Supplement for Müller et al.: Global Gridded Crop Model evaluation: benchmarking, skills, deficiencies and implications

Christoph Müller¹, Joshua Elliott^{2,3}, James Chryssanthacopoulos³, Almut Arneth⁴, Juraj Balkovic^{5,6}, Philippe Ciais⁷, Delphine Deryng^{2,3}, Christian Folberth^{5,8}, Michael Glotter⁹, Steven Hoek¹⁰, Toshichika Iizumi¹¹, Roberto C. Izaurralde^{12,13}, Curtis Jones¹², Nikolay Khabarov⁵, Peter Lawrence¹⁴, Wenfeng Liu¹⁵, Stefan Olin¹⁶, Thomas A. M. Pugh^{4,17}, Deepak Ray¹⁸, Ashwan Reddy¹², Cynthia Rosenzweig^{3,19}, Alexander C. Ruane^{3,19}, Gen Sakurai¹¹, Erwin Schmid²⁰, Rastislav Skalsky⁵, Carol X. Song²¹, Xuhui Wang^{7,22}, Allard de Wit¹⁰, Hong Yang^{15,23}

- ¹ Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
- ² University of Chicago and ANL Computation Institute, Chicago, IL 60637, USA
- ³ Columbia University Center for Climate Systems Research and NASA Goddard Institute for Space Studies, New York, NY 10025, USA
- ⁴ Karlsruhe Institute of Technology, IMK-IFU, 82467 Garmisch-Partenkirchen, Germany
- ⁵ International Institute for Applied Systems Analysis, Ecosystem Services and Management Program, 2361 Laxenburg, Austria
- ⁶ Comenius University in Bratislava, Department of Soil Science, 842 15 Bratislava, Slovak Republic
- ⁷ Laboratoire des Sciences du Climat et de l'Environnement. CEA CNRS UVSQ Orme des Merisiers, F-91191 Gif-sur-Yvette, France
- ⁸ Department of Geography, Ludwig Maximilian University, 80333 Munich, Germany
- ⁹ University of Chicago, Department of the Geophysical Sciences, Chicago, IL 60637, USA
- ¹⁰ Alterra Wageningen University and Research Centre, Earth Observation and Environmental Informatics, 6708PB Wageningen, Netherlands
- ¹¹ National Agriculture and Research Organization, National Institute for Agro-Environmental Sciences, Agro-Meteorology Division, Tsukuba, 305-8604, Japan
- ¹² University of Maryland, Department of Geographical Sciences, College Park, MD 20742, USA
- ¹³ Texas A&M University, Texas AgriLife Research and Extension, Temple, TX 76502, USA
- ¹⁴ National Center for Atmospheric Research, Earth System Laboratory, Boulder, CO 80307, USA
- ¹⁵ Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf, Switzerland
- ¹⁶ Department of Physical Geography and Ecosystem Science, Lund University, 223 62 Lund, Sweden
- ¹⁷ School of Geography, Earth & Environmental Science and Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- ¹⁸ Institute on the Environment, University of Minnesota, Saint Paul, USA
- ¹⁹ National Aeronautics and Space Administration Goddard Institute for Space Studies, New York, NY 10025, USA
- ²⁰ University of Natural Resources and Life Sciences, Institute for Sustainable Economic Development, 1180 Vienna, Austria

²¹ Rosen Center for Advanced Computing, Purdue University, West Lafayette, Indiana, USA

²² Peking University, Sino-French Institute of Earth System Sciences, 100871 Beijing, China

²³ Department of Environmental Sciences, University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland

Correspondence to: Christoph Müller (Christoph.Mueller@pik-potsdam.de)

