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We thank for the constructive and helpful comments for our manuscript. We will care-
fully consider all comments and these will be incorporated in our revised manuscript
accordingly. We have inserted our response to each comment. We use “R2C” for
referee #2’s comment and “A2C” for author’s response to referee #2.

R2C 1: The main problem of this manuscript is the use of time-varying parameters.
The authors themselves recognise this as a problem (see page 13, lines 11/12). If I
understand their use of time-varying parameters correctly (‘engineering’ a times series
of GPP based on independent monthly sub-time series) it actually violates Bayes the-
orem, mass conservation and model dynamics. Of course one can do such an experi-
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ment to better understand the model dynamics and identify missing or misrepresented
processes, but the authors are not taking this step and analysing the consequences of
their results with the time-varying parameters in terms of model structure and formula-
tion.

A2C 1: We understand the concern of referee about the use time varying parameters.
We found that the response of simulated GPP to weather conditions is rather similar
among months: The simulated GPP was mainly driven by the meteorology, and much
less by seasonal phenology. We then hypothesized that some important state variables
(such as LAI and carboxylation capacity) may not have a pronounced seasonal cycle
in the model. In the second experiment, we calibrated Biome-BGC to the GPP of each
month separately, as if the data for the other months did not exist. In that way neither
mass conservation nor the Bayes theorem is violated. If some of the parameters have
different optimum values when calibrated to different months of data, then this is an
indication that the relation between these parameters and important state variables that
(should) change during the season, may require improvement. The problem only arises
when we combine the results in a time series. We then merge different simulations
outputs into one. The objective was indeed to better understand the dynamics (or lack
of dynamics) of the model. We decided to avoid the term ‘time varying parameters’ in
the revision. We will mention above points in the revised manuscript.

R2C 2: Another concern is the use of GPP derived from eddy-covariance flux measure-
ments as the observations in the calibration process. Eddy-covariance towers measure
the net exchange ïňĆux, essentially NEE, and GPP is the derived from this net flux by
employing a model. So essentially, the authors calibrate the BIOME-BGC parameters
against another model, in this case the NRH model which makes its own assumptions
about the dependency of GPP on environmental conditions.

A2C 2: We would like to mention following points on using partitioned GPP instead of
NEE data in this study:
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A. Indeed in our approach, the output of the process-based simulator was validated
against the output of another model, notably the flux partitioning model. Although
this approach has been used in other studies to validate the output of process-based
simulator as well (Collalti et al., 2016, Liu et al., 2014, Yuan et al., 2014, Zhou et al.,
2016), it could lead to error propagation. We clarify that the flux partitioning model
(NRH model, Raj et al., (2016)) was tuned to the Eddy Covariance data in blocks of
10 days. Because the NHR and the relationship of respiration with temperature and
moisture were tuned for these short blocks separately, we expect that the GPP still
reflects realistic responses to environmental drivers, and does not depend much on
model assumptions.

B. Calibration of BIOME-BGC using NEE data is more challenging as NEE is the differ-
ence between fluxes caused by two processes (assimilation and respiration) We argue
that calibration of such a complex model to NEE instead of GPP may not be a good
idea, but calibration to NEE or respiration in addition to GPP is possible. However, we
limited this study to the primary productivity, because this was our primary interest. A
future study should be done to include both GPP data and ecosystem respiration data
(can also be achieved by partitioning of NEE data) in a Bayesian calibration of BIOME-
BGC. This may ensure the accuracy of all related carbon budget terms (GPP, NEE,
and respirations).

We will discuss all above points in our revised manuscript.

R2C 3: The whole Section 4.4 is not needed and does not provide any new insights, it
is obvious that a dynamical model with state variables such as BIOME-BGC then also
depends on its state variables.

A2C 3: We will remove section 4.4 in the revised manuscript.

R2C 4: So essentially the remaining part of the manuscript concerns experiment 1 and
becomes rather light-weighted as a thorough analysis of the results from experiment 1
is missing. For example, how does the posterior error covariance matrix look like and
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what consequences does this have on the parameters (identifiability) and model? How
does the posterior uncertainty compare to prior uncertainty? What is the impact of the
observations on other simulated quantities (NEE, NPP), both in terms of their mean
and uncertainty? How does the variability and the temporal autocorrelation compare
to the prior?

A2C 4:

A. In the revised manuscript, we will add a brief explanation and a plot showing the cor-
relations in the posterior parameter distributions obtained in Experiment 1. We found
a strong positive correlation between the posterior distributions of C:Nleaf (carbon and
nitrogen ratio) and FLNR (Fraction of leaf N in Rubisco) with r=0.95 (r is correlation
coefficient). This strong positive correlation is in-line with the formulation of FLNR that
shows direct proportionality with C:Nleaf (see Appendix A in Raj et al., 2014, for de-
tails). The parameters C:Nleaf and FLNR showed similar negative, but weak (> -0.5),
correlation with Wint (Canopy water interception coefficient) (r ≈ -0.4). This can be
explained by the fact that the simulated GPP is expected to vary inversely with Wint via
soil water potential and stomatal regulation and directly with FLNR and C:Nleaf (see
Section 5.1 in the manuscript, for details of BIOME-BGC internal routines). The pa-
rameter SD (effective soil depth) had similar positive, but weak (< 0.5), correlation with
FLNR and C:Nleaf (r ≈ 0.4). This can be explained by the fact that the simulated GPP
is expected to vary directly with SD (via soil water potential and stomatal regulation),
and FLNR and C:Nleaf .Two parameters of any other pair combinations did not show
any notable correlation.

B. We have already compared posterior and prior uncertainty in the section 4.2 of the
manuscript (Fig 2 and P9 L22-25).

C. As far as the impact of the observations on other simulated quantities (NEE, NPP)
is concerned, this is out of the scope of the present study. We mainly focused on the
simulated GPP and already presented a lot of results.
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D. This study modelled the temporal correlation in the residuals during the calibration
by adding the nuisance parameter ÑĎ in the likelihood function (see Section 3.3.2 in
the manuscript). We had assumed uniform prior distribution of phi between -1 and
+1. In the posterior, we obtained the range of phi from 0.56 to 0.93 with a mean at
0.75 (Fig 1g and P9 L15-18 in the manuscript). This showed the reduction in posterior
uncertainty in phi compared to prior. We will mention the choice of prior uncertainty in
phi in the revised manuscript.

R2C 5: Also the terminology used in the manuscript is somewhat confusing. Some-
times the authors refer to simulated, sometimes to predicted GPP and sometimes to
predicted flux tower GPP. In that context they also use the phrase ‘posterior flux tower
GPP’, it is not clear to what the posterior refers?

A2C 5: We apologize for this confusion. We would like to clarify that the term “posterior”
refers to the GPP obtained with posterior distribution of parameters. We agree that we
had not used the terminology consistently. In the revised manuscript, we will make the
terminology consistent as mentioned below:

A. “Flux tower GPP” - We will use this single term throughout the revised manuscript
to indicate GPP partitioned from flux tower observation of net ecosystem exchange.

B. “Posterior GPP” - We will use this single term throughout the revised manuscript to
indicate GPP simulated by BIOME-BGC at the posterior distribution of parameters.

C. “Prior GPP” - We will use this single term throughout the revised manuscript to
indicate GPP simulated by BIOME-BGC at the prior distribution of parameters.

D. “Simulated GPP” – Sometimes, We will use this term in the revised manuscript to
give the general description of GPP simulated by BIOME-BGC irrespective of GPP
simulated at prior or posterior distributions.

We will clarify this in the revised manuscript.
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