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Abstract 1 

 A regional greenhouse gas flux inversion system (REFIST v1.0) is described. This paper 2 

provides a comprehensive evaluation of REFIST for three provinces in Canada that include 3 

Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using year 2009 fossil fuel CO2 4 

CarbonTracker model results as the target, the synthetic data experiment analyses examined the 5 

impacts of the errors from the Bayesian optimisation method, inversion time span, prior flux 6 

distribution, region definition and the atmospheric transport model, as well as their interactions. 7 

The posterior fluxes were estimated by two different optimisation methods, the Markov chain 8 

Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. Increasing the 9 

number of sub-regions (unknowns) beyond “optimality” can produce unstable and unrealistic 10 

fluxes for some sub-regions, and does not yield significantly different flux estimates overall. The 11 

two optimisation methods can provide comparable, stable and realistic flux results when the 12 

transport model error is small (prior R
2
~0.8 with synthetic observations), but both methods 13 

present difficulty when the transport model error is large (prior R
2
~0.3). Stable and realistic sub-14 

regional and monthly flux estimates for the western region of AB+SK can be obtained, but not 15 

for the eastern region of ON without excluding a poorly simulated station. This indicates a real 16 

observation-based inversion will likely work for the western region for tracers with similar 17 

temporal and spatial emission characteristics to fossil fuel CO2 [e.g. wintertime CH4 in Canada]. 18 

However, improvements are needed with the current inversion setup before a real inversion is 19 

performed for the eastern region. 20 

 21 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-213, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 8 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



2 

 

1. Introduction 22 

Continental continuous measurements are useful for understanding and quantifying the 23 

regional carbon budgets for the development of emission control strategies to mitigate the 24 

impacts of global warming. Environment and Climate Change Canada (ECCC)’s Greenhouse 25 

Gas (GHG) Measurement Program currently operates a network of about 20 ground-based 26 

stations to accurately measure atmospheric mole fractions of greenhouse gases in Canada. These 27 

atmospheric mole fractions are the results of the GHG emissions (sources and sinks) coupled 28 

with the atmospheric transport and chemistry. The goal of this work is to develop an inverse 29 

modelling approach using these GHG measurements to estimate sources and sinks of GHG in the 30 

context of national inventories of anthropogenic emissions for the verification of the bottom-up 31 

inventories for specific regions in Canada.  32 

 33 

Bayesian inversion approach for atmospheric applications that incorporates prior fluxes 34 

and their associated first guess uncertainties was applied to CO2 in Enting et al. (1993, 1995) and 35 

Fan et al. (1998, 1999). Since then a large number of atmospheric GHG inversion studies 36 

spanning over the last two decades have estimated GHG sources and sinks globally including  37 

CarbonTracker CO2 (Peters et al., 2007), CarbonTracker CH4 (Bruhwiler et al., 2014) and 38 

TransCom3 (Gurney et al., 2002). Regionally there have been many inverse modelling studies 39 

focusing on Europe (e.g. Bergamaschi et al., 2005, 2010; Stohl et al., 2009; Manning et al., 2011; 40 

Rigby et al., 2011; Thompson et al., 2011; Tolk et al., 2011; Cressot et al., 2014)  and the U.S. 41 

(e.g. Zhao et al., 2009; Jeong et al., 2012; Brioude et al., 2011, 2012, 2013; Miller et al., 2013; 42 

Gerbig et al., 2003; Kort et al., 2008). Large discrepancies were found in the flux estimates and 43 

spatial distributions among studies (e.g. Vogel et al., 2012; Miller et al., 2013), reflecting the 44 
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differences in the modelling approaches (e.g. different atmospheric transports, optimization 45 

methods, etc.) and assumptions (e.g. different prior fluxes and uncertainties, domain definitions, 46 

etc.). 47 

 48 

Miller et al. (2014) compared a number of Bayesian models optimized by the cost 49 

function minimization method (CFM) and the Markov chain Monte Carlo (MCMC) method. The 50 

conclusion was that the MCMC estimation method produced the most realistic estimates and 51 

confidence intervals with known bounds. They pointed out inverse modelling approaches based 52 

on Gaussian assumptions could not incorporate such bounds and often produced unrealistic 53 

results. For example, emission grids or regions may have known physical constraints (e.g. non-54 

negative emissions). Similarly, in Brioude et al (2011), an improvement of the cost function 55 

method was introduced by using an iterative method to find the median of the posterior 56 

distribution instead of the mean. When positive (net) fluxes were expected, their method was not 57 

required to impose any non-negativity constraints on the covariance matrices to ensure positive 58 

flux results.  59 

 60 

It is important to point out that many studies applied Gaussian noise to the synthetic 61 

observations to simulate transport model errors in their sensitivity tests (Stohl et al., 2009; 62 

Gourdji et al., 2010; Thompson et al., 2011; Miller et al., 2014 and Ganesan et al., 2014). Thus, 63 

when the performance of inversion approaches was compared, the impact of the transport model 64 

error and bias on the inverse estimates was not fully examined. 65 

 66 

The sources of uncertainties in any inverse models should be studied systematically with 67 

synthetic data experiments with known fluxes before applying to real observations. This is the 68 
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motivation for this study in which we assess our inverse modelling approach using different 69 

setups and inversion domains. We characterize the sensitivity and limitations of the various 70 

components of the inverse model using a series of synthetic observation experiments that allow 71 

us to investigate the impacts associated with individual and combined errors.  72 

 73 

We evaluated our inversion setup starting with a target flux distribution that is slowly 74 

varying and positive definite (source only). A suitable choice of target is CarbonTracker fossil 75 

fuel CO2 which varies on the monthly timescale. Using CarbonTracker fossil fuel CO2 model 76 

results with monthly fluxes as the target synthetic observations, we report here on the inversion 77 

estimation errors introduced by the prior flux errors, atmospheric transport model errors, 78 

optimisation schemes, the sensitivity to the number of source regions optimised, as well as 79 

combinations of these sources of errors. This study can provide insights for regional flux 80 

estimations for tracers that have similar temporal and spatial emission characteristics to fossil fuel 81 

CO2 [e.g. wintertime CH4 in Canada with mainly anthropogenic sources (fossil fuel, agriculture 82 

and waste or landfill) and essentially no wetland emissions]. Other tracers such as N2O and SF6 83 

which are predominately contributed from the anthropogenic sources with small seasonality can 84 

potentially be used for flux inversion following the methodology developed in this study. 85 

 86 

 The term “posterior error” will be used wherever appropriate throughout the text to 87 

represent the estimation error [relative percentage difference of the posterior flux and the target 88 

flux, i.e. (posterior flux – target flux)/target flux) x 100%]. The contributions and the interaction 89 

of the different error components including the errors of the inversion procedure, prior flux and 90 

transport model are examined using sensitivity experiments. However, in the real observations-91 

based inversion, the magnitude and sign of the errors are often not known and often treated as 92 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-213, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 8 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



5 

 

part of the total estimation uncertainty. This study will show that uncertainty of the flux estimates 93 

could often be unrealistically small. The sensitivity of the estimation error (when the truth is 94 

known in synthetic experiments) and uncertainty (when the truth is not known in reality) needs to 95 

be closely examined in any inversion setup. 96 

 97 

2. Methods 98 

 In this study, the components of atmospheric inversion include 1) the synthetic 99 

observations (target), 2) a Lagrangian particle dispersion model (LPDM) run in backward 100 

(adjoint) mode, 3) assimilated meteorological fields used to drive the LPDM, 4) prior spatial 101 

distributions of emissions, 5) a method to estimate the baseline (background influence) of the 102 

observations, and 6) a statistical technique to minimize any differences between prior and target 103 

mole fractions. The observed atmospheric CO2 mole fractions were not used, instead,  synthetic 104 

observations (no land/ocean sink and no biospheric contributions) were simulated from monthly 105 

fossil fuel CO2 fluxes that were extracted from the outputs of the global model NOAA 106 

CarbonTracker release version 2011 (CT2011). Figure 1 shows a schematic of one set (III) of 107 

inversion experiments. The impacts of the components to the flux estimates as highlighted in 108 

gray boxes are the focus of this study. The details are described in the following sub-sections.  109 

 110 

2.1. Observation stations and inversion domains 111 

 Seven existing surface GHG monitoring stations were selected as a test bed for evaluating 112 

the inverse modelling approach. These seven GHG stations summarized in Table 1 are located in 113 

the three Canadian provinces of Alberta, Saskatchewan and Ontario that together account for 114 
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close to 70% of Canada’s total GHG emissions annually (ECCC, 2015). In 2013, CO2 115 

contributed 78% (and CH4 contributed 15%) of the national total GHG emissions of 726 116 

megatonnes (Mt) of CO2 equivalent (ECCC, 2015). The majority of Canada’s national total 117 

anthropogenic GHG emissions resulted from the combustion of fossil fuels at about 80% and the 118 

remaining portions were contributed from industrial processes, waste incinerations, agricultural 119 

activities and landfills.  120 

 121 

 In this study, the inversion was done separately for the western region of Alberta and 122 

Saskatchewan provinces, and the eastern region of Ontario using seven region definitions as 123 

shown in Fig. 2a-g to investigate whether there are problems or benefits in estimating the fluxes 124 

from a large number of sub-regions. 125 

 126 

2.2. Prior fluxes 127 

 Two sets of fossil fuel CO2 fluxes (CT2010 and CT2011 for year 2009) were used as prior 128 

and target (known “truth”) fluxes and summarized in Table 2, which includes the monthly and 129 

annual provincial totals. The fluxes were uniformly re-distributed to 0.2° x 0.2° from the original 130 

resolution of 1° x 1° to be folded into the emission sensitivity fields from FLEXPART (next 131 

Section). For visualization, the gridded fluxes were aggregated into sub-regions as shown in Fig. 132 

2. Year 2009 country and global totals (by fuel type) were extrapolated from the 2007 Carbon 133 

Dioxide Information Analysis Center (CDIAC, Boden et al. 2013) used for the CT2010 fossil 134 

fuel fluxes (CarbonTracker, 2010). Open-source Data Inventory for Anthropogenic CO2 135 

(ODIAC, Oda and Maksyutov, 2011) emissions are spatially distributed using many available 136 

“proxy data” that explain spatial extent of emissions according to emission types (emissions over 137 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-213, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 8 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



7 

 

land, gas flaring, aviation and marine bunker). CarbonTracker combined the ODIAC emissions 138 

with CDIAC emissions to generate CT2011 fossil fuel fluxes (Andres et al., 2011, 139 

CarbonTracker, 2011).  140 

 141 

2.3. Transport 142 

 The European Centre for Medium-range Weather Forecasts (ECMWF) operational wind 143 

fields at T799 spectral resolution were used to drive the Lagrangian particle dispersion model 144 