Contents

Tabl	es	6
	Table S 1: Main characteristics of GGCMs	6
	Table S 2: Model inputs and agricultural management practices	7
	Table S 3: Biophysical process representation in GGCMs	9
	Table S 4: Model calibration, parameters, scale and methods	. 11
Figu	res	. 13
	Figure S 1: As figure 1 in the main text, but for the maize <i>fullharm</i> setting	. 13
	Figure S 2: As figure 1 in the main text, but for the maize <i>harm-suffN</i> setting	. 14
	Figure S 3: As figure 2 in the main text, but for the wheat <i>fullharm</i> setting	. 15
	Figure S 4: As figure 2 in the main text, but for the wheat <i>harm-suffN</i> setting	. 16
	Figure S 5: As figure 3 in the main text, but for the rice <i>fullharm</i> setting	. 17
	Figure S 6: As figure 3 in the main text, but for the rice <i>harm-suffN</i> setting	. 18
	Figure S 7: As figure 4 in the main text, but for the soybean <i>fullharm</i> setting	. 19
	Figure S 8: As figure 4 in the main text, but for the soybean <i>harm-suffN</i> setting	. 20
	Figure S 9: As figure 5 in the main text, but for wheat	. 21
	Figure S 10: As figure 5 in main text, but for rice	. 22
	Figure S 11: As figure 5 in main text, but for soybean	. 23
	Figure S 12: As figure 6 in main text, but without allowing for time shifts of one year in the	
	correlation analysis.	. 24
	Figure S 13: As figure 6 in main text, but for all maize producer countries simulated here	. 25
	Figure S 14: As figure 6 in main text, but for wheat	. 26
	Figure S 15: As Figure S12, but for wheat	. 26
	Figure S 16: As figure 13, but for wheat	. 28
	Figure S 17: As figure 6 in main text, but for rice	. 28
	Figure S 18: As Figure S12, but for rice	. 28
	Figure S 19: As Figure S13, but for rice	. 29
	Figure S 20: As figure 6 in main text, but for soybean.	. 30
	Figure S 21: As Figure S12, but for soybean.	. 30
	Figure S 22: As Figure S13, but for soybean.	. 31
	Figure S 23: As figure 7 in main text, but for all maize producing countries included here	. 32
	Figure S 24: As Figure S23, but for wheat	. 33

Figure S 25: As Figure S23 but for rice
Figure S 26: As Figure S23 but for soybean
Figure S 27: As figure 8 in main text, but with flattened time dimension
Figure S 28: As figure 8 in main text, but after removing national means
Figure S 29: As figure 8 in main text, but for wheat
Figure S 30: As Figure S27, but for wheat 39
Figure S 31: As Figure S28, but for wheat 40
Figure S 32: As figure 8 in main text, but for rice
Figure S 33: As Figure S27, but for rice
Figure S 34: As Figure S28, but for rice
Figure S 35: As figure 8 in main text, but for soybean
Figure S 36: As Figure S27, but for soybean
Figure S 37: As Figure S28, but for soybean
Figure S 38: As figure 10 in main text, but for wheat
Figure S 39: As figure 10 in main text, but for rice
Figure S 40: as figure 10 in main text, but for soybean
Figure S 41: as figure 10 in main text, but for pDDSAT only50
Figure S 42: Best performing (R ²) GGCM per grid cell for maize (<i>default</i>)
Figure S 43: as figure 11 in main text, but for wheat
Figure S 44: as figure 11 in main text but for rice53
Figure S 45: as figure 11 in main text, but for soybean54
References

Tables

Model	Type ¹	CO2 effects ²	Stresses ³	Calibration⁵	Calibrated parameters	Outputs
CGMS-WOFOST	Site-based	LF, TE	W, T	Site-specific	Tsum requirements	Actual/potential yield and biomass
CLM-crop	Ecosystem	LF, TE	W,N,H	Uncalibrated	NA	Actual yield
EPIC-BOKU	Site-based	RUE, TE	W, T, H, A, N, P, BD, AL	Site-specific (EPIC 0810)	NA	Actual yield & yield gap
EPIC-IIASA	Site-based	RUE, TE	W, T, H, A, N, P, BD, AL	Site-specific and global	F, HIpot (ric, mai) F (others)	Actual yield
EPIC-TAMU	Site-based	RUE, TE	W, T, H, A, N, P, BD, AL	Site-specific and global	Hlpot (maize)	Actual yield
GEPIC	Site-based	RUE, TE	W, T, A, N, P, BD, AL	Site-specific (EPIC 0810)	F HIpot (for maize and rice)	Actual yield
LPJ-GUESS	Ecosystem	LF, SC	W, T	Uncalibrated	NA	Actual yield
LPJmL	Ecosystem	LF, SC	W, T	National	LAImax HI αa	Actual yield
ORCHIDEE-crop	Ecosystem	LF, SC	W,T,N	Uncalibrated	-	Actual yield
pAPSIM	Site-based	RUE	W, T, H, A, N	Site-specific (APSIM)	NA	Actual yield
pDSSAT	Site-based	RUE (for wheat, rice, maize) and LF (for soybeans)	W, T, H, A, N	Site-specific (DSSAT)	NA	Actual yield
PEGASUS	Ecosystem	RUE, TE	W, T, H, N, P, K	Global	β	Actual yield
PEPIC	Site-based	RUE, TE	W, T, H, A, N, P, BD, AL	Site-specific and global	F HIpot (for maize)	Actual yield
PRYSBI2	Ecosystem	LF, SC	W,T	Global yield	TH, TC, TS, LR	Actual yield

