Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

© Author(s) 2016. CC-BY 3.0 License.

- 1 r.avaflow v1, an advanced open source computational frame-
- 2 work for the propagation and interaction of two-phase mass
- 3 flows
- 4 Martin Mergili^{1,2}, Jan-Thomas Fischer³, Julia Krenn^{1,4} and Shiva P. Puda-
- 5 **saini**⁵
- 6 ¹ Institute of Applied Geology, University of Natural Resources and Life Sciences (BOKU), Peter-
- 7 Jordan-Straße 70, 1190 Vienna, Austria
- 8 ² Geomorphological Systems and Risk Research, Department of Geography and Regional Research,
- 9 University of Vienna, Universitätsstraße 7, 1190 Vienna, Austria
- 10 ³ Department of Natural Hazards, Austrian Research Centre for Forests (BFW), Rennweg 1, 6020
- 11 Innsbruck, Austria
- 12 4 Group Roads, Provincial Government of Lower Austria, Landhausplatz 1/17, 3109 St. Pölten,
- 13 Austria
- 14 5 Department of Geophysics, University of Bonn, Meckenheimer Allee 176, 53115 Bonn, Germany
- 15 Correspondence to: M. Mergili (martin.mergili@boku.ac.at)

16 Abstract

- 17 r.avaflow represents an innovative open source computational tool for routing rapid mass flows,
- 18 avalanches or process chains from a defined release area down an arbitrary topography to a depo-
- 19 sition area. In contrast to most existing computational tools, r.avaflow (i) employs a two-phase,
- 20 interacting solid and fluid mixture model; (ii) is suitable for modelling more or less complex pro-
- 21 cess chains and interactions; (iii) explicitly considers both entrainment and stopping i.e. the
- 22 change of the basal topography; (iv) allows for the definition of multiple release masses and/or hy-
- 23 drographs; and (v) serves with built-in functionalities for validation, parameter optimization and
- 24 sensitivity analysis. r.avaflow is freely available as a raster module of the GRASS GIS software,
- 25 employing the programming languages Python and C along with the statistical software R. We
- 26 exemplify the functionalities of r.avaflow by means of two sets of computational experiments: (1)
- 27 generic process chains consisting in bulk mass and hydrograph release into a reservoir with en-
- 28 trainment of the dam and impact downstream; (2) the prehistoric Acheron rock avalanche, New
- 29 Zealand. The simulation results are generally plausible for (1) and, after the optimization of two
- 30 key parameters, reasonably in line with the corresponding observations for (2). However, we
- 31 identify some potential to enhance the analytic and numerical concepts. Further, thorough pa-
- 32 rameter studies are necessary in order to make r.avaflow fit for reliable forward simulations of
- 33 possible future mass flow events.
- 34 Keywords: GIS raster analysis, mass flows, open source, process chains, two-phase flow model

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

35

37

© Author(s) 2016. CC-BY 3.0 License.

1 Introduction

36 Rapid flows or avalanches of snow, debris, rock or ice, or processes, process chains or process in-

teractions involving more than one type of movement or material frequently lead to loss of life,

38 property and infrastructures in mountainous areas worldwide. All state-of-the-art methods for

39 anticipating the occurrence, characteristics, and dynamics of such events rely on computer simula-

40 tions. On the one hand, models attempt to identify those areas where mass flows are likely to re-

lease (landslide susceptibility; Guzzetti, 2006; Van Westen et al., 2006). On the other hand, they

42 attempt to anticipate the motion of rapid mass flows once they are released (Hungr et al., 2005a).

43 Whilst conceptual models (Lied and Bakkehøi, 1980; Gamma, 2000; Wichmann and Becht, 2003;

44 Horton et al., 2013; Mergili et al., 2015) are employed to identify possible impact areas at broad

45 scales, physically-based dynamic models are used for the detailed back-analysis or prediction of

46 specific events.

47 Advanced fluid dynamics offers a broad array of physically-based dynamic modelling approaches

48 for mass flows, mostly referred to as granular avalanches or debris flows. Such models often centre

on 2D "shallow flow" equations, but they vary considerably among themselves in terms of their

50 concept, complexity and capacity to model specific types of phenomena. Voellmy (1955) pio-

51 neered mass flow modelling, followed by the work of Grigoriyan et al. (1967); Savage and Hutter

52 (1989); Takahashi (1991); Iverson (1997); Pitman and Le (2005); and many others (see Pudasaini

53 and Hutter, 2007 for a review). Savage and Hutter (1989) introduced depth-averaged mass and

54 momentum conservation equations which were later utilized, modified and extended by Mangen-

55 ey et al. (2003, 2005); Denlinger and Iverson (2004); and McDougall and Hungr (2004, 2005). The

Savage and Hutter (1989) model was further extended to include the effects of pore fluid by Iver-

57 son and Denlinger (2001); Savage and Iverson (2003); Pitman and Le (2005); Pudasaini et al.

58 (2005); Pastor al. (2009); and Hutter and Schneider (2010a, b). Still, these approaches either repre-

59 sent effectively one-phase models, or do not fully consider the two-phase nature of most mass

60 flows. Pudasaini (2012) introduced a general two-phase mass flow model including several essen-

61 tially new physical aspects of two-phase solid-fluid mixture flows. In comparison to one phase

62 models, this amongst few other (e.g. Kowalski and McElwaine, 2013) two-phase approaches ap-

63 pears suitable for the realistic simulation of most types of process chains and interactions.

64 Entrainment of the basal material into the flow may substantially alter the dynamics and charac-

65 teristics of mass flows, increasing their destructive potential (Hungr and Evans, 2004; Hungr et al.,

66 2005b; Reid et al., 2011; Berger et al., 2011; Pirulli and Pastor, 2012). Empirical laws for entrain-

ment were proposed by Rickenmann et al. (2003); McDougall and Hungr (2005); and Chen et al.

68 (2006), whereas mechanical concepts were introduced by Fraccarollo and Capart (2002); Pitman et

69 al. (2003a); Sovilla et al. (2006); Medina et al. (2008); and Iverson (2012). The available entrain-

70 ment models are effectively single-phase, and developed for bulk debris (Armanini et al., 2009;

71 Crosta et al., 2009; Hungr and McDougall, 2009; Pirulli and Pastor, 2012). Whilst the importance

72 of erosion, and the associated change of the basal topography (Fraccarollo and Capart, 2002; Hungr

73 and Evans, 2004; Hungr et al., 2005b; Le and Pitman, 2009) has been recognized by the scientific

74 community, attempts to simulate deposition of mass flow material are sparsely documented.

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

76

79

101102

103

© Author(s) 2016. CC-BY 3.0 License.

75 Various types of numerical schemes have been used to solve mass flow model equations in order to

redistribute mass and momentum (e.g., Davis, 1988; Toro, 1992; Nessyahu and Tadmor, 1990;

77 Wang et al., 2004). Previously, equations were commonly formulated and solved for pre-defined

78 types of topographies (Pudasaini et al., 2005, 2008; Wang et al., 2004) whereas a mathematically

consistent application to arbitrary mountain topographies – and therefore to real-world conditions

80 – still remains a challenge (Mergili et al., 2012). This issue is closely related to the fact that the

81 model equations are commonly expressed in topography-following coordinates hardly compatible

82 with Geographic Information Systems (GIS). Nevertheless, some of the mass flow models men-

83 tioned have been implemented in computational tools used for hazard mapping and zoning, such

as DAN (Hungr et al., 1995); TITAN2D (Pitman et al., 2003b; Pitman and Le, 2005); SamosAT

85 (Sampl and Zwinger, 2004); or RAMMS (Christen et al., 2010a, b). Hergarten and Robl (2015) de-

86 veloped a modelling tool relying on the open source flow solver GERRIS (Popinet, 2009).

87 None of these models serves for explicitly simulating stopping and deposition, nor for simulating

88 chains or interactions of two-phase mass flows. There is, however, a particular need to appropri-

89 ately consider process chains and interactions in mass flow simulations: some of the most destruc-

90 tive events in history have evolved from cascading effects, such as the 1970 Huascarán event in

91 Peru (Evans et al., 2009) or the 2002 Kolka-Karmadon event in Russia (Huggel et al., 2005).

92 The present work addresses some of the needs and issues raised by introducing the multi-

93 functional open source computational framework r.avaflow, employing an enhanced version of

94 the Pudasaini (2012) two-phase flow model for routing mass flows from a defined release area

95 down arbitrary topography to a deposition area. Next, we introduce the structure and functionali-

96 ties of r.avaflow (Sect. 2). Then we perform two computational experiments in order to demon-

strate the functionalities of the computational framework (Sect. 3). We discuss the implementa-

98 tion of r.avaflow and the implications of our findings (Sect. 4), and finally conclude with the key

99 messages of the work and a brief outlook to the next steps (Sect. 5).

100 2 The computational framework r.avaflow

2.1 Computational implementation

r.avaflow computes the propagation of mass flows from one or more given release areas over a giv-

en basal topography until (i) all the material has stopped and deposited; (ii) all the material has left

104 the area of interest; or (iii) a user-defined maximum simulation time has been reached. r.avaflow is

developed along two lines with regard to its software environment and operation, r.avaflow [EX-

106 PERT] and r.avaflow [PROFESSIONAL]. The present work refers to r.avaflow [EXPERT] which is

107 implemented as a raster module of the open source software package GRASS GIS 7 (Neteler and

108 Mitasova, 2007; GRASS Development Team, 2016). We use the Python programming language for

109 data management, pre-processing and post-processing tasks (module r.avaflow). The flow propaga-

110 tion procedure (see Sect. 2.3 and 2.4) is written in the C programming language (sub-module

111 r.avaflow.main). Together with Python, the R software environment for statistical computing and

Published: 28 September 2016

© Author(s) 2016. CC-BY 3.0 License.

graphics (R Core Team, 2016) is employed for built-in validation and visualization functions.

Fig. 1 illustrates the logical framework of r.avaflow.

Multiple model runs may be executed in parallel, exploiting all computational cores available (see Sect. 2.5). This speeds up the processing considerably, and allows the use of r.avaflow on computational clusters. Parallelization is implemented at the Python level (Mergili et al., 2014, 2015): for each model run a batch file is produced within the module r.avaflow. This batch file calls the Python-based sub-module r.avaflow.mult, launching r.avaflow.main which is then executed with the specific parameters for the associated model run. Thereby, the Python library "Threading", a higher-level threading interface is exploited. The Python class "Queue" is employed for handling the queue of items to be processed.

