
Response to reviewer comments (as also published in the online discussion) 

Reviewer 1: 

This is a well written paper.  It proposes a framework to assess the performance of global gridded crop 
model.  The framework will be a valuable asset for the research community. I think this paper has been 
submitted in a rush and I have some moderate concerns.   

We thank the reviewer for the positive evaluation. We are sorry that we made the impression of having 
submitted the paper in a rush, which clearly was not the case. Please find responses to your individual 
points below. 

1) The authors claim that they will provide an online tool.  It is a great idea but I wonder why not bring 
the evaluation system online before submitting the paper.  

The online evaluation tool is not the objective of the paper but an additional service to the modeling 
community. With the final publication of the paper, we’ll make the online tool publicly available so that 
we can refer to this paper on the webpage. However, we now have included the URL of the tool 
(https://mygeohub.org/tools/ggcmevaluation), where access is currently restricted to the developers. 

2) The paper cites some papers in preparation or under review which make it hard to refer to these 
papers.  

We assumed that these papers would have progressed sufficiently during the time our manuscript was 
under review. We will remove the references to Ruane et al. in prep. (which still is in prep) and update 
the references to Folberth et al. in prep. and to Prowollik et al. under review.  

3) There are too many figures and tables (with 45 figures in the supplemental file). And there are over 10 
lines in some figures (Figure 1-4) that make the figures very busy. It is better to extract the key 
information and limit the number of figures if possible. 

We agree that there are many figures and also a lot of information in the paper. This is why we have 
moved the majority of these into the supplement. The aim is to have sufficient information in the main 
document to convey the main message and to supply additional information for specific interests in the 
supplement. We cover the evaluation of 14 GGCMs for up to 4 crops each and establish a benchmark set 
for further model evaluation and future improvements with comparisons to reference data at three 
different aggregation levels. Therefore, also the extent of the study is very broad. We understand that it 
is the idea of GMD to supply all the space that is needed to describe model evaluation in sufficient detail 
and don’t feel that the content of our study is not concise enough. Also, to allow for individual model 
evaluation, we think that it is essential to show all individual models in one figure (as e.g. in figures 1-4), 
even though these are then busy.  

Specific comments 

Line  169:  What  interpolation  methods  were  used  to  disaggregate  the  daily  data  to sub-daily? 



ORCHIDEE-crop used an internal weather generator for the interpolation to sub-daily values, whereas 
CLM-crop created a 6-hourly weather input data set based on AgMERRA and the 6-hourly CRU NCEP data 
(Wei et al., 2014). This will now be explained in more detail in the supplement. 

Line 177: The resolution of supplied input and harmonization data is 0.5 degree.  The spatial scale of 
CLM-Crop, EPIC-IIASA and PRYSBT2 are 1 degree,  5 second and 1.125 degree. What is the method used 
to re-grid those data to 0.5 degree? 

CLM-crop used the model-internal re-gridding routine as described in the CLM 4.5 Technical Note 
(Oleson et al., 2013), PRYSBI2 simply averaged over all 0.5 grid cells within the 1.125 degree cells and 
EPIC-BOKU (not listed as 5 arc minute resolution in table S2, will be corrected) and EPIC-IIASA used the 
same climate and management input for all 5 arc minute cells (up to 36) within one single 0.5 degree 
grid cell. Thanks for pointing out that this is not described in sufficient detail and we will supply this 
information in the supplement and in Table S2. 

Line 180: “soy”. However, in other place, the word is “soybean”. 

Changed to “soybean” 

Line 215: delete the colon 

Done. 

Reviewer 2: 

The development and evaluation of the global gridded crop models is a critical step in being able to 
provide an evaluation of the potential impacts of climate change on future global production. the 
authors have done a good job in explaining the process and the shortcomings in different models and 
approaches. This effort will set the stage for the next generation of improvements in crop models at all 
scales. 

Thank you. 

  



List of all relevant changes to the manuscript: 

• Page 1: Removed NASA from affiliation 3, which is listed separately as affiliation 19 
• Page 7: Inserted additional reference to supplementary where non-standard spatial and 

temporal resolutions are now described as requested by reviewer 1. 
• Page 7: changed “soy” to “soybean” as requested by reviewer 1. 
• Page 8: removed colon as requested by reviewer 1. 
• Page 21: added the University of Chicago Research Computing Center to the acknowledgements.  
• References: 

o Updated Folberth et al. in prep. to Folberth et al. 2016a (pages 5, 19, 23) and Folberth et 
al. 2016 to Folberth et al. 2016b accordingly (pages 4, 18, 23) 

o Updated Prowollik et al. under review to Porwollik et al. in press (pages 5, 10, 18, 25) 
o Updated URL to online tool, which will be released upon publication of this paper (pages 

6, 21) 
o Removed reference to Ruane et al. in prep. which is still not available yet (pages 7, 17) 

• We found a small bug in the data processing and updated figures 6, 8 and 11, as well as the 
corresponding figures in the supplement. None of these changes matters qualitatively, but only 
has small quantitative implications. We thus also updated the reported max correlation 
coefficient on page 13 from 0.45 to 0.42. 
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Abstract 42 
Crop models are increasingly used to simulate crop yields at the global scale, but there so far is no 43 
general framework on how to assess model performance. We here evaluate the simulation results of 14 44 
global gridded crop modeling groups that have contributed historic crop yield simulations for maize, 45 
wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural 46 
Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference 47 
data at global, national and grid cell scales and we evaluate model performance with respect to time 48 
series correlation, spatial correlation and mean bias. We find that GGCMs show mixed skill in 49 
reproducing time-series correlations or spatial patterns at the different spatial scales. Generally, maize, 50 
wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed 51 
temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 52 
0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most 53 
models. Yield variability can be well reproduced for most major producer countries by many GGCMS and 54 
for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the 55 
effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of 56 
the yield variability than an ensemble of regression models for maize and soybean, but not for wheat 57 
and rice. We identify future research needs in global gridded crop modeling and for all individual crop 58 
modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we 59 
propose that the best performing crop model per crop and region establishes the benchmark for all 60 
others, and modelers are encouraged to investigate how crop model performance can be increased. We 61 
make our evaluation system accessible to all crop modelers so that also other modeling groups can test 62 
their model performance against the reference data and the GGCMI benchmark. 63 

  64 
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1. Introduction 65 
Agriculture is fundamental to human life and our ability to understand how agricultural production 66 
responds to changes in environmental conditions and land management has for long been a central 67 
question in science (Russell, 1966; Spiertz, 2014). Numerical crop models have been developed over the 68 
last half-century to understand agricultural production systems and to predict effects of changes in 69 
management (e.g. irrigation, fertilizer) (El-Sharkawy, 2011). In the face of continued population growth, 70 
economic development, and the emergence of global-scale phenomena that affect agricultural 71 
productivity (most prominently climate change) crop models are also applied at the global scale 72 
(Rosenzweig and Parry, 1994). Given the importance of climate change and the central interest in 73 
agriculture, global-scale crop model applications have been increasingly used to address a wide range of 74 
questions, also beyond pure crop yield simulations (e.g., Bondeau et al., 2007; Del Grosso et al., 2009; 75 
Deryng et al., 2014; Osborne et al., 2013; Pongratz et al., 2012; Rosenzweig et al., 2014; Stehfest et al., 76 
2007; Wheeler and von Braun, 2013).  77 

With very few exceptions, crop models applied at the global scale have been developed for field-scale 78 
applications (e.g. EPIC-based models, pDSSAT, pAPSIM) or have been derived from global ecosystem 79 
models by incorporating field-scale crop model mechanisms and parameters (e.g. LPJ-GUESS, LPJmL, 80 
ORCHIDEE-crop, PEGASUS) and several of these have been systematically intercompared with a large 81 
number of other field-scale models (Asseng et al., 2013; Bassu et al., 2014). Still, differences between 82 
global gridded crop models (GGCM) (Rosenzweig et al., 2014) and also between field scale models 83 
(Asseng et al., 2013; Bassu et al., 2014; Li et al., 2015) have been recently identified, following a general 84 
call to revisit modeling skills and approaches (Rötter et al., 2011), which is also a central objective of the 85 
Agricultural Model Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al., 2013) and the 86 
Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) (Warszawski et al., 2014). Site-specific 87 
applications and model evaluation can demonstrate the general suitability of the mechanisms 88 
implemented in the models and the corresponding parameters (Boote et al., 2013), but the extrapolation 89 
and upscaling of parameters and model assumptions remains challenging (Ewert et al., 2011; Hansen and 90 
Jones, 2000). If models are applied at the global scale, they also need to be assessed at the scale of 91 
interpretation, which ranges from gridded to national or regional aggregates (Elliott et al., 2014a; Fader 92 
et al., 2010; Müller and Robertson, 2014; Nelson et al., 2014a; Nelson et al., 2014b; Osborne et al., 93 
2013). 94 