Table S 1: Main characteristics of GGCMs.

Notes: (NA where not applicable)

¹ Site-based: site-base crop model; Ecosystem: global ecosystem model

² Elevated CO₂ effects: LF: Leaf-level photosynthesis (via rubisco or quantum-efficiency and leaf-photosynthesis saturation; RUE: Radiation use efficiency; TE: Transpiration efficiency; SC: stomatal conductance

³ W: water stress; T: temperature stress; H: specific-heat stress; A: oxygen stress; N: nitrogen stress; P: phosphorus stress; K: potassium stress; BD: bulk density; AL: aluminum stress (based on pH and base saturation)

⁴ Fertilizer application, timing of application; NPK annual application of total NPK (nutrient-stress factor); source of fertilizer application data; timing: annual or dynamic

⁵ F: fertilizer application rate; Hlpot: Potential harvest index; LAImax: maximum LAI under unstressed conditions; HI: harvest index; α a: factor for scaling leaf-level photosynthesis to stand level; β : radiation-use efficiency factor; TH: Total Heat unit required for the maturity; TC: Technological coefficient; TS: Temperature sensitivity of photosynthesis; LR: ratio of leaf to above ground biomass.

Model	Spatial scale	Temporal scale ¹	Climate input variables ²	Soil input data ³	Spin-up ⁴	Planting date decision ⁵	Crop cultivars ⁶	Irrigation rules ^{7_8}	Fertilizer application ⁹	Crop residue ¹⁰
CGMS- WOFOST	0.5° lon x 0.5° lat	D	Ta Tmn Tmx P Rad Vap WS	FAO 1:5M DSMW AWC HYD	H2O (1)	Fixed planting day	GDD fixed	NA	NA	NA
CLM-crop	1° lon x 1° lat	D	T,P,WS,Q,SW, Rad	IGBP Global Soil Data Task 2000	NA	S	GDD+V	MIRCA 2000 (Portmann et al., 2010)	Ν	To litter pool
EPIC-BOKU	0.5° lon x 0.5 lat	D	Tmn, Tmx, P, Rad, RH, WS	ISRIC-WISE, ROSETTA,AWC, ALBEDO (Dobos, 2006), HYD (USDA and NRCS, 2015)	Soil OM, C, NH3, NO3, H2O, P(1)	S (fraction of PHU), fixed planting window	GDD - fixed	90/100/500/50/208 maximum applied irrigation: 500 mm yr-1	automatic N input (max 200 kg Ha-1 yr-1) PK (national stat. IFA) dynamic application	No, can be simulated
EPIC-IIASA	5" lon x 5"lat (default); 0.5° lon x 0.5° lat (harmonized)	D	Tmn, Tmx, P, Rad, RH, WS	ISRIC-WISE; ROSETTA; AWC; HYD (USDA and NRCS, 2015)	Soil OM, C, NH3, NO3, H2O, P, CR (50)	F (fixed planting window)	GDD, 3 cult for mai, 2 cult for wheat fixed	90/100/2000/500/0	NP (sub-national stat by (Mueller et al., 2012) P timing: rigid; N timing: automatic (based on N stress)	No
EPIC-TAMU	0.5° lon x 0.5° lat	D	Tmn, Tmx, P, Rad, RH, WS	ISRIC-WISE	Soil OM, C, NH3, NO3, H2O, P, CR (10)	S, planting delayed until 2 deg above base temp	GDD, 2 cultivars for mai	99/100/9999/100/25	NPK at planting	No
GEPIC	0.5° lon x 0.5° lat	D	Tmn, Tmx, P, Rad, RH, WS	ISRIC-WISE	Soil OM, C, NH3, NO3, H2O, P, CR (20)	F (fixed planting window)	GDD, 2 cultivars for mai - fixed	90/100/2000/ 1000/0.018	NP (national stat. FertiSTAT), dynamic application of N, rigid application of P	Yes, Crop- specific
LPJ-GUESS	0.5° lon x 0.5° lat	D	Ta, P, cld (or Rad)	HWSD, STC HYD (Cosby et al., 1984), THM (Lawrence and Slater, 2008)	H2O (30)	S (Waha et al., 2012), fixed planting window	GDD+V (whe, sunfl, rapes); BT (mai); static (others) + clim. adap	200/90/100/100 ⁷	NA	Yes, does not affect yield
LPJmL	0.5° lon x 0.5° lat	D	Ta, P, cld (or Rad)	HWSD, STC HYD (Cosby et al., 1984), THM (Lawrence and Slater, 2008)	H2O, Tsoil (200)	S (Waha et al., 2012), fixed planting day after 1951	GDD+V (whe, sunfl, rapes); BT (mai); static (others) - fixed	300/90/100/varies ⁷	NA	Yes, does not affect yield
ORCHIDEE- crop	0.5° lon x 0.5° lat	Half- hourly	Tmn, Tmax, P, Rad, RH, WS	NA	H2O (1)	F (Sacks et al., 2010)	Fixed	200/90/100/varies ⁷	N(IFA)	Yes, does not affect yield
pAPSIM	0.5° lon x 0.5° lat	D	Tmn, Tmx,P, Rad	HSWD	NA	F (S is also possible)	GDD and/or latitude, 2-3 for each cell	NA	GGCMI	NA