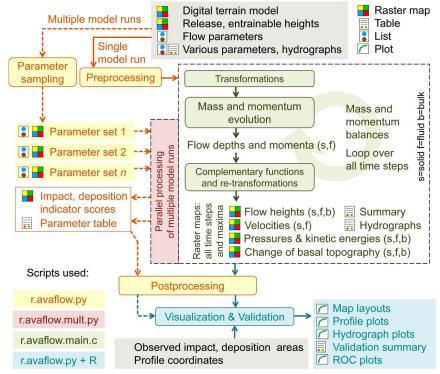


Figure 1 Logical framework of r.avaflow. The transformations and re-transformations refer to the conversion of heights and GIS coordinates to depths and topography-following coordinates, and vice versa (see Sect. 2.3).

r.avaflow was developed and tested with the operating systems (OS) Ubuntu 12.04 LTS and 16.04 LTS, and Scientific Linux 6.6 (Red Hat). It is expected to work on other UNIX systems, too. A simple user interface is available. However, the tool may be started more efficiently through command line parameters, enabling a straightforward batching on the shell script level. This feature facilitates model testing and the combination with other GRASS GIS modules.

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

© Author(s) 2016. CC-BY 3.0 License.

- 131 All experiments where parallel processing is not applied are performed on an Intel® Core i7 975
- 132 with 3.33 GHz and 16 GB RAM (DDR3, PC3-1333 MHz), exploring a maximum of eight cores
- 133 through hyperthreading and using the OS Ubuntu 12.04 LTS. All experiments with parallel pro-
- 134 cessing are performed on the Vienna Scientific Cluster, serving with approx. 2020 nodes (Super-
- 135 micro X9DRD-iF Board), each equipped with two Intel Xeon E5-2650v2 with 2.6 GHz und
- 136 8 · 8 GB RAM. The OS for these computations is Scientific Linux 6.6 (Red Hat).

2.2 Input and output

138 The key input parameters of r.avaflow are summarized in Table 1. Essentially, r.avaflow relies on

139 (i) a digital terrain model (DTM) representing the elevation of the basal surface before the event

under investigation; (ii) raster maps of the spatial distribution of the solid and fluid release heights

141 or hydrographs of solid and fluid release; (iii) a set of flow parameters (Table 2). Input raster maps

142 of the entrainable solid and fluid heights, and a raster map or value defining the empirical en-

trainment coefficient (needed for entrainment) are optional. Instead of the solid and fluid release

and entrainable heights, the total heights and global values of the solid concentration may be de-

145 fined.

137

143

144

147

153

155 156

157

158

146 There is no restriction imposed on the arrangement of the release pixels. Patches with pixels

where the release height is larger than zero may be defined in various parts of the investigation

area. An arbitrary number of release hydrographs – each associated to a given set of coordinates –

149 can be defined alternatively or in addition to the release mass. This allows the simulation of com-

150 plex interactions between different types of processes (see Sect. 3). Hydrographs are defined

through their solid and fluid heights at the centre point of the hydrograph profiles, and by the sol-

152 id and fluid flow velocities. The flow height distribution along the hydrograph profile - which

should be aligned perpendicular to the main flow direction – is derived from the assumptions of a

horizontal cross section of the flow table and a maximum profile length (Fig. 2).

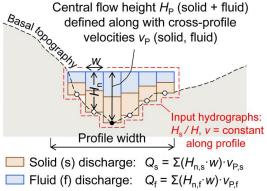


Figure 2 Sketch of a hydrograph profile. The flow surface of input hydrographs is defined by H_P and is extended in cross-profile direction either to the edge of the profile or until it intersects with the basal topography.

Published: 28 September 2016

159

160

161

162

163

© Author(s) 2016. CC-BY 3.0 License.

Table 1 Key input and output parameters of r.avaflow. s = solid; f = fluid; b = bulk. Remarks: 1 - mandatory; $2 - one of the input data sets A, B or C+D is mandatory, C+D may also be provided in addition to A or B; <math>n_0 \ge n_0$, if $n_0 > n_0$ the remaining sets of D are output hydrographs; 3 - either A or B may be provided if entrainment is activated, otherwise all values of $H_{Emax} = \infty$; C is mandatory with entrainment; 4 - at least one of the data sets A, B and C is mandatory for validation.

Parameter	Symbol	Unit	Format	Remarks
Input				
Initial elevation of basal surface	Z_0	m	Raster map	1
s, f release heights	$H_{0,s}, H_{0,f}$	m, m	Raster maps	2A
Total release height, s concentration of	H_0 , $lpha$ so	m, -	Raster map,	2B
release mass			value	
s, f entrainable heights	H _{Emax,s} ,	m, m	Raster maps	3A
Entrainable total height, s concentration of entrainable mass	H _{Emax} , α _{s,Emax}	m, -	Raster map, value	3B
nc hydrograph tables: s and f flow heights and velocities at defined points of time (see Fig. 2)	$H_{\mathrm{P,s}},\ v_{\mathrm{P,s}}$ $H_{\mathrm{P,f}},\ v_{\mathrm{P,f}}$	m, m s ⁻¹ m, m s ⁻¹	Tables	2C
<i>n</i> _D sets of centre coordinates, length and aspect of hydrograph	-	m, degree	Sets of four values	2D
Flow parameters (see Table 2)	_		Set of 14 values	1
Basal surface parameters (see Table 2)	_	_	Set of 2 values	3C
Time interval for output, max. time after which simulation terminates	$\Delta \emph{t}_{ m out},~\emph{t}_{ m term}$	S, S	Set of 2 values	1
Threshold flow height for visualization and validation	H _t	M	Value	1
Observed impact area, observed deposition area	OIA, ODA	-, -	Raster maps	4A, B
Vertex coordinates of flow path	-	M	Even number of ≥4 values	4C
Output (excluding validation and visualiza	ation output	see Sect. 2.6	5)	
Maximum flow height, kinetic energy, and pressure (each for s, f, b)	H _{Max} , T _{Max} , p _{Max}	m, Pa, J	Raster maps	Always
Flow height, flow kinetic energy, and flow pressure at each output time step t_{out} (each for s, f, b)	H _{tout} , T _{tout} ,	m, Pa, J	Raster maps	Always
Total release height, solid concentration of release mass (each for s, f)	$V_{x,n}$, $V_{y,n}$, V_{n}	m s ⁻¹	Raster maps,	Always
Change of basal topography, height of final deposition (s,f,b)	$E_{\rm n}, H_{\rm D}$	m, m	Raster maps	If >0
Impact indicator index, deposition indicator index	III, DII	-, -	Raster maps	Multiple runs
<i>n</i> _D – <i>n</i> _C output hydrograph tables: s and f flow heights, velocities and discharges at defined points of time	H _{P,s} , v _{P,s} , Q _s H _{P,f} , v _{P,f} , Q _f	Various	Tables	If $n_{\rm D} > n_{\rm C}$

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

© Author(s) 2016. CC-BY 3.0 License.

Mandatory parameters further include the time interval at which output maps are written Δt_{out} (s),

165 the maximum time after which the simulation terminates, and the threshold flow height for visu-

alization and validation H_1 (m; see Table 1). Optional parameters further include raster maps of the

observed impact area and deposition height as well as a set of flow path coordinates (for validation

168 and visualization; see Fig. 1 and Sect. 2.6). An exhaustive list of input parameters is provided in the

user manual of r.avaflow, available at http://www.avaflow.org/software.html.

170 If a single model run is executed (see Fig. 1), the output of r.avaflow consists in raster maps of sol-

171 id, fluid and total flow heights, flow velocities in x and y direction and in absolute terms, pressures

and kinetic energies, and the change of the basal topography (only relevant with entrainment or

173 stopping; see Sect. 2.4). All raster maps are produced for each output time step (defined by Δt_{out})

and for the maximum over all time steps. Further, a table summarizing the maximum solid and

175 fluid flow heights and velocities as well as flow volumes and kinetic energies for all output time

176 steps is produced. Optionally, solid and fluid output hydrographs are generated for an arbitrary

177 number of given output hydrograph profiles (see Table 1 and Fig. 2). With multiple model runs,

178 the results of each single run are aggregated to indices (see Sect. 2.5). In the present work we focus

on the output heights, hydrographs and indices when analyzing the results, rather than on veloci-

ties, or deduced results such as pressures or kinetic energies (see Sect. 3).

181 2.3 Mass and momentum evolution

182 The core functionality of r.avaflow consists in the redistribution of mass and momentum, employ-

183 ing a dynamic flow model and a numerical scheme. Thereby the tool offers implementations of

the Voellmy-Salm one-phase flow model (Christen et al., 2010a, b) and of a slightly enhanced ver-

185 sion of the Pudasaini (2012) two-phase flow model. In the present work we only consider the lat-

186 ter implementation. It builds on the conservation of mass and momentum, computed separately

187 but simultaneously for the solid and fluid components of the flow. A system of six differential

equations (expressed in locally topography-following coordinates) represents the basis for a set of

six flux and source terms, regarding solid and fluid flow depths (D_i , D_i), solid momentum M_i and

190 fluid momentum M_f in x direction $(M_{sx} = D_s \cdot v_{sx}, M_{fx} = D_t \cdot v_{fx})$, and M_s and M_f in y direction

191 $(M_{sy} = D_s \cdot v_{sy}, M_{fy} = D_f \cdot v_{fy})$, where v is flow velocity.

192 The Pudasaini (2012) model employs the Mohr-Coulomb plasticity for the solid stress. The fluid

193 stress is modelled as a solid-volume-fraction-gradient-enhanced non-Newtonian viscous stress.

194 The generalized interfacial momentum transfer includes viscous drag, buoyancy, and virtual mass

induced by relative acceleration between the phases. A new, generalized drag force is proposed

196 that covers both solid-like and fluid-like contributions. Strong coupling between the solid- and

197 the fluid-momentum transfer leads to simultaneous deformation, mixing, and separation of the

198 phases. Inclusion of the non-Newtonian viscous stresses is important in several aspects. The advec-

199 tion and diffusion of the solid volume fraction play an important role. The model includes a num-

200 ber of innovative, fundamentally new, and dominant physical aspects. Please consult Pudasaini

201 (2012) for the full details of the model, including the corresponding equations. The flow parame-

202 ters required are summarized in Table 2.

