteorological changes for different future atmospheric greenhouse 

pathways. It can also be operated to undertake intermediate analysis with new land surface process descriptions, before their 

operation in full-complexity GCMs. This paper takes the further step of adding to its capability the scanning across of a large 

set of GCMs that it now emulates. Ultimately, the CMIP5 ensemble, which formed the basis of the recent 5th IPCC report 

(IPCC, 2013) using diagnostics available at that time,  has much potential to improve the performance of the described 10 

pattern-scaling framework. Aside from the fact that the models themselves have improved, more scenarios are available, 

allowing better assessment of forcings other than CO2. With preparations now starting for the 6th IPCC report, and new 

simulations being made for that, it is timely to consolidate, and calibrate a new set of patterns for the CMIP5 family of 

GCMs, building on the analysis presented in this paper. 

Data and Code Availability 15 

The IMOGEN version 2.0 patterns and EBM parameters, along with documentation, are available for full download (under 

“IMOGEN”) from the UK Environmental Information Data Centre (EIDC; http://eidc.ceh.ac.uk). The IMOGEN framework 

(Huntingford et al. 2010) have become a component of the JULES land surface initiative (Best et al., 2011; Clark et al., 

2011), and it is available via that route (jules.jchmr.org). For the most up-to-date IMOGEN code, please contact the 

corresponding author. 20 
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Table 1. Availability of WCRP CMIP3 data for the climate patterns study, and characteristics of models’ depiction of land and 

water areas (variable sftlf). Land/water transition is either continuous (cont.) or abrupt (binary mask - bin.). The first characteristic in 

column “Land mask” pertains to coastlines, whereas the second – to inland waters. The codes in column “Data gaps and issues” are: M – 

missing, E – 4D variable (surface values need to be extrapolated), G – data gaps, R – some data needed resizing. 

 GCM name Origin Land mask Resolution Data gaps and issues 

1. BCCR-BCM2.0 Norway cont./cont. 64x128 E (HUR) 

2. CGCM3.1(T47) Canada bin./bin. 48x96 E (HUR) 

3. CNRM-CM3 France bin./bin. 64x128 E (HUR) 

4. CSIRO-Mk3.0 Australia bin./bin. 96x192 E (HUR) M (UAS, VAS, PS) 

5. CSIRO-Mk3.5 Australia bin./bin. 96x192 E (HUR) 

6. GFDL-CM2.0 USA cont./bin. 90x144 E (HUR) 

7. GFDL-CM2.1 USA cont./bin. 90x144 E (HUR) 

8. GISS-EH USA bin./cont. 46x72 E (HUR) 

9. GISS-ER USA bin./cont. 46x72 E (HUR), M (RLDS) 

10. FGOALS-g1.0 China cont./bin. 60x128 E (HUR) 

11. INGV-SXG Italy bin./bin. 160x320 E (HUR, UAS, VAS), M (RLDS, RSDS) 

12. INM-CM3.0 Russia bin./bin. 45x72 E (HUR) 

13. IPSL-CM4 France cont./bin. 72x96 E (HUR) 

14. MIROC3.2(hires) Japan cont./cont. 160x320 E (HUR) 

15. MIROC3.2(medres) Japan cont./bin. 64x128 E (HUR) 

16. ECHO-G Germany-Korea bin/bin. 48x96 M (HUR) 

17. ECHAM5/MPI-OM Germany cont./bin. 96x192 E (HUR) 

18. MRI-CGCM2.3.2 Japan cont./cont. 64x128 E (HUR) G (PRSN) 

19. CCSM3 USA cont./bin. 128x256 E (HUR, UAS, VAS) 

20. PCM USA cont./bin. 64x128 E (HUR, UAS, VAS) 

21. UKMO-HadCM3 UK bin/bin. 73x96 E (HUR) 

22. UKMO-HadGEM1 UK cont./bin. 145x192 E (HUR), R (UAS,VAS) 

 5 
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Table 2. Calibration parameters of the simple IMOGEN Energy Balance Model, for each considered Global Circulation Model. 