Table S 2: Model inputs and agricultural management practices

pDSSAT	0.5° lon x 0.5° lat	D	Tmn, Tmx, P, Rad	HWSD	Soil OM, C, NH3, NO3, H2O (1)	S (Sacks et al., 2010) fixed planting window	GDD and/or latitude, 2-3 for each cell - fixed	40/80/100/757 ric: 30/50/100/100 ⁷	GGCMI	Yes, does not affect yield
PEGASUS	0.5° lon x 0.5° lat	D	Ta, Tmn, Tmx, P, cld (or sun)	AWC (ISRIC-WISE)	H2O (4)	S (Deryng et al., 2011) clim. adapt	GDD + clim. adapt	40/90/100/100 ⁷	NPK (national stat. IFA), annual application	NA
PEPIC	0.5° lon x 0.5° lat	D	Tmn, Tmx,P, Rad, RH, WS	ISRIC-WISE	Soil OM, C, NH3, NO3, H2O, P, CR (20)	Fixed planting day	GDD, 2 cultivars for mai	90/100/1000/500/1	NP (national stat. FertiSTAT), three times of N, rigid application of P	Yes
PRYSBI2	1.125° lon x 1.125° lat	D	Tmn, Tmx, P, Rad, RH, WS	ISLSCP-II (Hall et al., 2006)	NA	F (Sacks et al., 2010)	GDD - fixed	NA	NA	No

Notes: (NA where not applicable)

¹ D: daily time-step; M: monthly time-step; H: hourly time-step; WG: use monthly climate data interpolated to daily using a weather-generator

² Ta: average temperature, Tmn: minimum temperature, Tmx: maximum temperature, cld: percentage of cloud cover, sun: fraction of sunshine hours; RH: relative humidity; WS: wind speed; Vap: vapour pressure, Rad: radiation

³ Source of soil property inputs (e.g., source of basic soil properties), plus method for manipulation to derive parameters required by the model); AWC: Available Water Capacity (Van Genuchten et al., 1992) ; HYD: hydraulic soil parameters; THM: thermal parameters; HWSD: Harmonized world soil database (Fischer et al., 2008); STC: soil texture classification based on the USDA soil texture classification (http://ufdc.ufl.edu/IR00003107/00001); ISRIC-WISE (Batjes, 2006) ; ROSETTA (Schaap and Bouten, 1996)

⁴ Number of years for Spin up (x); OM: organic matter, C: carbon; NH3: ammonia; NO3: nitrate; H2O: soil water; P: phosphorus; CR: crop residues