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

© Author(s) 2016. CC-BY 3.0 License.

Solving the differential equations and propagating the flow from one pixel to the next requires the implementation of a numerical scheme. For this purpose r.avaflow employs a high resolution Total Variation Diminishing Non-Oscillatory Central Differencing (TVD-NOC) Scheme, a numerical scheme useful to avoid unphysical numerical oscillations (Nessyahu and Tadmor, 1990). Cell averages of all six state variables are computed using a staggered grid: the system is moved half of the cell size with every time step, the values at the corners of the cells and in the middle of the cells are computed alternatively at half and full time steps, respectively. The TVD-NOC scheme with the Minmod limiter has successfully been applied to a large number of mass flow problems (Tai et al., 2002; Wang et al., 2004; Mergili et al., 2012; Pudasaini and Krautblatter, 2014; Kafle et al., 2016; Kattel et al., 2016).

Table 2 Flow and basal surface parameters of r.avaflow. The basal surface parameter G is used for computing the entrainment (see Sect. 2.4); all other parameters listed represent flow parameters required with the enhanced version of the Pudasaini (2012) two-phase flow model. Exp. 1 and 2 refer to the values used for the computational experiments introduced in Sect. 3.

Symbol	Parameter	Unit	Exp. 1A, B, C	Exp. 2A, B
hos	Solid material density	kg m ⁻³	2700	2700
$ ho_{ extsf{F}}$	Fluid material density	kg m ⁻³	1000	1000
φ	Internal friction angle	De-	35	35
		gree		
δ	Basal friction angle 1)	De-	20	15–25, 17
		gree		
C_{VM}	Virtual mass	_	0.5	0.5
$oldsymbol{V}\Gamma$	Terminal velocity	$m s^{-1}$	1	1
P	Parameter for combination of solid- and	_	0.5	0.5
	fluid-like contributions to drag resistance			
$Re_{\mathbb{P}}$	Particle Reynolds number	_	1	1
J	exponent for drag (1 = linear, 2 = quadratic)	_	1	1
$N_{\!\scriptscriptstyle m R}$	Quasi Reynolds number	_	30,000	30,000
$N_{ m RA}$	Mobility number	_	1,000	1,000
Χ	Viscous shearing coefficient for fluid	_	0	0
ξ	Solid concentration distribution with depth	_	0	0
$C_{\!\scriptscriptstyle m AD}$	Ambient drag coefficient 2)	_	0	0
CE	Entrainment coefficient 1)	$\mathbf{k}\mathbf{g}^{\text{-}1}$	-, 10 ^{-5.3} , 10 ^{-6.0}	_

¹⁾ Alternatively, these parameters may be provided as raster maps instead of global values; ²⁾ Refer to Kattel et al (2016) for ambient drag

The input and output of r.avaflow (see Sect. 2.2) is discretized on the basis of GIS raster pixels, rectangular in shape in the ground projection. The grid spacing in x and y directions, and the pixel area, are corrected for the local slope in order to maintain consistency with the state variables expressed in topography-following coordinates. Gravitational acceleration in the topography-following x, y, and z directions – representing a fundamental input to the Pudasaini (2012) model – is computed from the DTM, employing a central differencing scheme. All input heights H(m) are expressed in vertical direction. They are converted into depths D(m) expressed in direction normal to the local topography as in the Pudasaini (2012) model formulation. The resulting depths

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

230

231

232

233234

235

236

237

238

239

240

© Author(s) 2016. CC-BY 3.0 License.

are converted into heights for output. An adaptation is applied to utilize the TVD-NOC Scheme which is meant for equidistant quadratic cells. The time step length Δt (s) is dynamically updated according to the CFL condition (Courant et al., 1967; Wang et al., 2004).

2.4 Complementary functions

Table 3 summarizes some additional functions of r.avaflow. The first three functions in the table are introduced for numerical purposes. Entrainment and stopping, in contrast, represent dynamic functions not covered by the Pudasaini (2012) model and are executed independently of the numerical scheme at the end of each time step (see Fig. 1). Even though the separation of these functions from the numerical scheme can be questioned physically and mathematically, we consider the current implementation a reasonable first approximation (see Sect. 4). We now elaborate the concepts employed for entrainment and stopping in more detail.

Table 3 Functionalities of r.avaflow introduced for numerical purposes (ID 1–3) or complementing the Pudasaini (2012) model (ID 4,5). Exp. 1 and 2 refer to the computational experiments introduced in Sect. 3; Y = activated; N = deactivated.

ID	Function	Description	Exp.	Exp.
			1ABC	2AB
1	Diffusion control	Propagation of the flow from one pixel	YYY	YY
		to the next is suppressed if the velocity		
		is not high enough, reducing numerical		
		diffusion		
2	Conservation of volume	Flow volume lost due to numerical rea-	YYY	YY
		sons is replaced through an increase of D		
		of all pixels by the fraction of lost vol-		
		ume after each time step		
3	Surface control	Numerical oscillations of undisturbed	YYY	NN
		flat surfaces (such as reservoirs) are		
		avoided		
4	Entrainment	Empirical approach to compute en-	NYY	NN
		trainment of basal material		
5	Stopping and deposition	Energy balance approach for stopping	NNN	YY
		and deposition of flow material		

241242

243

244

245

247

248

The potential solid and fluid entrainment rates $q_{E,s}$ and $q_{E,f}$ (m s⁻¹; expressed perpendicular to the basal topography) build on the user-defined empirical entrainment coefficient G_E (kg⁻¹) (see Table 2) and the solid and fluid momenta. We assume a vertically homogeneous solid fraction within the entrainable material, which is reflected in the ratio between $q_{E,s}$ and $q_{E,f}$:

246
$$q_{E,s} = C_E | M_s + M_f | \alpha_{s,Emax}, \ q_{E,f} = C_E | M_s + M_f | (1 - \alpha_{s,Emax}).$$
 (1)

The fact that the basal velocities, which are relevant for entrainment, are lower than the depth-averaged velocities is not explicitly considered, but has to be reflected in the value of C_E . $q_{E,s}$ and

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

© Author(s) 2016. CC-BY 3.0 License.

249 $q_{E,f}$ are always positive. Consequently, the solid and fluid changes of the basal topography $H_{E,s}$ and

250 $H_{E,f}$ (m) are positive for entrainment:

251
$$H_{E,s,t} = \min \left(H_{E,s(t-\Delta t)} + \frac{q_{E,s}\Delta t}{\cos \beta}, H_{Emax,s} \right), \tag{2}$$

252
$$H_{\mathrm{E,f,t}} = \min \left(H_{\mathrm{E,f(t-\Delta t)}} + \frac{q_{\mathrm{E,f}} \Delta t}{\cos \beta}, H_{\mathrm{Emax,f}} \right), \tag{3}$$

253 where $H_{E,s(t-\Delta t)}$ and $H_{E,f(t-\Delta t)}$ (m) are the change of the basal topography at the start of the time step,

254 $H_{Emax,s}$ and $H_{Emax,f}$ (m) are the maximum entrainable depths at the given pixel, t(s) is the time

255 passed at the end of the time step, Δt (s) is the time step length, and β is the local slope of the basal

256 surface. The division by $\cos \beta$ accounts for the conversion from depths to heights. The solid and

257 fluid entrained depths $D_{E,s} = (H_{Es,t} - H_{Es(t-\Delta t)}) \cos \beta$ and $D_{E,f} = (H_{Ef,t} - H_{Ef(t-\Delta t)}) \cos \beta$ are added to the

258 solid and fluid flow depths. We further assume that entrainment increases the solid and fluid mo-

259 mentum of the flow in each direction by the product of the entrained solid and fluid depth and

the bulk velocity in the given direction (*M*_E; Fig. 3a). The basal topography and, consequently, the

261 x and y pixel sizes, pixel areas, and gravitational acceleration components in x, y, and z direction

are updated after each time step.

263 The changes in gravitational acceleration also influence the magnitude of the frictional terms,

264 which are important for stopping processes. In the literature few approaches explicitly consider

265 stopping processes directly in their numerical scheme by operator splitting methods coupled with

the determination of admissible stresses (e.g. Mangeney et al., 2003; Zhai et al., 2015). Here, in

267 order to consider stopping, we choose a different approach by proposing the dimensionless factor

268 of mobility FoM, relating the distance required for stopping stop to the numerical spatial resolution

269 Δs in the direction of movement. The flow stops if $s_{\text{stop}} \leq \Delta s$ i.e. $FoM \leq 1$ (see Fig. 3b):

$$FoM = \frac{S_{\text{stop}}}{\Lambda s}.$$
 (4)

271 To estimate sstop we formulate the energy balance considering that the initial kinetic energy at an

272 initial velocity w_0 (m s⁻¹) and the change of potential energy while travelling the distance s_{stop} have

273 transformed in dissipative energy due to Coulomb friction, which dominates close to stopping.

With this the energy balance estimate yields:

$$\frac{v_0^2}{2} + s_{\text{stop}} \sin \beta_v g = s_{\text{stop}} \tan \delta \cos \beta_v g.$$
 (5)

276 Consequently,

$$s_{\text{stop}} = \frac{v_0^2}{2g\cos\beta \left(\tan\delta - \tan\beta\right)},\tag{6}$$

where δ is the basal friction angle, β is the slope angle in the direction of movement, and g (m s⁻²)

279 is gravitational acceleration (see Table 2). According to Eq. 6 the stopping distance stop is positive

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

283

284

285

286

287

288 289

290

291

292

293

294

295

296

297

298

299

300

301

302

© Author(s) 2016. CC-BY 3.0 License.

for $\delta > \beta_i$, meaning that stopping is possible when the friction angle is higher than the slope angle i.e., in particular at flat or even counter slopes. We note that, by a simple transformation of Eq. 6, FoM can alternatively be derived by relating the stopping time to the time step length.

FoM can relate to various spatial units: (i) a single pixel i.e., *FoM* is computed separately for each pixel. It may happen that stopping of the flow occurs at a certain pixel, but not at its neighbour pixels. (ii) w and β are averaged over a certain pixel neighbourhood to compute *FoM*, so that stopping occurs at patches of adjacent pixels. (iii) β and the associated component of v are averaged over the entire area of interest. This means that the entire flow stops at once.