FLEXPART (Stohl et al., 2005). The ECMWF modelled data were retrieved with a temporal 145 

resolution of 3-h (analyses at 0000, 0600, 1200, and 1800 UTC; forecasts at 0300, 0900, 1500, 146 

and 2100 UTC) for two domains. The inner domain has a horizontal resolution of 0.2° x 0.2° on 147 

the Gaussian grid over Canada and the US (180°W to 0°E and 20°N to 90°N). The outer domain 148 

is a global grid with resolution of 1° x 1°. Both grids have 91 vertical levels. The FLEXPART 149 

model was used to simulate the 5-day transport history (retroplume) of the fossil fuel CO2 mole 150 

fractions at each station location. The model calculated the trajectories of 5,000 particles from the 151 

intake height at each station location daily at 21:00 UTC (14:00 to 16:00 LST depending on time 152 

zones) representing afternoon well-mixed condition near the surface. 153 

 154 

 FLEXPART retroplume spatial distributions were output as 30-minute averages on a 0.2° 155 

x 0.2° grid. The retroplumes were then summed up for the entire 5 days for each time point 156 

(21:00 UTC daily) of particle release. The retroplume is the residence time of the plume per grid 157 

cell divided by the air density that has units of s kg
-1

 m
3
. The footprint layer of the retroplume for 158 

FLEXPART is fixed at the standard 100 m layer adjacent to the Earth’s surface (Stohl et al., 159 

2005). The modelled fossil fuel CO2 mole fractions were constructed by multiplying the 160 
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retroplume distribution (footprint) with the monthly prior fossil fuel CO2 fluxes at 0.2° x 0.2° in 161 

kg s
-1 

and summed up over all grid cells (plus the baseline or the contribution from prior to the 5-162 

day simulation period, described below) to yield the time series of modelled fossil fuel CO2 mole 163 

fractions at the measurement station (Stohl et al., 2003, 2009; Cooper et al., 2010). The mean 164 

footprint of the seven stations for January through December 2009 is shown in Fig. 3 to reveal 165 

areas where the surface emissions can likely be constrained using the selected stations. 166 

 167 

2.4. Baseline estimations 168 

 The station-specific baseline in this context represents the influence from emissions 5 169 

days earlier and beyond. The mole fractions of the fossil fuel CO2 were sampled from the 170 

CT2011 predicted global fossil fuel CO2 field at the positions (latitude, longitude and altitude) of 171 

5000 particles at the end of the 5
th

 day backward simulation for each station released at 21:00 172 

UTC daily to obtain 5000 mole fraction values. These 5000 mole fractions were averaged to 173 

represent the mean baseline for each release time point. The station-specific baseline time series 174 

was subsequently subtracted from the synthetic observations that were sampled from CT2011 for 175 

each station. This allowed us to infer fluxes over the region of interest. Errors in the baseline 176 

estimation were treated as a part of the transport error when CT2011 mole fractions were used as 177 

the “target”.  178 

 179 

2.5. Two Bayesian inversion methods 180 

 In addition to the more common analytical-based CFM approach, we include a 181 

simulation-based method for flux estimations, MCMC. Sensitivity analyses of the two inversion 182 
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methods in terms of percentage differences between the posterior estimates and the target fossil 183 

fuel CO2 fluxes are assessed. It is not the intention to compare which one of these two methods is 184 

more superior to the other, but to evaluate the sensitivity of the results using different inversion 185 

methodologies and assumptions.  186 

 187 

 Note that matrices and vectors are in bold and italic throughout this paper, whereas scalar 188 

quantities are in italic font. Inversion was done separately for the western and eastern domains, 189 

and separately for every three months of 2009 that is January-March, April-June, July-September 190 

and October-December. 191 

 192 

 The prior gridded fluxes of fossil fuel CO2, {𝑥𝑔,𝑝,𝑡} were re-distributed from the original 193 

1º x 1º uniformly to the same spatial resolution of 0.2º x 0.2º as the emission source sensitivities 194 

{𝑀𝑔,𝑝,𝑡,𝑠} (or footprints), where the subscripts are, g for a given grid cell in sub-region p, station s 195 

and time t. 𝑥𝑔,𝑝,𝑡 is the gridded emission field over sub-region p at time t. The footprints vary in 196 

space, time and stations. The modelled mole fractions in our experiments were limited to 21:00 197 

UTC daily (14:00 to 16:00 LST depending on time zones) in January through December for 2009 198 

to avoid temporal correlation and night time processes. Two regions of interest are the two 199 

neighboring provinces of Alberta and Saskatchewan (western region), and separately, the 200 

province of Ontario (eastern region) in Canada. Any remaining contributions from outside of the 201 

inversion region but within the 5-day integration period were subtracted from the synthetic 202 

observations for each station in addition to the station-specific baseline time series.  203 

 204 
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2.5.1. Simulation-based Markov-Chain Monte Carlo (MCMC) Method 205 

 In this method, a simple linear regression model (likelihood function) is used. Linear 206 

scaling factors 𝜆𝑝 for 𝑥𝑔,𝑝,𝑡 are estimated to fit the synthetic observations 𝑦𝑡,𝑠. One of the major 207 

differences of this flux estimation method compared to CFM (Section 2.5.2) is that a 208 

regularization term is not used (the second term representing the prior flux constraint). This 209 

avoids the dependent interaction of the two terms that both contain 𝜆 in the minimization. The 210 

regression model is shown below: 211 

 212 

 𝑦𝑡,𝑠 = ∑ 𝜆𝑝

𝑝∈𝑅𝑇

∑ 𝑀𝑔,𝑝,𝑡,𝑠𝑥𝑔,𝑝,𝑡 + 𝜖𝑡,𝑠

𝑔∈𝐺

  (1) 

 213 

for station s, at time t, scaling factors 𝜆𝑝 for sub-region p to be estimated, 𝑀𝑔,𝑝,𝑡,𝑠 is the station-214 

specific footprint to be summed up over the sub-region p for each footprint grid cell g with G 215 

being the total number of grid cells of sub-region p. 𝜖𝑡,𝑠 are the residuals to be minimized. For a 216 

given time t and station s, summing contributions from all sub-regions to the total number of RT 217 

sub-regions gives the total modelled mole fraction. Let 𝐾𝑝,𝑡,𝑠 =  ∑ 𝑀𝑔,𝑝,𝑡,𝑠𝑥𝑔,𝑝,𝑡𝑔∈𝐺  be the 218 

contribution from sub-region p, for station s at time t. We obtain: 219 

 220 

 𝑦𝑡,𝑠 = ∑ 𝜆𝑝

𝑝∈𝑅𝑇

𝐾𝑝,𝑡,𝑠 + 𝜖𝑡,𝑠  (2) 

 221 

 In the MCMC simulation method (Appendix), same prior error (𝜎𝑝𝑟𝑖𝑜𝑟)2 and prior model-222 

observations mismatch (𝜎𝑒)2 variances are used as in the CFM method, but the posterior 223 
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estimates are calculated by drawing samples from the joint distributions of the log likelihood and 224 

the assumed distributions of prior parameters 𝝀𝑝𝑟𝑖𝑜𝑟 (briefly described below) instead of solving 225 

for the parameters as in the analytical cost function method. 226 

 227 

 To implement the regression model as shown in Eq (1), we used the following Bayesian 228 

inversion settings for the western region and the eastern region. Assume 𝜆𝑝 follows normal 229 

distribution with a mean of 1 and a variance of 1 for (𝜎𝑝𝑟𝑖𝑜𝑟)2, which corresponds to a 100% 230 

allowable error. In the MCMC method, (𝜎𝑒)2 is assumed to follow inverse-gamma distribution, 231 

the mean and variance for (𝜎𝑒)2 are prescribed by setting the shape and scale parameters to 2.1 232 

and 1.1 respectively (Appendix). This gives a mean of 1 and a variance of 10.  233 

 234 

 Sensitivity analysis was performed in the synthetic data experiments, in which the shape 235 

and scale parameters were changed to 2.001 and 1.001 respectively (not shown). This gives a 236 

mean of 1 and a variance of 1000 for the (𝜎𝑒)2, which correspond to conjugate non-informative 237 

priors. Using non-informative priors allows MCMC to sample parameter estimates from a wide 238 

parameter space (Appendix). However, there were no significant differences in the results 239 

compared to the standard setting of 2.1 and 1.1 for the shape and scale parameters respectively 240 

that were used throughout this study. 241 

 242 

 In our MCMC method, a random-walk Metropolis algorithm (Appendix) (Roberts, 1996; 243 

Liu, 2001) was used to obtain posterior scaling factor estimates for the sub-regions. The 𝜆𝑝 was 244 

initialized to 1, and each three-monthly inversion had 110,000 iterations (first 10,000 discarded 245 

as burn-in samples), thinning rate was set to every 10
th

 (every 10
th

 drawn vector of scaling factor 246 
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estimates is kept), the number of simulations saved for subsequent inferences was equal to 10,000 247 

for three months. Although the use of mean posterior estimates should be avoided (Tarantola, 248 

2005), it is necessary here to compare the results using MCMC to those using the CFM method. 249 

Subsequently, the monthly posterior provincial total flux estimates were calculated using the 250 

mean of 10,000 scaling factors simulated by the MCMC procedure multiplied by the prior fluxes 251 

as shown in Eq. (3). Same scaling factors of every three months would be used to calculate the 252 

posterior monthly fluxes. 253 

 254 

 

𝑆𝐴𝐵 = ∑ 𝜆𝑝,𝐴𝐵𝑥𝑝,𝐴𝐵
𝑅𝐴𝐵
𝑝=1

𝑆𝑆𝐾 = ∑ 𝜆𝑝,𝑆𝐾𝑥𝑝,𝑆𝐾
𝑅𝑆𝐾
𝑝=1

𝑆𝑂𝑁 = ∑ 𝜆𝑝,𝑂𝑁𝑥𝑝,𝑂𝑁
𝑅𝑂𝑁
𝑝=1

  (3) 

 255 

where 𝑅𝐴𝐵, 𝑅𝑆𝐾 and 𝑅𝑂𝑁 are the total number of sub-regions for Alberta (AB), Saskatchewan 256 

(SK), and Ontario (ON) respectively and 𝑆𝐴𝐵, 𝑆𝑆𝐾 and 𝑆𝑂𝑁 are the monthly posterior provincial 257 

total fossil fuel CO2 fluxes. Note that 𝜆𝑝,𝐴𝐵, 𝜆𝑝,𝑆𝐾 and  𝜆𝑝,𝑂𝑁 are the mean scaling factors of the 258 

sub-regions within the respective province simulated by the MCMC method for the three months 259 

inversion period. 𝑥𝑝,𝐴𝐵, 𝑥𝑝,𝑆𝐾 and 𝑥𝑝,𝑂𝑁 are the monthly prior fluxes for sub-region p in the 260 

respective province.  261 

 262 

 With large number of simulated scaling factors, various statistics on the posterior 263 

provincial fluxes can be calculated such as the percentiles, standard deviations and 95% 264 

confidence intervals.  265 

 266 
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2.5.2. Cost Function Minimization (CFM) Method 267 