⁵ S: Simulate planting dates according to climatic conditions; F: fixed planting dates; source of planting date data if applicable; PHU: potential heat unit; fixed planting window (i.e., does not allow for adaptation to climate change); clim. adapt: dynamic planting window (adaptation to climate change)

⁶ GDD: Simulate crop Growing Degree Days (GDDs) requirement according to estimated annual GDDs from daily temperature; Number of cultivars; GDD+V: GDD requirements and vernalization requirements computed based on past climate experience; BT base temperature computed based on past climate; fixed: static GDD requirement (no adaptation); clim. adapt: dynamic GDD requirement (adaptation to climate change)

⁷ Irrigation rules: IMDEP: depth of soil moisture measured; ITHRL(): critical lower soil moisture threshold to trigger irrigation event; ITHRU(): upper soil moisture threshold to stop irrigation; IREFF: irrigation application efficiency

⁸ Irrigation rules: EPIC and GEPIC models: BIR(): water stress in crop to trigger automatic irrigation; EFI(): irrigation efficiency - runoff from irrigation water; VIMX: maximum of annual irrigation volume; ARMX: maximum of single irrigation volume allowed; ARMN: minimum of single irrigation volume allowed

⁹ Fertilizer application, timing of application; NPK annual application of total NPK (nutrient-stress factor); source of fertilizer application data; timing: annual or dynamic

¹⁰ Remove residue or not (Yes/No)

Model	Leaf area development	Light interception ²	Light utilisation ³	Yield formation ⁴	Stresses involved ⁵	Type of heat stress ⁶	Crop phenology ⁷	Type of water stress ⁸	Evapo- transpiration	Soil water dynamic ¹⁰	Root distribution over depth ¹¹	Soil CN model ¹²	CO2 effects ¹³
CGMS- WOFOST	DA	D	P-R	Prt	WTA	V	T DL V	S	PM	2	NON	NA	LF TE
CLM-crop	DA	D	P-R	Prt	W,N,H	V	T & DL	S	TF	10	EXP	C/N	LF, TE
EPIC-BOKU	PS	S	RUE	Hlws Prt B	W T H A N P BD AL	NA	T(HU) V O	E	PM	10	EXP W	C N B(1) P(6)	RUE TE
EPIC-IIASA	PS	S	RUE	Hlws Prt B	W T H A N P BD AL	NA	T(HU) V O	E	HAR	10	EXP W	C N B(1) P(6)	RUE TE
EPIC- TAMU	PS	S	RUE	Hlws Prt B	W T H A N P BD AL	NA	T(HU) V O	E	PM	3	EXP W	C N B(1) P(6)	RUE TE
GEPIC	PS	S	RUE	Hlws Prt B	W T A N P BD AL	NA	T(HU) V O	E	HAR	5	EXP W	C N B(1) P(6)	RUE TE
LPJ-GUESS	DA	S	P-R	Hlws	WΤ	NA	ΤV	S	PT	2	LIN	NA	LF, SC
LPJmL	PS	S	P-R	Hlws	WΤ	NA	ΤV	S	PT	5	EXP	NA	LF, SC
ORCHIDEE- crop	DA	S	P-R	Prt	WT N	VR	T(HU) DL O V	S	РТ	11	EXP	NA	LF,SC
pAPSIM	DA	S	RUE,P- R(past ure only)	Gn, Prt, HIw (soy)	T,DI,O, V	EXP	W,N,A, H	E, S	TE	5	EXP	C,N,P, B(3)	RUE, TE, NE
pDSSAT	PS(s oy= DA)	S /D	RUE/P- R	Gn	W T H A N	VRF	T V DL O	E	PT/PM	4	EXP	C N P(3)	RUE, LF, TE
PEGASUS	DA	S	RUE	Prt	W T H N P K	V F ¹⁴	T(HU)	E	PT	3	LIN W	NA	RUE TE
PEPIC	PS	S	RUE	Hlws Prt B	W T H A N P BD AL	NA	T(HU) V O	E	PM	5	EXP W	C N B(1) P(6)	RUE TE
PRYSBI2	DA	S	P-R	HI	WT	V	HU	E	PM	2	EXP	NA	LF, SC

Table S 3: Biophysical process representation in GGCMs

Notes: (NA where not applicable):