Global-scale applications of crop models face a number of challenges. A major difference to field-scale 95 
model applications is that at large regional to global scale detailed model calibration to field 96 
observations is not possible. Specification and initialization as typically conducted in field-scale 97 
applications simply lack data of suitable spatial coverage and simulation units (e.g. 0.5° grid cells) 98 
represent an aggregate of many smaller, potentially heterogeneous fields. Initialization of soil properties 99 
(Basso et al., 2011) is especially important in dry and nutrient-depleted production systems (Folberth et 100 
al., 2012) and the specification of soil properties can greatly affect crop model simulations (Folberth et 101 
al., 2016b). Similarly, production systems typically cannot be specified in great detail. There is limited 102 
information on growing seasons (Portmann et al., 2010; Sacks et al., 2010) and irrigation area, amount 103 
and timing (Siebert et al., 2015; Thenkabail et al., 2009) that can be used to model crop-specific irrigation 104 
shares (Portmann et al., 2010; You et al., 2010), planting dates and crop parameters for the specification 105 
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of varieties grown (van Bussel et al., 2015) and multiple cropping rotation practices. Still, crop varieties 106 
are often assumed to be homogeneous globally or within large regions in global model setups (Folberth 107 
et al., 2016a; Müller and Robertson, 2014). Other management aspects are typically assumed to be static 108 
in space and time. There have been some attempts to calibrate crop models in global-scale applications 109 
but these always calibrate to (sub-)national yield statistics (Fader et al., 2010) or to gridded yield data 110 
sets (Deryng et al., 2011; Sakurai et al., 2014) that are based on (sub-)national statistics (Iizumi et al., 111 
2014b; Mueller et al., 2012).  112 

The evaluation of model performance (skill) faces similar challenges. Data availability has improved 113 
lately, as gridded data sets on yield time series have become available (Iizumi et al., 2014b; Ray et al., 114 
2012), but generally only yield data is available, while other end-of-season (e.g. biomass) or within-115 
season (e.g. leaf area index, LAI) information is lacking. The gridded yield data sets are not purely 116 
observational but include some form of model application in the interpolation of unknown accuracy so 117 
that they do not directly qualify as a reference data set. Currently, global gridded crop models lack a 118 
clear benchmark against which they can be evaluated. A benchmark is an a-priori definition of expected 119 
model performance based on a set of performance metrics (Best et al., 2015). Given that the GGCMs are 120 
merely driven by variable information on weather and atmospheric CO2 concentrations whereas 121 
assumptions on soil properties and/or management systems are static, these cannot be expected to 122 
reproduce all temporal dynamics and spatial patterns of observed crop yields. The contribution of 123 
weather variability has been estimated to roughly one third globally of the observed yield variability (Ray 124 
et al., 2015) and moderate-to-marked yield losses can be explained by weather data over 26-33% of the 125 
harvested area (Iizumi et al., 2013), with a clear negative impact of extreme drought and heat events 126 
(Lesk et al., 2016). The explanatory power of weather variability on crop yields varies strongly between 127 
regions, with a tendency to have larger influence on yield variability in high-input systems than in low-128 
input systems (Ray et al., 2015), where substantial variation may also be introduced by pests and 129 
diseases, socio-economic conditions, and changes in management.  130 

The comparison with gridded data is difficult, because of introduced interpolation errors in the 131 
referenced data. The differences between the two gridded yield reference data sets can be substantial, 132 
indicating that the modeling assumptions made introduce substantial uncertainty and limit their 133 
applicability as a reference data set. Similarly, if simulated gridded yield data are to be compared with 134 
(sub-)national yield statistics, these need to be spatially aggregated. This aggregation requires 135 
information on the spatial and temporal distribution of cropland and irrigation systems, which is 136 
available from different global data sets with differing estimates that can introduce substantial 137 
uncertainty (Porwollik et al., in press). 138 

The objective of this paper is to provide and discuss a broad model evaluation framework to test 139 
performance of GGCMs that participated in the global gridded crop model intercomparison (GGCMI) of 140 
AgMIP’s Gridded Crop Model Initiative (Ag-GRID) (Elliott et al., 2015). We aim to assess general and 141 
individual model performance across different crops and regions that can serve as a basis for further 142 
model development and improvement as well as a benchmark for future assessments. Model 143 
performance is evaluated with respect to correct spatial patterns as well as temporal dynamics at the 144 
global scale as well as for individual countries and grid cells. Reference data sets and metrics are 145 
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explained in more detail in the methods section. We also propose this evaluation system to become a 146 
standard benchmarking system for all global gridded crop model application and to track model 147 
improvement1. As such, we make the data processing and the computation of performance metrics 148 
available online (https://mygeohub.org/tools/ggcmevaluation) to other modelers so that they can 149 
compare their models’ results against the GGCMI ensemble. We argue that under given uncertainties the 150 
best performing crop model per region and crop defines the benchmark for the other models.  151 

  152 

                                                        
1 We are currently setting up an online evaluation system where files can be uploaded and assessed in the same 
way as the GGCMI simulations in this paper. The tool will become available on the GEOSHARE Portal at 
https://mygeohub.org/tools/ggcmevaluationhttps://mygeohub.org/groups/geoshare 

https://mygeohub.org/tools/ggcmevaluation
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2. Methods 153 

2.1. Models participating and experimental setup 154 
For the GGCMI in AgMIP, 14 model groups have contributed (Table 1), following the protocol for the 155 
GGCMI (Elliott et al., 2015). For this, crop modeling groups were asked to perform global simulations 156 
with their standard assumptions (inputs or internal calculations) on growing seasons and fertilizer inputs 157 
(‘default’), with harmonized growing seasons (i.e with supplied planting and harvest dates (Elliott et al., 158 
2015)) and fertilizer inputs per crop and pixel (‘fullharm’) as well as a simulation with harmonized 159 
growing seasons but assuming the absence of nutrient limitation (‘harm-suffN’, referred to as ‘harmnon’ 160 
in Elliott et al. (2015), but changed here to avoid the misinterpretation of “no nitrogen”). We evaluate 161 
model performance for each of these harmonization sets to study the importance of these assumptions 162 
for individual models’ as well as for the ensemble’s performance. More detail on the processes 163 
implemented in the GGCMs can be found in the supplement, tables S1-S4.  164 

We here use data from simulations by these 14 GGCMs driven by the weather data set AgMERRA (Ruane 165 
et al., 2015), for which all modeling groups have performed simulations and historical atmospheric 166 
carbon dioxide (CO2) concentrations (Thoning et al., 1989). The AgMERRA data set spans the time frame 167 
of 1980-2010 and provides daily data on the most important meteorological driver variables and groups 168 
applied their own interpolation to sub-daily values if needed. If additional weather data were needed by 169 
individual modeling groups (such as long-wave radiation), these were supplemented from the Princeton 170 
Global Forcing data set (PGFv2) (Sheffield et al., 2006). We assume this to have little impact on 171 
simulation results, as all data sets are based on station data and/or reanalysis data and as bias-correction 172 
of re-analysis data is performed for each meteorological variable individually, there is no explicit 173 
dependency between individual variables (e.g. between radiation and temperature). The contribution of 174 
uncertainties in historic weather data sets on crop model skill is to be evaluated elsewhere (Ruane et al., 175 
in prep.) and is not part of the objectives here.  176 

All input and harmonization targets are supplied at a regular grid with 0.5 degree resolution. Weather 177 
data are supplied at daily resolution. Some models use a different spatial or temporal resolution for 178 
which they had to find individual solutions. See text and Table S2 in the supplement for further detail. 179 
Each modeling group is asked to use their own soil data and parameterization (Elliott et al., 2015). Yield 180 
simulations are conducted for the four major crops wheat, maize, rice and soybean depending on model 181 
capacities. Some groups could not supply data for all crops or harmonization settings (see Table 2). Each 182 
modeling group supplied data for each crop for all land grid cells (up to 62911 grid cells) with separate 183 
simulations for purely rain-fed conditions and for conditions with full irrigation. Full irrigation does not 184 
necessarily imply the absence of water stress in all models, if, e.g. the atmospheric water vapor pressure 185 
deficit exceeds the plant’s physical capacity to transpire water. Model irrigation is triggered on demand 186 
(supplement Table S2) independent of the availability of irrigation water (Elliott et al., 2015).  187 

Following FAO reporting standards, we are not reporting simulated yield data as calendar aggregates but 188 
as a time series of annual growing seasons. In this way, we avoid that individual calendar years can have 189 
two harvests (one shortly after January 1st and one shortly before December 31st) and others with zero 190 
harvest, which would greatly increase the variability in the reported simulated crop yields and would be 191 
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inconsistent with FAO data. Instead, each harvest season is assigned a calendar year, starting with the 192 
first harvest of the growing season that started in 1980 (beginning of the AgMERRA forcing data), leaving 193 
a residual uncertainty how the time series need to be matched (see below).  194 