 The optimal posterior estimates of scaling factors are obtained by minimizing the cost 268 

function 𝐽 (Gerbig et al., 2003; Lin et al., 2004),  269 

 270 

 𝐽(𝝀) = (𝒚 − 𝑲𝝀)𝑻𝑫𝜖
−𝟏(𝒚 − 𝑲𝝀) + (𝝀 − 𝝀𝑝𝑟𝑖𝑜𝑟)𝑻𝑫𝑝𝑟𝑖𝑜𝑟

−𝟏  (𝝀 − 𝝀𝑝𝑟𝑖𝑜𝑟) (4) 

 271 

where 𝒚 (N x 1) is the vector of observations (synthetic observations). 𝝀 (RT x 1) is the vector of 272 

the posterior scaling factors to be estimated, N = number of time points times number of stations, 273 

RT = number of sub-regions in the inversion domain, 𝝀𝑝𝑟𝑖𝑜𝑟 is the vector of the prior scaling 274 

factors which are all initialized to 1 for all sub-regions and 𝑲 (N x RT) is the matrix of 275 

contributions from different sub-regions. 𝑲 is the product of two matrices, 𝑴 and 𝒙. 𝑴 is the 276 

modelled transport (or footprints in our case) and 𝒙 is the spatial distribution of the surface 277 

emission fluxes. A linear regularization term has been added which is the second term on the 278 

right hand side of Eq. (4), a typical setup for undetermined (under-constrained due to lack of 279 

observations) problems such as atmospheric flux inversion. The LU decomposition procedure 280 

was used to compute  𝝀 according to the expression below (Gerbig et al., 2003; Lin et al., 2004).  281 

 282 

 𝝀 = (𝑲𝑻𝑫𝜖
−𝟏𝑲 + 𝑫𝑝𝑟𝑖𝑜𝑟

−𝟏 )
−𝟏

(𝑲𝑻𝑫𝜖
−𝟏𝒚 + 𝑫𝑝𝑟𝑖𝑜𝑟

−𝟏 𝝀𝑝𝑟𝑖𝑜𝑟) (5) 

 283 

 The posterior error variance-covariance, 𝚺𝑝𝑜𝑠𝑡, for the estimates of λ is calculated 284 

according to: 285 

 286 
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 𝚺𝑝𝑜𝑠𝑡 = (𝑲𝑻𝑫𝜖
−𝟏𝑲 + 𝑫𝑝𝑟𝑖𝑜𝑟

−𝟏 )
−𝟏

 (6) 

 287 

 The error covariance matrices are not known, consequently 𝑫𝜖 and 𝑫𝑝𝑟𝑖𝑜𝑟 are assumed to 288 

be diagonal matrices following e.g. Gerbig et al., 2003; Stohl et al., 2009.  𝑫𝜖 is the prior model-289 

observation error diagonal matrix with diagonal elements  (𝜎𝑒)2. Similarly, 𝑫𝑝𝑟𝑖𝑜𝑟 is the prior 290 

scaling factor diagonal matrix where the diagonal elements are (𝜎𝑝𝑟𝑖𝑜𝑟)
2
 and zeros everywhere 291 

else. For further simplification, same individual (𝜎𝑒)2 scalar element in percentage is assigned to 292 

all measurement stations at all time points. Similarly, same individual (𝜎𝑝𝑟𝑖𝑜𝑟)
2
 in percentage is 293 

assigned to all sub-regions.  294 

 295 

 Note that the symbols of the individual elements of 𝑦𝑡,𝑠, 𝜆𝑝, 𝑀𝑔,𝑝,𝑡,𝑠, 𝑥𝑔,𝑝,𝑡, 𝐾𝑝,𝑡,𝑠 for the 296 

MCMC method presented in Eqs. (1) and (2) are consistent with the matrix notations used in Eq. 297 

(4) 𝒚, 𝝀, 𝑴, 𝒙, 𝑲 for the CFM method.  298 

 299 

2.6. Synthetic Data Experiments 300 

 To have a measure of the ability and limitations of the proposed inversion approaches, 301 

four components were examined in this study: 1) the magnitude and spatial distribution of the 302 

prior fluxes, 2) modelled transport, 3) number of sub-regions (parameters to estimate) and 4) 303 

inversion methods to estimate the parameters (scaling factors) for the purpose of assessing the 304 

sensitivity introduced by each component and their interactions.  305 

 306 
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 We conducted a series of inversion experiments presented in Table 3 using different 307 

combinations of the four components mentioned previously. The experiments progress with 308 

increasing deviations from the target fluxes and target transport. E1-E21 and E22-E42 correspond 309 

to the two estimation methods of MCMC and CFM, respectively. The results of the experiments 310 

should reveal whether the provincial annual and three-monthly total fossil fuel CO2 fluxes and 311 

the spatial distributions could be retrieved by the inversion approaches with an acceptable degree 312 

of statistical confidence. 313 

 314 

 Table 3a shows the first (I) set of experiments E1-E7 and E22-E28 used the CT2010 315 

fossil fuel CO2 fluxes to simulate the prior mole fractions for each station. The target modelled 316 

mole fractions were simulated using CT2011 fossil fuel CO2 fluxes. The same FLEXPART 317 

transport was used to simulate the prior and target mole fractions. In this set of experiments, 318 

small flux error was introduced (only within the provincial inversion domains, Table 2), but 319 

modelled transport remained perfect. This spatial difference between the prior and target is 320 

sometimes referred as the “aggregation error”. 321 

 322 

 Table 3b shows the second set (II), E8-E14 and E29-E35 that were used to assess the 323 

impact of transport model error alone on the estimated fluxes. This is achieved by simulating the 324 

prior mole fractions in FLEXPART and sampling the target mole fractions (synthetic 325 

observations) modelled by CT2011 (using the transport model TM5) with the baseline mole 326 

fractions subtracted (see Section 2.4). Both FLEXPART and CarbonTracker used the same set of 327 

CT2011 monthly fossil fuel CO2 fluxes.  328 

 329 
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 Table 3c shows the third (III) set, E15-E21 and E36-E42 that were used to assess the 330 

combined impacts of transport model and flux errors on the estimated fluxes. This is achieved by 331 

simulating the prior mole fractions in FLEXPART using the CT2010 monthly fossil fuel CO2  332 

fluxes and sampling the target mole fractions (synthetic observations) from CT2011 which uses 333 

the CT2011 monthly fossil fuel CO2 fluxes. This set of experiments represents more realistic 334 

scenarios in which transport and flux errors exist and the experiments can be considered similar 335 

to inversions using real observations (e.g. wintertime CH4), but possibly with smaller errors. Note 336 

that the transport model error includes errors in the simulated synoptic variability by the 337 

FLEXPART model and in the baseline mole fractions sampled from the CT2011 using the 5
th

 day 338 

end-points of the FLEXPART particle locations.  339 

 340 

3. Model results 341 

 FLEXPART model results were compared with the simulated fossil fuel CO2 mole 342 

fractions by CarbonTracker from January through December in 2009 as shown in Fig. 4, an 343 

example of one inversion experiment. This example was chosen as an example because it showed 344 

the worst case scenario in which prior flux and transport model errors existed. Fig. 4a and b 345 

shows the inversion results using all thirty-seven and forty-nine sub-regions (census divisions) 346 

for AB+SK and ON respectively. Note that stations that are closer to local emission sources show 347 

a larger offset between the synoptic and baseline contributions, e.g. Downsview (DOW) station 348 

in Ontario.  349 

 350 

 The annual estimation errors for the provinces of AB and SK combined (western region) 351 

and ON (eastern region) are shown in Fig. 5a and b respectively. Positive (negative) biases are 352 
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shown as symbols above (below) the horizontal line at zero. Experiments all used 30% for (𝜎𝑒)2 353 

and 100% for (𝜎𝑝𝑟𝑖𝑜𝑟)
2
 in the CFM method, with the number of sub-regions for the AB+SK 354 

increasing from 2, 4, 7, 11, 19, 27, 37 respectively, and ON from 1, 2, 4, 6, 12, 23, 49 355 

respectively. The 30% prior model-data mismatch (𝜎𝑒)2 is comparable to other real observation-356 

based regional inversion studies, e.g. Gerbig et al. (2003), Zhao et al. (2009), etc. The typical 357 

emission inventory uncertainty can range from a few to greater than a hundred percent which 358 

depends on the source types and regions (e.g. ECCC, 2015). It appears reasonable to set 359 

(𝜎𝑝𝑟𝑖𝑜𝑟)
2
 to 100% (or greater since all these emission uncertainties are poorly known) as in this 360 

study. These prior uncertainty settings of 30% for (𝜎𝑒)2 and 100% for (𝜎𝑝𝑟𝑖𝑜𝑟)
2
 were used in all 361 

the remaining sensitivity experiments. 362 

 363 

3.1. Set (I): prior flux error 364 

 Gradually increasing the number of sub-regions, the first (I) set of experiments E1-E7 365 

(MCMC method) and E22-E28 (CFM method) represents conditions in which there is no 366 

transport model error, but only flux error exists in the inversion domain. The prior flux is fossil 367 

fuel CO2 from CT2010 and the target flux is fossil fuel CO2 from CT2011, both transported by 368 

FLEXPART. There are systematic negative errors (red stars in Fig. 5) of the annual total flux 369 

estimates using the MCMC method, but they are small compared to the annual relative 370 

percentage differences between CT2010 (prior) and CT2011 (target) of -25% and +12% for 371 

AB+SK and ON respectively as presented in Table 2.  For instance, using MCMC, the annual 372 

total estimation errors have converged to -4% and -1% for AB+SK and ON respectively for 11 373 

and 4 sub-regions beyond which no significant improvement can be gained. This represent a 374 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-213, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 8 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



18 

 

posterior flux improvement of ~80% for AB+SK and ~90% for ON from the prior flux. An 375 

indication of substantial flux improvement can be achieved when there is no transport model 376 

error. Note that the estimation error does not change as the number of sub-regions increases using 377 

MCMC. The errors are stable beyond 11 and 4 sub-regions for AB+SK and ON respectively. 378 

This suggests that there is a limit to the number of sub-regions (or unknowns) that the inverse 379 

model can optimise for a given setup and constraining observations available, and increasing the 380 

number of sub-regions does not necessarily improve the flux estimates. In fact, three unrealistic 381 

negative sub-regions appear for some months for AB+SK when there are 27 sub-regions to be 382 

estimated as shown at the bottom of Fig 5a. The appearance of unrealistic flux estimates suggests 383 

the optimization is overfitting the data given the large degrees of freedoms. Synthetic data 384 

inversion like the present study is useful for evaluating the inversion setup to ensure that the 385 

