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Abstract 41 
Crop models are increasingly used to simulate crop yields at the global scale, but there so far is no 42 
general framework on how to assess model performance. We here evaluate the simulation results of 14 43 
global gridded crop modeling groups that have contributed historic crop yield simulations for maize, 44 
wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural 45 
Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference 46 
data at global, national and grid cell scales and we evaluate model performance with respect to time 47 
series correlation, spatial correlation and mean bias. We find that GGCMs show mixed skill in 48 
reproducing time-series correlations or spatial patterns at the different spatial scales. Generally, maize, 49 
wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed 50 
temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 51 
0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most 52 
models. Yield variability can be well reproduced for most major producer countries by many GGCMs and 53 
for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the 54 
effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of 55 
the yield variability than an ensemble of regression models for maize and soybean, but not for wheat 56 
and rice. We identify future research needs in global gridded crop modeling and for all individual crop 57 
modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we 58 
propose that the best performing crop model per crop and region establishes the benchmark for all 59 
others, and modelers are encouraged to investigate how crop model performance can be increased. We 60 
make our evaluation system accessible to all crop modelers so that also other modeling groups can test 61 
their model performance against the reference data and the GGCMI benchmark. 62 

  63 
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1. Introduction 64 
Agriculture is fundamental to human life and our ability to understand how agricultural production 65 
responds to changes in environmental conditions and land management has for long been a central 66 
question in science (Russell, 1966; Spiertz, 2014). Numerical crop models have been developed over the 67 
last half-century to understand agricultural production systems and to predict effects of changes in 68 
management (e.g. irrigation, fertilizer) (El-Sharkawy, 2011). In the face of continued population growth, 69 
economic development, and the emergence of global-scale phenomena that affect agricultural 70 
productivity (most prominently climate change) crop models are also applied at the global scale 71 
(Rosenzweig and Parry, 1994). Given the importance of climate change and the central interest in 72 
agriculture, global-scale crop model applications have been increasingly used to address a wide range of 73 
questions, also beyond pure crop yield simulations (e.g., Bondeau et al., 2007; Del Grosso et al., 2009; 74 
Deryng et al., 2014; Osborne et al., 2013; Pongratz et al., 2012; Rosenzweig et al., 2014; Stehfest et al., 75 
2007; Wheeler and von Braun, 2013).  76 

With very few exceptions, crop models applied at the global scale have been developed for field-scale 77 
applications (e.g. EPIC-based models, pDSSAT, pAPSIM) or have been derived from global ecosystem 78 
models by incorporating field-scale crop model mechanisms and parameters (e.g. LPJ-GUESS, LPJmL, 79 
ORCHIDEE-crop, PEGASUS) and several of these have been systematically intercompared with a large 80 
number of other field-scale models (Asseng et al., 2013; Bassu et al., 2014). Still, differences between 81 
global gridded crop models (GGCM) (Rosenzweig et al., 2014) and also between field scale models 82 
(Asseng et al., 2013; Bassu et al., 2014; Li et al., 2015) have been recently identified, following a general 83 
call to revisit modeling skills and approaches (Rötter et al., 2011), which is also a central objective of the 84 
Agricultural Model Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al., 2013) and the 85 
Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) (Warszawski et al., 2014). Site-specific 86 
applications and model evaluation can demonstrate the general suitability of the mechanisms 87 
implemented in the models and the corresponding parameters (Boote et al., 2013), but the extrapolation 88 
and upscaling of parameters and model assumptions remains challenging (Ewert et al., 2011; Hansen and 89 
Jones, 2000). If models are applied at the global scale, they also need to be assessed at the scale of 90 
interpretation, which ranges from gridded to national or regional aggregates (Elliott et al., 2014a; Fader 91 
et al., 2010; Müller and Robertson, 2014; Nelson et al., 2014a; Nelson et al., 2014b; Osborne et al., 92 
2013). 93 

Global-scale applications of crop models face a number of challenges. A major difference to field-scale 94 
model applications is that at large regional to global scale detailed model calibration to field 95 
observations is not possible. Specification and initialization as typically conducted in field-scale 96 
applications simply lack data of suitable spatial coverage and simulation units (e.g. 0.5° grid cells) 97 
represent an aggregate of many smaller, potentially heterogeneous fields. Initialization of soil properties 98 
(Basso et al., 2011) is especially important in dry and nutrient-depleted production systems (Folberth et 99 
al., 2012) and the specification of soil properties can greatly affect crop model simulations (Folberth et 100 
al., 2016b). Similarly, production systems typically cannot be specified in great detail. There is limited 101 
information on growing seasons (Portmann et al., 2010; Sacks et al., 2010) and irrigation area, amount 102 
and timing (Siebert et al., 2015; Thenkabail et al., 2009) that can be used to model crop-specific irrigation 103 
shares (Portmann et al., 2010; You et al., 2010), planting dates and crop parameters for the specification 104 
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of varieties grown (van Bussel et al., 2015) and multiple cropping rotation practices. Still, crop varieties 105 
are often assumed to be homogeneous globally or within large regions in global model setups (Folberth 106 
et al., 2016a; Müller and Robertson, 2014). Other management aspects are typically assumed to be static 107 
in space and time. There have been some attempts to calibrate crop models in global-scale applications 108 
but these always calibrate to (sub-)national yield statistics (Fader et al., 2010) or to gridded yield data 109 
sets (Deryng et al., 2011; Sakurai et al., 2014) that are based on (sub-)national statistics (Iizumi et al., 110 
2014b; Mueller et al., 2012).  111 

The evaluation of model performance (skill) faces similar challenges. Data availability has improved 112 
lately, as gridded data sets on yield time series have become available (Iizumi et al., 2014b; Ray et al., 113 
2012), but generally only yield data is available, while other end-of-season (e.g. biomass) or within-114 
season (e.g. leaf area index, LAI) information is lacking. The gridded yield data sets are not purely 115 
observational but include some form of model application in the interpolation of unknown accuracy so 116 
that they do not directly qualify as a reference data set. Currently, global gridded crop models lack a 117 
clear benchmark against which they can be evaluated. A benchmark is an a-priori definition of expected 118 
model performance based on a set of performance metrics (Best et al., 2015). Given that the GGCMs are 119 
merely driven by variable information on weather and atmospheric CO2 concentrations whereas 120 
assumptions on soil properties and/or management systems are static, these cannot be expected to 121 
reproduce all temporal dynamics and spatial patterns of observed crop yields. The contribution of 122 
weather variability has been estimated to roughly one third globally of the observed yield variability (Ray 123 
et al., 2015) and moderate-to-marked yield losses can be explained by weather data over 26-33% of the 124 
harvested area (Iizumi et al., 2013), with a clear negative impact of extreme drought and heat events 125 
(Lesk et al., 2016). The explanatory power of weather variability on crop yields varies strongly between 126 
regions, with a tendency to have larger influence on yield variability in high-input systems than in low-127 
input systems (Ray et al., 2015), where substantial variation may also be introduced by pests and 128 
diseases, socio-economic conditions, and changes in management.  129 