2.2. Reference data 195 
We use two different data sets for the evaluation of the GGCMs. The FAO data (FAOstat data, 2014) is 196 
used for national and global-scale model evaluation and is available at these scales from 1961-2013. For 197 
some countries, production data and/or harvested areas have been estimated by the FAO rather than 198 
reported (FAOstat data, 2014). For spatially resolved detail we use the data published by Ray et al. (2012, 199 
henceforth "Ray2012"), as that allows for direct comparison with the regression model analysis of Ray et 200 
al. (2015, henceforth "Ray2015"). The Ray2012 data spans 1961-2008 and was aggregated from its 201 
original resolution of 5 arc minutes to the 0.5° GGCMI standard resolution, weighted by production. Both 202 
production and harvested area data are collected at sub-national level for 51 countries in the Ray data 203 
and changes in productivity thus reflect both dynamics in area and production. National totals are forced 204 
to match FAO statistics, if there were differences (Ray et al., 2012). The assignment of yield statistics to 205 
the grid raster as conducted by Ray et al. (2012) requires making assumptions that introduce 206 
uncertainty. To illustrate the uncertainty in the gridded reference data, we compare the Ray2012 data 207 
with the Iizumi data set (Iizumi et al., 2014b). The Iizumi data set is available in gridded form from 1982-208 
2006, which we here re-gridded from its original resolution of 1.125°x1.125° to the standard GGCMI 209 
resolution of 0.5°x0.5° resolution, using the remapcon function (CDO, 2015). As much of the southern 210 
hemisphere has no data for 2006 due to its ending in the middle of Southern summer, we only consider 211 
the period 1982-2005 here. The Iizumi data are based on national FAO data and the spatial variability 212 
within countries is introduced based on satellite data. Given the different approaches, there are 213 
substantial differences in spatial patterns between the Ray and Iizumi data, but temporal dynamics at 214 
the national level reflect the FAO data.  215 

2.3. Metrics used:  216 
In the analysis we largely focus on time series correlation of simulated and reference crop yields, given 217 
that the main application of gridded crop models at the global scale is related to studies on climate 218 
change impacts, where we expect models to respond reasonably to changes in atmospheric conditions 219 
(weather, climate). The main metric used is therefore the time series correlation analysis, employing the 220 
Pearson’s product moment correlation coefficient (henceforth “correlation coefficient”). Significance 221 
levels (p-values) are reported based on a t-distribution with length(x)-2 degrees of freedom. Given 222 
difficulties in attributing sequences of growing periods to the calendar year in both FAO statistics2 and in 223 
simulated data where groups also interpreted the reported standards differently, we test if the time 224 
series correlation can be substantially improved by shifting the times series by one year. We apply such 225 
shifts only if the correlation coefficient improves by at least 0.3 and report un-shifted time series 226 
analyses in the supplement. Time series correlation is used at the global aggregation level, the national 227 
aggregation and the pixel level. In some cases, the correlation analysis is weighted by production to put 228 
                                                        
2 FAO glossary on crop production: „… When the production data available refers to a production period falling into 
two successive calendar years and it is not possible to allocate the relative production to each of them, it is usual to 
refer production data to that year into which the bulk of the production falls.” Available at 
http://faostat3.fao.org/mes/glossary/E 
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higher emphasis on larger production units, assuming that data quality is often better than for smaller 229 
producer units (e.g. less developed countries) and because these are more important to correctly 230 
simulate for global assessments. At the global scale, correlation coefficients are simply reported in the 231 
figures but we employ heatmaps to display correlation coefficients at the national scale, making use of a 232 
version of the heatmap.2 function of the gplot package (Warnes et al., 2016), which has been modified 233 
to allow for extra labeling. 234 

We acknowledge that the models are only driven by fields of weather data, soil data and nitrogen 235 
fertilizer inputs, ignoring the heterogeneity in patterns of other fertilizers (e.g. P, K), pest control and 236 
other managerial aspects (e.g. varieties, planting densities). Therefore, we only test model performance 237 
in reproducing spatial patterns of productivity at national aggregations and not within individual 238 
countries, as the quality of gridded reference data Ray2012 (interpolated (sub-)national statistics) as well 239 
as fertilizer inputs (Elliott et al., 2015; Mueller et al., 2012) and growing seasons (Elliott et al., 2015; 240 
Portmann et al., 2010; Sacks et al., 2010) is limited with respect to the spatial heterogeneity. Deviations 241 
from national or global yield levels are computed as the mean bias, as in eq. 1, where i is any element in 242 
n. At the global scale and for individual countries, n is the number of growing seasons in the sample.  243 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1
𝑛𝑛
∑ (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖)𝑛𝑛
𝑖𝑖=1  eq. 1 244 

For a more comprehensive testing of the simulated yield dynamics, we employ Taylor diagrams that 245 
allow for displaying the correlation in spatio-temporal patterns between observations and simulated 246 
data in a single diagram (Taylor, 2001). The Taylor diagram depicts the correlation coefficient across 247 
spatial units and time, the centered RMSD, and the variance relative to that of the observational data 248 
set. Acknowledging the difficulties with respect to the spatial heterogeneity in reference and simulated 249 
data, we employ the Taylor diagrams only for nationally aggregated data, meaning that spatial patterns 250 
only refer to national aggregations here. In the Taylor diagram analysis, countries are weighted by their 251 
crop-specific production (FAOstat data, 2014). To disentangle the contribution of the spatial vs. the 252 
temporal variability to the Taylor diagram, we also compute two variants of these diagrams which focus 253 
on temporal or spatial variability only. For the temporal-dynamics-only variant, we remove the national 254 
means from all de-trended time series so that all national time series have a mean of zero and thus 255 
display no differences in this respect. For the space-dynamics-only variant, we average time series so 256 
that we compute the metrics with one national mean value per country only, ignoring possible changes 257 
in data quality over the time series. For plotting Taylor diagrams, we use the taylor.diagram function of 258 
the R package plotrix (Lemon, 2006) that we have modified to allow for weighted correlation and for 259 
testing of significance levels.  260 

Instead of numerous maps on pixel-specific performance metrics, we also present these in form of 261 
boxplots. To allow for weighting the distribution of pixel-specific metrics such as the correlation 262 
coefficients, we employ weighted quantiles of the function quantileWt of the R package simPopulation 263 
(Alfons and Kraft, 2013). 264 
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2.4. Data processing 265 
Gridded crop model simulations are driven by time series of weather data and of atmospheric CO2 266 
concentrations, and static management assumptions. A comparison to observation-based reference data 267 
thus requires processing of raw simulation GGCM outputs and the reference data to make these 268 
different data sources comparable. As much of the trends in yield are driven by intensification and 269 
altered management (FAO, 2013; Ray et al., 2012), we are removing trends from simulation and 270 
reference data. As reference data are available at grid-cell, national and global levels, we aggregated 271 
simulated yield data to grid-cell, national, and global levels, using an area-weighted average as described 272 
in eq. 2. Aggregation to the grid-cell level only describes the combination of irrigated and rain-fed 273 
simulation time series, but follows the same principle. 274 

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡 =
∑ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖,𝑖𝑖𝑖𝑖,𝑡𝑡∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡𝑛𝑛
𝑖𝑖=1 +∑ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖,𝑟𝑟𝑟𝑟,𝑡𝑡∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,𝑡𝑡𝑛𝑛

𝑖𝑖=1
∑ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡+𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,𝑡𝑡)𝑛𝑛
𝑖𝑖=1

 eq. 2 275 

Here, i is the index of any grid cell assigned to the spatial unit in question for growing season t, n is the 276 
number of grid cells in that spatial unit, yieldi,ir,t is the simulated yield (t/ha) under fully irrigated 277 
conditions in grid cell i, and yieldi,rf,t is the simulated yield (t/ha) under rain-fed conditions in grid cell i, 278 
area_irrigatedi is the irrigated harvested area (ha) in grid cell i and area_rainfedi is the rain-fed harvested 279 
area (ha) in grid cell i. 280 

Following Porwollik et al. (in press), we use four different masks for the aggregation to national data: 281 
MIRCA2000 (Portmann et al., 2010), SPAM (You et al., 2014a; You et al., 2014b), Iizumi (Iizumi et al., 282 
2014b), and Ray (Ray et al., 2012). As we cannot assess which of these aggregation masks is superior to 283 
the others, we always select the aggregation mask that gives the best agreement between simulated and 284 
reference time series. MIRCA2000 and SPAM provide separate data on irrigated and rain-fed crop-285 
specific harvested areas per grid-cell, while Ray and Iizumi do not distinguish irrigated from rain-fed 286 
areas. For aggregation purposes, we thus separate total harvested area per grid cell and crop from Ray 287 
and Iizumi into irrigated and rain-fed areas, using the relative shares per grid cell and crop from 288 
MIRCA2000 (see Porwollik et al., in press). 289 