The first column presents which runs (experiments) were used to derive the parameters, listed in the following columns: (i) an ocean 

effective thermal diffusivity which determines the uptake of energy, κ (Wm-1K-1), (ii) a constant ratio of mean land and ocean surface 

(SST) rate of warming, ν, (iii-iv) climate sensitivity over land λl and ocean λo (W m-2 K-1), and (v) f , which is a land fraction, including 

Antarctica, f . The last column presents GCM-specific ratios of warming aver all land per degree of global warming. 5 
 

GCM Calibration 
basis 

Pattern 
basis λl λo κ ν f ∆Tl/°K 

1. BCCR-BCM2.0 pictrl, 1% to2x SRES A2 2.00 2.30 350 1.40 0.28 1.26 
2. CGCM3.1(T47) pictrl, 1% to4x SRES A2 1.50 1.30 270 1.50 0.31 1.30 
3. CNRM-CM3 pictrl, 1% to4x SRES A2 1.65 1.58 500 1.46 0.28 1.29 
4. CSIRO-Mk3.0 pictrl, 1% to2x SRES A2 1.20 1.25 2800 1.69 0.29 1.41 
5. CSIRO-Mk3.5 pictrl, 1% to2x SRES A2 1.35 0.80 1300 1.58 0.29 1.35 
6. GFDL-CM2.0 pictrl, 1% to4x SRES A2 1.15 1.70 510 1.53 0.30 1.32 
7. GFDL-CM2.1 pictrl, 1% to4x SRES A2 1.15 2.05 460 1.58 0.30 1.35 
8. GISS-EH pictrl, 1% to2x SRES A1B 1.30 1.65 520 1.48 0.29 1.30 
9. GISS-ER pictrl, 1% to4x SRES A2 1.05 1.40 1200 1.61 0.29 1.37 

10. FGOALS-g1.0 pictrl, 1% to2x SRES A1B 1.80 2.80 11000 1.47 0.30 1.46 
11. INGV-SXG pictrl, 1% to4x SRES A2 0.70 1.90 320 1.65 0.28 1.39 
12. INM-CM3.0 pictrl, 1% to4x SRES A2 1.35 1.70 500 1.50 0.30 1.30 
13. IPSL-CM4 pictrl, 1% to4x SRES A2 1.00 1.10 700 1.57 0.30 1.34 
14. MIROC3.2(hires) pictrl, 1% to2x SRES A1B 1.00 0.70 510 1.38 0.29 1.24 
15. MIROC3.2(medres) pictrl, 1% to4x SRES A2 0.83 1.00 720 1.57 0.29 1.35 
16. ECHO-G pdctrl, 1% to4x SRES A2 1.05 1.80 50 1.76 0.29 1.45 
17. ECHAM5/MPI-OM pictrl, 1% to4x SRES A2 0.86 0.95 500 1.60 0.29 1.36 
18. MRI-CGCM2.3.2 pdctrl, 1% to4x SRES A2 1.68 1.25 380 1.38 0.30 1.22 
19. CCSM3 pdctrl, 1% to4x SRES A2 1.10 1.70 1200 1.47 0.29 1.29 
20. PCM pdctrl, 1% to4x SRES A2 1.95 2.30 720 1.43 0.29 1.27 
21. UKMO-HadCM3 pictrl, 1% to2x SRES A2 0.40 1.85 270 1.78 0.29 1.45 
22. UKMO-HadGEM1 pictrl, 1% to4x SRES A2 0.92 1.46 480 1.60 0.29 1.36 

 All   1.23±0.40 1.57±0.51 1148±2220 1.55±0.11 0.29±0.01 1.34±0.06 
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Table 3. Summary of magnitude, range and robustness of climate change patterns across variables and GCMs.  In each table cell, 

the first value is the mean, followed by the Percentage Variance Explained statistic (PVE, in brackets, underneath). The values in italics 

are across-ensemble averages used to fill in data gaps (missing variables for some GCMs). In these cases, the PVE statistic was not 

calculated. Square brackets in the last column denote average PVE (across-variables) calculated for these incomplete sets of variables.. 