(near) optimal number of unknowns that can be realistically solved for when real observations are 386 

used.  387 

 388 

 Unlike the MCMC method, estimation errors tend to become more positive as the number 389 

of sub-regions increases in the western and eastern regions using the CFM method. The annual 390 

errors change from negative to positive by increasing from 1 sub-region to 49 sub-regions in ON, 391 

similarly for AB+SK. It is interesting to note when the 2, 4, 7 sub-regions for AB+SK and 1, 2 392 

sub-regions for ON is used, the results of CFM and MCMC are very similar. This indicates that 393 

estimating many parameters in high-dimensional space is problematic for CFM. Increasingly 394 

large estimation errors appear when high-dimensional parameter space is involved in the 395 

inversion. Bielger et al. (2011) noted that parameter-estimation problem using minimization 396 

method in particular becomes extremely challenging even with relative few parameters to 397 

estimate.  398 
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  399 

3.2. Set (II): transport error 400 

 The second (II) set of experiments E8-E14 (MCMC) and E29-E35 (CFM) represents 401 

conditions with no flux error, but there is transport model error including the short term (5 days) 402 

transport error and the baseline mole fractions (5 days previous) using the FLEXPART model. 403 

The target in this set of experiments is the CT2011 model results at the 7 stations. Both 404 

FLEXPART and CarbonTracker models used CT2011 fossil fuel CO2 emissions as the prior 405 

fluxes. 406 

 407 

 The annual flux errors are positively biased using either MCMC or CFM method shown 408 

as blue circles in Fig. 5a and b for AB+SK (western region) and ON (eastern region) respectively.  409 

The province of ON has relatively large error compared to the western region. In contrast to the 410 

flux error case for ON, the annual flux error does not change linearly as the number of sub-411 

regions increases using either of the two inversion methods. In fact, the error peaks at 4 sub-412 

regions.  413 

 414 

 It is important to note the following results. Using the MCMC method with 37 sub-415 

regions (E14) for AB+SK and 23 sub-regions (E13) for ON, the annual flux errors are the 416 

smallest in this set of experiments with only 1% and 6% for AB+SK and ON respectively. The 417 

associated standard deviations of the monthly errors (error bars in Figure 5) are relatively small 418 

which means that the solution of the flux estimates is relatively stable on the sub-annual time 419 

scale. Small errors may appear to be a desirable result, but the flux estimates of the individual 420 

sub-regions are unstable and have large positive and negative errors that offset each other. The 421 
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numbers of negative unrealistic sub-regions tend to increase with the number of sub-regions in 422 

the inversion as shown in brackets at the bottom of Figure 5.  423 

 424 

 In the CFM results, the annual flux error using the largest number of sub-regions (E35) 425 

are 14% and 37% for AB+SK and ON respectively. It is consistent with the MCMC results that 426 

the standard deviations of the monthly errors using the most number of sub-regions are relatively 427 

small except for AB+SK in which there is no significant difference in the annual errors using 428 

different number of sub-regions. Again, the numbers of negative unrealistic sub-regions are the 429 

largest when the annual flux errors appear to be the smallest due to compensating sub-regional 430 

errors. This is possibly due to the optimization schemes overfitting the synthetic observations as 431 

the possible parameter space expands with the number of sub-regions as noted above. 432 

 433 

 In summary, when transport model error exists, the magnitude and variability of errors 434 

could become large regardless of which optimisation method is used compared to the previous set 435 

of experiments in which only flux error exists. This suggests that the accuracy of the posterior 436 

fluxes is more dependent on the modelled transport than on the prior fluxes in the experiments we 437 

performed. Therefore, the relative importance of this effect highlights the need of using the best 438 

possible transport model(s) for inversions to assess uncertainties. In absolute terms, the annual 439 

flux errors are relatively small using the MCMC method in comparison with the CFM method, 440 

but both estimation methods present difficulty in providing stable and realistic sub-annual and 441 

sub-regional flux results when transport model error is large. 442 

 443 
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3.3. Set (III): prior flux and transport combined error 444 

 The third (III) set of experiments E15-E21 (MCMC) and E36-E42 (CFM) represents 445 

conditions in which both flux and transport model errors exist. In this set of experiments which 446 

can be considered to be similar to using real observations as constraint, it is likely the flux and 447 

transport errors are in our experiments are smaller than the real data inversions. Similar to the 448 

second (II) set of experiments, the annual errors do not systematically decrease as the number of 449 

sub-regions increases in the MCMC method in the AB+SK and ON regions. As shown in Fig. 5b 450 

(green squares), the large variability with the number of sub-regions and the similarity of the non-451 

linear pattern compared to set (II) indicate that the estimation errors are dominated by the 452 

transport model error for the ON region. Our results show that transport model error confounds 453 

inversion results and increases estimation errors regardless of which optimisation method is used. 454 

The cancelling effects (compensating errors) of the prior flux and transport model errors are 455 

evident in Figure 5. Similar to the previous set of experiments, the annual flux estimates using 456 

different number of sub-regions are fairly stable for AB+SK region but again, the results for the 457 

ON region are highly unstable. 458 

 459 

 The correlation plots in Figure 6 can help explain the inversion results. In the prior 460 

results, DOW station has a slope of 0.4 while Egbert has a slope of 1.1. The optimisation would 461 

try to increase the fluxes from some regions (possibly by a factor of 2 or more to bring the slope 462 

closer to 1) to improve the slope at DOW, while at the same time decrease the fluxes from some 463 

regions to improve the slope at EGB. The close proximity of EGB and DOW (~100km apart) and 464 

opposing flux requirement have resulted in the unstable posterior solution, giving large increase 465 

of fluxes (~100% or larger when there are many sub-regions) to satisfy DOW and simultaneously 466 
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large decrease of fluxes or even negative fluxes in some other regions to satisfy nearby EGB. By 467 

comparison, the western region of AB+SK has prior slopes of less than one at all four sites, 468 

resulting in more stable inversion estimates. 469 

 470 

 Another challenge in the commonly used approach to evaluate inversion results can be 471 

demonstrated by Figure 6a and b. It shows the linear regression analysis using all months of 2009 472 

that plot prior and posterior model results against the synthetic fossil fuel CO2 observations using 473 

MCMC with 37 and 49 sub-regions for AB+SK and ON respectively. The regression analyses of 474 

the prior and posterior CO2 mole fraction results are shown in blue and red respectively. The 475 

improvement of the fit in terms of R
2
 and the slope of the regression is the most substantial for 476 

the DOW station located in ON, which has the largest synoptic variability among all seven 477 

stations. Note that stations LLB in AB and DOW in ON have the lowest prior R
2
. All the 478 

inversion cases resulted in better slope and R
2
 due to data fitting, but the estimation error as 479 

presented earlier could be larger than the percentage difference of the prior and target fluxes 480 

(Table 2) which means the flux estimates are not necessarily better than the prior fluxes even 481 

with larger R
2
. Thus, improvements in R

2
 in the posterior mole fractions are not necessarily a 482 

validation of the inversion flux results. It is important to recognize that large R
2
 is not necessarily 483 

a measure of stable and realistic flux estimates.  484 

 485 

 The stability of the posterior flux estimates is evaluated on the monthly and annual time 486 

scales. The monthly posterior fluxes and the probability distributions of the annual posterior 487 

fluxes are shown in Fig. 7 for the three provinces separately. The priors and targets are shown in 488 

gray and green respectively for reference. This figure summarizes the results using experiments 489 

E18 and E17 as an example in which 11 and 4 sub-regions were used respectively for AB+SK 490 
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and ON without any unrealistic negative fluxes on both the annual and monthly time scales. 491 

These results are compared to experiment E21 in which all 37 and 49 sub-regions for AB+SK 492 

and ON were used respectively. Monthly flux estimates show large intra-annual variability 493 

compared to the target (green) fluxes for all three provinces. As shown in Fig. 7a, the 5
th

 and 95
th

 494 

percentiles (defined here as posterior uncertainties) from the 10,000 ensemble estimates always 495 

overlap using 11 and 37 sub-regions for AB+SK on the monthly time scale, and statistical 496 

distributions for the annual estimates on the right are almost completely overlap for AB. 497 

However, there is a large positive bias for ON as shown in Fig. 7c using the 4 sub-regions setup. 498 

     499 

 An important feature in Fig. 7 is that the monthly posterior uncertainties (colored bands) 500 

could be underestimated as the uncertainties do not always cover the target fluxes, particularly for 501 

ON region. The relatively large seasonal variation of the inversion results compared to the target 502 

fluxes confirms the results are not realistic. Therefore, it is clear that inversion results are strongly 503 

dependent on the inversion model setup, transport variations with time (different months and 504 

seasons) and inversion domains (west vs east), etc. This could be a part of the reason for the 505 

widely different posterior flux estimates from different inversion studies using different 506 

transports and setups when the limitations of the inverse models have not been fully 507 

characterized.    508 

 509 

 We will continue to investigate how the posterior uncertainty can be improved (more 510 

realistic) in our next set of synthetic data experiments examining the impact of different LPDM 511 

transport models, different background baseline mole-fraction estimation, observation station 512 

selections, and so on.  513 

 514 
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4. Anthropogenic CH4 priors and non-negative constraint 515 

 In this analysis, we examined the sensitivity of inversion results to the prior fluxes. In this 516 

case, the CT2010 fossil fuel CO2 fluxes were not used as in Set I (flux error only). Instead 50% 517 

of the AB and SK provincial totals calculated from the target CT2011 fossil fuel CO2 were used 518 

to scale the spatial distributions of the anthropogenic (fossil + agriculture + wastes) optimized 519 

CH4 fluxes provided from the CarbonTracker Methane (CT-CH4) (Bruhwiler et al., 2014) to give 520 

a prior with larger difference from the target in terms of both spatial distribution and magnitude. 521 

This means that the posterior flux error needs to be less than 50% (prior flux error), if 522 

improvement can be obtained. Focusing on the AB+SK region which has shown robust results 523 

using different setups and optimisation procedures so far, Fig. 8 shows the 2009 annual mean 524 

spatial distributions of fluxes at 1°x1° over AB+SK that include, (8a) target CT2011 fossil fuel 525 

CO2, (8b) CT2010 fossil fuel CO2, (8c) CT-CH4 anthropogenic CH4, and (8d) CT-CH4 526 

anthropogenic CH4 scaled to 50% of the CT2011 fossil fuel CO2 provincial totals as the new 527 

prior.  528 

 529 

 Using the flux error only setup (no transport error), Fig. 9 shows the estimation errors 530 

using different number of sub-regions with a normal probability density function (PDF), a 531 

truncated normal PDF and lognormal PDF for the simulation of the prior scaling factors. The 532 

number of negative sub-regions and the number of sub-regions used in the inversions are shown 533 

at the bottom of the figure. In the truncated normal and lognormal PDF setups, only positive 534 

scaling factors are sampled from the joint PDFs by MCMC.  535 

 536 
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 The results are consistent with using the CT2010 fossil fuel CO2 as the prior with 25% 537 

error for this region. Posterior errors are all less than 50% which means that improvement could 538 

be obtained using any number of sub-regions and different prior PDFs. However, in the normal 539 