After aggregation to national time series or to grid-cell specific area-weighted combinations of irrigated 290 
and rain-fed yield simulations, we remove trends from simulated and reference data. For this, we are 291 
computing the anomalies by subtracting a moving mean average of a 5-year window (t-2 to t+2), with 3-292 
year windows at both ends (t1- to t+1) of the time series in order to not lose too many years from the 293 
time series. Similar de-trending methods have been applied by other studies (Iizumi et al., 2014a; Iizumi 294 
et al., 2013; Kucharik and Ramankutty, 2005). We also tested other de-trending methods (e.g. linear or 295 
quadratic trend removal) and find that this may also results in better agreement between simulated and 296 
reference data sets. However, for simplicity we focus on one de-trending method only in this analysis. 297 
For evaluation across different countries, de-trended time series can be compared as pure anomalies, 298 
which vary around zero, or with preserved national mean yields allowing also for assignment of 299 
differences in yield levels between different countries. 300 

For a comparison of simulated yields that are reported in t/ha dry matter with FAOstat yields (FAOstat 301 
data, 2014), which are reported in t/ha “as purchased”, we assume a net water content of 12% for maize 302 
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and wheat, 13% for rice and 9% for soybean, following Wirsenius (2000). This assumption does not affect 303 
any metrics other than the mean bias. 304 

2.5. Benchmarks for evaluating model performance 305 
GGCM simulations are typically used to study effects of changing environmental conditions, such as 306 
climate change impact assessments. We therefore put much emphasis on the models’ ability to 307 
reproduce temporal variability. Also the spatial variability of crop yields, e.g. along environmental 308 
gradients within countries or in response to different fertilizer input within and between countries 309 
should be reproduced by the models.  310 

We apply weights when assessing model performance. For analyses of aggregated yield data, it is 311 
important to get large areas and highly productive areas right in the simulations. Also, reference data is 312 
often of limited quality for marginal and/or small areas. We therefore typically weight results by 313 
production (harvested area multiplied with productivity). 314 

At pixel scale, we are presenting skill-based model ensemble estimates by selecting the single best 315 
GGCM per pixel that demonstrate the joint ensemble skill rather than an average (e.g. median) across all 316 
models. This skill-based approach demonstrates to what extent crop models can actually reproduce 317 
observed patterns and variability and differences between individual models and the skill-based model 318 
ensemble quantify the learning potential within the ensemble. Principally, in the absence of other 319 
benchmark measures, the best performing model should be the benchmark for the others. For the 320 
definition of the benchmark here, we do not only consider the GGCMI ensemble but also the 27 321 
regression models as used by Ray et al. (2015). A model-based benchmark as postulated here can 322 
establish a very low target, e.g., if all models perform poorly. As such, the benchmark will have to be 323 
continuously re-assessed and model intercomparison studies as the GGCMI can help to further develop 324 
this benchmark. 325 

  326 
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3. Results 327 
We present results from the evaluation for three different aggregation levels: global, national and grid-328 
cell level. The global level is the most aggregate where underlying reasons for observed patterns are 329 
hard to identify. National-level data provides more insights on underlying patterns but requires data 330 
reduction for presentation. Pixel-level results can only be assessed by statistical means and results are 331 
thus presented in aggregated form again. We typically display results for the default setting in the main 332 
text but supply results for all other settings in the supplement. For the main text figures, we use fullharm 333 
simulations for all those model/crop combinations that did not supply a default setting simulation (i.e. 334 
those that did not have a default setting before participating in GGCMI). These are clearly indicated in 335 
figures and captions. Also, to reduce the amount of data displayed here, we typically show results for 336 
maize in the main text and display figures for all other crops in the supplement, while still describing and 337 
discussing these here. 338 

3.1. Global scale model performance 339 
Aggregated to global time series of crop yields, the different GGCMs display mixed skill in comparison to 340 
the FAOstat time series when both are de-trended. Of the four major crops, global yield variability can be 341 
best reproduced for maize with correlation coefficients (r) between 0.89 and 0.42 and one non-342 
significant correlation (PRYSBI2, Figure 1). PRYSBI2 is actually parametrized to reproduce the historic 343 
trend in crop yields and if trends are not removed prior to the time series correlation analysis, its 344 
correlation becomes highly significant with a correlation coefficient of 0.56. Note that a correlation 345 
analysis that includes a trend to which the model has been calibrated may be strongly dominated by this 346 
trend. Changes in the harmonization setting (fullharm, harm-suffN, see Figures S1 and S2 in the 347 
supplement) often have little effect on simulations except for a few models, where harmonization can 348 
significantly improve (e.g. EPIC-BOKU) or weaken (e.g. PEGASUS) the correlation.  349 

For wheat, 10 of the 14 models produce a time series that is significantly correlated to FAO statistics 350 
(Figure 2) with correlation coefficients between 0.67 and 0.37. Harmonization does not greatly change 351 
correlation coefficients but 2 models achieve significant correlation under harmonization that they did 352 
not achieve in the default setting (GEPIC, ORCHIDEE-crop) whereas one loses the significant correlation 353 
under harmonization (PEGASUS, see Figures S3-S4). PRYSBI2 again only achieves significant correlation if 354 
trends are not removed prior to the correlation analysis. 355 

Only 3 of the 11 GGCMs that submitted data for rice (Table 2) achieve significant correlation to FAO 356 
statistics of variations in global rice productivity (EPIC-IIASA, LPJ-GUESS and PRYSBI2, Figure 3) and two 357 
other achieve significant correlations under fullharm (EPIC-BOKU, PEPIC, Figure S5), but none of the 358 
models reaches statistical significance under the harm-suffN setting (Figure S6). PRYSBI2’s correlation 359 
improves substantially (from 0.53* to 0.83***) if trends are maintained.  360 

Of the 13 GGCMs that submitted data for soybean (Table 2), 7 achieve significant correlation to FAO 361 
statistics of variations in global soybean productivity (correlation coefficients between 0.64 and 0.41). 362 
Under harmonization, two more models reach statistical significance levels (LPJ-GUESS, PEPIC, figures S7-363 
S8) and PRYSBI2 reaches significant correlations (0.57**) if trends are not removed. 364 
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There are also great differences between GGCMs concerning their absolute deviation from observed 365 
yield levels, reflecting their different setups, process representation and calibration (Table S2-S4 in the 366 
supplement). We find no relationship between mean bias and the ability to reproduce variability over 367 
time (time series correlation) for maize (Figure 5), wheat (Figure S9) and rice (Figure S10) but a positive 368 
relation (that is, correlation coefficients tend to be higher for larger mean bias) was found for soybean 369 
(Figure S11). 370 

3.2. National scale 371 
National aggregated yield data is presented as time-series correlation coefficients (color-coded in 372 
heatmaps) as well as the mean bias. We here only show the top-ten producer countries for maize and 373 
display data for the other crops and for all producer countries in the supplement. 374 

Inter-annual variability of most top ten maize producer countries can be reproduced to large extent by 375 
various GGCMs. The inter-annual variability of Indonesia cannot be reproduced well by any of the 376 
models (max r is 0.425 and correlation is not statistically significant in most cases), whereas the inter-377 
annual variability of Argentina, France, India, South Africa and the United States can be largely 378 
reproduced by almost any GGCM-harmonization combination. To achieve good statistical correlations, 379 
some time series had to be shifted by a year, especially for Argentina, Mexico and South Africa (Figure 380 
S12). Also for the other maize producer countries, the yield variability can be well reproduced by most 381 
GGCM-harmonization settings, and there is always at least one GGCM that can reproduce a statistically 382 
significant share of the variability (Figure S13). 383 

For wheat (Figures S14-S16), rice (Figures S17-S19) and soybean (Figures S20-S22) a similar picture 384 
emerges. The yield variability of the top 10 producer countries can be reproduced by a large number of 385 
GGCMs, with a few exceptions (France and China for wheat; Bangladesh and Myanmar for rice; China for 386 
soybean) where only a few GGCMs are able to reproduce statistically significant shares of the yield 387 
variability in the FAO yield statistics. Likewise for wheat, rice and soybean, a statistically significant share 388 
of the yield variability can be reproduced for all producer countries covered here (best column in Figures 389 
S16, S19, S22) and allowing for shifts in the time series can greatly improve the correlation, especially in 390 
tropical countries (e.g. Pakistan for wheat, Indonesia and Thailand for rice, soybean in India). 391 