The pre-last row (All GCMs) contains across-ensemble means of the above statistics, plus associated standard deviations. The last row 5 
presents an additional diagnostic of the pattern fitting performance - percentage of negative PVE results, which indicate that the one-

parameter regression line is a worse fit than the multi-decadal mean. 

 GCM name TAS HUR UAS+VAS RLDS RSDS PR PRSN PS ALL 

1. BCCR-BCM2.0 1.0463 
(83.04) 

-0.0201 
(13.29) 

0.0089 
(2.66) 

5.6754 
(76.51) 

-0.6185 
(9.73) 

0.0300 
(8.16) 

-0.0025 
(13.14) 

0.2324 
(30.70) (29.65) 

2. CGCM3.1(T47) 1.0561 
(85.79) 

0.0974 
(19.80) 

0.0197 
(8.30) 

6.0605 
(87.28) 

-0.4722 
(18.82) 

0.0448 
(18.71) 

-0.0015 
(16.66) 

0.0730 
(21.33) (34.59) 

3. CNRM-CM3 1.0371 
(86.64) 

-0.0111 
(24.84) 

0.0098 
(8.73) 

5.7499 
(81.41) 

-0.4978 
(19.65) 

0.0255 
(17.05) 

0.0000 
(17.35) 

0.1838 
(38.48) (36.77) 

4. CSIRO-Mk3.0 1.0740 
(82.73) 

-0.2354 
(13.99) 

0.0108  
(-) 

5.9023 
(84.39) 

-0.6072 
(24.46) 

0.0165 
(9.38) 

-0.0032 
(25.70) 

0.0947  
(-) [40.11] 

5. CSIRO-Mk3.5 1.0270 
(87.73) 

-0.2214 
(17.04) 

0.0059 
(6.93) 

6.2917 
(87.92) 

-0.3596 
(25.23) 

0.0044 
(12.42) 

-0.0035 
(17.22) 

0.0138 
(21.94) (34.56) 

6. GFDL-CM2.0 1.0731 
(83.58) 

-0.2653 
(14.77) 

0.0071 
(8.25) 

6.0471 
(83.69) 

-1.8451 
(34.58) 

0.0042 
(16.89) 

-0.0041 
(21.49) 

0.0657 
(24.35) (35.95) 

7. GFDL-CM2.1 1.0794 
(79.71) 

-0.2310 
(17.35) 

0.0113 
(9.59) 

6.2023 
(82.62) 

-1.7225 
(33.21) 

-0.0017 
(17.93) 

-0.0067 
(18.66) 

0.2057 
(29.21) (36.03) 

8. GISS-EH 1.0543 
(75.71) 

0.0080 
(10.48) 

0.0103 
(4.25) 

6.6734 
(77.09) 

-1.4802 
(1.95) 

0.0415 
(11.28) 

-0.0016 
(8.04) 

0.0264 
(12.18) (25.12) 

9. GISS-ER 1.0365 
(80.07) 

-0.1572 
(17.25) 

0.0099 
(7.08) 

6.1883  
(-) 

-0.9399 
(11.05) 

0.0384 
(14.76) 

-0.0018 
(10.16) 

0.0251 
(18.31) [22.67] 

10. FGOALS-g1.0 1.1180 
(83.05) 

-0.0980 
(4.11) 

-0.0031 
(1.36) 

6.3137 
(82.71) 

-0.9748 
(9.67) 

0.0205 
(6.70) 

-0.0010 
(15.52) 

0.0836 
(13.62) (27.09) 