PDF setup, negative flux sub-regions appeared when more than 7 sub-regions were used and the 540 

number increased as the number of sub-regions increased. Increasing the number of sub-regions 541 

could worsen the results as shown in the 11, 19, 27 and 37 sub-regions setups. Therefore, greater 542 

than 80% [(-50%- (-7%))/-50% x 100%] of prior flux error reduction can be obtained using only 543 

4 sub-regions without introducing unrealistic fluxes. This is almost identical to the result using 544 

CT2010 fossil fuel CO2 as the prior. Although unrealistic negative flux sub-regions could be 545 

suppressed in the truncated normal and lognormal PDF setups, the results were not significantly 546 

different from using the normal PDF. Errors tend to be more positive using either the truncated 547 

normal or the lognormal PDF than those using the normal PDF setup which means that there 548 

could be additional biases as a result of the non-negative constraint. 549 

 550 

5. Observational constraint and data selection 551 

 It has been demonstrated in this paper that the transport model error can have a dominant 552 

impact on the regional flux estimates. If transport model error is indeed “random”, increasing the 553 

observational constraints for example, from 1 month (Figure S1) to 3 months (Figure 5) should 554 

effectively reduce any biases as a result of small sample size and the impact of the transport 555 

model. This is in fact the case when the observational constraints were increased by three folds 556 

(i.e. 1 month to 3 months), the estimation errors for AB+SK were substantially reduced by ~60% 557 

and stable results were obtained consistently for the two largely different optimisation methods 558 

used in this study. However, because the transport error was large and likely not random for ON, 559 
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regardless which optimisation method was used, increasing the observational constraints did not 560 

improve or stabilize the results. Another possible strategy could be that when a low prior R
2
 was 561 

pre-calculated (flux and transport combined errors) in real inversions, it would be useful to assess 562 

the impact of an individual station.  563 

 564 

 Figure 10a and b shows the sensitivity of the estimation error to any given station. The 565 

analyses were based on the same setup in Set II (transport model error only) using 11 and 4 sub-566 

regions for AB+SK and ON respectively as an illustration. One at a time, a single station was 567 

excluded in the experiments E43-E46 (MCMC) and E47-E50 (CFM) for the AB+SK, and E43-568 

E45 (MCMC) and E46-E48 (CFM) for the ON region. The dashed reference lines are the errors 569 

from the standard cases using all four stations for AB+SK and all three stations for ON. For 570 

example, Figure 10a suggests that excluding the LLB station (E46) which has the lowest prior R
2
 571 

(~0.8) can reduce the annual errors using either MCMC or CFM method. Excluding any other 572 

stations in AB+SK can worsen the flux estimate in a sense by reducing the observational 573 

constraints (amount of well-simulated data available). Recall that all four stations have quite high 574 

prior R
2
 (Figure 6a). Figure 10b shows that excluding the DOW station which has the lowest 575 

prior R
2
 (~0.3) can significantly reduce the errors from the standard three-station setup of 133% 576 

to only 14% using MCMC, and similarly from 271% to only 32% using CFM. Because the FRD 577 

station is located far from the major source areas in ON, the FRD data provide little flux 578 

constraining power, excluding this station does not significantly affect the flux estimates. This 579 

conclusion is consistent between MCMC and CFM. 580 

 581 
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6. Discussions 582 

 We have evaluated our regional inversion system using synthetic observations and target 583 

fluxes. In summary, results show that the individual sub-regions within the province can have 584 

large estimation errors. The annual posterior fluxes over a province appear to have smaller 585 

estimation errors (as a result of the statistical averaging) than monthly fluxes. Another problem 586 

when a large number of sub-regions is used for inversion is the appearance of unrealistic 587 

(negative) fluxes. However, the optimal number of sub-regions (unknowns) was not fully 588 

investigated in this paper and the “optimal” number is likely a function of the prior flux 589 

distribution and model transport as the two are folded in reality. The concept of “optimal 590 

number” and/or “optimal configuration” would depend on the measure applied. For example, it 591 

could depend on the timescale (monthly, seasonal or annual), the inversion domain (eastern or 592 

western Canada), non-negative flux constraint and so on. 593 

 594 

 In this study, the flux signals from outside the inversion domain were not considered 595 

explicitly in the optimisation procedure. The FLEXPART model could transport the flux signal 596 

from outside the inversion domain over the 5 day integration period differently in comparison to 597 

CarbonTracker (another component of the transport error that would contribute to the error of the 598 

posterior results). In the next study, it would be useful to test an inversion setup that does 599 

optimise the fluxes in this outer region as well as the sensitivity to the estimation of the baseline 600 

(“background”) mole-fraction value at the beginning of the LPDM integration period (5 days in 601 

this study). 602 

 603 
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 There is a consistent pattern across all three provinces and the two inversion methods. 604 

There could be a cancelling effect of the errors when both prior flux and transport model errors 605 

exist (E15-E21 and E36-E42) and therefore, this effect is possibly a general phenomenon as both 606 

the western and eastern region cases showed. In reality, the flux and transport errors are folded 607 

together and are not likely to be separable.  608 

 609 

 It has been demonstrated in this study (Fig. 7) that the “uncertainty” (defined as the 5
th

 610 

and 95
th

 percentiles in the MCMC estimations) of the posterior fluxes does not always cover the 611 

target and is less than the estimation error which suggests that the uncertainty ranges are not yet 612 

reliable for further interpretation. Therefore, statistics measure such as “uncertainty reduction” is 613 

not shown and discussed.  614 

 615 

 For the region definitions that lead to realistic regional flux estimates, the numbers of sub-616 

regions for the western region and the eastern region are 11 and 4 respectively. The 617 

corresponding annual flux estimation errors for the two regions using the MCMC (CFM) method 618 

are -4% and -1% (-2% and 3%) respectively, when there is only prior flux error. The estimation 619 

errors increase to 10% and 133% (16% and 271%) resulting from transport model error alone. 620 

When prior and transport model errors co-exist in the inversions, the estimation errors become -621 

1% and 131% (7% and 264%). This result indicates that estimation errors are dominated by the 622 

transport model error and can in fact cancel each other and propagate to the flux estimates non-623 

linearly. 624 

 625 

 Understanding of this combined effect plays an important role toward the intrepretations 626 

of the inversion results when real observations are actually used. Although the inversion seems to 627 
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improve the fit of the synthetic observations using a large number of sub-regions as shown by the 628 

regression plots (Fig. 6), the flux estimates are not necessarily less biased on the annual and 629 

regional scales (Fig. 5 and Fig. S2-S13). In fact, unrealistic results can appear on the monthly 630 

timescale and for some sub-regions. 631 

  632 

 Two other possible sources of errors which include the representation and aggregation 633 

errors, and their impacts on the intepretation of the results in this study will be discussed as 634 

follows. These two types of errors are not likely to be separately quantified and proved their 635 

existences in real observation-based inversions. Nevertheless, these two errors will become a part 636 

of the total transport model error and optimisation procedure error if they do exist. 637 

 638 

6.1. Representation error 639 

 The resolution of the meteorological fields used to drive FLEXPART was at 0.2° x 0.2° 640 

that in fact would not necessarily produce model results matching the CarbonTracker 1° x 1° 641 

results or point observations. However, the mismatch of model resolutions of FLEXPART and 642 

CarbonTracker is reduced by using model results representative of afternoon condition with 643 

typically well mixed planetary boundary layer and slowly varying mole fractions to capture some 644 

of the vertical and horizontal mixing in the atmosphere, thereby minimizing the resolution 645 

mismatch of the two models or model to observation in reality. However, we do see large 646 

differences when comparing nighttime modelled results.  647 

 648 

 Using prior fluxes different from the target fluxes, we show in the modelled time series 649 

(Fig. 4a and b) and the regression plots (Fig. 6a and b) that the correlations of stations between 650 
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FLEXPART and CarbonTracker can be quite high (R
2
~0.8) before inversion except for the DOW 651 

station (R
2
~0.3). Although fluxes and transports are different, the prior mole fractions and 652 

synthetic observations are very close which indicate that “representation error” is not a major 653 

concern in this study. On the day to day synoptic time scale, no major differences can be found 654 

comparing CarbonTracker at 1° x 1° to FLEXPART at 0.2° x 0.2° for stations that are not 655 

surrounded by high emission sources (e.g. EGB and ETL stations). In reality, this “representation 656 

error” will become part of the total transport model error, but it is likely that any representation 657 

error will be much smaller than other transport model errors due to e.g. mixing, boundary layer 658 

height, and so on.  659 

 660 

6.2. Aggregation error 661 

 The characteristics of aggregation error are likely functions of each individual inversion 662 

setup. In this study, the cases of prior flux error (Set I) and prior flux and transport model error 663 

(Set III), would have “aggregation error”; whereas in the transport error only (Set II) case, would 664 

not have “aggregation error”. Our MCMC results showed that Set II without “aggregation error” 665 

have the largest error in the posterior fluxes. While Set I and Set III with “aggregation error” 666 

have smaller posterior flux errors compared to transport error only case (Set II) and increasing 667 

the number of sub-regions (or unknowns) does not improve the posterior flux estimates 668 

significantly. Therefore, “aggregation error” does not represent a large error in our results, and it 669 

needs to be examined for each inversion setup to estimate its possible impact. The coupling 670 

between “aggregation error” and transport error (Set III) could be highly complex and possibly 671 

even offset each other (note each inversion could be different).  672 

 673 
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 The results exhibit large fluctuations in the transport model error case (Set II), indicating 674 

that transport model errors cannot generally be reduced by aggregating the posterior sub-regional 675 

fluxes. The inversion results of this study indicate that large sensitivity to the inversion model 676 

setups and the need to evaluate each inversion setup to characterize the inversion model behavior 677 

to achieve stable inversion results. Without transport model error, our flux error only case (Set I) 678 

does yield information on how many sub-regions are needed to reach robust and realistic results 679 

provincially without imposing non-negativity constraints. Increasing the number of sub-regions 680 

did not yield significantly better flux estimates. With transport model error (Sets II, III), 681 

increasing the number of sub-regions could produce unrealistic posterior results (undetermined 682 

sources) sub-regionally. 683 

 684 

 Although using CH4 distribution as the prior has the largest aggregation error among the 685 

cases examined here, inversion results yield very similar improvement of ~80%. Also increasing 686 

the number of sub-regions ‘in theory’ should help reduce aggregation errors, but our inversion 687 

results do not improve with increasing number of sub-regions. This gives a measure of the 688 

‘resolution’ of the inversion setup (~7 regions in AB+SK), beyond which other factors dominate 689 

(e.g. transport errors etc.). 690 

 691 

 In ON, number of sub-regions resolvable is ~4. Since the sub-regions are crowded around 692 

southern Ontario, they appear to be not fully resolved by the dispersion model. This is another 693 

indication that regional inversion cannot go below some spatial limit (maybe ~3°x3° or 5°x5° or 694 

larger depending on transport and the observational network) as expected from the dispersive 695 

nature of the atmosphere. 696 

 697 
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 There is still a debate in the community on the best degree of spatial resolution 698 

to use in inversions (Peylin et al., 2001; Bocquet et al., 2005). Solving for a large number of 699 

regions and assuming them to be independent of each other can lead to undetermined sources 700 