(a) Entrainment Initial flow (solid+fluid) Entrained solid (s) Entrained fluid (f) Mixing of s and f $D_{E,s} = C_E \cdot M \cdot \alpha_s \cdot \Delta t$ $D_{E,f} = C_E \cdot M \cdot (1 - \alpha_s) \cdot \Delta t$ $=D_{E,f}+D_{E,s}$ Basal topography after entrainment v=undefined Basal topography after stopping (b) Stopping Initial flow mass Stopped flow mass Theoretical flow mass after Δs

Figure 3 Interactions of the flow with the basal topography: (a) entrainment, assuming that $H_{\text{Emax},s}$ and $H_{\text{Emax},f}$ are not limiting; D_{E} = entrained depth; (b) stopping. Both panes represent sections along the steepest slope of the basal topography.

The third possibility is currently implemented with r.avaflow as an optional function. If activated, the simulation terminates as soon as stopping occurs and the basal topography is lifted by $H_5 + H_6$. Note that, in the current implementation, stopping always considers the bulk mass, without differentiating between the solid and the fluid components. This simplification is reasonable for flows characterized by a relatively small fluid volume fraction.

2.5 Multiple model runs

r.avaflow includes a built-in function to perform multiple model runs at a time with controlled or random variation of uncertain input parameters between given lower and upper thresholds. Essentially, this concerns the flow parameters (see Table 2), but also the solid concentration of the release mass α_{60} . Multiple parameters can be varied at a time. This procedure serves for two purposes:

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

304

305

306

307

308

311

© Author(s) 2016. CC-BY 3.0 License.

- It facilitates multi-parameter sensitivity analysis & optimization efforts;
 - The results of all model runs are aggregated to an impact indicator index (*III*) and a deposition indicator index (*DII*), each in the range 0–1. *III* represents the fraction of model runs where *H*_{Max} ≥ *H*_t at a given pixel whilst *DII* represents the fraction of model runs where *H*_D ≥ *H*_t at a given pixel. *III* and *DII* can be used to demonstrate the impact of uncertain input parameters on the simulation result.
- The model runs can be split among multiple computational cores (parallel processing), enabling the exploitation of high-performance computational environments (see Sect. 2.1).

2.6 Validation and visualization

- 312 r.avaflow can be used to produce map layouts and animations of the key results (see Fig. 1). It fur-313 ther includes built-in functions to validate the model results against observations. Validation relies 314 (i) on the availability of a raster map of the observed impact or deposition area of the event under 315 investigation, (ii) on a user-defined profile along the main flow path (see Table 1), or (iii) on 316 measurements H or v at selected coordinates and time steps. Those pixels with observed impact or 317 deposition are referred to as observed positives (OP), those without observed impact or deposition as observed negatives (ON). When using the observed impact area (OIA) as reference, all pixels 318 319 with $H_{\text{Max}} \ge H_{\text{t}}$ are considered as predicted positives (PP), all pixels with $H_{\text{Max}} < H_{\text{t}}$ are considered 320 as predicted negatives (PN). When using the observed deposition area (ODA) as reference, all pix-321 els with $H_D \ge H_t$ are considered as PP, all pixels with $H_D < H_t$ are considered as PN. Intersecting 322 ON and OP with PP and PN results in four validation scores: true positive (TP), true negative 323 (TN), false positive (FP) and false negative (FN) predictions (Fig. 4). TN strongly depends on the 324 size of the area of interest. It is normalized to $5 \cdot (TP+FN)-FP$ in order to allow a meaningful com-325 parison of model performance among different case studies. These scores build the basis for most 326 of the validation parameters described in Table 4. Only the excess travel distance ΔL relies on the 327 observed and simulated terminal points of the flow, based on a user-defined longitudinal profile. 328 We note that this profile is only needed for validation, but is not used for the mass flow simulation 329 itself.
- Values of $\Delta L > 0$ and FoC > 1 indicate conservative results (simulated impact or deposition area is larger than observed impact or deposition area) whilst values of $\Delta L < 0$ and FoC < 1 indicate non-conservative results. *CSI*, *D2PC*, and *AUROC* do not allow to conclude on the conservativeness of
- the results. ΔL , FoC, CSI, and D2PC as defined in Table 4 target at the validation of H_{Max} or H_{D} de-
- 334 rived with one single model run. With multiple model runs (see Sect. 2.5) the validation parame-
- 335 ters are computed separately for each run, allowing to conclude on the sensitivity of the model
- performance to given input parameters, or to optimize input parameter values.
- 337 In contrast, ROC (Receiver Operating Characteristics) curves are used to test the performance of
- 338 the overall output of multiple model runs. Such curves are produced for III (OIA as reference)
- and/or DII (ODA as reference): the true positive rate is plotted against the false positive rate for
- 340 various levels of III or DII. The area under the curve connecting the resulting points, AUROC, is

Published: 28 September 2016

343

344345

346

347

348349

350

351

352

353

354

© Author(s) 2016. CC-BY 3.0 License.

used as an indicator for model performance ($AUROC \approx 1$ indicates an excellent performance; see Fig. 4 and Table 4).

Further, the difference between observed and simulated values of H and v at selected sets of coordinates and points of time can be analyzed. This function is mainly useful for very well-documented case studies such as laboratory experiments and is not further used in the present work.

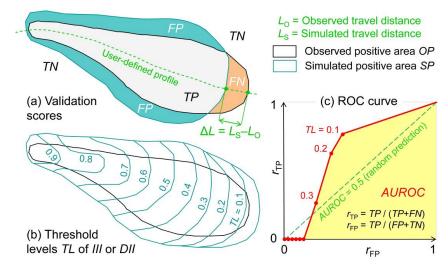


Figure 4 Validation of r.avaflow results. (a) Validation scores for single model run; (b) multiple model runs: threshold levels of III or DII, employed to produce (c) ROC curves.

Table 4 Validation parameters used in r.avaflow (see also Fig. 4). S = single model run, binary simulation result; M = multiple model runs, simulation result in the range 0–1. The concepts of *CSI* and D2PC are taken from Formetta et al. (2015). All validation parameters are computed for H_{Max} (OIA as reference) and/or H_D (ODA as reference), depending on which of the reference data are available.

Scope	Name	Definition	Possible range	Optimum
S	Excess travel distance ΔL	$L_{\rm S}-L_{\rm O}$	[- <i>L</i> o,∞]	0.0
S	Factor of conservativeness <i>FoC</i>	$FoC = \frac{PP}{OP} = \frac{TP + FP}{TP + FN}$	[0,∞]	1.0
S	Critical success index CSI	$CSI = \frac{TP}{TP + FP + FN}$	[0,1]	1.0
S	Distance to perfect classification <i>D2PC</i>	$D2PC = \sqrt{(1 - r_{\text{TP}})^2 + r_{\text{FP}}^2}$ $r_{\text{TP}} = \frac{TP}{OP}, \ r_{\text{FP}} = \frac{FP}{ON}$	[0,1]	0.0
M	Area under ROC curve AUROC	Function of <i>r</i> _{TP} and <i>r</i> _{PP} for different levels of <i>DII</i> or <i>III</i> (see Fig. 4)	[0.1]	1.0

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

356 357

358

359

360

361

362

363

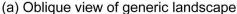
364

365

366367

368

369


370

371

© Author(s) 2016. CC-BY 3.0 License.

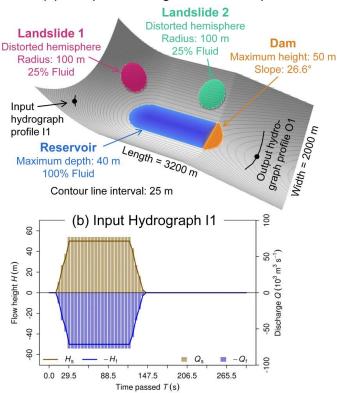


Figure 5 Generic landscape used for Experiment 1A–C. (a) Oblique view illustrating the topography and elements of the landscape. (b) Input hydrograph I1 employed for Experiment 1C.

3 Computational experiments

3.1 Experiment 1: Generic process chain

3.1.1 Topographic setup

In a first step, the potential of r.avaflow for simulating process chains is demonstrated, considering the interaction between one or more landslides, a reservoir, and the dam impounding the reservoir. This experiment represents a follow-up to the work of Pudasaini (2014); Kafle et al. (2016); and Kattel et al. (2016). We construct a generic landscape of size 3200 m · 2000 m, illustrated in Fig. 5a. This landscape consists of the following elements: (i) W–E stretching trough-shaped valley with an amphitheatre-shaped head, inclined towards E in its lower part; (ii) dam with a trapezoidal cross section running across the valley, consisting of 100% solid material; (iii) reservoir impounded by the dam; (iv) landslide release mass near the NW corner of the area of interest (Landslide 1); (v) landslide release mass directly N of the dam (Landslide 2); (vi) hydrograph release of landslide near the SW corner of the area of interest; (vii) measurement profile for output hydro-

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

© Author(s) 2016. CC-BY 3.0 License.

- 372 graph downstream from the dam. Both landslide release masses assume the shape of a hemi-
- 373 ellipsoid imposed on the basal topography (see Fig. 5a). The algorithm for exactly reproducing the
- generic landscape in GRASS GIS is available at http://www.avaflow.org/casestudies.html.

375 3.1.2 Modelling strategy and parameterization

- 376 The landslides 1 and 2 consist of 75% solid and 25% fluid by volume, the input hydrograph I1 (see
- 377 Fig. 5b) consists of 50% each solid and fluid per volume. The parameters and settings applied are
- 378 summarized in the Tables 2 and 3.
- 379 Three computational experiments are performed, with increasing complexity from A–C:
- Experiment 1A: Landslide 1 is released and interacts with the reservoir. The dam is assumed stable and may therefore not be entrained.
- Experiment 1B: Again, Landslide 1 is released and interacts with the reservoir. However, dam material is allowed to be entrained in this experiment.
- Experiment 1C: Landslide 2 is released and interacts with the dam and the reservoir. The release from the input hydrograph I1 starts after 10 s and continues for a period of 130 seconds (see Fig. 5). Dam material is allowed to be entrained at all stages of the computational experiment.
- 388 All experiments are performed at a pixel size of 10 m and for a duration of $t_{\text{term}} = 300 \text{ s}$; $\Delta t_{\text{out}} = 5 \text{ s}$.
- 389 The solid and fluid discharges are continuously recorded at the output hydrograph profile O1
- 390 downstream. The stopping function is deactivated (see Table 3).