The comparison with gridded data is difficult, because of introduced interpolation errors in the 130 
referenced data. The differences between the two gridded yield reference data sets can be substantial, 131 
indicating that the modeling assumptions made introduce substantial uncertainty and limit their 132 
applicability as a reference data set. Similarly, if simulated gridded yield data are to be compared with 133 
(sub-)national yield statistics, these need to be spatially aggregated. This aggregation requires 134 
information on the spatial and temporal distribution of cropland and irrigation systems, which is 135 
available from different global data sets with differing estimates that can introduce substantial 136 
uncertainty (Porwollik et al., in press). 137 

The objective of this paper is to provide and discuss a broad model evaluation framework to test 138 
performance of GGCMs that participated in the global gridded crop model intercomparison (GGCMI) of 139 
AgMIP’s Gridded Crop Model Initiative (Ag-GRID) (Elliott et al., 2015). We aim to assess general and 140 
individual model performance across different crops and regions that can serve as a basis for further 141 
model development and improvement as well as a benchmark for future assessments. Model 142 
performance is evaluated with respect to correct spatial patterns as well as temporal dynamics at the 143 
global scale as well as for individual countries and grid cells. Reference data sets and metrics are 144 
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explained in more detail in the methods section. We also propose this evaluation system to become a 145 
standard benchmarking system for all global gridded crop model application and to track model 146 
improvement1. As such, we make the data processing and the computation of performance metrics 147 
available online (https://mygeohub.org/tools/ggcmevaluation) to other modelers so that they can 148 
compare their models’ results against the GGCMI ensemble. We argue that under given uncertainties the 149 
best performing crop model per region and crop defines the benchmark for the other models.  150 

  151 

                                                             
1 We are currently setting up an online evaluation system where files can be uploaded and assessed in the same 
way as the GGCMI simulations in this paper. The tool will become available on the GEOSHARE Portal at 
https://mygeohub.org/tools/ggcmevaluation 

https://mygeohub.org/tools/ggcmevaluation
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2. Methods 152 

2.1. Models participating and experimental setup 153 
For the GGCMI in AgMIP, 14 model groups have contributed (Table 1), following the protocol for the 154 
GGCMI (Elliott et al., 2015). For this, crop modeling groups were asked to perform global simulations 155 
with their standard assumptions (inputs or internal calculations) on growing seasons and fertilizer inputs 156 
(‘default’), with harmonized growing seasons (i.e with supplied planting and harvest dates (Elliott et al., 157 
2015)) and fertilizer inputs per crop and pixel (‘fullharm’) as well as a simulation with harmonized 158 
growing seasons but assuming the absence of nutrient limitation (‘harm-suffN’, referred to as ‘harmnon’ 159 
in Elliott et al. (2015), but changed here to avoid the misinterpretation of “no nitrogen”). We evaluate 160 
model performance for each of these harmonization sets to study the importance of these assumptions 161 
for individual models’ as well as for the ensemble’s performance. More detail on the processes 162 
implemented in the GGCMs can be found in the supplement, tables S1-S4.  163 

We here use data from simulations by these 14 GGCMs driven by the weather data set AgMERRA (Ruane 164 
et al., 2015), for which all modeling groups have performed simulations and historical atmospheric 165 
carbon dioxide (CO2) concentrations (Thoning et al., 1989). The AgMERRA data set spans the time frame 166 
of 1980-2010 and provides daily data on the most important meteorological driver variables and groups 167 
applied their own interpolation to sub-daily values if needed. If additional weather data were needed by 168 
individual modeling groups (such as long-wave radiation), these were supplemented from the Princeton 169 
Global Forcing data set (PGFv2) (Sheffield et al., 2006). We assume this to have little impact on 170 
simulation results, as all data sets are based on station data and/or reanalysis data and as bias-correction 171 
of re-analysis data is performed for each meteorological variable individually, there is no explicit 172 
dependency between individual variables (e.g. between radiation and temperature). The contribution of 173 
uncertainties in historic weather data sets on crop model skill is to be evaluated elsewhere and is not 174 
part of the objectives here.  175 

All input and harmonization targets are supplied at a regular grid with 0.5 degree resolution. Weather 176 
data are supplied at daily resolution. Some models use a different spatial or temporal resolution for 177 
which they had to find individual solutions. See text and Table S2 in the supplement for further detail. 178 
Each modeling group is asked to use their own soil data and parameterization (Elliott et al., 2015). Yield 179 
simulations are conducted for the four major crops wheat, maize, rice and soybean depending on model 180 
capacities. Some groups could not supply data for all crops or harmonization settings (see Table 2). Each 181 
modeling group supplied data for each crop for all land grid cells (up to 62911 grid cells) with separate 182 
simulations for purely rain-fed conditions and for conditions with full irrigation. Full irrigation does not 183 
necessarily imply the absence of water stress in all models, if, e.g. the atmospheric water vapor pressure 184 
deficit exceeds the plant’s physical capacity to transpire water. Model irrigation is triggered on demand 185 
(supplement Table S2) independent of the availability of irrigation water (Elliott et al., 2015).  186 

Following FAO reporting standards, we are not reporting simulated yield data as calendar aggregates but 187 
as a time series of annual growing seasons. In this way, we avoid that individual calendar years can have 188 
two harvests (one shortly after January 1st and one shortly before December 31st) and others with zero 189 
harvest, which would greatly increase the variability in the reported simulated crop yields and would be 190 
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inconsistent with FAO data. Instead, each harvest season is assigned a calendar year, starting with the 191 
first harvest of the growing season that started in 1980 (beginning of the AgMERRA forcing data), leaving 192 
a residual uncertainty how the time series need to be matched (see below).  193 

2.2. Reference data 194 
We use two different data sets for the evaluation of the GGCMs. The FAO data (FAOstat data, 2014) is 195 
used for national and global-scale model evaluation and is available at these scales from 1961-2013. For 196 
some countries, production data and/or harvested areas have been estimated by the FAO rather than 197 
reported (FAOstat data, 2014). For spatially resolved detail we use the data published by Ray et al. (2012, 198 
henceforth "Ray2012"), as that allows for direct comparison with the regression model analysis of Ray et 199 
al. (2015, henceforth "Ray2015"). The Ray2012 data spans 1961-2008 and was aggregated from its 200 
original resolution of 5 arc minutes to the 0.5° GGCMI standard resolution, weighted by production. Both 201 
production and harvested area data are collected at sub-national level for 51 countries in the Ray data 202 
and changes in productivity thus reflect both dynamics in area and production. National totals are forced 203 
to match FAO statistics, if there were differences (Ray et al., 2012). The assignment of yield statistics to 204 
the grid raster as conducted by Ray et al. (2012) requires making assumptions that introduce 205 
uncertainty. To illustrate the uncertainty in the gridded reference data, we compare the Ray2012 data 206 
with the Iizumi data set (Iizumi et al., 2014b). The Iizumi data set is available in gridded form from 1982-207 
2006, which we here re-gridded from its original resolution of 1.125°x1.125° to the standard GGCMI 208 
resolution of 0.5°x0.5° resolution, using the remapcon function (CDO, 2015). As much of the southern 209 
hemisphere has no data for 2006 due to its ending in the middle of Southern summer, we only consider 210 
the period 1982-2005 here. The Iizumi data are based on national FAO data and the spatial variability 211 
within countries is introduced based on satellite data. Given the different approaches, there are 212 
substantial differences in spatial patterns between the Ray and Iizumi data, but temporal dynamics at 213 
the national level reflect the FAO data.  214 