(Rivier et al., 2010). Kaminsk and Heimann (2001) depicted in Fig. 1 in their comment paper that 701 

the estimation error could increase as the number of sub-regions increased. It is not always 702 

straightforward to determine the optimal configuration and the number of regions to be optimised 703 

as demonstrated in this study particularly when transport model error is large and unknown in 704 

reality. Therefore, the main effort in any inverse modelling studies should focus on the 705 

performance of the transport model, the region definition and the constraining power of the 706 

stations. 707 

 708 

7.  Conclusion 709 

 In the development of a regional inversion modelling approach for Canada, this study 710 

evaluated various setups and optimisation schemes for regional GHG flux inverse estimation in 711 

two different regions in Canada by synthetic-observation inversions. The different sets of 712 

experiments progress from small model error to model error comparable to real observation 713 

inversion. This approach yielded inversion posterior errors for the different sources of model 714 

errors and how these errors interact, as well as finding the suitable model setup for real 715 

observation inversion.  716 

 717 

 Prior flux error and perfect model transport experiments (Set I) can help define the near 718 

optimal number of sub-regions for the given inversion setup (using the MCMC optimisation in 719 

this study), approximately 7-11 sub-regions for AB+SK and 4 sub-regions for ON without 720 
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introducing unrealistic fluxes in the current inversion setups. Inversion based on the near optimal 721 

number of sub-regions is helpful for the CFM method as CFM optimisation procedure error can 722 

increase with the number of sub-regions being estimated. The CFM estimation errors became 723 

increasingly more positive with increasing number of sub-regions, while the MCMC estimation 724 

errors approached steady state with increasing number of sub-regions. This suggests the 725 

optimisation procedure error (Set I) and the prior flux error interact weakly in the inversion. 726 

Overall MCMC inversion with perfect model transport worked well, the posterior flux errors are 727 

reduced by ~80% in the western and ~90% in the eastern domains.   728 

 729 

 Correct prior flux with transport error experiments (Set II) showed that the current 730 

inversion scheme (adjusting the fluxes only) has (understandably) very limited ability to reduce 731 

the transport errors, estimation errors greater than 200% are possible. For the AB+SK domain, 732 

MCMC and CFM results are relatively stable with any number of sub-regions, estimation error is 733 

less than 20%. While for the ON domain, MCMC and CFM results are less stable with the 734 

number of sub-regions and unrealistic negative fluxes are possible when a large number of sub-735 

regions are estimated. Estimation errors are highly unstable and can range from 6-133% (by 736 

MCMC) and 37-271% (by CFM). This suggests the current inversion setup in ON is not suitable 737 

for real inversion analysis unless a poorly simulated station (DOW) is removed. 738 

 739 

 The more realistic experiments with both prior flux error and transport error (Set III) 740 

showed similar posterior results as transport error only case (Set II), as the transport error is the 741 

largest error in our case studies. The estimation errors are smaller than Set II, as the errors from 742 

Set I (prior flux error case tends to be negative) and Set II (transport error case tends to be 743 

positive) offset each other. However, the range of variability for the estimation errors is still 744 
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large, similar to Set II. Negative posterior fluxes are possible for large number of sub-regions in 745 

ON and AB+SK consistent with Set II results.  746 

 747 

 Overall, MCMC results based on simpler (than CFM) inversion constraint criteria and 748 

ensemble methodology have smaller estimation errors and more robustness in our sensitivity 749 

analyses than the CFM method (consistent with Miller et al., 2014), but both methods have 750 

difficulty to yield stable and realistic flux results when transport model error is large. Synthetic 751 

observation inversions provided useful information and identified problems on the different 752 

components of prior, transport, estimation errors and estimation uncertainties. There can be 753 

danger in doing inversion without proper evaluation of the inversion model (formulation, 754 

sensitivity, robustness, stability, etc.), results could have >200% estimation error with 755 

unrealistically small posterior uncertainties. In this evaluation paper, the AB+SK regional 756 

inversion results seem reasonable and stable, and this region appears suitable for real observation 757 

inversion for slowing varying fluxes such as wintertime CH4. 758 

 759 

Code availability 760 

 The FLEXPART model (v8.2) used in this paper can be obtained at 761 

https://www.flexpart.eu/. The optimisation procedures of MCMC and CFM are available upon 762 

request by contacting the corresponding author at elton.chan@canada.ca. 763 

 764 
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 769 

Appendix  770 

 The prior gridded fluxes of fossil fuel CO2, {𝑥𝑔,𝑝,𝑡} were re-distributed to have the same 771 

spatial resolution of 0.2º x 0.2º as the emission source sensitivities {𝑀𝑔,𝑝,𝑠,𝑡} (or footprints), 772 

where index g for a given grid cell in space, sub-region p, station s and time t. 𝑥𝑔,𝑝,𝑡 is the gridded 773 

emission field over sub-region p at time t. The linear scaling factors of 𝑥𝑔,𝑝,𝑡 are estimated to fit 774 

the synthetic observations 𝑦𝑡,𝑠 below:  775 

 776 

 𝑦𝑡,𝑠 = ∑ 𝜆𝑝

𝑝∈𝑅𝑇

∑ 𝑀𝑔,𝑝,𝑡,𝑠𝑥𝑔,𝑝,𝑡 + 𝜖𝑡,𝑠

𝑔∈𝐺

  (A1) 

 777 

for station s, at time t, scaling factors 𝜆𝑝 for sub-region p to be estimated, 𝑀𝑔,𝑝,𝑡,𝑠 is the station-778 

specific emission sensitivity (footprint) to be summed up over the sub-region p for each 779 

FLEXPART footprint grid cell g with G being the total number of grid cells of a given footprint. 780 

𝜖𝑡,𝑠 are the residuals to be minimized. For a given time t and station s, summing contributions 781 

from all sub-regions to the total number of RT sub-regions gives the total modelled mole fraction. 782 

To further simplify, let 𝐾𝑝,𝑡,𝑠 =  ∑ 𝑀𝑔,𝑝,𝑡,𝑠𝑥𝑔,𝑝,𝑡𝑔∈𝐺  be the contribution from sub-region p, for 783 

station s at time t. We obtain: 784 
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 785 

 𝑦𝑡,𝑠 = ∑ 𝜆𝑝

𝑝∈𝑅𝑇

𝐾𝑝,𝑡,𝑠 + 𝜖𝑡,𝑠  (A2) 

 786 

where we set the prior 𝜆𝑝~ 𝑁(1, 𝜎𝑝𝑟𝑖𝑜𝑟
2 ), and the model-observation mismatch is 𝜖𝑡,𝑠~𝑁(0, 𝜎𝜖

2). 787 

The likelihood function 𝐿(𝒚|𝝀, 𝜎𝜖
2) that assumes 𝜖𝑡,𝑠 being i.i.d. becomes: 788 

 789 

 𝐿(𝒚|𝝀, 𝜎𝜖
2) = ∏ (

1

2𝜋𝜎𝜖
2

)

𝑁

𝑡=1,𝑠=1

1/2

𝑒𝑥𝑝 {
−1

2𝜎𝜖
2

(𝑦𝑡,𝑠 − ∑ 𝜆𝑝

𝑝∈𝑅

𝐾𝑡,𝑠,𝑝)

2

} (A3) 

 

                     = (
1

2𝜋𝜎𝜖
2

)
𝑁/2

𝑒𝑥𝑝 {
−1

2𝜎𝜖
2

∑ (𝑦𝑡,𝑠 − ∑ 𝜆𝑝

𝑝∈𝑅

𝐾𝑡,𝑠,𝑝)

2
𝑁

𝑡=1,𝑠=1

} (A4), 

 

where 𝑁 = ∑ 1𝑡,𝑠  is the total number of synthetic observations. In matrix form, the likelihood of 790 

the synthetic observations 𝒚𝑁×1is: 791 

 792 

 𝐿(𝒚|𝝀, 𝜎𝜖
2) = (

1

2𝜋𝜎𝜖
2

)
𝑁/2

𝑒𝑥𝑝 {
−1

2𝜎𝜖
2

(𝒚 − 𝑲𝝀)𝑇(𝒚 − 𝑲𝝀)} (A5) 

  793 

 Notice that 𝑲 is the matrix with dimension N × RT and 𝝀 is a RT-dimension vector. The 794 

non-informative conjugate prior for the variance parameter, 𝜎𝜖
2, is assumed to follow the inverse-795 

gamma distribution’s probability density function with shape parameter 𝛼 and scale parameter 𝛽. 796 

The probability density function is: 797 

 798 
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 𝜋(𝜎𝜖
2) =

𝛽𝛼

Γ(α)
(𝜎𝜖

2)−𝛼−1𝑒𝑥𝑝 (−
𝛽

𝜎𝜖
2

) (A6) 

 799 

And the scaling factors 𝝀𝑅𝑇×1 are assumed to be independent and identically distributed (i.i.d.) 800 

following the multivariate normal distribution with mean vector 𝝀𝒑𝒓𝒊𝒐𝒓 and covariance matrix 801 

𝜎𝑝𝑟𝑖𝑜𝑟
2 𝑰𝑅𝑇

 (diagonal matrix). The probability density function for 𝝀 is: 802 

 803 

𝜋(𝛌) = (
1

2𝜋𝜎𝑝𝑟𝑖𝑜𝑟
2 )

𝑅𝑇/2

𝑒𝑥𝑝 {
−1

2𝜎𝑝𝑟𝑖𝑜𝑟
2 (𝝀 − 𝝀𝒑𝒓𝒊𝒐𝒓)𝑇(𝝀 − 𝝀𝒑𝒓𝒊𝒐𝒓)} (A7) 

 804 

where 𝝀𝒑𝒓𝒊𝒐𝒓 is assumed (initialized) to be 1. 805 

 806 

 Since we assume that all synthetic observations in the data set are independent, according 807 

to the Bayes’ rule, the joint posterior density is: 808 

 809 

 𝜋(𝝀, 𝝈𝝐
𝟐|𝒚) ∝ 𝜋(𝜎𝜖

2)𝜋(𝝀)𝐿(𝒚|𝝀, 𝜎𝜖
2) (A8) 

 810 

 𝜋(𝝀, 𝝈𝝐
𝟐|𝒚) = 𝑘𝜋(𝜎𝜖

2)𝜋(𝝀)𝐿(𝒚|𝝀, 𝜎𝜖
2) (A9), 

 811 

where k is a normalizing constant which is to ensure the cumulative distribution (integral) of the 812 

joint posterior density equal to 1. The logarithm of the joint posterior density becomes: 813 

 814 

log (𝜋(𝝀, 𝝈𝝐
𝟐|𝒚)) = log(𝑘) + log(𝜋(𝜎𝜖

2)) + log(𝜋(𝝀)) + log (𝐿(𝒚|𝝀, 𝜎𝜖
2)) (A10) 