Other than deviating in temporal dynamics, which is tested with time-series correlation analyses, GGCM 392 
simulations can also be biased compared to FAO yield statistics, typically underestimating yields in high-393 
yielding countries and overestimating yields in low-yielding countries (Figure 7). Some GGCMs (e.g. 394 
pDSSAT) and the harm-suffN generally tend to overestimate yields, but not in all cases (Figures 7, S23-395 
S26). 396 

Aggregation to national scale does not only allow for looking into temporal dynamics of each individual 397 
country, it also allows for assessing spatial patterns in combination with temporal dynamics. By 398 
assembling national yield data series to a 2-dimensional field (countries x time), we can assess the 399 
spatio-temporal correlation between simulated and FAO data as well as the variance and centered RMSD 400 
using Taylor diagrams (Taylor, 2001). Here, countries are weighted by production (FAOstat data, 2014) to 401 
avoid that small countries dominate the overall picture (see Methods). GGCMs show mixed skill when 402 
compared to FAO data, with some models having high correlation coefficients, whereas others have low 403 
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or negative correlation coefficients (Figure 8). Here, harm-suffN simulations typically show much lower 404 
correlation coefficients than the other harmonization settings. Except for one model under harm-suffN 405 
(EPIC-TAMU, Figure 8), harmonization (fullharm, harm-suffN) eliminates any negative correlation 406 
coefficients. None of the GGCM-harmonization settings leads to negative correlation coefficients if the 407 
national differences in mean yields are ignored (Figure S28). The Taylor diagram with flattened time 408 
dimension (i.e. only using one multi-annual mean per country in the analysis, Figure S27) almost looks 409 
identical to the Taylor diagram with both the time and space dimension (Figure 8). This disentangling of 410 
the contributions of spatial vs. temporal variability shows that the overall skill of models as presented in 411 
the Taylor diagram is dominated by the spatial signal, i.e. the differences between national mean yields 412 
outweigh the year-to-year variability around those means by far. This also explains why GGCMs with 413 
some calibration against yield levels (EPIC-IIASA, LPJmL, PEGASUS, PRYSBI2, see table S4) show relatively 414 
high correlation coefficients, as the differences between national means dominate the overall 415 
correlation. When the spatial differences are ignored by removing the mean yields per country (i.e. each 416 
country has a mean of zero and the correlation thus only considers the year-to-year variability around 417 
these), the GGCMs perform more similar, typically displaying correlation coefficients between 0.4 and 418 
0.6 (Figure S28) and often the variance becomes larger (larger standard deviation) relative to the FAO 419 
reference data set.  420 

A similar pattern can be observed for the other crops as well. The differences in yield levels between 421 
countries dominate the overall performance in the spatio-temporal correlation (Figures S29 vs. S30 for 422 
wheat, S32 vs. S33 for rice, S35 vs. S36 for soybean) and GGCMs perform more similar in the analysis of 423 
time-only variance (Figures S31, S34, S37). 424 

3.3. Pixel scale 425 
At the pixel scale, reference data uncertainty increases substantially, as the two available data sets are 426 
essentially model- and observation-based interpolations of (sub-)national yield statistics, and neither of 427 
the two is independent from FAO national data. Differences between the two gridded yield reference 428 
data sets (Iizumi et al., 2014b; Ray et al., 2012) are expressed via a time series correlation analysis after 429 
removing trends via a moving average (see Methods, Figure 9). 430 

Independent of the harmonization setting, the GGCMI model ensemble (selecting the best correlation 431 
per pixel across the different GGCMs and harmonization settings) finds statistically significant 432 
correlations (p<0.1) with Ray2012 in most of the currently cropped areas for all four crops analyzed here 433 
(Figure 10 for maize, Figures S38 – S40 for wheat, rice and soybean). The spatial patterns with high 434 
correlations are comparable to where Ray2015 could find significant influence of weather on crop yield 435 
variability with an ensemble of 27 regression models, but the GGCMI ensemble finds statistically 436 
significant contributions of weather (the only dynamic driver in the model simulations) over a much 437 
larger area than Ray2015. The original analysis of Ray2015 could find better correlations for large parts 438 
of China, the Corn Belt in the USA and individual countries in Africa, most notably Kenya and Zimbabwe. 439 
Contrary to the GGCMI ensemble (best per pixel), individual GGCMs find statistically significant 440 
correlations in a much smaller area, largely comparable to the 27 regression model ensemble used by 441 
Ray2015, see e.g. pDSSAT simulations for maize in the supplement (Figure S41). There is no eminent 442 
pattern in the performance of individual GGCMs and none of the GGCMs performs in any region 443 
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significantly better than all others (see e.g. Figure S42 for best performing GGCM per grid cell for maize 444 
under the default setting). 445 

Some individual GGCMs achieve similar distribution of correlation coefficients with the gridded maize 446 
yield data set of Ray2012 as the ensemble of the 27 regression models as used by Ray2015, but most 447 
perform less well (Figure 11). As at the global-scale and national-scale aggregation level, harmonization 448 
can improve or worsen GGCM performance, depending on the GGCM. 449 

For wheat, the GGCMI ensemble also finds statistically significant correlations for a much larger area 450 
than the regression model ensemble used by Ray2015, but correlation coefficients are often lower (e.g. 451 
in Europe) even though the spatial patterns with relatively high correlations coefficients are similar 452 
between the GGCMI ensemble and those reported by Ray2015 (see Figure S38). As for maize, the 453 
harmonization has little effect on the ensemble skill. Also the distribution of coefficients of 454 
determination values shows that GGCMs can reach higher values for individual pixels but are generally 455 
(individually and as the total ensemble) less well correlated with the gridded Ray data set than the 27 456 
regression models of Ray2015, see Figures S38 and S43. 457 

A similar picture emerges for rice, where also Ray2015 only find low correlation coefficients, whereas the 458 
GGCMI ensemble covers a much broader area and finds moderate correlation coefficients in South 459 
America, India and Australia, but not in China as Ray2015 does. As for wheat, individual GGCMs can 460 
reach higher coefficients of determination values than the regression model ensemble of Ray et al. 461 
(2015) for individual pixels, but generally the correlations found are weaker than for the regression 462 
model ensemble as used by Ray2015, see Figures S39 and S44. 463 

For soybean, the GGCMI ensemble also covers a broader range than the regression model ensemble 464 
used by Ray2015. As for maize, the GGCMI ensemble finds equally high correlation coefficients as the 465 
regression model ensemble, with the notable exception of western Russia (Figure S40). Soybean yield 466 
variability in the USA can be better reproduced by the GGCMI ensemble than by the regression models 467 
employed by Ray2015. Again, some individual GGCMs perform equally well as the regression model 468 
ensemble employed by Ray2015, whereas the GGCMI ensemble achieves better coefficients of 469 
determination than the regression model ensemble used by Ray2015 (Figure S45). Also here, some 470 
GGCMs profit from harmonization, whereas others have better performance under their default setting 471 
or are not sensitive to the harmonization at all. 472 

  473 
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4. Discussion 474 

4.1. Benchmark: What to expect from GGCMs 475 
It is implausible to expect crop models to reproduce vast shares of yield variability and spatial patterns of 476 
crop yields given their coarse resolution, reliance on static inputs, and reliance on weather data when 477 
this is but one driver of true yield variability. This is particularly true for low-input regions where many 478 
other elements such as unsuitable management or pest outbreaks may contribute substantially to yield 479 
variability. It is questionable if the statistical analysis of Ray2015 should define the expectations for crop 480 
model performance as their regression models are driven with rather aggregate weather information 481 
(precipitation and temperature of either the growing season or of the 12 month preceding harvest). As 482 
GGCMs often find stronger influence of weather variability than Ray2015, especially for maize and soy, it 483 
is plausible to assume that weather variability is at least as important as described by Ray2015. On the 484 
other hand, regression models can be derived from many time series and as none of the GGCMs can 485 
reproduce the strong influence of weather variability on crop yields as e.g. reported for maize in Kenya 486 
or soybean in Russia (Ray et al., 2015), these strong relationships may be statistical artifacts or based on 487 
other weather-related dynamics that are not captured by the GGCMs, such as weather-related pest 488 
outbreaks (e.g., Esbjerg and Sigsgaard, 2014). Similar considerations apply for national and global-scale 489 
performance. However, also here it can be generally expected that weather variability is more important 490 
for yield variability in countries with high-input agriculture than in low input countries. GGCM 491 
simulations should not be expected to reproduce yield variability of countries that do not directly report 492 
production and harvested area to the FAO and where data gaps are filled with FAO estimates (Folberth 493 
et al., 2012). 494 