2.3. Metrics used 215 
In the analysis we largely focus on time series correlation of simulated and reference crop yields, given 216 
that the main application of gridded crop models at the global scale is related to studies on climate 217 
change impacts, where we expect models to respond reasonably to changes in atmospheric conditions 218 
(weather, climate). The main metric used is therefore the time series correlation analysis, employing the 219 
Pearson’s product moment correlation coefficient (henceforth “correlation coefficient”). Significance 220 
levels (p-values) are reported based on a t-distribution with length(x)-2 degrees of freedom. Given 221 
difficulties in attributing sequences of growing periods to the calendar year in both FAO statistics2 and in 222 
simulated data where groups also interpreted the reported standards differently, we test if the time 223 
series correlation can be substantially improved by shifting the times series by one year. We apply such 224 
shifts only if the correlation coefficient improves by at least 0.3 and report un-shifted time series 225 
analyses in the supplement. Time series correlation is used at the global aggregation level, the national 226 
aggregation and the pixel level. In some cases, the correlation analysis is weighted by production to put 227 
                                                             
2 FAO glossary on crop production: „… When the production data available refers to a production period falling into 
two successive calendar years and it is not possible to allocate the relative production to each of them, it is usual to 
refer production data to that year into which the bulk of the production falls.” Available at 
http://faostat3.fao.org/mes/glossary/E 
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higher emphasis on larger production units, assuming that data quality is often better than for smaller 228 
producer units (e.g. less developed countries) and because these are more important to correctly 229 
simulate for global assessments. At the global scale, correlation coefficients are simply reported in the 230 
figures but we employ heatmaps to display correlation coefficients at the national scale, making use of a 231 
version of the heatmap.2 function of the gplot package (Warnes et al., 2016), which has been modified 232 
to allow for extra labeling. 233 

We acknowledge that the models are only driven by fields of weather data, soil data and nitrogen 234 
fertilizer inputs, ignoring the heterogeneity in patterns of other fertilizers (e.g. P, K), pest control and 235 
other managerial aspects (e.g. varieties, planting densities). Therefore, we only test model performance 236 
in reproducing spatial patterns of productivity at national aggregations and not within individual 237 
countries, as the quality of gridded reference data Ray2012 (interpolated (sub-)national statistics) as well 238 
as fertilizer inputs (Elliott et al., 2015; Mueller et al., 2012) and growing seasons (Elliott et al., 2015; 239 
Portmann et al., 2010; Sacks et al., 2010) is limited with respect to the spatial heterogeneity. Deviations 240 
from national or global yield levels are computed as the mean bias, as in eq. 1, where i is any element in 241 
n. At the global scale and for individual countries, n is the number of growing seasons in the sample.  242 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1
𝑛𝑛
∑ (𝑦𝑦𝑏𝑏𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 − 𝑦𝑦𝑏𝑏𝑦𝑦𝑦𝑦𝑦𝑦𝑜𝑜𝑜𝑜𝑠𝑠,𝑠𝑠)𝑛𝑛
𝑠𝑠=1  eq. 1 243 

For a more comprehensive testing of the simulated yield dynamics, we employ Taylor diagrams that 244 
allow for displaying the correlation in spatio-temporal patterns between observations and simulated 245 
data in a single diagram (Taylor, 2001). The Taylor diagram depicts the correlation coefficient across 246 
spatial units and time, the centered RMSD, and the variance relative to that of the observational data 247 
set. Acknowledging the difficulties with respect to the spatial heterogeneity in reference and simulated 248 
data, we employ the Taylor diagrams only for nationally aggregated data, meaning that spatial patterns 249 
only refer to national aggregations here. In the Taylor diagram analysis, countries are weighted by their 250 
crop-specific production (FAOstat data, 2014). To disentangle the contribution of the spatial vs. the 251 
temporal variability to the Taylor diagram, we also compute two variants of these diagrams which focus 252 
on temporal or spatial variability only. For the temporal-dynamics-only variant, we remove the national 253 
means from all de-trended time series so that all national time series have a mean of zero and thus 254 
display no differences in this respect. For the space-dynamics-only variant, we average time series so 255 
that we compute the metrics with one national mean value per country only, ignoring possible changes 256 
in data quality over the time series. For plotting Taylor diagrams, we use the taylor.diagram function of 257 
the R package plotrix (Lemon, 2006) that we have modified to allow for weighted correlation and for 258 
testing of significance levels.  259 

Instead of numerous maps on pixel-specific performance metrics, we also present these in form of 260 
boxplots. To allow for weighting the distribution of pixel-specific metrics such as the correlation 261 
coefficients, we employ weighted quantiles of the function quantileWt of the R package simPopulation 262 
(Alfons and Kraft, 2013). 263 
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2.4. Data processing 264 
Gridded crop model simulations are driven by time series of weather data and of atmospheric CO2 265 
concentrations, and static management assumptions. A comparison to observation-based reference data 266 
thus requires processing of raw simulation GGCM outputs and the reference data to make these 267 
different data sources comparable. As much of the trends in yield are driven by intensification and 268 
altered management (FAO, 2013; Ray et al., 2012), we are removing trends from simulation and 269 
reference data. As reference data are available at grid-cell, national and global levels, we aggregated 270 
simulated yield data to grid-cell, national, and global levels, using an area-weighted average as described 271 
in eq. 2. Aggregation to the grid-cell level only describes the combination of irrigated and rain-fed 272 
simulation time series, but follows the same principle. 273 

𝑦𝑦𝑏𝑏𝑦𝑦𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎 =
∑ 𝑦𝑦𝑠𝑠𝑎𝑎𝑦𝑦𝑎𝑎𝑖𝑖,𝑖𝑖𝑖𝑖,𝑡𝑡∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡𝑛𝑛
𝑖𝑖=1 +∑ 𝑦𝑦𝑠𝑠𝑎𝑎𝑦𝑦𝑎𝑎𝑖𝑖,𝑖𝑖𝑟𝑟,𝑡𝑡∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑠𝑠𝑛𝑛𝑟𝑟𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡𝑛𝑛

𝑖𝑖=1
∑ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡+𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑠𝑠𝑛𝑛𝑟𝑟𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡)𝑛𝑛
𝑖𝑖=1

 eq. 2 274 

Here, i is the index of any grid cell assigned to the spatial unit in question for growing season t, n is the 275 
number of grid cells in that spatial unit, yieldi,ir,t is the simulated yield (t/ha) under fully irrigated 276 
conditions in grid cell i, and yieldi,rf,t is the simulated yield (t/ha) under rain-fed conditions in grid cell i, 277 
area_irrigatedi is the irrigated harvested area (ha) in grid cell i and area_rainfedi is the rain-fed harvested 278 
area (ha) in grid cell i. 279 

Following Porwollik et al. (in press), we use four different masks for the aggregation to national data: 280 
MIRCA2000 (Portmann et al., 2010), SPAM (You et al., 2014a; You et al., 2014b), Iizumi (Iizumi et al., 281 
2014b), and Ray (Ray et al., 2012). As we cannot assess which of these aggregation masks is superior to 282 
the others, we always select the aggregation mask that gives the best agreement between simulated and 283 
reference time series. MIRCA2000 and SPAM provide separate data on irrigated and rain-fed crop-284 
specific harvested areas per grid-cell, while Ray and Iizumi do not distinguish irrigated from rain-fed 285 
areas. For aggregation purposes, we thus separate total harvested area per grid cell and crop from Ray 286 
and Iizumi into irrigated and rain-fed areas, using the relative shares per grid cell and crop from 287 
MIRCA2000 (see Porwollik et al., in press). 288 