 815 
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where 𝝀 is the vector of scaling factor parameters (regression coefficients). The term log(𝜋(𝜎𝜖
2)) 816 

is the log of the prior probability density for the model-observation mismatch error. The term 817 

log(𝜋(𝝀)) is the sum of the log of the prior probability densities for the scaling factors. The term 818 

log (𝐿(𝒚|𝝀, 𝜎𝜖
2)) is the log likelihood given the parameters (i.e. the multiple linear regression 819 

model used to fit the synthetic observations). It is difficult to analytically solve for the parameters 820 

in Eq. (A10). In most cases for Bayesian analyses, therefore, 𝝀 are sampled from the (complex) 821 

joint posterior density using MCMC. The random-walk Metropolis algorithm that is applied in 822 

this study is one of the MCMC methods, which is briefly described as follows: 823 

 824 

 Suppose I samples (number of iterations) are drawn from a multivariate distribution with 825 

probability density function 𝑓(𝝀|𝒚). Suppose 𝝀𝑖 is the i
th

 sample from 𝑓, where  𝝀𝑖 =826 

(𝜆1, 𝜆2, ⋯ , 𝜆𝑝)𝑇 is the transposed vector of scaling factors and p is the number of sub-regions in 827 

this study. To use the Metropolis algorithm, an initial value 𝝀0 and a multivariate proposal 828 

density 𝑞(𝝀𝑖+1|𝝀𝑖)  are required. For the (i+1)
th

 iteration, the algorithm generates a sample from a 829 

𝑞(. |. ) based on the current sample 𝝀𝑖, and it makes a decision to either accept or reject the new 830 

sample. If the new sample is accepted, the algorithm repeats itself by starting at the new sample. 831 

If the new sample is rejected, the algorithm starts at the current point and repeats. Suppose  832 

𝑞(𝝀𝑛𝑒𝑤|𝝀𝑖)  is a symmetric distribution. The proposal distribution should be a simple (e.g. 833 

Gaussian or unimodal) distribution from which to sample, and it must be such that 𝑞(𝝀𝑛𝑒𝑤|𝝀𝑖) =834 

 𝑞(𝝀𝑖|𝝀𝑛𝑒𝑤), meaning that the likelihood of jumping to 𝝀𝑛𝑒𝑤 from 𝝀𝑖 is the same as the 835 

likelihood of jumping back to 𝝀𝑖 from 𝝀𝑛𝑒𝑤. The most common choice of the proposal 836 

distribution is the multivariate normal distribution 𝑁(𝝀, 𝚺), with p-dimensional mean vector 𝝀 837 
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and p × p covariance matrix 𝚺. The random-walk Metropolis algorithm can be summarized as 838 

follows: 839 

 840 

 Set n = 0. Choose a starting point 𝝀𝟎. This can be an arbitrary point as long as 𝒇(𝝀𝟎|𝒚) > 841 

0. 842 

 Generate a new sample, 𝝀𝒏𝒆𝒘, by using the proposal distribution 𝒒(. |𝝀𝒊). 843 

 Calculate the following quantity: 𝒓 = 𝐦𝐢𝐧 {
𝒇(𝝀𝒏𝒆𝒘|𝒚)

𝒇(𝝀𝒊|𝒚)
, 𝟏} 844 

 Draw a random sample u from the uniform distribution 𝑼(𝟎, 𝟏),  845 

 Set 𝝀𝒊+𝟏 = 𝝀𝒏𝒆𝒘 if u < r; otherwise set 𝝀𝒊+𝟏 = 𝝀𝒊.   846 

 Set 𝒊 = 𝒊 + 𝟏. If 𝒊 < 𝑰, the number of desired samples, return to step 2. Otherwise, stop. 847 

  848 

 This algorithm defines a chain of random variates whose distribution will converge to the 849 

desired distribution 𝑓(𝝀|𝒚), and so from some point forward, the chain of samples is a sample 850 

from the distribution of interest. In Markov chain terminology, this distribution is called the 851 

stationary distribution of the chain, and in Bayesian statistics, it is the posterior distribution of the 852 

model parameters (scaling factors in this study). 853 

 854 

 For detailed descriptions and proofs in MCMC method and Bayesian analysis, there are 855 

articles and books including Besag et al. (1995), Chib and Greenberg (1995), Gilks et al. (1996) 856 

and Kass et al. (1998). Here we only describe the steps and diagnostics that were used to conduct 857 

MCMC simulations for the purpose of parameter estimations in this synthetic flux inversion 858 

study. The inversions were done separately for the western and the eastern provinces. The scaling 859 
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factors 𝜆𝑝 were initialized to 1 with a variance of 1 which was equivalent to setting 100% 860 

uncertainty for the emissions in each sub-region. The variance parameter (𝜎𝑒)2 
can be considered 861 

as the total model-observation mismatch (or total model error). This parameter is assumed to 862 

have the inverse-gamma distribution. The mean of (𝜎𝑒)2 
is calculated as scale/(shape – 1) when 863 

shape is greater than 1 and variance of (𝜎𝑒)2 
is equal to scale

2
/[(shape-1)

2
(shape-2)] when shape 864 

is greater than 2. With the shape and scale parameters being set to 2.001 and 1.001, this gives a 865 

mean of 1 and variance of 1000 which is similar to setting a large uncertainty for the model-866 

observation mismatch error. This large prescribed uncertainty corresponds to conjugate non-867 

informative prior for the (𝜎𝑒)2. Conjugate priors are required to ensure the target posterior 868 

distribution having a closed form. This total model-observation mistmatch error has been 869 

estimated to be about 30% in previous studies that used the CFM method (Zhao et al., 2009; 870 

Gerbig et al., 2003; among others) which included measurement error, transport error, 871 

aggregation error and so on.  872 

 873 

 In previous inverse modelling studies the parameters of interest were assumed to be fixed 874 

constants and determined by the analytical cost function minimization. Instead of treating 875 

parameters as fixed constant, we applied Bayesian analysis with MCMC random sampling 876 

method that treated parameters as random variables. Often times, these parameters cannot be 877 

determined exactly, and particularly the uncertainty about the parameter has no known analytical 878 

form in a high-dimensional parameter distribution space. Using MCMC sampling method, our 879 

inference was based on the probability distribution for the parameter. In this paper, we did not 880 

address the impact of the covariances in the uncertainty matrices, or the magnitude of the 881 
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assumed prior emission and model uncertainties. Hence, the off-diagonal elements in the 882 

covariance matrix were simply set to zeros. 883 

 884 

 There is no simple way to calculate the uncertainties of the posterior distributions of the 885 

scaling factors. In fact an analytical form of the uncertainties is not required in our simulation 886 

approach. Within the Bayesian framework, conducting simulation to estimate the uncertainties 887 

for parameter of interests becomes straightforward because the posterior distributions of scaling 888 

factors (uncertainties about the posterior scaling factors) can be obtained by simulation while 889 

taking into account the uncertainties in all the parameters by treating them as random variables 890 

(SAS/STAT
®
, 2013). We performed Bayesian analysis for January through December 2009 for 891 

every three months. The MCMC procedure which uses the random-walk Metropolis algorithm to 892 

sample the posterior probability density expressed in Eq. (A10) in which the SAS/STAT
® 

system 893 

was used to conduct the simulations. 894 

 895 

 In total 110,000 samples (scaling factor estimates) were drawn by MCMC simulations for 896 

every three months in year 2009. 10,000 burn-in samples were used to minimize the effect of the 897 

initial values (all scaling factors were initialized to 1) on the posterior inference, that is, the initial 898 

10,000 drawn MCMC samples were discarded. A thinning rate of 10 was used to reduce sample 899 

autocorrelations. Although 110,000 iterations were conducted, only every 10
th

 sample was kept 900 

for subsequent inferences for the posterior flux estimates to minimize autocorrelation. All 901 

diagnostic trace plots (not shown) for all the parameters (scaling factors) showed good mixing 902 

(fast convergence), that was, the efficiency that the posterior parameter space was explored by 903 

the Markov chain. This was a good indication of the sub-regions that were not strongly correlated 904 

in space due to similar transport. Hence, there was no serious multi-linearity problem of the 905 
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parameters in the regression model (likelihood function). It also means that the Markov chain 906 

quickly traversed the support of the distribution to explore both the tails and the mode areas 907 

efficiently and the parameters reached their stationary distributions. Geweke diagnostics showed 908 

constant mean and variance of the Markov Chain. Heidelberger and Welch diagnostics showed 909 

stationarity of the Markov chain. Raftery and Lewis diagnostics showed the number of iterations 910 

was sufficient to estimate the percentiles of the parameters. The effective sample size calculated 911 

also showed that the number of iterations used was sufficient for inferences. The Monte Carlo 912 

standard errors of the mean estimates for each of the parameters were small, with respect to the 913 

posterior standard deviations. This means that only a fraction (less than 1%) of the posterior 914 

variability was due to the simulation. 915 

 916 

 In all but the simplest cases of inversions that have low dimensions (i.e. only a few 917 

parameters), it is not possible to estimate parameters from a complicated joint posterior 918 

distribution directly and analytically. Often, Bayesian methods rely on simulations to generate 919 

samples from the desired posterior distribution and use the simulated draws to approximate the 920 

distribution and to make statistical inferences, and this was carried out in this study for 921 

comparison. Note that however, the definition of central estimators such as the mean or the 922 

median and of estimators of uncertainty such as the error variance-covariance matrix fail to have 923 

any useful representativeness in a high-dimensional problem in which the posterior distributions 924 

of the parameters can actually be multi-modal. Therefore, the common practice of reporting the 925 

means or medians posterior estimates should be abandoned, even if the results are accompanied 926 

by some analysis of error (Tarantola, 2005). 927 

  928 
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Captions for figures 1140 

Figure 1.  Schematic of the inversion experiments that have prior flux and transport errors. 1141 

 1142 

Figure 2. (a) the spatial definitions for inversion using 2 sub-regions on the left panel for Alberta 1143 

and Saskatchewan (AB+SK) and 1 sub-region on the right panel for ON provinces. (b) 4 and 2 1144 

sub-regions for AB+SK, ON provinces respectively. (c) 7 and 4 sub-regions for AB+SK, ON 1145 

provinces respectively. (d) 11 and 6 sub-regions for AB+SK, ON provinces respectively. (e) 19 1146 

and 12 sub-regions for AB+SK, ON provinces respectively.  (f) 27 and 24 sub-regions for 1147 

AB+SK, ON provinces respectively.  (g) 37 and 49 sub-regions (census divisions) for AB+SK 1148 

and ON provinces respectively. Sub-regional totals are color coded in Mt/month. Four stations 1149 

were used in inversion experiments for AB+SK and three stations for ON shown as star symbols. 1150 

Note that the northern part of the map for ON province is clipped. Examples of the fossil fuel 1151 

spatial distributions of CO2 fluxes are shown for January 2009 for AB+SK and ON obtained from 1152 

the releases of CT2010 and CT2011. The January monthly provincial totals in mega-tonnes (Mt) 1153 

are shown in the top right corners.  1154 

 1155 

Figure 3. Mean footprint emission sensitivity in picoseconds per kilogram obtained from 1156 