Gridded crop models make a number of simplifications, such as homogeneous management across 495 
larger areas, including soils, sowing dates and varieties. Within individual farming regions, sowing varies 496 
by days to even weeks as sowing dates are subject to a number of weather-induced conditions (e.g. soil 497 
wetness, soil temperature) and the timely availability of labor and machinery and farmers may chose 498 
different varieties to grow. The mixture of management practices within regions thus buffers observed 499 
variability in the region’s yield records, as the diversity should cancel out the variability to some extent 500 
when aggregated to a region average. GGCMs on the contrary implement highly homogeneous systems 501 
that tend to overestimate variability, allowing for no or little variation in sowing dates across the years or 502 
within larger regions (Sacks et al., 2010) and assuming no change in crop varieties across the simulation 503 
period of 31 years. This variety selection does not only contribute to the technology-driven trend in crop 504 
yields, which we have removed here (see Methods), but may also alter the crops’ response to adverse 505 
environmental conditions. The model simplifications also encompass simplified assumptions on the 506 
distribution of fertilizers and varieties, which should not only affect the temporal dynamics simulated but 507 
also the spatial patterns of crop yields.  508 

4.2. GGCM performance 509 
Maize and soybean are the crops where the GGCMs show the best skill in reproducing reference data 510 
variability, followed by wheat and rice. The separation of temporal and spatial variability shows that the 511 
spatial variability dominates the overall variability in data simply because the differences between 512 
national yields are typically greater than those between individual years within countries. GGCMs that 513 
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perform some level of calibration against national data therefore score relatively high in correlation 514 
coefficients (e.g. Figure 8) but not necessarily for greater model skill as the national differences are 515 
imposed in the calibration process. If nutrients are assumed to be non-limiting (harm-suffN), the 516 
reproduction of spatial patterns is reduced and these simulations (orange symbols in e.g. Figure S27) are 517 
therefore typically less extreme in comparison to the default settings (blue in e.g. Figure S27) and closer 518 
to the analysis of only temporal dynamics (e.g. Figure S28). Harmonization of management assumptions 519 
affects only in some cases the time-series correlation in individual countries (e.g. Figure 6). Simulations 520 
with no nutrient limitation typically lead to a greater mean bias in yield simulations (e.g. Figure 7) but not 521 
necessarily to large changes in time series correlation, suggesting that calibration or mean biases often 522 
do not affect the model’s skill to respond to interannual variation in weather conditions. However, it also 523 
often leads to greater variance in the time series (orange symbols move outwards relative to blue 524 
symbols in Figures S28, S31, S34, S37). The effect of harmonization is not only dependent on the 525 
individual GGCM’s sensitivity to these assumptions but also to the difference between the default and 526 
the harmonized settings with respect to growing season and fertilizer input. 527 

For maize and soy, the GGCMI ensemble outperforms an ensemble of 27 regression models (Ray et al., 528 
2015) with respect to area with significant correlation and to correlation coefficients (Figures 11 and 529 
S45), indicating that model performance is good. As there are still regions in which GGCMs are 530 
outperformed by the regression models (e.g. Kenya for maize, Russia for soybean), and because the 531 
individual GGCMs show varying skill for different regions, each of the models has sufficient room for 532 
improvement if we consider the best performing model is the benchmark for all others.  533 

For wheat, GGCMs show less influence of weather variability than Ray2015 and should thus strive to 534 
achieve similar performance levels as the regression models used by Ray2015. The simulation of wheat is 535 
complicated by the mixture of spring and winter wheat varieties that are also grown within the same 536 
regions and where the current distinction in the models and the GGCMI growing season data may not be 537 
accurate. For future analyses, we therefore recommend to perform separate simulations for spring and 538 
winter wheat. 539 

Rice is generally not simulated with great skill by any GGCM or the overall ensemble. However, also the 540 
regression model ensemble of Ray2015 does not detect substantial influence of inter-annual weather 541 
variability in much of the rice growing areas, suggesting that rice production systems are currently not 542 
well represented in GGCMs and also cannot be captured well by regression models. Possible causes 543 
could be the complexity of the multiple cropping seasons in rice production (Iizumi and Ramankutty, 544 
2015) and the assumptions on irrigation, which is especially in rice production which is largely irrigated.  545 

There is considerable uncertainty in historic weather patterns, as reflected by the 9 different weather 546 
data products used in GGCMI. We here use only one of these weather data sets for which all GGCMs 547 
submitted data with different management scenarios (default, fullharm [harmonized growing periods 548 
and nutrient inputs], harm-suffN [harmonized growing periods with no nutrient stress]). The differences 549 
between weather products and their effects on GGCMs’ skill to reproduce observed time-series 550 
variations are discussed in more detail in Ruane et al. (in prep.). 551 
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4.3. Data processing and assumptions 552 
There are a number of caveats with respect to the processing of data. We employ a moving average 553 
approach to remove trends from observation-based and simulated data. There are various other 554 
methods to remove trends from time series (e.g. linear or quadratic trends) which we have tested as 555 
well. No clear picture has emerged to what method is best as this is dependent on the individual time 556 
series. We argue that the most important aspect in this de-trending is that observation-based and 557 
simulated data are treated in the same way. Also, the moving average seems to be least dependent on 558 
assuming an underlying functional form as e.g. linear or quadratic de-trending methods and thus is more 559 
robust across the broad range of yield time series (global, national, grid cells). Data aggregation is based 560 
on global data sets on harvested areas per crop. Porwollik et al. (in press) have demonstrated that this 561 
can greatly affect results for individual crop x GGCM x country combinations. We here chose to use the 562 
best matching aggregation mask in each case, arguing that as long as none of the harvested area data 563 
sets can be excluded for quality concerns all are equally plausible and their disagreement should not be 564 
held against the crop models.  565 

We find that shifting time series by a year can sometimes greatly improve the correlation between 566 
simulated and reference time series, e.g. converting a non-significant correlation into a highly significant 567 
(p<0.01) correlation with high correlation coefficients (r=0.89) for LPJ-GUESS harm-suffN maize 568 
simulations for South Africa or converting negative correlation coefficients (r < -0.5) to positive (r > 0.5) 569 
for PEGASUS fullharm maize simulations in China (Figures 6 and S12). We acknowledge that some of this 570 
is owing to the relatively vague definition of how FAO yields are attributed to calendar years and how 571 
this matches with assumed growing periods in the GGCM simulations. However, this seems to be an 572 
important improvement to be achieved by future global crop modeling studies. The GGCMI phase I 573 
protocols request that data are reported as a series of growing season harvests (Elliott et al., 2015) 574 
rather than calendar years to avoid complications with harvest year attribution if harvest occurs around 575 
the end of the calendar year. Moreover, years are removed from the record if sowing occurred during 576 
the spinup, i.e. part of the growing season is not within the supplied weather input. Data reporting of 577 
future GGCMI simulations will have to be improved to better enable a direct matching of simulated and 578 
reference time series. If time series correlation at the global scale could be improved by time shifts, 579 
obviously the correlation would be even more improved, if individual country time series would have 580 
been adjusted as needed before aggregation rather than shifting the aggregated time series. However, 581 
this is beyond the scope of the study here. 582 

4.4. Implications for future crop model development and analyses 583 
Further model development and improvement is needed in collaboration with field-scale modeling 584 
approaches (Asseng et al., 2013; Bassu et al., 2014; Li et al., 2015) and experimentalists (Boote et al., 585 
2013). Improvements are also wanted for the representation and aggregation of soils in GGCM 586 
simulations (Folberth et al., 2016b) and management including growing season data and fertilizer types, 587 
amounts and timing (Hutchings et al., 2012). But also information on soil management, crop varieties, 588 
crop rotations, and actual irrigation amounts and schemes is presently not or only incompletely available 589 
and better information could greatly inform global crop modeling. Scrutinizing underlying reasons (e.g. 590 
the detail on management considered in the simulations) for good or poor model performance is, 591 
however, beyond the capabilities of this study and the individual modeling groups are requested to 592 
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investigate their model’s strengths and weaknesses. The overall model evaluation and the GGCMI phase 593 
I modeling data set (Elliott et al., 2015) enable such analyses but cannot be conducted centrally. The 594 
work by Folberth et al. (2016a) is a good example of how the underlying reasons for differences in model 595 
performance can be identified for individual crop models. 596 

Also, yield statistics in themselves are not a good reference data set for dissecting model functionality as 597 
errors in various processes such as gross primary production, respiration, allocation of photosynthate, 598 
soil dynamics and crop stress response can compensate each other in the formation of yield. Site data 599 
measurements do not only provide data on targeted experiments (as e.g. the FACE experiments, see e.g. 600 
Leakey et al. (2009)) but also on related water and carbon dynamics, as e.g. eddy flux tower 601 
measurements that can help to get good simulation results for good reasons. As such it remains crucial 602 
to also test global-scale models against detailed data from experiments to build trust in the underlying 603 
mechanisms. This point-scale evaluation of models has been performed for several of the GGCMs 604 
engaged here and is not subject of this study (e.g., Gaiser et al., 2010; Izaurralde et al., 2006; Jones et al., 605 
2003).  606 