After aggregation to national time series or to grid-cell specific area-weighted combinations of irrigated 289 
and rain-fed yield simulations, we remove trends from simulated and reference data. For this, we are 290 
computing the anomalies by subtracting a moving mean average of a 5-year window (t-2 to t+2), with 3-291 
year windows at both ends (t1- to t+1) of the time series in order to not lose too many years from the 292 
time series. Similar de-trending methods have been applied by other studies (Iizumi et al., 2014a; Iizumi 293 
et al., 2013; Kucharik and Ramankutty, 2005). We also tested other de-trending methods (e.g. linear or 294 
quadratic trend removal) and find that this may also results in better agreement between simulated and 295 
reference data sets. However, for simplicity we focus on one de-trending method only in this analysis. 296 
For evaluation across different countries, de-trended time series can be compared as pure anomalies, 297 
which vary around zero, or with preserved national mean yields allowing also for assignment of 298 
differences in yield levels between different countries. 299 

For a comparison of simulated yields that are reported in t/ha dry matter with FAOstat yields (FAOstat 300 
data, 2014), which are reported in t/ha “as purchased”, we assume a net water content of 12% for maize 301 



10 
 

and wheat, 13% for rice and 9% for soybean, following Wirsenius (2000). This assumption does not affect 302 
any metrics other than the mean bias. 303 

2.5. Benchmarks for evaluating model performance 304 
GGCM simulations are typically used to study effects of changing environmental conditions, such as 305 
climate change impact assessments. We therefore put much emphasis on the models’ ability to 306 
reproduce temporal variability. Also the spatial variability of crop yields, e.g. along environmental 307 
gradients within countries or in response to different fertilizer input within and between countries 308 
should be reproduced by the models.  309 

We apply weights when assessing model performance. For analyses of aggregated yield data, it is 310 
important to get large areas and highly productive areas right in the simulations. Also, reference data is 311 
often of limited quality for marginal and/or small areas. We therefore typically weight results by 312 
production (harvested area multiplied with productivity). 313 

At pixel scale, we are presenting skill-based model ensemble estimates by selecting the single best 314 
GGCM per pixel that demonstrate the joint ensemble skill rather than an average (e.g. median) across all 315 
models. This skill-based approach demonstrates to what extent crop models can actually reproduce 316 
observed patterns and variability and differences between individual models and the skill-based model 317 
ensemble quantify the learning potential within the ensemble. Principally, in the absence of other 318 
benchmark measures, the best performing model should be the benchmark for the others. For the 319 
definition of the benchmark here, we do not only consider the GGCMI ensemble but also the 27 320 
regression models as used by Ray et al. (2015). A model-based benchmark as postulated here can 321 
establish a very low target, e.g., if all models perform poorly. As such, the benchmark will have to be 322 
continuously re-assessed and model intercomparison studies as the GGCMI can help to further develop 323 
this benchmark. 324 

  325 
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3. Results 326 
We present results from the evaluation for three different aggregation levels: global, national and grid-327 
cell level. The global level is the most aggregate where underlying reasons for observed patterns are 328 
hard to identify. National-level data provides more insights on underlying patterns but requires data 329 
reduction for presentation. Pixel-level results can only be assessed by statistical means and results are 330 
thus presented in aggregated form again. We typically display results for the default setting in the main 331 
text but supply results for all other settings in the supplement. For the main text figures, we use fullharm 332 
simulations for all those model/crop combinations that did not supply a default setting simulation (i.e. 333 
those that did not have a default setting before participating in GGCMI). These are clearly indicated in 334 
figures and captions. Also, to reduce the amount of data displayed here, we typically show results for 335 
maize in the main text and display figures for all other crops in the supplement, while still describing and 336 
discussing these here. 337 

3.1. Global scale model performance 338 
Aggregated to global time series of crop yields, the different GGCMs display mixed skill in comparison to 339 
the FAOstat time series when both are de-trended. Of the four major crops, global yield variability can be 340 
best reproduced for maize with correlation coefficients (r) between 0.89 and 0.42 and one non-341 
significant correlation (PRYSBI2, Figure 1). PRYSBI2 is actually parametrized to reproduce the historic 342 
trend in crop yields and if trends are not removed prior to the time series correlation analysis, its 343 
correlation becomes highly significant with a correlation coefficient of 0.56. Note that a correlation 344 
analysis that includes a trend to which the model has been calibrated may be strongly dominated by this 345 
trend. Changes in the harmonization setting (fullharm, harm-suffN, see Figures S1 and S2 in the 346 
supplement) often have little effect on simulations except for a few models, where harmonization can 347 
significantly improve (e.g. EPIC-BOKU) or weaken (e.g. PEGASUS) the correlation.  348 

For wheat, 10 of the 14 models produce a time series that is significantly correlated to FAO statistics 349 
(Figure 2) with correlation coefficients between 0.67 and 0.37. Harmonization does not greatly change 350 
correlation coefficients but 2 models achieve significant correlation under harmonization that they did 351 
not achieve in the default setting (GEPIC, ORCHIDEE-crop) whereas one loses the significant correlation 352 
under harmonization (PEGASUS, see Figures S3-S4). PRYSBI2 again only achieves significant correlation if 353 
trends are not removed prior to the correlation analysis. 354 

Only 3 of the 11 GGCMs that submitted data for rice (Table 2) achieve significant correlation to FAO 355 
statistics of variations in global rice productivity (EPIC-IIASA, LPJ-GUESS and PRYSBI2, Figure 3) and two 356 
other achieve significant correlations under fullharm (EPIC-BOKU, PEPIC, Figure S5), but none of the 357 
models reaches statistical significance under the harm-suffN setting (Figure S6). PRYSBI2’s correlation 358 
improves substantially (from 0.53* to 0.83***) if trends are maintained.  359 

Of the 13 GGCMs that submitted data for soybean (Table 2), 7 achieve significant correlation to FAO 360 
statistics of variations in global soybean productivity (correlation coefficients between 0.64 and 0.41). 361 
Under harmonization, two more models reach statistical significance levels (LPJ-GUESS, PEPIC, figures S7-362 
S8) and PRYSBI2 reaches significant correlations (0.57**) if trends are not removed. 363 
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There are also great differences between GGCMs concerning their absolute deviation from observed 364 
yield levels, reflecting their different setups, process representation and calibration (Table S2-S4 in the 365 
supplement). We find no relationship between mean bias and the ability to reproduce variability over 366 
time (time series correlation) for maize (Figure 5), wheat (Figure S9) and rice (Figure S10) but a positive 367 
relation (that is, correlation coefficients tend to be higher for larger mean bias) was found for soybean 368 
(Figure S11). 369 

3.2. National scale 370 
National aggregated yield data is presented as time-series correlation coefficients (color-coded in 371 
heatmaps) as well as the mean bias. We here only show the top-ten producer countries for maize and 372 
display data for the other crops and for all producer countries in the supplement. 373 