391 **3.1.3 Results**

- 392 Animations illustrating the time evolution of the flow heights in all three experiments are en-
- 393 closed in Supp. 1A, 1B, and 1C. Note that the description and analysis of the results is based on
- 394 output time steps with lengths of $\Delta t_{\text{out}} = 5 \text{ s.}$
- 395 Fig. 6a-f illustrates the flow heights at selected points of time during Experiment 1A. The Land-
- 396 slide 1 (see Fig. 5a) impacts the backward portion of the reservoir after few seconds and generates
- 397 a water wave oblique and perpendicular to the impact that overtops the dam from t = 50-55 s
- 398 onwards. The output hydrograph O1 starts recording discharge at t = 65 s, with the peak of the
- first, major flood wave passing at t = 75 s ($Q_1 = 8.10^4$ m³ s⁻¹; Fig. 6g). We note that the discharge and
- 400 the flow height recorded by the hydrograph do not strictly follow the same pattern, as the dis-
- 401 charge relates to a profile and the flow height relates to a point (see Fig. 2). Meanwhile the impact
- 402 wave is deflected at the dam and alleviates slowly. Further overtopping events caused by multiple
- deflections of the alleviating wave occur mainly at the marginal parts of the dam at t = 110, 150,
- 404 160, 200 and 270 s, leading to smaller peaks in the output hydrograph ($Q_1 = 1.5 \cdot 10^4 \text{ m}^3 \text{ s}^{-1}$ at
- 405 t = 175 s; $Q = 2.2 \cdot 10^3 \text{ m}^3 \text{ s}^{-1}$ at t = 285 s). The solid content passing the hydrograph profile is almost
- 406 negligible as all solid landslide material remains in the reservoir basin. At t = 300 s, the impact
- 407 wave in the lake has almost alleviated (see Supp. 1A).

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

© Author(s) 2016. CC-BY 3.0 License.

408 Experiment 1B (Fig. 7) is identical to the Experiment 1A until the point when the impact wave

409 reaches the dam at t = 50 s. Entrainment of the dam starts with overtopping which sets on at the

410 lateral portions. Part of the dam is entrained during overtopping by the initial impact wave.

411 Whilst massive outflow from the reservoir occurs due to the decreased level of the dam crest, part

412 of the wave is deflected at the dam and pushed back towards the backward part of the reservoir,

413 inducing a system of secondary waves. The remaining dam material is entrained when hit by those

414 secondary waves. At t = 200 s the entire dam has disappeared and the reservoir starts emptying

415 completely. In contrast to Experiment 1A, due to the emptying process the system does not ap-

416 proach a static equilibrium after t = 300 s (see Supp. 1B).

417 The temporal patterns of the simulated entrainment and wave propagation are clearly reflected in

418 the discharge recorded at the output hydrograph O1 (see Fig. 7g). As a consequence of dam over-

419 topping, fluid discharge at O1 starts increasing at t = 65 s and reaches a first peak at t = 80 s

420 $(Q = 5.1 \cdot 10^4 \text{ m}^3)$. Solid discharge – a consequence of entrainment of the dam – starts slightly de-

421 layed, reaching a first peak roughly ten seconds later ($Q_s = 2.1 \cdot 10^4 \,\mathrm{m}^3 \,\mathrm{s}^{-1}$). A depression in both of

422 the discharge curves at t = 155-160 s indicates that the initial impact wave has passed through. A

second, larger peak of fluid discharge is simulated at t = 195 s ($Q = 1.0 \cdot 10^5$ m³ s⁻¹). It occurs syn-

424 chronously with a second, smaller peak of solid discharge (Q = 2.1·10⁴ m³ s⁻¹), indicating a high

425 degree of mixing of the solid and fluid components of the flow. The pronounced second peak of Q_1

426 is a consequence of the secondary waves in combination with the lowered level of the dam. After

427 the peak, Q slowly and unsteadily decreases (the entire dam has been entrained and the material

428 has passed through) whilst Q remains high. Due to the entrainment of the dam, the simulated dis-

charges are much higher than those computed in the Experiment 1A (see Fig. 6g).

430 In Experiment 1C (Fig. 8) Landslide 2 impacts the dam and the frontal part of the reservoir less

431 than 10 s after release. The proximal portion of the dam is entrained rapidly. The right part of the

432 landslide moves outside of the reservoir in downstream direction. Consequently, the solid dis-

charge at the output hydrograph O1 starts at t = 30 s, reaching a peak of $Q_s = 2.9 \cdot 10^4$ m³ s⁻¹ ten sec-

434 onds later (see Fig. 8g). Due to the high (75%) solid fraction of the landslide, the fluid discharge is

lower at that time ($Q_1 = 1.0 \cdot 10^4 \text{ m}^3 \text{ s}^{-1}$). The left part of the landslide interacts with the reservoir,

causing overtopping at the distal portion of the dam. This results in the increase of fluid discharge

437 recorded at O1, culminating at t = 60 s when the solid discharge is already decreasing

438 $(Q = 2.9 \cdot 10^4 \,\mathrm{m}^3 \,\mathrm{s}^{-1})$. The immediate impact of the initial landslide and the resulting impact wave

439 on O1 has largely alleviated after t = 100 s in terms of discharge, even though the total flow height

remains at H > 2 m. This means that the flow material largely remains in place at O1.

441 From t = 30 s onwards the flow released through the input hydrograph I1 (see Fig. 5b) pushes the

reservoir water towards NE. The remnants of the dam are overtopped by the resulting inhomoge-

 $143 \qquad \text{neous solid-fluid mixture (including material originating from Landslide 2), leading to substantial} \\$

further entrainment. In contrast to Experiment 1B, however, the dam is not completely entrained.

445 The wave starts influencing the discharge recorded at O1 at t = 135 s. A subsequent steady increase

of solid and fluid discharge leads to a broad peak recorded at t = 230-250 s ($Q_s = 1.3\cdot10^4$ m³ s⁻¹;

447 $Q = 3.7 \cdot 10^4 \,\mathrm{m}^3 \,\mathrm{s}^{-1}$). At that time the hydrograph indicates a well-mixed flow with $\alpha_s \approx 0.25$, com-

Published: 28 September 2016

448

449

450 451

452

453

© Author(s) 2016. CC-BY 3.0 License.

posed of fluid from the reservoir, solid-fluid mixtures from the landslide and the hydrograph release, and solid material from the dam (see Fig. 5a). The solid and fluid discharge steadily decrease after t = 250 s, reflecting the termination of the hydrograph release and the emptying of the reservoir. However, emptying of the reservoir operates much more slowly than in Experiment 1B due to the comparatively high solid content of the system which is still far away from a static equilibrium after t = 300 s (see Supp. 1C).

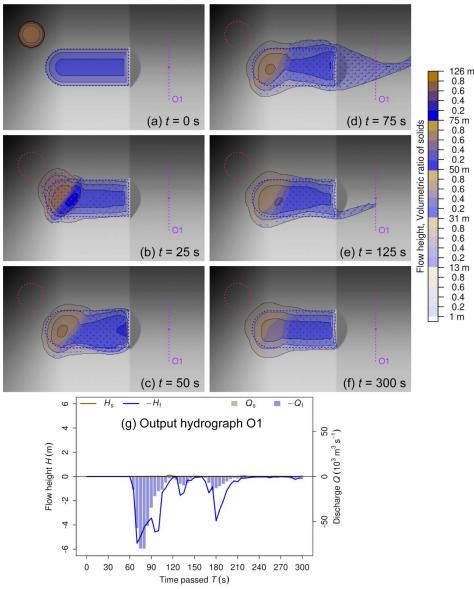


Figure 6 Key results of Experiment 1A. (a)–(f) Sequence of simulated flow heights and solid ratios at selected points of time; see Supp. 1A for animations of flow height and kinetic energy sequences; (g) output hydrograph O1 (see Fig. 5a).

454 455

Published: 28 September 2016

458 459

460

461

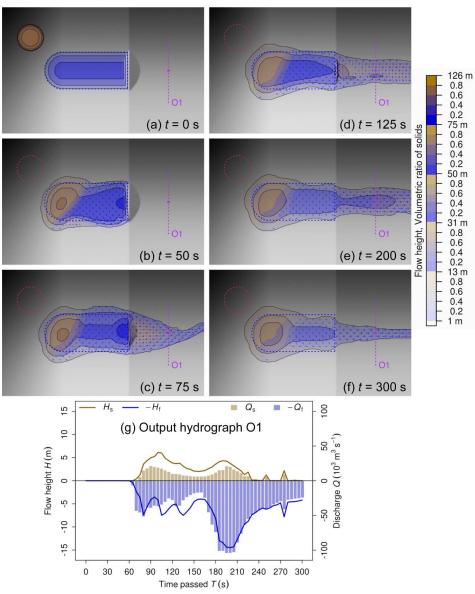


Figure 7 Key results of Experiment 1B. (a)–(f) Sequence of simulated flow heights and solid ratios at selected points of time; see Supp. 1B for animations of flow height and kinetic energy sequences; (g) output hydrograph O1 (see Fig. 5a).

Published: 28 September 2016

© Author(s) 2016. CC-BY 3.0 License.

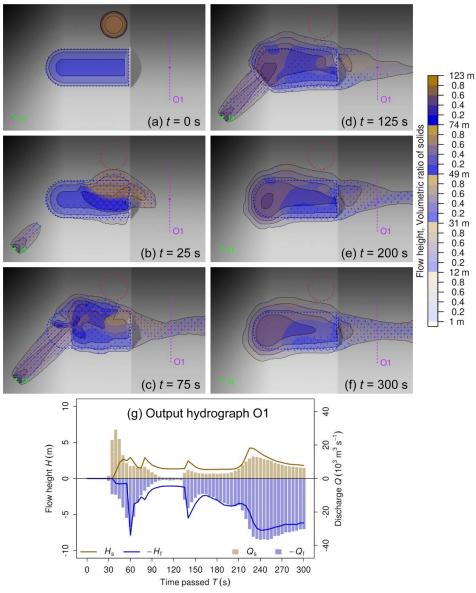


Figure 8 Key results of Experiment 1C. (a)–(f) Sequence of simulated flow heights and solid ratios at selected points of time; see Supp. 1C for animations of flow height and kinetic energy sequences; (g) output hydrograph O1 (see Fig. 5a).