FLEXPART 5-day backward simulations (21 UTC daily) averaged over all footprints of 7 1157 

stations and for January through December 2009. Measurement stations are marked with white 1158 

stars. The western (AB+SK) and eastern (ON) inversion domains are in thick black boundaries. 1159 

 1160 

Figure 4. (a) and (b) model results of experiment E21 using the MCMC method for stations in 1161 

AB+SK (37 sub-regions) and ON (49 sub-regions) respectively. The prior and posterior mole 1162 

fractions are shown in blue and red respectively. The target mole fractions (synthetic 1163 

observations) simulated by CT2011 are shown in black. 1164 

 1165 

Figure 5. Annual estimation errors (relative percentage difference of the posterior estimates from 1166 

the target flux) for set (I): flux error, set (II): transport error, and set (III): flux and transport error 1167 

cases for (a) provinces of AB and SK combined and (b) province of ON. Experiments E1-E21 1168 

and E22-E42 correspond to the results obtained from the MCMC and CFM methods respectively. 1169 

Fluxes were estimated every three months using three months of model results. See Section 3 for 1170 

explanations of the results. 1171 

 1172 

Figure 6. (a) and (b) linear regression analyses of experiment E21 using the MCMC method for 1173 

stations in AB+SK (37 sub-regions) and ON (49 sub-regions) respectively, using January to 1174 

December 2009 posterior (red) and prior (blue) results. 1175 

 1176 

Figure 7. Monthly (left) and annual (right) fossil fuel CO2 posterior flux estimates (in Mt) for 1177 

experiments E17, E18 (blue) and E21 (red) in comparison with the monthly prior (gray) and 1178 

target (green) fluxes for the provinces of AB, SK and ON using MCMC. The monthly mean 1179 

posterior estimates are shown as connecting lines. The colored bands associated with the 1180 

respective experiments show the 5
th

 and 95
th

 percentiles of the monthly flux estimates calculated 1181 

from the 10,000 MCMC simulated scaling factors for the individual months. Right column shows 1182 

the probability distributions of the annual posterior flux estimates for experiments E17, E18 1183 

(blue) and E21 (red). The numerical values of the prior flux, annual target flux, posterior 1184 
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estimates of E17, E18 and E21 are shown as vertical bars. The top (a), middle (b) and bottom 1185 

panels (c) show the results for the provinces of AB, SK and ON respectively. 1186 

 1187 

Figure 8. 2009 annual mean spatial distributions of the fluxes at 1°x1° over AB+SK (a) the target 1188 

CT2011 fossil fuel CO2, (b) the CT2010 fossil fuel CO2, (c) the CT-CH4 anthropogenic CH4, and 1189 

(d) the CT-CH4 anthropogenic CH4 scaled to 50% of CT2011 fossil fuel CO2 provincial totals as 1190 

the new prior. 1191 

 1192 

Figure 9. Comparison of the annual estimation errors using anthropogenic CH4 (Fig. 8d) as the 1193 

new prior using a normal probability density function (PDF) versus a truncated normal PDF for 1194 

the simulations of the prior scaling factors. 1195 

 1196 

Figure 10. Annual estimation errors using different combinations of stations for AB+SK (a) and 1197 

ON (b). One station was excluded from the standard setup in each experiment. Dashed lines show 1198 

the estimation errors using all four stations for AB+SK and all three stations for ON. 1199 

  1200 
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Captions for tables 1201 

Table 1. Ground-based in-situ GHG measurement stations and brief descriptions for the 1202 

surrounding areas. 1203 

 1204 

Table 2. Provincial monthly (Mt/month) and annual (Mt/year) total fossil fuel CO2 fluxes from 1205 

CT2010 and CT2011. The relative percentage differences are calculated for the monthly and 1206 

annual provincial total between CT2010 and CT2011, i.e. (CT2010 – CT2011)/CT2011×100%. 1207 

 1208 

Table 3. Synthetic flux inversion experiments. Three sets of experiments were investigated (I) 1209 

prior flux error only, (II) transport error only, and (III) prior flux and transport error. Common to 1210 

all (prior transport model: FLEXPART, target flux: fossil fuel CO2 CT2011). Baselines that were 1211 

sampled from the CT2011 predicted fossil fuel concentration field were required for experiments 1212 

E8-E21 and E29-E42.  Two inversion methods were used for comparison, the Markov-Chain 1213 

Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods.  1214 

  1215 
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Table 1. 

 

Station Name,  

Province 
Latitude, Longitude 

Elevation 

(a.s.l., metres) 

Intake Height 

(a.g.l., metres) 
Brief Description 

Lac La Biche (LLB),  

AB 

54°57’N, 112°27’W 540 10 (50 started in 

June 2009) 

Wetland region. 

     

Esther (EST), 

AB 

51°40’N, 110°12’W 707 3 (50 started in 

March 2011) 

Rural prairies. 

     

East Trout Lake (ETL), 

SK 

54°21’N, 104°59’W 493 105 Southern boreal 

forest of Canada. 

     

Bratt’s Lake (BRA), 

SK 

51°12’N, 104°42’W 595 35 Rural prairies. 

     

Fraserdale (FRD), 

ON 

49°53’N, 81°34’W 210 40 Between south of the 

Hudson Bay Lowland 

and boreal forest 

region. 

     

Egbert (EGB), 

ON 

44°14’N, 79°47’W 251 3 (25 started in 

March 2009) 

Rural.  

     

Downsview (DOW),  

ON 

43°47’N, 79°28’W 198 20 Suburban. 

 

 

 

 Table 2. 

Release Prov. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Y2009 

CT2010 AB 9.4 8.6 8.2 7.8 7.2 7.5 8 7.8 7.4 7.3 7.7 8.7 95.6 

CT2010 SK 2.5 2.3 2.2 2.1 1.9 2 2.1 2.1 2 2 2.1 2.4 25.7 

CT2010 AB+SK 11.9 10.9 10.4 9.9 9.1 9.5 10.1 9.9 9.4 9.3 9.8 11.1 121.3 

CT2010 ON 15 13.8 13.2 12.5 11.6 12 12.8 12.5 11.9 11.7 12.4 14.1 153.5 

               

CT2011 AB 12.4 12.1 11.2 10.3 9.6 9.7 9.9 10 9.8 10.1 10.9 11.9 127.9 

CT2011 SK 3.3 3.3 3 2.8 2.6 2.6 2.7 2.7 2.7 2.7 2.9 3.2 34.5 

CT2011 AB+SK 15.7 15.4 14.2 13.1 12.2 12.3 12.6 12.7 12.5 12.8 13.8 15.1 162.4 

CT2011 ON 13.2 12.6 11.8 11.1 10.4 10.7 11.1 11 10.7 10.8 11.5 12.6 137.5 

               

(
CT2010−CT2011

CT2011
)

x100% 

AB -24 -29 -27 -24 -25 -23 -19 -22 -24 -28 -29 -27 -25 

SK -24 -30 -27 -25 -27 -23 -22 -22 -26 -26 -28 -25 -26 

AB+SK -24 -29 -27 -24 -25 -23 -20 -22 -25 -27 -29 -26 -25 

ON 14 10 12 13 12 12 15 14 11 8 8 12 12 
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Table 3a. 

 

 

 

 

 

 

 

 

 

 

Table 3b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Experiment Inversion 

method 

Number of  sub-

regions 
(𝜎𝑒)2, (𝜎𝑝𝑟𝑖𝑜𝑟)

2  

in % 

Prior 

flux 

Synthetic obs 

simulated by 

E1/E22 MCMC/CFM AB+SK:2, ON:1 30, 100 CT2010 CT2011 flux in 

FLEXPART 

E2/E23 MCMC/CFM AB+SK:4, ON:2 30, 100 CT2010 CT2011 flux in 

FLEXPART 

E3/E24 MCMC/CFM AB+SK:7, ON:4 30, 100 CT2010 CT2011 flux in 

FLEXPART 

E4/E25 MCMC/CFM AB+SK:11, ON:6 30, 100 CT2010 CT2011 flux in 

FLEXPART 

E5/E26 MCMC/CFM AB+SK:19, ON:12 30, 100 CT2010 CT2011 flux in 

FLEXPART 

E6/E27 MCMC/CFM AB+SK:27, ON:24 30, 100 CT2010 CT2011 flux in 

FLEXPART 

E7/E28 MCMC/CFM AB+SK:37, ON:49 30, 100 CT2010 CT2011 flux in 

FLEXPART 

Experiment Inversion 

method 

Number of  sub-

regions 
(𝜎𝑒)2, (𝜎𝑝𝑟𝑖𝑜𝑟)

2  

in % 

Prior 

flux 

Synthetic obs 

simulated by 

E8/E29 MCMC/CFM AB+SK:2, ON:1 30, 100 CT2011 CT2011 flux in 

CT2011 

E9/E30 MCMC/CFM AB+SK:4, ON:2 30, 100 CT2011 CT2011 flux in 

CT2011 

E10/E31 MCMC/CFM AB+SK:7, ON:4 30, 100 CT2011 CT2011 flux in 

CT2011 

E11/E32 MCMC/CFM AB+SK:11, ON:6 30, 100 CT2011 CT2011 flux in 

CT2011 

E12/E33 MCMC/CFM AB+SK:19, ON:12 30, 100 CT2011 CT2011 flux in 

CT2011 

E13/E34 MCMC/CFM AB+SK:27, ON:24 30, 100 CT2011 CT2011 flux in 

CT2011 

E14/E35 MCMC/CFM AB+SK:37, ON:49 30, 100 CT2011 CT2011 flux in 

CT2011 
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Table 3c. 

 

 

 

Experiment Inversion 

method 

Number of  sub-

regions 
(𝜎𝑒)2, (𝜎𝑝𝑟𝑖𝑜𝑟)

2  

in % 

Prior 

flux 

Synthetic obs 

simulated by 

E15/E36 MCMC/CFM AB+SK:2, ON:1 30, 100 CT2010 CT2011 flux in 

CT2011 

E16/E37 MCMC/CFM AB+SK:4, ON:2 30, 100 CT2010 CT2011 flux in 

CT2011 

E17/E38 MCMC/CFM AB+SK:7, ON:4 30, 100 CT2010 CT2011 flux in 

CT2011 

E18/E39 MCMC/CFM AB+SK:11, ON:6 30, 100 CT2010 CT2011 flux in 

CT2011 

E19/E40 MCMC/CFM AB+SK:19, ON:12 30, 100 CT2010 CT2011 flux in 

CT2011 

E20/E41 MCMC/CFM AB+SK:27, ON:24 30, 100 CT2010 CT2011 flux in 

CT2011 

E21/E42 MCMC/CFM AB+SK:37, ON:49 30, 100 CT2010 CT2011 flux in 

CT2011 
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Figure 2 
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Figure 2 
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Figure 3 
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Figure 4  
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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