Inter-annual variability of most top ten maize producer countries can be reproduced to large extent by 374 
various GGCMs. The inter-annual variability of Indonesia cannot be reproduced well by any of the 375 
models (max r is 0.42 and correlation is not statistically significant in most cases), whereas the inter-376 
annual variability of Argentina, France, India, South Africa and the United States can be largely 377 
reproduced by almost any GGCM-harmonization combination. To achieve good statistical correlations, 378 
some time series had to be shifted by a year, especially for Argentina, Mexico and South Africa (Figure 379 
S12). Also for the other maize producer countries, the yield variability can be well reproduced by most 380 
GGCM-harmonization settings, and there is always at least one GGCM that can reproduce a statistically 381 
significant share of the variability (Figure S13). 382 

For wheat (Figures S14-S16), rice (Figures S17-S19) and soybean (Figures S20-S22) a similar picture 383 
emerges. The yield variability of the top 10 producer countries can be reproduced by a large number of 384 
GGCMs, with a few exceptions (France and China for wheat; Bangladesh and Myanmar for rice; China for 385 
soybean) where only a few GGCMs are able to reproduce statistically significant shares of the yield 386 
variability in the FAO yield statistics. Likewise for wheat, rice and soybean, a statistically significant share 387 
of the yield variability can be reproduced for all producer countries covered here (best column in Figures 388 
S16, S19, S22) and allowing for shifts in the time series can greatly improve the correlation, especially in 389 
tropical countries (e.g. Pakistan for wheat, Indonesia and Thailand for rice, soybean in India). 390 

Other than deviating in temporal dynamics, which is tested with time-series correlation analyses, GGCM 391 
simulations can also be biased compared to FAO yield statistics, typically underestimating yields in high-392 
yielding countries and overestimating yields in low-yielding countries (Figure 7). Some GGCMs (e.g. 393 
pDSSAT) and the harm-suffN generally tend to overestimate yields, but not in all cases (Figures 7, S23-394 
S26). 395 

Aggregation to national scale does not only allow for looking into temporal dynamics of each individual 396 
country, it also allows for assessing spatial patterns in combination with temporal dynamics. By 397 
assembling national yield data series to a 2-dimensional field (countries x time), we can assess the 398 
spatio-temporal correlation between simulated and FAO data as well as the variance and centered RMSD 399 
using Taylor diagrams (Taylor, 2001). Here, countries are weighted by production (FAOstat data, 2014) to 400 
avoid that small countries dominate the overall picture (see Methods). GGCMs show mixed skill when 401 
compared to FAO data, with some models having high correlation coefficients, whereas others have low 402 
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or negative correlation coefficients (Figure 8). Here, harm-suffN simulations typically show much lower 403 
correlation coefficients than the other harmonization settings. Except for one model under harm-suffN 404 
(EPIC-TAMU, Figure 8), harmonization (fullharm, harm-suffN) eliminates any negative correlation 405 
coefficients. None of the GGCM-harmonization settings leads to negative correlation coefficients if the 406 
national differences in mean yields are ignored (Figure S28). The Taylor diagram with flattened time 407 
dimension (i.e. only using one multi-annual mean per country in the analysis, Figure S27) almost looks 408 
identical to the Taylor diagram with both the time and space dimension (Figure 8). This disentangling of 409 
the contributions of spatial vs. temporal variability shows that the overall skill of models as presented in 410 
the Taylor diagram is dominated by the spatial signal, i.e. the differences between national mean yields 411 
outweigh the year-to-year variability around those means by far. This also explains why GGCMs with 412 
some calibration against yield levels (EPIC-IIASA, LPJmL, PEGASUS, PRYSBI2, see table S4) show relatively 413 
high correlation coefficients, as the differences between national means dominate the overall 414 
correlation. When the spatial differences are ignored by removing the mean yields per country (i.e. each 415 
country has a mean of zero and the correlation thus only considers the year-to-year variability around 416 
these), the GGCMs perform more similar, typically displaying correlation coefficients between 0.4 and 417 
0.6 (Figure S28) and often the variance becomes larger (larger standard deviation) relative to the FAO 418 
reference data set.  419 

A similar pattern can be observed for the other crops as well. The differences in yield levels between 420 
countries dominate the overall performance in the spatio-temporal correlation (Figures S29 vs. S30 for 421 
wheat, S32 vs. S33 for rice, S35 vs. S36 for soybean) and GGCMs perform more similar in the analysis of 422 
time-only variance (Figures S31, S34, S37). 423 

3.3. Pixel scale 424 
At the pixel scale, reference data uncertainty increases substantially, as the two available data sets are 425 
essentially model- and observation-based interpolations of (sub-)national yield statistics, and neither of 426 
the two is independent from FAO national data. Differences between the two gridded yield reference 427 
data sets (Iizumi et al., 2014b; Ray et al., 2012) are expressed via a time series correlation analysis after 428 
removing trends via a moving average (see Methods, Figure 9). 429 

Independent of the harmonization setting, the GGCMI model ensemble (selecting the best correlation 430 
per pixel across the different GGCMs and harmonization settings) finds statistically significant 431 
correlations (p<0.1) with Ray2012 in most of the currently cropped areas for all four crops analyzed here 432 
(Figure 10 for maize, Figures S38 – S40 for wheat, rice and soybean). The spatial patterns with high 433 
correlations are comparable to where Ray2015 could find significant influence of weather on crop yield 434 
variability with an ensemble of 27 regression models, but the GGCMI ensemble finds statistically 435 
significant contributions of weather (the only dynamic driver in the model simulations) over a much 436 
larger area than Ray2015. The original analysis of Ray2015 could find better correlations for large parts 437 
of China, the Corn Belt in the USA and individual countries in Africa, most notably Kenya and Zimbabwe. 438 
Contrary to the GGCMI ensemble (best per pixel), individual GGCMs find statistically significant 439 
correlations in a much smaller area, largely comparable to the 27 regression model ensemble used by 440 
Ray2015, see e.g. pDSSAT simulations for maize in the supplement (Figure S41). There is no eminent 441 
pattern in the performance of individual GGCMs and none of the GGCMs performs in any region 442 
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significantly better than all others (see e.g. Figure S42 for best performing GGCM per grid cell for maize 443 
under the default setting). 444 

Some individual GGCMs achieve similar distribution of correlation coefficients with the gridded maize 445 
yield data set of Ray2012 as the ensemble of the 27 regression models as used by Ray2015, but most 446 
perform less well (Figure 11). As at the global-scale and national-scale aggregation level, harmonization 447 
can improve or worsen GGCM performance, depending on the GGCM. 448 

For wheat, the GGCMI ensemble also finds statistically significant correlations for a much larger area 449 
than the regression model ensemble used by Ray2015, but correlation coefficients are often lower (e.g. 450 
in Europe) even though the spatial patterns with relatively high correlations coefficients are similar 451 
between the GGCMI ensemble and those reported by Ray2015 (see Figure S38). As for maize, the 452 
harmonization has little effect on the ensemble skill. Also the distribution of coefficients of 453 
determination values shows that GGCMs can reach higher values for individual pixels but are generally 454 
(individually and as the total ensemble) less well correlated with the gridded Ray data set than the 27 455 
regression models of Ray2015, see Figures S38 and S43. 456 