462 463

464

465

466

Published: 28 September 2016

467

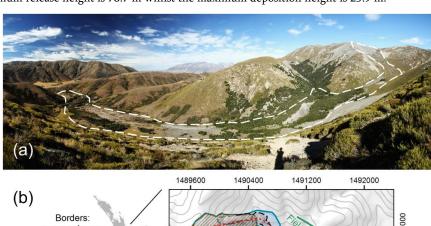
468

480

481 482

483

© Author(s) 2016. CC-BY 3.0 License.


3.2 Experiment 2: Acheron rock avalanche, New Zealand

3.2.1 Event description

The Acheron rock avalanche in Canterbury, New Zealand (Fig. 9), occurred approx. 1,100 years BP (Smith et al., 2006). It is characterized by sharp bending of the flow path, a limited degree of spreading into the lateral valleys and a high mobility (travel distance: 3,550 m; measured angle of reach: 11.62°). It was used as a test event for the computational tool r.randomwalk (Mergili et al., 2015).

We use a 10 m resolution DEM derived by stereo-matching of aerial photographs. ODA and OIA are derived from field and imagery interpretation as well as from data published by Smith et al. (2006). The OIA possibly underrepresents the real impact area as it might exclude some lateral and run-up areas of the rock avalanche not any more recognizable as such in the field. The distribution of release and deposition heights and an estimated release volume of 6.4 million m³ are deduced from the reconstruction of the pre-event topography. According to this reconstruction, the

duced from the reconstruction of the pre-event topography. According to this reconstruction, the maximum release height is 78.7 m whilst the maximum deposition height is 25.9 m.

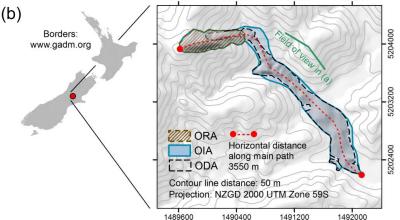


Figure 9 The Acheron rock avalanche. (a) Oblique view; the view point is indicated in (b) illustrating the location and the main elements of the rock avalanche; ORA = Observed release area.

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

© Author(s) 2016. CC-BY 3.0 License.

484 3.2.2 Modelling strategy and parameterization

- 485 Preliminary tests have shown that the simulation results of r.avaflow are potentially sensitive to 486 variations in the initial solid fraction α_{00} and the basal friction angle δ , parameters which are un-487 certain in many real-world applications. We perform two computational experiments for the Ach-
- 488 eron rock avalanche:

489 490

491

492

493

494

511

512

513

514

515

516

517

518

519

520

521

522

- 1. Experiment 2A: *III* and *DII* are computed from a set of 121 model runs. Thereby, α_{00} is varied from 0.5–0.9, and δ is varied from 15–25° (see Table 2). The variation is done in a controlled way assuming a uniform probability density function i.e. a regular grid with 11 grid points in each dimension is laid over the two-dimensional parameter space. *III* is then evaluated against the OIA, and *DII* is evaluated against the ODA. α_{00} and δ are optimized in terms of ΔL , *FoC*, *CSI*, and *D2PC* derived from H_{0} and the ODA.
- 495 2. Experiment 2B: r.avaflow simulation with the optimized values of α_{50} and δ .
- Both experiments are conducted at a pixel size of 20 m. Entrainment is not considered whilst stopping is included (see Table 3). All flow parameters except for δ are kept constant (see Table 2).

498 3.2.3 Results

- 499 Fig. 10 illustrates III and DII derived with the parameter settings shown in the Tables 2 and 3 (Ex-500 periment 2A). AUCROC is 0.830 with regard to III and 0.838 with regard to DII. In general, those 501 areas with high values of III coincide with the OIA, whilst those areas with lower values of III lie 502 close to the margins or outside of the OIA. The performance of III suffers from the motion of 503 small portions of the simulated avalanche in the wrong (N) direction and from excessive lateral 504 spreading and run-up in the upper part, observed for all tested combinations of α_{00} and δ (high 505 values of III; see Fig. 10a). However, one has to consider that the event occurred hundreds of years 506 ago and run-up may have occurred even though it is not any more recognizable in the field and 507 therefore excluded from the OIA. High values of DII are fairly constrained to those pixels within 508 the ODA (see Fig. 10b) which is most probably better defined than the OIA. Those areas with 509 lower, but non-zero values of III or DII both reach well beyond the reference areas. Particularly 510 the travel distance appears highly sensitive to the choice of α_{50} and δ .
 - We now focus on the components of the DII map and evaluate the performance of the deposition maps simulated with the various combinations of α_{0} and δ against the ODA. Fig. 11 illustrates the dependency of the model performance (defined by the parameters summarized in Table 4) on the combination of α_{0} and δ employed for a given model run. All four parameters clearly indicate that, within the ranges tested, the model results are sensitive to both δ and α_{0} . ΔL , CSI, and D2PC display their optima near to $\delta = 17^{\circ}$ as long as $\alpha_{0} \geq 0.7$. With higher fluid content, the optimum value of δ increases, arriving at 20° with $\alpha_{0} = 0.5$ (see Fig. 11a, b and d). This pattern appears plausible as far as a higher fluid content is supposed to increase the mobility of the flow, compensating for higher values of δ . However, values of $\alpha_{0} < 0.7$ are not plausible for a rock avalanche of this type. For $\alpha_{0} \geq 0.7$ FoC displays its optimum of 1.0 at $\delta \geq 21^{\circ}$, depending on α_{0} . $C \approx 1.25$ for the value of δ where the other parameters reach their optimum (see Fig. 11c). This would be fine for

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-218, 2016 Manuscript under review for journal Geosci. Model Dev. Published: 28 September 2016 © Author(s) 2016. CC-BY 3.0 License.

523 524

525

526 527

528

529

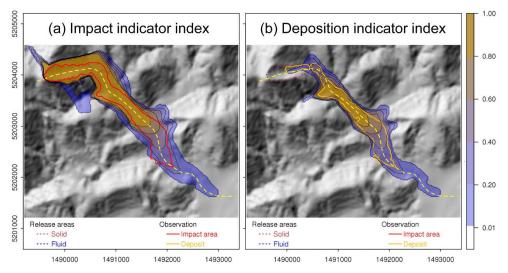


Figure 10 Results of Experiment 2A: (a) Impact indicator index III and (b) deposition indicator index DII derived for the Acheron rock avalanche.

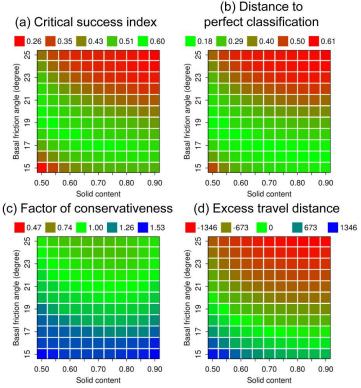


Figure 11 Validation and optimization of DII for the Acheron rock avalanche: (a) Critical success index CSI; (b) Distance to perfect classification D2PC; (c) Factor of conservativeness FoC; (d) Excess travel distance ΔL .

© Author(s) 2016. CC-BY 3.0 License.

530

531

532

533 534

535

536

537

538

540

Consequently, we consider $\delta = 17^{\circ}$ and $\alpha_{50} = 0.8$ – in addition to the parameter values given in Table 2 - useful for back-calculating the Acheron rock avalanche. The simulation is repeated with exactly this combination (Experiment 2B). Fig. 12 shows the maps of H_{Max} and H_{D} , both corresponding reasonably well to the OIA and the ODA, respectively. The slightly larger simulated than observed deposit (see Fig. 12b) corresponds to $FoC \approx 1.25$, the almost perfect correspondence of the observed and simulated termini corresponds to $\Delta L \approx 0$. This means that the fact that the result is rather conservative than non-conservative (FoC > 1) relates to lateral spreading rather than to the travel distance of the rock avalanche. Supp. 2 illustrates the time evolution of the flow height in Experiment 2B.

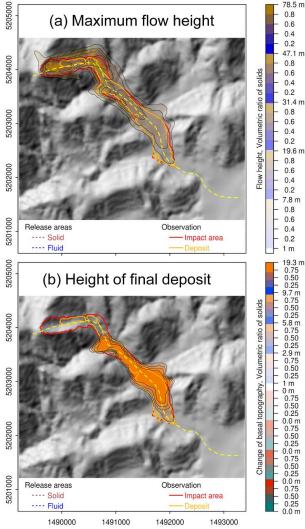


Figure 12 Results of Experiment 2B. (a) Maximum flow height H_{Max}; (b) Height of final deposit H_D.

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

541

© Author(s) 2016. CC-BY 3.0 License.

Discussion

542 The key purpose of the present article is to provide a general introduction to the key functionali-543

ties of the computational tool r.avaflow. Thereby, the simulated patterns of flow height in Exper-

544 iment 1 (see Sect. 3.1) appear plausible, and the correspondence of the observed and simulated

545 deposition areas in Experiment 2B (see Sect. 3.2) appears reasonable. Yet, these experiments can

546 neither replace model validation efforts with observed process chains or interactions, nor thor-

547 ough multi-parameter sensitivity analysis and optimization efforts, which will both be the subjects

548 of future research. Fully documented two-phase process chains with readily available pre- and

post-event DTMs are scarce. Preliminary r.avaflow results for the 2012 Santa Cruz multi-lake out-549

550 burst flood in the Cordillera Blanca, Peru (Emmer et al., 2016) are, however, promising.

551 Experiment 2 serves for the demonstration of the parameter sensitivity analysis and optimization

552 functions of r.avaflow. The outcomes may be different when changing the pixel size or any of the

553 flow parameter values (see Table 2). Making r.avaflow fit for forward predictions will require a

554 thorough multi-parameter sensitivity analysis and optimization campaign involving a large num-

ber and variety of well-documented events. Thereby we aim at obtaining guiding parameter val-555

ues – or, more appropriately, guiding parameter ranges – for mass flow processes of different types 556 and magnitudes. Approaches to perform such analyses are readily available, and some of them can 557

558 be directly coupled to r.avaflow (Fischer, 2013; Fischer et al., 2015; Aaron et al., 2016; Krenn et al.,

559 2016). However, due to the complex nature of two-phase mixture flows, r.avaflow depends on a 560

relatively large number of flow parameters, a fact that represents a particular challenge in terms of 561 the computational resources as well as in terms of visualization and interpretation of the results of

562 multi-parameter studies.