¹ DA: Dynamic simulation based on development and growth processes; PS: prescribed shape of LAI curve as function of phenology, modified by water stress & low productivity

² S: Simple approach: D: Detailed approach

³ RUE: Simple (descriptive) radiation use efficiency approach; P-R: Detailed (explanatory) gross photosynthesis – respiration (for more details see Adam et al. (2011))

⁴ Yield formation depending on: HI: fixed harvest – index; B: total (above – ground) biomass; Gn: number of grains and grain growth rate; Prt: partitioning during reproductive stages; HIws: HI modified by water stress

⁵ W: water stress; T: temperature stress; H: specific-heat stress; A: oxygen stress; N: nitrogen stress; P: phosphorus stress; K: potassium stress; BD: bulk density; AL: aluminum stress (based on pH and base saturation)

⁶ V: vegetative (source); R: reproductive organ (sink); F: number of grain (pod) set during the flowering period

⁷ Crop phenology is a function of: T: temperature; DL: photoperiod (day length); O: other water/nutrient stress effects considered; V: vernalization; HU: Heat unit index

⁸ E: ratio of supply to demand of water; S: soil available water in root zone

⁹ PM: Penman – Monteith; PT: Priestley –Taylor; HAR: Hargreaves; TE: transpiration efficiency; TF: Turbulent Flux (Farquhar et al., 1980)

¹⁰ (x): x number of soil layers

¹¹ LIN: linear; EXP: exponential; NON: no roots-just soil depth zone; W: actual roots depends on water availability in each soil layer

¹² C model; N model; P(x): x number of organic matter pools; B(x): x number of microbial biomass pools

¹³ Elevated CO₂ effects: LF: Leaf-level photosynthesis (via rubisco or quantum-efficiency and leaf-photosynthesis saturation; RUE: Radiation use efficiency; TE: Transpiration efficiency; SC: Stomatal conductance

¹⁴ see Deryng et al. (2014)

Model	Model origin ¹	Calibration method	Parameters for calibration ²	Output variable and dataset for calibration ³	Spatial scale of calibration	Temporal scale of calibration	Method for model evaluation ⁴
CGMS- WOFOST	Site-based	Default parameters from site-specific analysis (WOFOST 6.0)	NA	NA	Field scale	Mostly trials from 1980- 2000	NA
CLM-crop	Ecosystem	NA	NA	NA	NA	NA	NA
EPIC-BOKU	Site-based	Site-specific (EPIC 0810)	NA	Yield (FE & FAO)	Field scale & National	Various	NA
EPIC-IIASA	Site-based	Site-specific (EPIC 0810) & Global ⁵	F, HIpot (ric, mai)F (others)	Yield (FE & FAO)	National	Around 2000	R2
EPIC-TAMU	Site-based	Site-specific	Hlpot (mai)	Yield (SPAM 2000 by You et al. (2014))	Grid cell level	2000	various
GEPIC	Site-based	Site-specific (EPIC 0810) & Global⁵	F HIpot (mai, ric)	Yield (FE & FAO)	National	Average for 1997-2003	R2
LPJ-GUESS	Ecosystem	Uncalibrated	NA	NA	NA	NA	NA
LPJmL	Ecosystem	Global	LAImax HI alpha_a	Yield (FAO)	National	Average for 1998-2003	Wilmott
ORCHIDEE- crop	Ecosystem	Uncalibrated	NA	NA	NA	NA	NA
pAPSIM	Site-based	Default parameters from site-specific analyses	NA	NA	field scale	NA	NA
pDSSAT	Site-based	Site-specific (DSSAT)	NA	Yield (FE)	Field scale	Various	NA
PEGASUS	Ecosystem	Global	β	Yield (M3 by Monfreda et al. (2008))	Grid cell level (0.5° lon x 0.5° lat resolution)	Average for 1997-2004	Wilmott
PEPIC	Site-based	Default parameters from site-specific analyses of EPIC0810 Potential HI (maize)	NA	Yield (FAO yield statistics)	National	Average for 1998-2002	R2
PRYSBI2	Ecosystem	Global	TH, TC, TS, LR	Yield (lizumi et al. (2014))	Grid cell level	1982-2006 (but the odd- numbered years were used as learning data for the estimation for the even years, and vice versa)	Log likelihood