A similar picture emerges for rice, where also Ray2015 only find low correlation coefficients, whereas the 457 
GGCMI ensemble covers a much broader area and finds moderate correlation coefficients in South 458 
America, India and Australia, but not in China as Ray2015 does. As for wheat, individual GGCMs can 459 
reach higher coefficients of determination values than the regression model ensemble of Ray et al. 460 
(2015) for individual pixels, but generally the correlations found are weaker than for the regression 461 
model ensemble as used by Ray2015, see Figures S39 and S44. 462 

For soybean, the GGCMI ensemble also covers a broader range than the regression model ensemble 463 
used by Ray2015. As for maize, the GGCMI ensemble finds equally high correlation coefficients as the 464 
regression model ensemble, with the notable exception of western Russia (Figure S40). Soybean yield 465 
variability in the USA can be better reproduced by the GGCMI ensemble than by the regression models 466 
employed by Ray2015. Again, some individual GGCMs perform equally well as the regression model 467 
ensemble employed by Ray2015, whereas the GGCMI ensemble achieves better coefficients of 468 
determination than the regression model ensemble used by Ray2015 (Figure S45). Also here, some 469 
GGCMs profit from harmonization, whereas others have better performance under their default setting 470 
or are not sensitive to the harmonization at all. 471 

  472 
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4. Discussion 473 

4.1. Benchmark: What to expect from GGCMs 474 
It is implausible to expect crop models to reproduce vast shares of yield variability and spatial patterns of 475 
crop yields given their coarse resolution, reliance on static inputs, and reliance on weather data when 476 
this is but one driver of true yield variability. This is particularly true for low-input regions where many 477 
other elements such as unsuitable management or pest outbreaks may contribute substantially to yield 478 
variability. It is questionable if the statistical analysis of Ray2015 should define the expectations for crop 479 
model performance as their regression models are driven with rather aggregate weather information 480 
(precipitation and temperature of either the growing season or of the 12 month preceding harvest). As 481 
GGCMs often find stronger influence of weather variability than Ray2015, especially for maize and soy, it 482 
is plausible to assume that weather variability is at least as important as described by Ray2015. On the 483 
other hand, regression models can be derived from many time series and as none of the GGCMs can 484 
reproduce the strong influence of weather variability on crop yields as e.g. reported for maize in Kenya 485 
or soybean in Russia (Ray et al., 2015), these strong relationships may be statistical artifacts or based on 486 
other weather-related dynamics that are not captured by the GGCMs, such as weather-related pest 487 
outbreaks (e.g., Esbjerg and Sigsgaard, 2014). Similar considerations apply for national and global-scale 488 
performance. However, also here it can be generally expected that weather variability is more important 489 
for yield variability in countries with high-input agriculture than in low input countries. GGCM 490 
simulations should not be expected to reproduce yield variability of countries that do not directly report 491 
production and harvested area to the FAO and where data gaps are filled with FAO estimates (Folberth 492 
et al., 2012). 493 

Gridded crop models make a number of simplifications, such as homogeneous management across 494 
larger areas, including soils, sowing dates and varieties. Within individual farming regions, sowing varies 495 
by days to even weeks as sowing dates are subject to a number of weather-induced conditions (e.g. soil 496 
wetness, soil temperature) and the timely availability of labor and machinery and farmers may chose 497 
different varieties to grow. The mixture of management practices within regions thus buffers observed 498 
variability in the region’s yield records, as the diversity should cancel out the variability to some extent 499 
when aggregated to a region average. GGCMs on the contrary implement highly homogeneous systems 500 
that tend to overestimate variability, allowing for no or little variation in sowing dates across the years or 501 
within larger regions (Sacks et al., 2010) and assuming no change in crop varieties across the simulation 502 
period of 31 years. This variety selection does not only contribute to the technology-driven trend in crop 503 
yields, which we have removed here (see Methods), but may also alter the crops’ response to adverse 504 
environmental conditions. The model simplifications also encompass simplified assumptions on the 505 
distribution of fertilizers and varieties, which should not only affect the temporal dynamics simulated but 506 
also the spatial patterns of crop yields.  507 

4.2. GGCM performance 508 
Maize and soybean are the crops where the GGCMs show the best skill in reproducing reference data 509 
variability, followed by wheat and rice. The separation of temporal and spatial variability shows that the 510 
spatial variability dominates the overall variability in data simply because the differences between 511 
national yields are typically greater than those between individual years within countries. GGCMs that 512 
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perform some level of calibration against national data therefore score relatively high in correlation 513 
coefficients (e.g. Figure 8) but not necessarily for greater model skill as the national differences are 514 
imposed in the calibration process. If nutrients are assumed to be non-limiting (harm-suffN), the 515 
reproduction of spatial patterns is reduced and these simulations (orange symbols in e.g. Figure S27) are 516 
therefore typically less extreme in comparison to the default settings (blue in e.g. Figure S27) and closer 517 
to the analysis of only temporal dynamics (e.g. Figure S28). Harmonization of management assumptions 518 
affects only in some cases the time-series correlation in individual countries (e.g. Figure 6). Simulations 519 
with no nutrient limitation typically lead to a greater mean bias in yield simulations (e.g. Figure 7) but not 520 
necessarily to large changes in time series correlation, suggesting that calibration or mean biases often 521 
do not affect the model’s skill to respond to interannual variation in weather conditions. However, it also 522 
often leads to greater variance in the time series (orange symbols move outwards relative to blue 523 
symbols in Figures S28, S31, S34, S37). The effect of harmonization is not only dependent on the 524 
individual GGCM’s sensitivity to these assumptions but also to the difference between the default and 525 
the harmonized settings with respect to growing season and fertilizer input. 526 

For maize and soy, the GGCMI ensemble outperforms an ensemble of 27 regression models (Ray et al., 527 
2015) with respect to area with significant correlation and to correlation coefficients (Figures 11 and 528 
S45), indicating that model performance is good. As there are still regions in which GGCMs are 529 
outperformed by the regression models (e.g. Kenya for maize, Russia for soybean), and because the 530 
individual GGCMs show varying skill for different regions, each of the models has sufficient room for 531 
improvement if we consider the best performing model is the benchmark for all others.  532 

For wheat, GGCMs show less influence of weather variability than Ray2015 and should thus strive to 533 
achieve similar performance levels as the regression models used by Ray2015. The simulation of wheat is 534 
complicated by the mixture of spring and winter wheat varieties that are also grown within the same 535 
regions and where the current distinction in the models and the GGCMI growing season data may not be 536 
accurate. For future analyses, we therefore recommend to perform separate simulations for spring and 537 
winter wheat. 538 

Rice is generally not simulated with great skill by any GGCM or the overall ensemble. However, also the 539 
regression model ensemble of Ray2015 does not detect substantial influence of inter-annual weather 540 
variability in much of the rice growing areas, suggesting that rice production systems are currently not 541 
well represented in GGCMs and also cannot be captured well by regression models. Possible causes 542 
could be the complexity of the multiple cropping seasons in rice production (Iizumi and Ramankutty, 543 
2015) and the assumptions on irrigation, which is especially in rice production which is largely irrigated.  544 