563 r.avaflow represents a modular framework, allowing for the future enhancement of its particular

components. One issue concerns the numerical implementation of the two-phase model equa-564

tions, combining topography-following coordinates with the quadratic grid of the GIS raster data 565

566 (see Sect. 2.3). As in comparable simulation tools (e.g. Christen et al., 2010a, b; Hergarten and

567 Robl, 2015), approximations are currently used for coordinate transformation in r.avaflow. In ad-

568 dition the numerical scheme employed could further be enhanced to effectively incorporate the

569 complementary functions outlined in Table 3 in a fully consistent way. Extensions of similar

570 schemes have been tested for generic examples (e.g., Zhai et al., 2015) and could serve as a valua-

571 ble basis also to implement a mechanical model for entrainment and deposition (Pudasaini and

572 Fischer, 2016). On the one hand such a model may build on existing concepts (e.g. Fraccarollo and 573 Capart, 2002; Sovilla et al., 2006; Medina et al., 2008; Armanini et al., 2009; Crosta et al., 2009;

574 Hungr and McDougall, 2009; Le and Pitman, 2009; Iverson, 2012; Pirulli and Pastor, 2012). On the

575 other hand, it requires some fundamentally new ideas with regard to deposition.

5 Conclusions and outlook

576

577 We have introduced r.avaflow, a multi-functional open source GIS application for simulating two-

578 phase mass flows, process chains and interactions. The outcomes of two computational experi-

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

© Author(s) 2016. CC-BY 3.0 License.

- 579 ments have revealed that r.avaflow (i) has the capacity to simulate complex solid-fluid process in-
- 580 teractions in a plausible way; and (ii) after the optimization of the basal friction angle and the solid
- 581 content of the release mass, reasonably reproduces the observed deposition area of a documented
- 582 rock avalanche. However, it was out of scope of the present work to validate the results obtained
- 583 for complex process interactions against observed real-world data, or even to conduct a compre-
- 584 hensive multi-parameter optimization campaign. Such efforts will be the next step towards mak-
- 585 ing r.avaflow ready for the forward prediction of possible future mass flow events. Thereby we
- 586 will attempt to establish guiding parameter values for different types of processes and process
- 587 magnitudes.
- 588 At the same time we have identified a certain potential for the future enhancement of some the
- 589 components of r.avaflow. The key challenges will consist in (i) integrating the model equations in
- 590 an up-to-date numerical scheme, allowing to directly include the complementary functions; and
- 591 (ii) replacing or complementing the empirical entrainment model with a mechanical model for
- 592 entrainment and deposition.

593 Code availability

- 594 The model codes, a user manual, the scripts used for starting the computational experiments pre-
- 595 sented in Sect. 3, and the GRASS locations with the spatial data necessary for reproducing the ex-
- 596 periments are available at http://www.avaflow.org.

597 Acknowledgements

- 598 The work was conducted as part of the international cooperation project "A GIS simulation model
- 599 for avalanche and debris flows (avaflow)" supported by the German Research Foundation (DFG,
- project number PU 386/3-1) and the Austrian Science Fund (FWF, project number I 1600-N30).
- 601 We are grateful to Matthias Benedikt and Matthias Rauter for comprehensive technical support.

602 References

- 603 Aaron, J., Hungr, O., and McDougall, S.: Development of a systematic approach to calibrate equiv-
- 604 alent fluid runout models. In: Aversa, S., Cascini, L., Picarelli, L., and Scavia, C. (eds): Landslides
- 605 and Engineered Slopes. Experience, Theory and Practice. Proc. 12th International Symposium of
- 606 Landslides, Napoli, Italy, 285–293, CRC Press, Boca Raton, London, New York, Leiden, 2016.
- 607 Armanini, A., Fraccarollo, L., and Rosatti, G.: Two-dimensional simulation of debris flows in erod-
- 608 ible channels. Comput. Geosci., 35, 993-1006, 2009.
- 609 Berger, C., McArdell, B. W., and Schlunegger, F.: Sediment transfer patterns at the Illgraben
- 610 catchment, Switzerland: Implications for the time scales of debris flow activities. Geomorphology,
- 611 125(3), 421–432, 2011.
- 612 Chen, H., Crosta, G. B., and Lee, C. F.: Erosional effects on runout of fast landslides, debris flows
- and avalanches: A numerical investigation. Geotechnique, 56, 305–322, 2006.

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

- 614 Christen, C., Bartelt, P., and Kowalski, J.: Back calculation of the In den Arelen avalanche with
- RAMMS: interpretation of model results. Ann. Glaciol., 51(54), 161–168, 2010a.
- 616 Christen, M., Kowalski, J., and Bartelt, B.: RAMMS: Numerical simulation of dense snow ava-
- lanches in three-dimensional terrain. Cold Reg. Sci. Technol., 63, 1–14, 2010b.
- 618 Courant, R., Friedrichs, K., and Lewy, H.: On the partial difference equations of mathematical
- 619 physics. IBM J., 11(2), 215–234, 1967.
- 620 Crosta, G. B., Imposimato, S., and Roddeman, D.: Numerical modelling of entrainment/deposition
- 621 in rock and debris-avalanches. Eng. Geol., 109, 135–145, 2009.
- 622 Davis, S. F.: Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comput., 9(3),
- 623 445-473, 1988.
- 624 Denlinger, R. P., and Iverson, R. M.: Granular avalanches across irregular three-dimensional ter-
- 625 rain: 1. Theory and computation. J. Geophys. Res., 109, F01014, 2004.
- 626 Emmer, A., Mergili, M., Juricová, A., Cochachin, A., and Huggel, C.: Insights from analyzing and
- 627 modelling cascading multi-lake outburst flood events in the Santa Cruz Valley (Cordillera Blanca,
- 628 Perú). Geophys. Res. Abstr., 18, 2181, 2016.
- 629 Evans, S. G., Bishop, N. F., Fidel Smoll, L., Valderrama Murillo, P., Delaney, K. B., and Oliver-
- 630 Smith, A: A re-examination of the mechanism and human impact of catastrophic mass flows origi-
- 631 nating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Engin. Geol., 108, 96-118,
- 632 2009.
- 633 Fischer, J.-T.: A novel approach to evaluate and compare computational snow avalanche simula-
- 634 tion. Nat. Haz. Earth Syst. Sci., 13, 1655–1667, 2013.
- 635 Fischer, J.-T., Kofler, A., Fellin, W., Granig, M., and Kleemayr, K.: Multivariate parameter optimi-
- 636 zation for computational snow avalanche simulation in 3d terrain. J. Glaciol., 61(229), 875-888,
- 637 2015.
- 638 Formetta, G., Capparelli, G., and Versace, P.: Evaluating performances of simplified physically
- 639 based models for landslide susceptibility. Hydrol. Earth Syst. Sci. Discuss., 12, 13217–13256, 2015.
- 640 Fraccarollo, L., and Capart, H.: Riemann wave description of erosional dam-break flows. J. Fluid
- 641 Mech., 461, 183–228, 2002.
- 642 Gamma, P.: Dfwalk Murgang-Simulationsmodell zur Gefahrenzonierung. Geographica Bernen-
- 643 sia, G66, 2000.
- 644 GRASS Development Team: Geographic Resources Analysis Support System (GRASS) Software,
- 645 Version 7.0. Open Source Geospatial Foundation, 2015. http://grass.osgeo.org, last access: 25 July
- 646 2016
- 647 Grigoriyan, S. S., Eglit, M. E., and Yakimov, Y. L.: A new formulation and solution of the problem
- 648 of the motion of a snow avalanche. Trudy Vycokogornogo Geofiziceskogo Instituta, 12, 104-113,
- 649 1967.

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

- 650 Guzzetti, F.: Landslide hazard and risk assessment. PhD Dissertation, Bonn, 2006.
- 651 Hergarten, S., and Robl, J.: Modelling rapid mass movements using the shallow water equations in
- 652 Cartesian coordinates. Nat. Hazards Earth Syst. Sci., 15(3), 671–685, 2015.
- 653 Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M.: Flow-R, a model for susceptibility
- 654 mapping of debris flows and other gravitational hazards at a regional scale. Nat. Haz. Earth Syst.
- 655 Sci., 13, 869–885, 2013.
- 656 Huggel, C., Zgraggen-Oswald, S., Haeberli, W., Kääb, A., Polkvoj, A., Galushkin, I., and Evans,
- 657 S.G.: The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordi-
- 658 nary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat. Haz.
- 659 Earth Syst. Sci., 5, 173-187, 2005.
- 660 Hungr, O., and McDougall, S.: Two numerical models for landslide dynamic analysis. Comput.
- 661 Geosci., 35(5), 978–992, 2009.
- 662 Hungr, O.: A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can.
- 663 Geotech. J., 32, 610-623, 1995.
- 664 Hungr, O., McDougall, S., and Bovis, M.: Entrainment of material by debris flows. In: Jakob, M.,
- and Hungr, O. (eds.): Debris-flow hazards and related phenomena, 135-158, Springer, Berlin, Hei-
- 666 delberg, 2005b.
- 667 Hungr, O., and Evans, S. G.: Entrainment of debris in rock avalanches: an analysis of a long run-
- out mechanism. Geol. Soc. Am. Bull., 116(9-10), 1240-1252, 2004.
- 669 Hungr, O., Corominas, J., and Eberhardt, E.: State of the Art paper: Estimating landslide motion
- 670 mechanism, travel distance and velocity. In: Hungr, O., Fell, R., Couture, R., Eberhardt, E. (eds.):
- 671 Landslide Risk Management. Proceedings of the International Conference on Landslide Risk Man-
- 672 agement, Vancouver, Canada, 31 May 3 June 2005, 129–158, 2005a.
- 673 Hutter, K., and Schneider L.: Important Aspects in the Formulation of Solid-Fluid Debris-Flow
- 674 models. Part I: Thermodynamic Implications. Continuum Mech. Thermodyn., 22(5), 363–390,
- 675 2010a.
- 676 Hutter, K., and Schneider L.: Important Aspects in the Formulation of Solid-Fluid Debris-Flow
- 677 models. Part II: Constitutive Modelling. Continuum Mech. Thermodyn., 22(5), 391–411, 2010b.
- 678 Iverson, R. M.: The physics of debris flows. Rev. Geophys., 35, 245–296, 1997.
- 679 Iverson, R. M.: Elementary theory of bed-sediment entrainment by debris flows and avalanches, J.
- 680 Geophys. Res., 117, F03006, 2012.
- 681 Iverson, R. M., and Denlinger, R. P.: Flow of variably fluidised granular masses across three-
- dimensional terrain. I: Coulomb mixture theory. J. Geophys. Res., 106, 537–552, 2001.
- 683 Kafle, J., Pokhrel, P. R., Khattri, K. B., Kattel, P., Tuladhar, B. M., and Pudasaini, S. P.: Landslide-
- 684 generated tsunami and particle transport in mountain lakes and reservoirs. Ann. Glaciol, 57(71),
- 685 232-244, 2016.