11. INGV-SXG 1.0863 
(88.01) 

-0.0209 
(22.96) 

0.0128 
(5.20) 

6.2418  
(-) 

-0.7667  
(-) 

0.0184 
(10.68) 

-0.0067 
(19.10) 

0.0217 
(18.58) (35.98) 

12. INM-CM3.0 1.0604 
(83.51) 

-0.0391 
(15.44) 

0.0130 
(4.88) 

5.7124 
(78.17) 

-0.2908 
(23.54) 

0.0200 
(14.32) 

-0.0071 
(12.97) 

0.0124 
(16.43) (31.16) 

13. IPSL-CM4 1.1043 
(90.18) 

-0.6717 
(27.46) 

0.0059 
(9.92) 

6.1517 
(85.26) 

0.0932 
(27.85) 

0.0166 
(15.72) 

-0.0089 
(23.73) 

0.1216 
(21.31) (37.68) 

14. MIROC3.2(hires) 1.0801 
(94.19) 

-0.1528 
(16.89) 

0.0031 
(8.45) 

6.2088 
(92.28) 

-1.0731 
(36.21) 

0.0271 
(20.90) 

-0.0052 
(25.45) 

0.2352 
(37.87) (41.53) 

15. MIROC3.2(medres) 1.1281 
(91.16) 

-0.2819 
(15.56) 

0.0062 
(9.38) 

6.4687 
(88.97) 

-1.7130 
(38.30) 

0.0272 
(22.37) 

-0.0032 
(23.53) 

0.1417 
(30.26) (39.94) 

16. ECHO-G 1.1383 
(88.41) 

-0.1256  
(-) 

0.0165 
(9.54) 

6.5682 
(86.84) 

-1.4149 
(20.41) 

0.0574 
(18.77) 

-0.0046 
(21.54) 

-0.0648 
(19.65) [37.88] 

17. ECHAM5/MPI-OM 1.0726 
(89.81) 

-0.2200 
(18.66) 

0.0173 
(8.35) 

6.1048 
(89.35) 

-0.3009 
(18.78) 

0.0294 
(14.08) 

-0.0052 
(17.45) 

0.0714 
(22.61) (34.89) 

18. MRI-CGCM2.3.2 1.0641 
(84.62) 

0.6378 
(13.21) 

-0.0048 
(3.25) 

6.5956 
(82.92) 

-1.2903 
(10.43) 

0.0387 
(7.60) 

-0.0063  
(-) 

0.0979 
(17.37) [31.34] 

19. CCSM3 1.1182 
(87.92) 

-0.0307 
(15.09) 

0.0091 
(6.75) 

6.8102 
(89.67) 

-1.2080 
(24.48) 

0.0477 
(21.47) 

-0.0071 
(20.45) 

0.1629 
(25.02) (36.36) 

20. PCM 1.1059 
(78.64) 

0.0704 
(9.65) 

0.0346 
(1.13) 

6.2678 
(75.20) 

-0.9678 
(8.34) 

0.0573 
(12.52) 

0.0009 
(13.56) 

0.1509 
(17.32) (27.04) 

21. UKMO-HadCM3 1.0572 
(86.57) 

-0.7051 
(29.40) 

0.0137 
(9.85) 

5.6891 
(84.81) 

0.2089 
(27.15) 

0.0096 
(16.36) 

-0.0036 
(15.88) 

-0.0542 
(23.05) (36.63) 
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22. UKMO-HadGEM1 1.1222 
(88.60) 

-0.0900 
(18.05) 

0.0190 
(15.49) 

6.2180 
(89.33) 

-1.9194 
(37.04) 

0.0076 
(21.45) 

-0.0039 
(22.27) 

0.1814 
(32.21) (40.55) 

 All GCMs 

1.079 
±0.032 
(85.44 
±4.37) 

-0.1256 
±0.2579 
(16.92 
±5.71) 

0.0108 
±0.0080 

(7.11 
±3.32) 