There is considerable uncertainty in historic weather patterns, as reflected by the 9 different weather 545 
data products used in GGCMI. We here use only one of these weather data sets for which all GGCMs 546 
submitted data with different management scenarios (default, fullharm [harmonized growing periods 547 
and nutrient inputs], harm-suffN [harmonized growing periods with no nutrient stress]).  548 

4.3. Data processing and assumptions 549 
There are a number of caveats with respect to the processing of data. We employ a moving average 550 
approach to remove trends from observation-based and simulated data. There are various other 551 
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methods to remove trends from time series (e.g. linear or quadratic trends) which we have tested as 552 
well. No clear picture has emerged to what method is best as this is dependent on the individual time 553 
series. We argue that the most important aspect in this de-trending is that observation-based and 554 
simulated data are treated in the same way. Also, the moving average seems to be least dependent on 555 
assuming an underlying functional form as e.g. linear or quadratic de-trending methods and thus is more 556 
robust across the broad range of yield time series (global, national, grid cells). Data aggregation is based 557 
on global data sets on harvested areas per crop. Porwollik et al. (in press) have demonstrated that this 558 
can greatly affect results for individual crop x GGCM x country combinations. We here chose to use the 559 
best matching aggregation mask in each case, arguing that as long as none of the harvested area data 560 
sets can be excluded for quality concerns all are equally plausible and their disagreement should not be 561 
held against the crop models.  562 

We find that shifting time series by a year can sometimes greatly improve the correlation between 563 
simulated and reference time series, e.g. converting a non-significant correlation into a highly significant 564 
(p<0.01) correlation with high correlation coefficients (r=0.89) for LPJ-GUESS harm-suffN maize 565 
simulations for South Africa or converting negative correlation coefficients (r < -0.5) to positive (r > 0.5) 566 
for PEGASUS fullharm maize simulations in China (Figures 6 and S12). We acknowledge that some of this 567 
is owing to the relatively vague definition of how FAO yields are attributed to calendar years and how 568 
this matches with assumed growing periods in the GGCM simulations. However, this seems to be an 569 
important improvement to be achieved by future global crop modeling studies. The GGCMI phase I 570 
protocols request that data are reported as a series of growing season harvests (Elliott et al., 2015) 571 
rather than calendar years to avoid complications with harvest year attribution if harvest occurs around 572 
the end of the calendar year. Moreover, years are removed from the record if sowing occurred during 573 
the spinup, i.e. part of the growing season is not within the supplied weather input. Data reporting of 574 
future GGCMI simulations will have to be improved to better enable a direct matching of simulated and 575 
reference time series. If time series correlation at the global scale could be improved by time shifts, 576 
obviously the correlation would be even more improved, if individual country time series would have 577 
been adjusted as needed before aggregation rather than shifting the aggregated time series. However, 578 
this is beyond the scope of the study here. 579 

4.4. Implications for future crop model development and analyses 580 
Further model development and improvement is needed in collaboration with field-scale modeling 581 
approaches (Asseng et al., 2013; Bassu et al., 2014; Li et al., 2015) and experimentalists (Boote et al., 582 
2013). Improvements are also wanted for the representation and aggregation of soils in GGCM 583 
simulations (Folberth et al., 2016b) and management including growing season data and fertilizer types, 584 
amounts and timing (Hutchings et al., 2012). But also information on soil management, crop varieties, 585 
crop rotations, and actual irrigation amounts and schemes is presently not or only incompletely available 586 
and better information could greatly inform global crop modeling. Scrutinizing underlying reasons (e.g. 587 
the detail on management considered in the simulations) for good or poor model performance is, 588 
however, beyond the capabilities of this study and the individual modeling groups are requested to 589 
investigate their model’s strengths and weaknesses. The overall model evaluation and the GGCMI phase 590 
I modeling data set (Elliott et al., 2015) enable such analyses but cannot be conducted centrally. The 591 
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work by Folberth et al. (2016a) is a good example of how the underlying reasons for differences in model 592 
performance can be identified for individual crop models. 593 

Also, yield statistics in themselves are not a good reference data set for dissecting model functionality as 594 
errors in various processes such as gross primary production, respiration, allocation of photosynthate, 595 
soil dynamics and crop stress response can compensate each other in the formation of yield. Site data 596 
measurements do not only provide data on targeted experiments (as e.g. the FACE experiments, see e.g. 597 
Leakey et al. (2009)) but also on related water and carbon dynamics, as e.g. eddy flux tower 598 
measurements that can help to get good simulation results for good reasons. As such it remains crucial 599 
to also test global-scale models against detailed data from experiments to build trust in the underlying 600 
mechanisms. This point-scale evaluation of models has been performed for several of the GGCMs 601 
engaged here and is not subject of this study (e.g., Gaiser et al., 2010; Izaurralde et al., 2006; Jones et al., 602 
2003).  603 

We propose that future global or large-scale gridded crop models are tested against the GGCMI model 604 
ensemble and the reference data used here to establish a benchmark for model evaluation and future 605 
model development. This cannot overcome the shortage in suitable reference data, but it provides a first 606 
benchmark against which global gridded crop models can be tested. We are well aware of the 607 
shortcomings to establish a benchmark that largely consists of modeled data (Best et al., 2015; Kelley et 608 
al., 2013), either from other models or from model-assisted interpolation of highly aggregated statistics 609 
but see no other option under current data availability. Also, the benchmark should not be confused 610 
with a validation of models, but establishes a reference point against which model performance can be 611 
evaluated. We here assume that the best performing model currently defines the model performance 612 
that can be expected, but acknowledge that the underlying reasons for good (and poor) model 613 
performance need to be better understood in order to avoid defining statistical artifacts as a benchmark 614 
for models. 615 

5. Conclusions 616 
Agricultural productivity is increasingly modeled at the global scale, but model setup and evaluation is 617 
hampered by the lack of high-quality input and reference data. We establish a first global crop modeling 618 
benchmark using a crop model ensemble of 14 crop modeling groups and reference data at grid cell, 619 
national and global scale. Even though crop models often demonstrate good performance in reproducing 620 
temporal and spatial patterns of observed crop yields, there is also the need to improve all models. We 621 
argue that the value of the crop model ensemble in an intercomparison study is the ability to learn from 622 
each other as models often show complimentary skill. We encourage all future crop model development 623 
to be tested against the GGCMI global crop model benchmark and thus make our evaluation framework 624 
publicly accessible at https://mygeohub.org/groups/geoshare. This modeling intercomparison exercise 625 
provides a benchmark for facilitating model improvements by the individual modeling groups. There is 626 
substantial crop modeling skill for the simulation of maize, wheat and soybean yields at the global scale, 627 
but rice simulations are currently not preforming well and will require additional effort to improve these 628 
simulations. Ongoing collaboration with field-scale modelers and experimentalists is needed to improve 629 
model mechanisms and parameters. Finally our results emphasize the need for continuous development 630 

https://mygeohub.org/groups/geoshare
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and improvement of detailed agricultural data for model input and model evaluation that cover the 631 
entire global agricultural land.  632 

  633 
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Table 1: GGCMs participating in the study, model type and key references. 890 

Crop model Model type Key literature 

CGMS-WOFOST Site-based process model de Wit and van Diepen (2008) 

CLM-Crop Ecosystem Model  Drewniak et al. (2013)  