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

- 686 Kattel, P., Khattri, K. B., Pokhrel, P. R., Kafle, J., Tuladhar, B. M., and Pudasaini, S. P.: Simulating
- 687 glacial lake outburst floods with a two-phase mass flow model. Ann. Glaciol., 57(71), 349-358,
- 688 2016.
- 689 Kowalski, J., and McElwaine, J. N.: Shallow two-component gravity-driven flows with vertical
- 690 variation J. Fluid Mech., 714, 434–462, 2013.
- 691 Krenn, J., Mergili, M., Fischer, J.-T., Frattini, P., and Pudasaini, S. P.: Optimizing the parameteri-
- 692 zation of mass flow models. In: Aversa, S., Cascini, L., Picarelli, L., and Scavia, C. (eds): Landslides
- 693 and Engineered Slopes. Experience, Theory and Practice. Proc. 12th International Symposium of
- 694 Landslides, Napoli, Italy, 1195–1203, CRC Press, Boca Raton, London, New York, Leiden, 2016.
- 695 Le, L., and Pitman, E. B.: A model for granular flows over an erodible surface. SIAM J. Appl.
- 696 Math., 70, 1407–1427, 2009.
- 697 Lied, K., and Bakkehøi, S.: Empirical calculations of snow-avalanche run-out distance based on
- 698 topographic parameters. J. Glaciol., 26, 165–177, 1980.
- 699 Mangeney, A., Bouchut, F., Lajeunesse, E., Aubertin, A., Vilotte, J. P., and Pirulli, M.: On the use
- 700 of Saint Venant equations to simulate the spreading of a granular mass. J. Geophys. Res., 110,
- 701 B09103, 2005.
- 702 Mangeney, A., Vilotte, J. P., Bristeau, M. O., Perthame, B., Bouchut, F., Simeoni, C., and Yerneni,
- 703 S.: Numerical modelling of avalanches based on Saint Venant equations using a kinetic scheme. J.
- 704 Geophys. Res., Solid Earth, 108, (B11)2527, 2003.
- 705 McDougall, S., and Hungr, O.: A Model for the Analysis of Rapid Landslide Motion across Three-
- 706 Dimensional Terrain. Canadian Geotech. J., 41, 1084–1097, 2004.
- 707 McDougall, S., and Hungr, O.: Dynamic modeling of entrainment in rapid landslides. Canadian
- 708 Geotech. J., 42, 1437–1448, 2005.
- 709 Medina, V., Hürlimann, M., and Bateman, A.: Application of FLATModel, a 2D finite volume
- 710 code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5, 127-142,
- 711 2008.
- 712 Mergili, M., Schratz, K., Ostermann, A., and Fellin, W.: Physically-based modelling of granular
- 713 flows with Open Source GIS. Nat. Haz. Earth Syst. Sci., 12, 187–200, 2012.
- 714 Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-Muntau, B., Rossi, M., and Guzzetti,
- 715 F.: A strategy for GIS-based 3D slope stability modelling over large areas. Geosci. Model Dev., 7,
- 716 2969–2982, 2014.
- 717 Mergili, M., Krenn, J., and Chu, H.-J.: r.randomwalk v1, a multi-functional conceptual tool for
- mass movement routing. Geosci. Model Dev. 8, 4027–4043, 2015.
- 719 Nessyahu, H., and Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation
- 720 laws. J. Comput. Phys., 87, 408-463, 1990.

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

- 721 Neteler, M., and Mitasova, H.: Open source GIS: a GRASS GIS approach. Springer, New York,
- 722 2007.
- 723 Pastor, M., Haddard, B., Sorbino, G., Cuomo, S., and Drempetic, V.: A depth-integrated, coupled
- 724 SPH model for flow-like landslides and related phenomena. Int. J. Num. Anal. Meth. Geomech.,
- 725 33, 143–172, 2009.
- 726 Pirulli, M., and Pastor, M.: Numerical study on the entrainment of bed material into rapid land-
- 727 slides. Geotechnique, 62, 959–972, 2012.
- 728 Pitman, E. B., and Le, L.: A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc.
- 729 A363, 1573–1601, 2005.
- 730 Pitman, E. B., Nichita, C. C, Patra, A. K, Bauer, A. C., Bursik, M., and Weber, A.: A model of gran-
- 731 ular flows over an erodible surface. Discrete Contin. Dynam. Syst. B., 3, 589–599, 2003a.
- 732 Pitman, E. B., Nichita, C. C., Patra, A. K., Bauer, A., Sheridan, M., and Bursik, M.: Computing
- 733 granular avalanches and landslides. Phys. Fluids, 15(12), 3638–3646, 2003b.
- 734 Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput.
- 735 Phys., 228, 5838-5866, 2009.
- 736 Pudasaini, S. P.: A general two-phase debris flow model, J. Geophys. Res., 117, F03010, 2012.
- 737 Pudasaini, S. P.: Dynamics of submarine debris flow and tsunami. Acta Mech., 225, 2423,
- 738 doi:10.1007/s00707-014-1126-0, 2014.
- 739 Pudasaini, S. P., and Fischer, J.-T.: A new two-phase erosion-deposition model for mass flows. Ge-
- 740 ophys. Res. Abstr., 18, 4424, 2016.
- 741 Pudasaini, S. P., and Hutter, K.: Avalanche Dynamics: Dynamics of rapid flows of dense granular
- 742 avalanches. Springer, Berlin, Heidelberg, 2007.
- 743 Pudasaini, S. P., and Krautblatter, M.: A two-phase mechanical model for rock-ice avalanches. J.
- 744 Geophys. R.: Earth Surf., 119(10), 2272–2290, 2014.
- 745 Pudasaini, S. P., Wang, Y., and Hutter, K.: Modelling debris flows down general channels. Nat.
- 746 Hazards Earth Syst. Sci., 5(6), 799–819, 2005.
- 747 Pudasaini, S. P., Wang, Y., Sheng, L.-T., Hsiau, S.-S., Hutter, K., and Katzenbach, R.: Avalanching
- 748 granular flows down curved and twisted channels: Theoretical and experimental results. Phys.
- 749 Fluids, 20, 073302, 2008.
- 750 R Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statis-
- 751 tical Computing, Vienna, Austria, http://www.R-project.org, last access: 25 July 2016.
- 752 Reid, M. E., Iverson, R. M., Logan, M., Lahusen, R.G., Godt, J.W., and Griswold, J.P.: Entrain-
- 753 ment of bed sediment by debris flows: results from large-scale experiments. In: Genevois, R.,
- 754 Hamilton, D. L., and Prestininzi, A. (eds.): Proc. 5th International Conference on Debris-Flow
- 755 Hazards Mitigation: Mechanics, Prediction and Assessment, Padua, Italy (Italian Journal of Engi-
- neering Geology and Environment Book), 367-374, La Sapienza, Rome, 2011.

Manuscript under review for journal Geosci. Model Dev.

Published: 28 September 2016

- 757 Rickenmann, D., Weber, D., and Stepanov, B.: Erosion by debris flows in field and laboratory ex-
- 758 periments. In: Rickenmann, D., and and Chen, C.-L. (eds.): Proc. 3rd International Conference on
- 759 Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos, Switzerland,
- 760 883–894. Millpress, Rotterdam, 2003.
- 761 Sampl, P., and Zwinger, T.: Avalanche Simulation with SAMOS. Ann. Glaciol., 38, 393–398, 2004.
- 762 Savage, S. B., and Hutter, K.: The motion of a finite mass of granular material down a rough in-
- 763 cline. J. Fluid Mech., 199, 177–215, 1989.
- 764 Savage, S. B., and Iverson, R. M.: Surge dynamics coupled to pore-pressure evolution in debris
- 765 flows. In: Rickenmann, D., and Chen, C.-L. (eds): Proc. 3rd International Conference on Debris-
- 766 Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Davos, Switzerland, 503-514.
- 767 Millpress, Rotterdam, 2003.
- 768 Smith, G. M., Davies, T. R., McSaveney, M. J., and Bell, D. H.: The Acheron rock avalanche, Can-
- 769 terbury, New Zealand morphology and dynamics. Landslides, 3, 62-72, 2006.
- 770 Sovilla, B., Burlando, P., and Bartelt, P.: Field experiments and numerical modeling of mass en-
- trainment in snow avalanches. J. Geophys. Res., 111, F03007, 2006.
- 772 Tai, Y. C., Noelle, S., Gray, J. M. N. T., and Hutter, K.: Shock-capturing and front-tracking meth-
- ods for granular avalanches. J. Comput. Phys., 175, 269–301, 2002.
- 774 Takahashi, T.: Debris Flow. IAHR Monograph Series, Balkema, The Netherlands, 1991.
- 775 Toro, E. F.: Riemann problems and the waf method for solving the twodimensional shallow water
- 776 equations. Philos. Trans. R. Soc. London A, 338, 43–68, 1992.
- 777 Van Westen, C. J., van Asch, T. W. J., and Soeters, R.: Landslide hazard and risk zonation: why is
- 778 it still so difficult? Bull. Eng. Geol. Environ, 65(2), 176–184, 2005.
- 779 Voellmy, A.: Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73, 159–162,
- 780 212–217, 246–249, 280–285, 1955.
- 781 Wang, Y., Hutter, K., and Pudasaini, S. P.: The Savage-Hutter theory: A system of partial differen-
- 782 tial equations for avalanche flows of snow, debris, and mud. J. Appl. Math. Mech., 84, 507-527,
- 783 2004.
- 784 Wichmann, V., and Becht, M.: Modelling of Geomorphic Processes in an Alpine Catchment. In:
- 785 Proceedings of the 7th International Conference on GeoComputation, Southampton. 14 pp., 2003.
- 786 Zhai, Q., Zhang, R., and Wang, X.: A hybridized weak Galerkin finite element scheme for the
- 787 Stokes equations. Sci. China Math., 58(11), 2455–2472, 2015.