Table S 4: Model calibration, parameters, scale and methods

Notes: (NA where not applicable)

¹ site-base crop model, ecosystem: global ecosystem model

² F: fertilizer application rate; HIpot: Potential harvest index; LAImax: maximum LAI under unstressed conditions;
 HI: harvest index; αa: factor for scaling leaf-level photosynthesis to stand level; β: radiation-use efficiency factor;
 TH: Total Heat unit required for the maturity; TC: Technological coefficient; TS: Temperature sensitivity of photosynthesis; LR: ratio of leaf to above ground biomass

³ FE: field experiments; FAO: FAOSTAT national yield statistic; M3: gridded data set of crop specific yields and harvested areas for the year 2000 (Monfreda et al., 2008)

⁴ Willmott: maximize Wilmott index of agreement (d) and RMSEu>RMSEs (RMSE: root-mean-square error; RMSEu: unsystematic RMSE; RMSEs: systematic RMSE) (Willmott et al., 1985), R2: coefficient of determination
 ⁵ GEPIC & EPIC-IIASA: Default parameters coming with the field scale model EPIC v0810 are mostly used. Potential HI has been adjusted for maize cultivars based on literature and human development index (GEPIC) or major world regions (EPIC-IIASA) and for rice based on literature. Fertilizer application rates have been modified for few countries that report very high yields and low fertilizer use, whereas most of these countries are known for their intensive use of manure.

Figures

Figure S 1: As figure 1 in the main text, but for the maize *fullharm* setting. NA indicates that this model/harmonization combination is not available (Table 2).

Figure S 2: As figure 1 in the main text, but for the maize *harm-suffN* setting. NA indicates that this model/harmonization combination is not available (Table 2).

Figure S 3: As figure 2 in the main text, but for the wheat *fullharm* setting. NA indicates that this model/harmonization combination is not available (Table 2).

Figure S 4: As figure 2 in the main text, but for the wheat *harm-suffN* setting. NA indicates that this model/harmonization combination is not available (Table 2).

Figure S 5: As figure 3 in the main text, but for the rice *fullharm* setting. NA indicates that this model/harmonization combination is not available (Table 2).

Figure S 6: As figure 3 in the main text, but for the rice *harm-suffN* setting. NA indicates that this model/harmonization combination is not available (Table 2).

Figure S 7: As figure 4 in the main text, but for the soybean *fullharm* setting. NA indicates that this model/harmonization combination is not available (Table 2).

Figure S 8: As figure 4 in the main text, but for the soybean *harm-suffN* setting. NA indicates that this model/harmonization combination is not available (Table 2).

Figure S 9: As figure 5 in the main text, but for wheat.

Figure S 10: As figure 5 in main text, but for rice.

Figure S 11: As figure 5 in main text, but for soybean.

Figure S 12: As figure 6 in main text, but without allowing for time shifts of one year in the correlation analysis.

Figure S 13: As figure 6 in main text, but for all maize producer countries simulated here.

Figure S 14: As figure 6 in main text, but for wheat.

Figure S 15: As Figure S12, but for wheat.

27 of 56

Figure S 17: As figure 6 in main text, but for rice.

Figure S 18: As Figure S12, but for rice.

Figure S 19: As Figure S13, but for rice.

Figure S 20: As figure 6 in main text, but for soybean.

Figure S 21: As Figure S12, but for soybean.

Figure S 22: As Figure S13, but for soybean.

Figure S 23: As figure 7 in main text, but for all maize producing countries included here.

Figure S 24: As Figure S23, but for wheat.

Figure S 25: As Figure S23 but for rice.

Figure S 26: As Figure S23 but for soybean.

Figure S 27: As figure 8 in main text, but with flattened time dimension. Instead of individual values for each year, we here use the multi-annual mean per country only, focusing on the correlations, variance and RMSD of the spatial pattern only.

Figure S 28: As figure 8 in main text, but after removing national means. By removing national mean yields, spatial differences between countries are eliminated (all with mean of zero) so that the analysis explicitly focuses on the year-to-year variability.

Figure S 29: As figure 8 in main text, but for wheat.

Figure S 30: As Figure S27, but for wheat.

Figure S 31: As Figure S28, but for wheat.