We propose that future global or large-scale gridded crop models are tested against the GGCMI model 607 
ensemble and the reference data used here to establish a benchmark for model evaluation and future 608 
model development. This cannot overcome the shortage in suitable reference data, but it provides a first 609 
benchmark against which global gridded crop models can be tested. We are well aware of the 610 
shortcomings to establish a benchmark that largely consists of modeled data (Best et al., 2015; Kelley et 611 
al., 2013), either from other models or from model-assisted interpolation of highly aggregated statistics 612 
but see no other option under current data availability. Also, the benchmark should not be confused 613 
with a validation of models, but establishes a reference point against which model performance can be 614 
evaluated. We here assume that the best performing model currently defines the model performance 615 
that can be expected, but acknowledge that the underlying reasons for good (and poor) model 616 
performance need to be better understood in order to avoid defining statistical artifacts as a benchmark 617 
for models. 618 

5. Conclusions 619 
Agricultural productivity is increasingly modeled at the global scale, but model setup and evaluation is 620 
hampered by the lack of high-quality input and reference data. We establish a first global crop modeling 621 
benchmark using a crop model ensemble of 14 crop modeling groups and reference data at grid cell, 622 
national and global scale. Even though crop models often demonstrate good performance in reproducing 623 
temporal and spatial patterns of observed crop yields, there is also the need to improve all models. We 624 
argue that the value of the crop model ensemble in an intercomparison study is the ability to learn from 625 
each other as models often show complimentary skill. We encourage all future crop model development 626 
to be tested against the GGCMI global crop model benchmark and thus make our evaluation framework 627 
publicly accessible at https://mygeohub.org/groups/geoshare. This modeling intercomparison exercise 628 
provides a benchmark for facilitating model improvements by the individual modeling groups. There is 629 
substantial crop modeling skill for the simulation of maize, wheat and soybean yields at the global scale, 630 
but rice simulations are currently not preforming well and will require additional effort to improve these 631 

https://mygeohub.org/groups/geoshare
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simulations. Ongoing collaboration with field-scale modelers and experimentalists is needed to improve 632 
model mechanisms and parameters. Finally our results emphasize the need for continuous development 633 
and improvement of detailed agricultural data for model input and model evaluation that cover the 634 
entire global agricultural land.  635 

  636 
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Code availability 637 
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The evaluation pipeline will be made available at 639 
https://mygeohub.org/tools/ggcmevaluationhttps://mygeohub.org/groups/geoshare after publication of 640 
the paper. 641 

Data availability 642 
Model output data will be made available via the GGCMI data archive. 643 

Author contribution 644 
CM and JE designed the experiment and the evaluation framework in discussion with all co-authors. CM, 645 
JE, and JC developed the code for the evaluation and data processing. CM, JE, JB, DD, CF, SH, RCI, CJ, NK, 646 
PL, WL, SO, TAMP, ARe, GS, EW, RS, XW and AdW performed model simulations. TI and DR provided 647 
reference data. CXS developed the online tool for model evaluation. CM wrote the manuscript with 648 
contributions from all co-authors. 649 

Competing interests 650 
We declare non competing interests. 651 

Acknowledgements 652 
We acknowledge the support and data provision by the Agricultural Intercomparison and Improvement 653 
Project (AgMIP). This work was completed in part with resources provided by the University of Chicago 654 
Research Computing Center. CM acknowledges financial support from the MACMIT project (01LN1317A) 655 
funded through the German Federal Ministry of Education and Research (BMBF). AA and TAMP were 656 
supported by the European Commission’s 7th Framework Programme under Grant Agreement number 657 
603542 (LUC4C) and by the Helmholtz Association through its research program ATMO. 658 

  659 

https://github.com/RDCEP/ggcmi
https://mygeohub.org/tools/ggcmevaluation
https://mygeohub.org/tools/ggcmevaluation


22 
 

References 660 
Alfons, A. and Kraft, S.: simPopulation: Simulation of synthetic populations for surveys based on sample 661 
data, http://CRAN.R-project.org/package=simPopulation, 2013. 662 
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P. J., 663 
Rotter, R. P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P. K., Angulo, C., Bertuzzi, P., 664 
Biernath, C., Challinor, A. J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J., Hunt, L. A., 665 
Ingwersen, J., Izaurralde, R. C., Kersebaum, K. C., Müller, C., Naresh Kumar, S., Nendel, C., O/'Leary, G., 666 
Olesen, J. E., Osborne, T. M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M. A., Shcherbak, I., 667 
Steduto, P., Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., Wallach, D., 668 
White, J. W., Williams, J. R., and Wolf, J.: Uncertainty in simulating wheat yields under climate change, 669 
Nature Climate Change, 3, 827-832, 2013. 670 
Basso, B., Gargiulo, O., Paustian, K., Robertson, G. P., Porter, C., Grace, P. R., and Jones, J. W.: Procedures 671 
for Initializing Soil Organic Carbon Pools in the DSSAT-CENTURY Model for Agricultural Systems, Soil 672 
Science Society of America Journal, 75, 69-78, 2011. 673 
Bassu, S., Brisson, N., Durand, J.-L., Boote, K., Lizaso, J., Jones, J. W., Rosenzweig, C., Ruane, A. C., Adam, 674 
M., Baron, C., Basso, B., Biernath, C., Boogaard, H., Conijn, S., Corbeels, M., Deryng, D., De Sanctis, G., 675 
Gayler, S., Grassini, P., Hatfield, J., Hoek, S., Izaurralde, C., Jongschaap, R., Kemanian, A. R., Kersebaum, K. 676 
C., Kumar, N. S., Makowski, D., Müller, C., Nendel, C., Priesack, E., Pravia, M. V., Soo, H. K., Sau, F., 677 
Shcherbak, I., Tao, F., Teixeira, E., Timlin, D., and Waha, K.: Do various maize crop models give the same 678 
responses to climate change factors?  , Global Change Biology, 20, 2301-2320, 2014. 679 
Best, M. J., Abramowitz, G., Johnson, H. R., Pitman, A. J., Balsamo, G., Boone, A., Cuntz, M., Decharme, 680 
B., Dirmeyer, P. A., Dong, J., Ek, M., Guo, Z., Haverd, V., van den Hurk, B. J. J., Nearing, G. S., Pak, B., 681 
Peters-Lidard, C., Santanello, J. A., Stevens, L., and Vuichard, N.: The Plumbing of Land Surface Models: 682 
Benchmarking Model Performance, Journal of Hydrometeorology, 16, 1425-1442, 2015. 683 
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., 684 
Müller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global 685 
terrestrial carbon balance, Global Change Biology, 13, 679-706, 2007. 686 
Boote, K. J., Jones, J. W., White, J. W., Asseng, S., and Lizaso, J. I.: Putting mechanisms into crop 687 
production models, Plant Cell Environ, 36, 1658-1672, 2013. 688 
CDO: Climate Data Operators.  Available at: http://www.mpimet.mpg.de/cdo, 2015. 2015. 689 
de Wit, A. J. W. and van Diepen, C. A.: Crop growth modelling and crop yield forecasting using satellite-690 
derived meteorological inputs, International Journal of Applied Earth Observation and Geoinformation, 691 
10, 414-425, 2008. 692 
Del Grosso, S. J., Ojima, D. S., Parton, W. J., Stehfest, E., Heistemann, M., DeAngelo, B., and Rose, S.: 693 
Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped 694 
soils, Global and Planetary Change, 67, 44-50, 2009. 695 
Deryng, D., Conway, D., Ramankutty, N., Price, J., and Warren, R.: Global crop yield response to extreme 696 
heat stress under multiple climate change futures, Environmental Research Letters, 9, 034011, 2014. 697 
Deryng, D., Sacks, W. J., Barford, C. C., and Ramankutty, N.: Simulating the effects of climate and 698 
agricultural management practices on global crop yield, Global Biogeochem. Cycles, 25, GB2006, 2011. 699 
Drewniak, B., Song, J., Prell, J., Kotamarthi, V. R., and Jacob, R.: Modeling agriculture in the Community 700 
Land Model, Geoscientific Model Development 6, 495-515, 2013. 701 
El-Sharkawy, M. A.: Overview: Early history of crop growth and photosynthesis modeling, Biosystems, 702 
103, 205-211, 2011. 703 
Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., 704 
Best, N., Eisner, S., Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, N., 705 
Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A. C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., and 706 