EPIC-BOKU Site-based process model (based on EPIC) EPIC v0810 - Izaurralde et al. (2006); Williams (1995) 

EPIC-IIASA Site-based process model (based on EPIC) EPIC v0810 - Izaurralde et al. (2006); Williams (1995) 

EPIC-TAMU Site-based process model (based on EPIC) EPIC v1102 - Izaurralde et al. (2012) 

GEPIC Site-based process model (based on EPIC) EPIC v0810 - Liu et al. (2007); Williams (1995); Folberth et al. 
(2012) 

LPJ-GUESS Ecosystem Model Lindeskog et al. (2013); Smith et al. (2001) 

LPJmL Ecosystem Model Waha et al. (2012), Bondeau et al. (2007)  

ORCHIDEE-crop Ecosystem Model Wu et al. (2015) 

pAPSIM Site-based process model APSIM v7.5 - Elliott et al. (2014b); Keating et al. (2003)  

pDSSAT Site-based process model pDSSAT v1.0 - Elliott et al. (2014b); DSSAT v4.5 - Jones et al. 
(2003)  

PEGASUS Ecosystem model v1.1 - Deryng et al. (2014), v1.0 - (Deryng et al., 2011) 

PEPIC Site-based process model (based on EPIC) EPIC v0810 - Liu et al. (2016), Williams (1995) 

PRYSBI2 Empirical/process hybrid Sakurai et al. (2014) 
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Table 2: Data availability by GGCM, crop and harmonization setting. Crosses (X) indicate availability, dashes (-) indicate that 893 
data was not supplied. The three columns per crop are the different harmonization settings on management (default, 894 
fullharm and harm-suffN, see above). 895 

GGCM Maize Wheat Rice Soybean 
 Default 

fullharm
 

harm
-

suffN
 

default 

Fullharm
 

harm
-

suffN
 

default 

fullharm
 

harm
-

suffN
 

default 

fullharm
 

harm
-

suffN
 

CGMS-
WOFOST X - - X - - X - - X - - 

CLM-Crop X X X X X X X X X X X X 
EPIC-BOKU X X X X X X X X X X X X 
EPIC-IIASA X X X X X X X X X X X X 
EPIC-
TAMU - X X - X X - - - - - - 

GEPIC X X X X X X X X X X X X 
LPJ-GUESS X - X X - X X - X X - X 
LPJmL X - X X - X X - X X - X 
ORCHIDEE-
crop X X X X X X X X X X X - 

pAPSIM X X X X X X - - - X X X 
pDSSAT X X X X X X X X X X X X 
PEGASUS X X X X X X - - - X X X 
PEPIC X X X X X X X X X X X X 
PRYSBI2 X - - X - - X - - X - - 
 896 
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 898 

Figure 1: Time series of GGCMI simulations (solid colored lines) and FAOstat reference data (dashed line) for maize after de-899 
trending. Numbers in the legend next to model names indicate the Pearson correlation coefficient, asterisks indicate the p-900 
values (*** for p<0.001, ** for p <0.05, * for p < 0.1, n.s. for not significant). This figure displays the 'default' setting, except 901 
for EPIC-TAMU, which only supplied the fullharm setting simulations (see Table 2). The (sb) flag indicates that the time series 902 
had been shifted backwards by a year to achieve a better match. 903 
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 905 

Figure 2: As figure 1 but for wheat. 906 
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 908 

Figure 3: As figure 1 but for rice. EPIC-TAMU, PEGASUS and pAPSIM did not supply data for rice. 909 
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 911 

Figure 4: As figure 1 but for soybean. EPIC-TAMU did not supply data for soybean. 912 
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 914 

Figure 5: relationship of global mean bias and time series correlation for maize across all GGCMs (colors) and harmonization 915 
settings (symbols). Dashed line indicates a linear fit, whose explanation power (R2) is given in the right hand corner. 916 
Significance levels are as in figure 1. 917 
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 919 

Figure 6: time series correlation coefficients for the top 10 maize producer countries. Rows display the individual countries 920 
ordered by production; left-hand labels describe the best performing GGCM for that country and the correlation coefficients. 921 
White boxes indicate that correlations are not statistically significant. Each column displays individual GGCM x harmonization 922 
combinations, omitting all for which data is not available. The leftmost column displays the best correlation coefficient for 923 
each country (row), corresponding to the row labels on the left. Color legend key on top includes a histogram (cyan line) that 924 
shows the distribution of correlation coefficients across the ensemble and the top-10 producer countries, excluding the 925 
“best” column. 926 
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 928 

Figure 7: As figure 6, but for mean bias (t/ha) of simulated yields for the top 10 producer countries for maize. 929 
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 931 

Figure 8: Taylor diagram of maize yield simulations aggregated to national level against FAO statistics data after removing 932 
trends but preserving national mean yields. A perfect match with FAO statistics data would be at the dark green box on the x-933 
axis, having a normalized standard deviation of 1 (distance to origin, blue contour lines) and a correlation of 1 (angle) as well 934 
as a centered RMSD of zero (green contour lines). Symbols represent the different GGCMs, colors indicate the harmonization 935 
setting. Non-significant correlations are shaded in lighter hues. Individual countries are weighted by their maize production 936 
according to FAOstat data (2014). 937 
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 939 

Figure 9: Analysis of time series correlation between the two gridded yield reference data sets after removing trends via a 940 
moving average (see methods). Grey areas depict areas where there is no statistically significant correlation between the two 941 
data sets (p>0.1), white areas have no yield data for that crop in at least one of the two data sets. Panel A) shows coefficients 942 
of determination (R2) for maize, B) for wheat, C) for rice, D) for soybean. 943 
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 945 

Figure 10: Analysis of time series correlation between the GGCM ensemble simulations for maize (selecting best correlation 946 
across the GGCMs per grid cell) and the Ray2012 reference data set after removing trends via a moving average (see 947 
methods). Grey areas depict areas where none of the GGCMs finds a statistically significant correlation; white areas have no 948 
yield data for that crop in Ray2012 data sets. Panel A) shows coefficients of determination (R2) for the default setting, B) for 949 
the fullharm setting, C) for the harm-suffN setting, and D) shows the original coefficients of determination as reported by Ray 950 
et al. (2015) for an ensemble of 27 regression models. 951 
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 953 

Figure 11: Boxplot of R2 distribution for each GGCM-harmonization setting for maize. Boxes span the interquartile range (25-954 
75 percentiles); whiskers expand to the most remote value within 1.5 times the interquartile range. Values outside this range 955 
are considered outliers and are depicted as dots. The “ensemble best” shows the GGCMI skill-based (correlation coefficient) 956 
ensemble, “ensemble X Ray” is the same but only for those pixels where , and both are not independent from FAO national 957 
data also report significant correlations, “Ray2015” is the distribution of values as published by Ray et al. (2015), “Ray X 958 
ensemble” is as Ray2015 but only for the area where also the GGCMI ensemble reports significant correlation coefficients. 959 
The distribution is weighted by production, following the Ray2012 data set. Numbers at the top describe the fraction of the 960 
total harvested area for which significant correlations could be found, which ranges between 96% (ensemble best, default), 961 
63% to 19% for the individual GGCMs and 68% for Ray et al. (2015). 962 
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