Figure S 32: As figure 8 in main text, but for rice

Figure S 33: As Figure S27, but for rice.

Figure S 34: As Figure S28, but for rice.

Figure S 35: As figure 8 in main text, but for soybean.

Figure S 36: As Figure S27, but for soybean.

Figure S 37: As Figure S28, but for soybean.

Figure S 38: As figure 10 in main text, but for wheat.

Figure S 39: As figure 10 in main text, but for rice.

Figure S 40: as figure 10 in main text, but for soybean.

Figure S 41: as figure 10 in main text, but for pDDSAT only.

Figure S 42: Best performing (R²) GGCM per grid cell for maize (*default*). Individual GGCMs are depicted by color. White areas are either outside cropping areas or none of the GGCMs achieves a statistically significant correlation with the Ray et al. (2015) data set.

Figure S 43: as figure 11 in main text, but for wheat.

Figure S 44: as figure 11 in main text but for rice.

Figure S 45: as figure 11 in main text, but for soybean.

References

Adam, M., Van Bussel, L. G. J., Leffelaar, P. A., Van Keulen, H., and Ewert, F.: Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions, Ecological Modelling, 222, 131-143, 2011.

Batjes, N. H.: ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid (version 1.1), SRIC – World Soil Information, Wageningen, Netherlands, 2006.

Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res, 20, 682-690, 1984. Deryng, D., Conway, D., Ramankutty, N., Price, J., and Warren, R.: Global crop yield response to extreme heat stress under multiple climate change futures, Environmental Research Letters, 9, 034011, 2014. Deryng, D., Sacks, W. J., Barford, C. C., and Ramankutty, N.: Simulating the effects of climate and agricultural management practices on global crop yield, Global Biogeochemical Cycles, 25, GB2006, 2011. Dobos, E.: Albedo, In Encyclopedia of Soil Science, Second Edition., 2006. 64-66, 2006.

Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78-90, 1980.

Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H. T., Verelst, L., and Wiberg, D.: Global Agroecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy, 2008.

Hall, F. G., Brown de Colstoun, E., Collatz, G. J., Landis, D., Dirmeyer, P., Betts, A., Huffman, G. J., Bounoua, L., and Meeson, B.: ISLSCP Initiative II global data sets: Surface boundary conditions and atmospheric forcings for land-atmosphere studies, Journal of Geophysical Research: Atmospheres, 111, D22S01, 2006.

lizumi, T., Yokozawa, M., Sakurai, G., Travasso, M. I., Romanenkov, V., Oettli, P., Newby, T., Ishigooka, Y., and Furuya, J.: Historical changes in global yields: major cereal and legume crops from 1982 to 2006, Global Ecology and Biogeography, 23, 346-357, 2014.

Lawrence, D. and Slater, A.: Incorporating organic soil into a global climate model, Clim Dyn, 30, 145-160, 2008.

Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochemical Cycles, 22, GB1022, 2008.

Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and Foley, J. A.: Closing yield gaps through nutrient and water management, Nature, 490, 254-257, 2012.

Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochemical Cycles, 24, GB1011, 2010.

Sacks, W. J., Deryng, D., Foley, J. A., and Ramankutty, N.: Crop planting dates: An analysis of global patterns, Global Ecology and Biogeography, 19, 607-620, 2010.

Schaap, M. G. and Bouten, W.: Modeling water retention curves of sandy soils using neural networks, Water Resources Research, 32, 3033-3040, 1996.

USDA and NRCS: Web Soil Survey. Soil Survey Staff. Natural Resources Conservation Service, United States Department of Agriculture., 2015.

Van Genuchten, M. T., Leij, F., and Lund, L.: Indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Riverside, 1992.

Waha, K., van Bussel, L. G. J., Müller, C., and Bondeau, A.: Climate-driven simulation of global crop sowing dates, Global Ecology and Biogeography, 21, 247-259, 2012.

Willmott, C., Ackleson, S., Davis, R., Feddema, J., Klink, K., Legates, D., O'Donnell, J., and Rowe, C.: Statistics for the evaluation and comparison of models, J. Geophys. Res., 90, 8995-9005, 1985.

You, L., Wood, S., Wood-Sichra, U., and Wu, W.: Generating global crop distribution maps: From census to grid, Agricultural Systems, 127, 53-60, 2014.