6.188 
±0.400 
(84.74 
±4.97) 

-0.9164 
±0.6000 
(23.29 

±10.23) 

0.0264 
±0.0165 
(14.98 
±4.61) 

-0.0040 
±0.0025 
(17.96 
±4.67) 

0.095 
±0.084 
(23.33 
±6.99) 

 
 

(34.25 
±5.21) 

 % neg. PVE 0.07 % 3.87 % 4.87 % 0.07 % 3.64 % 3.99 % 1.50 % 3.37 % 2.67 % 
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Figure 1: Illustration of the process leading to parameterization of the IMOGEN Energy Balance Model and the scaled climate 
patterns (together forming the “pattern scaling set”), based on the example of the UKMO-HadGEM1 GCM. A: emulation of a 
warming pathway across time. The 1% to quadrupling atmospheric CO2 run was used for calibration of the energy balance model while 
the SRES A2 scenario run was used to validate the results.  B: Fitting of the individual EBM parameters, underlining the match presented 5 
in A. Climate sensitivities over land λl and ocean λo, as well as the ratio of land to ocean warming rate, ν, (pink lines) are derived directly 
from GCM run data (black curves, 1% run). The fourth parameter, an ocean effective thermal diffusivity, κ, determines modelled oceanic 
temperature profile. The κ value is selected based upon comparing calculated values of top-of-profile temperature against global mean SST 
changes projected by UKMO-HadGEM1 1% run (shown). C: Example local fitting of patterns of temperature and precipitation, found as 
regression coefficients (coloured straight lines) against calculated changes in mean temperature over land from UKMO-HadGEM1. Two 10 
representative grid-boxes in Mediterranean Europe and Tropical Africa are shown. Coloured symbols are decadal mean monthly values 
from the UKMO-HadGEM1 SRES A2 run, whilst the grey markers represent data from the 20C3M simulation, which were used to 
normalize to temperature and precipitation change, and are also corresponding to CRU normals (years 1961–90). Regression “pattern” fit 
is forced through [0,0] point, as in diagrams. 

  15 
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Figure 2: Annual means of the monthly patterns of local temperature change per degree warming over all land (K K-1). Data 
presented for the 22 GCMs considered in this study. 
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Figure 3: Annual means of the monthly patterns of local precipitation change per degree warming over all land (mm yr-1 K-1). Data 
presented for the 22 GCMs considered in this study. 
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Figure 4: Seasonal means and variation (2*SD) of the monthly patterns of local temperature change per degree warming over all 
land (K K-1), across 22 GCMs. DJF is December, January and February, MAM is March, April and May, JJA is June, July and August 
and SON is September, October and November. 
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Figure 5: Seasonal means and variation (2*SD) in the monthly patterns of local precipitation change per degree warming over all 
land (mm yr-1 K-1), across 22 GCMs. In regions marked with stippling more than 66% of the models agree in the sign of the change. 
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DJF is December, January and February, MAM is March, April and May, JJA is June, July and August and SON is September, October 
and November. 

 

 
Figure 6: Seasonal percentage of variance explained of the monthly patterns of local temperature and precipitation change per 5 
degree warming, across 22 GCMs. DJF is December, January and February, MAM is March, April and May, JJA is June, July and 
August and SON is September, October and November. 
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Figure 7. Comparison of IMOGEN and GCM estimates of annual mean runoff changes This is for 20 years 
centred 2090 minus 20 years centred 1900, and for emissions scenario SRESA1B. Top left panel is the mean 
changes in runoff across GCMs emulated in the IMOGEN system, all forcing the JULES land surface model. Top 5 
right panel is the mean changes in runoff as taken directly from the GCMs themselves. In the bottom left panel, at 
each gridbox, presented is the SD of changes in runoff for IMOGEN, again across GCMs emulated. Bottom right 
panel is SD of changes in runoff taken directly from the GCMs. 
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