http://cran.r-project.org/package=simPopulation
http://www.mpimet.mpg.de/cdo


23 
 

Wisser, D.: Constraints and potentials of future irrigation water availability on agricultural production 707 
under climate change, Proceedings of the National Academy of Sciences, 111, 3239-3244, 2014a. 708 
Elliott, J., Kelly, D., Chryssanthacopoulos, J., Glotter, M., Jhunjhnuwala, K., Best, N., Wilde, M., and Foster, 709 
I.: The parallel system for integrating impact models and sectors (pSIMS), Environmental Modelling & 710 
Software, 62, 509-516, 2014b. 711 
Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., Foster, I., Glotter, M., 712 
Heinke, J., Iizumi, T., Izaurralde, R. C., Mueller, N. D., Ray, D. K., Rosenzweig, C., Ruane, A. C., and 713 
Sheffield, J.: The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 714 
(v1.0), Geosci. Model Dev., 8, 261-277, 2015. 715 
Esbjerg, P. and Sigsgaard, L.: Phenology and pest status of Agrotis segetum in a changing climate, Crop 716 
Prot, 62, 64-71, 2014. 717 
Ewert, F., van Ittersum, M. K., Heckelei, T., Therond, O., Bezlepkina, I., and Andersen, E.: Scale changes 718 
and model linking methods for integrated assessment of agri-environmental systems, Agric Ecosyst 719 
Environ, 142, 6-17, 2011. 720 
Fader, M., Rost, S., Müller, C., Bondeau, A., and Gerten, D.: Virtual water content of temperate cereals 721 
and maize: Present and potential future patterns, Journal of Hydrology, 384, 218-231, 2010. 722 
FAO: FAO Statistical Yearbook 2013, FAO, Rome, 2013. 723 
FAOstat data: http://faostat3.fao.org/home/E [accessed: May 2014], 2014. 2014. 724 
Folberth, C., Elliott, J., Müller, C., Balkovic, J., Chryssanthacopoulos, J., Izaurralde, R. C., Jones, C. D., 725 
Khabarov, N., Liu, W., Reddy, A., Schmid, E., Skalský, R., Yang, H., Arneth, A., Ciais, P., Deryng, D., 726 
Lawrence, P. J., Olin, S., Pugh, T. A. M., Ruane, A. C., and Wang, X.: Uncertainties in global crop model 727 
frameworks: effects of cultivar distribution, crop management and soil handling on crop yield estimates, 728 
Biogeosciences Discuss., 2016, 1-30, 2016a. 729 
Folberth, C., Gaiser, T., Abbaspour, K. C., Schulin, R., and Yang, H.: Regionalization of a large-scale crop 730 
growth model for sub-Saharan Africa: Model setup, evaluation, and estimation of maize yields, Agric 731 
Ecosyst Environ, 151, 21-33, 2012. 732 
Folberth, C., Skalsky, R., Moltchanova, E., Balkovic, J., Azevedo, L. B., Obersteiner, M., and van der Velde, 733 
M.: Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations, Nat. 734 
Commun., 7, 2016b. 735 
Gaiser, T., de Barros, I., Sereke, F., and Lange, F.-M.: Validation and reliability of the EPIC model to 736 
simulate maize production in small-holder farming systems in tropical sub-humid West Africa and semi-737 
arid Brazil, Agric Ecosyst Environ, 135, 318-327, 2010. 738 
Hansen, J. W. and Jones, J. W.: Scaling-up crop models for climate variability applications, Agricultural 739 
Systems, 65, 43-72, 2000. 740 
Hutchings, N. J., Reinds, G. J., Leip, A., Wattenbach, M., Bienkowski, J. F., Dalgaard, T., Dragosits, U., 741 
Drouet, J. L., Durand, P., Maury, O., and de Vries, W.: A model for simulating the timelines of field 742 
operations at a European scale for use in complex dynamic models, Biogeosciences, 9, 4487-4496, 2012. 743 
Iizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., Brown, M. E., and Yamagata, 744 
T.: Impacts of El Niño Southern Oscillation on the global yields of major crops, Nat. Commun., 5, 2014a. 745 
Iizumi, T. and Ramankutty, N.: How do weather and climate influence cropping area and intensity?, 746 
Global Food Security, 4, 46-50, 2015. 747 
Iizumi, T., Sakuma, H., Yokozawa, M., Luo, J.-J., Challinor, A. J., Brown, M. E., Sakurai, G., and Yamagata, 748 
T.: Prediction of seasonal climate-induced variations in global food production, Nature Clim. Change, 3, 749 
904-908, 2013. 750 
Iizumi, T., Yokozawa, M., Sakurai, G., Travasso, M. I., Romanenkov, V., Oettli, P., Newby, T., Ishigooka, Y., 751 
and Furuya, J.: Historical changes in global yields: major cereal and legume crops from 1982 to 2006, 752 
Global Ecology and Biogeography, 23, 346-357, 2014b. 753 
Izaurralde, R. C., McGill, W. B., and Williams, J. R.: Chapter 17 - Development and Application of the EPIC 754 
Model for Carbon Cycle, Greenhouse Gas Mitigation, and Biofuel Studies. In: Managing Agricultural 755 

http://faostat3.fao.org/home/E


24 
 

Greenhouse Gases, Liebig, M. A., Franzluebbers, A. J., and Follett, R. F. (Eds.), Academic Press, San Diego, 756 
2012. 757 
Izaurralde, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J., and Jakas, M. C. Q.: Simulating soil C 758 
dynamics with EPIC: Model description and testing against long-term data, Ecological Modelling, 192, 759 
362-384, 2006. 760 
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., 761 
Singh, U., Gijsman, A. J., and Ritchie, J. T.: The DSSAT cropping system model, European Journal of 762 
Agronomy, 18, 235-265, 2003. 763 
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., 764 
Hargreaves, J. N. G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J. P., Silburn, M., 765 
Wang, E., Brown, S., Bristow, K. L., Asseng, S., Chapman, S., McCown, R. L., Freebairn, D. M., and Smith, 766 
C. J.: An overview of APSIM, a model designed for farming systems simulation, Eur. J. Agron., 18, 267-767 
288, 2003. 768 
Kelley, D. I., Prentice, I. C., Harrison, S. P., Wang, H., Simard, M., Fisher, J. B., and Willis, K. O.: A 769 
comprehensive benchmarking system for evaluating global vegetation models, Biogeosciences, 10, 3313-770 
3340, 2013. 771 
Kucharik, C. J. and Ramankutty, N.: Trends and Variability in U.S. Corn Yields Over the Twentieth Century, 772 
Earth Interactions, 9, 1-29, 2005. 773 
Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., and Ort, D. R.: Elevated CO2 774 
effects on plant carbon, nitrogen, and water relations: six important lessons from FACE, Journal of 775 
Experimental Botany, 60, 2859-2876, 2009. 776 
Lemon, J.: Plotrix: a package in the red light district of R, R-News, 6, 8-12, 2006. 777 
Lesk, C., Rowhani, P., and Ramankutty, N.: Influence of extreme weather disasters on global crop 778 
production, Nature, 529, 84-87, 2016. 779 
Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., Bregaglio, S., Buis, S., Confalonieri, R., Fumoto, 780 
T., Gaydon, D., Marcaida, M., Nakagawa, H., Oriol, P., Ruane, A. C., Ruget, F., Singh, B., Singh, U., Tang, L., 781 
Tao, F., Wilkens, P., Yoshida, H., Zhang, Z., and Bouman, B.: Uncertainties in predicting rice yield by 782 
current crop models under a wide range of climatic conditions, Global Change Biology, 21, 1328-1341, 783 
2015. 784 
Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., and Smith, B.: Implications of 785 
accounting for land use in simulations of ecosystem carbon cycling in Africa, Earth Syst. Dynam., 4, 385-786 
407, 2013. 787 
Liu, J., Williams, J. R., Zehnder, A. J. B., and Yang, H.: GEPIC – modelling wheat yield and crop water 788 
productivity with high resolution on a global scale, Agricultural Systems, 94, 478-493, 2007. 789 
Liu, W., Yang, H., Folberth, C., Wang, X., Luo, Q., and Schulin, R.: Global investigation of impacts of PET 790 
methods on simulating crop-water relations for maize, Agricultural and Forest Meteorology, 221, 164-791 
175, 2016. 792 
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and Foley, J. A.: Closing yield gaps 793 
through nutrient and water management, Nature, 490, 254-257, 2012. 794 
Müller, C. and Robertson, R.: Projecting future crop productivity for global economic modeling, Agric. 795 
Econ., 45, 37-50, 2014. 796 
Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., 797 
Hasegawa, T., Heyhoe, E., Kyle, P., Von Lampe, M., Lotze-Campen, H., Mason d'Croz, D., van Meijl, H., van 798 
der Mensbrugghe, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E., Schmitz, C., Tabeau, 799 
A., and Willenbockel, D.: Climate change effects on agriculture: Economic responses to biophysical 800 
shocks, Proceedings of the National Academy of Sciences, 111, 3274-3279, 2014a. 801 
Nelson, G. C., van der Mensbrugghe, D., Blanc, E., Calvin, K., Hasegawa, T., Havlík, P., Kyle, P., Lotze-802 
Campen, H., von Lampe, M., Mason d'Croz, D., van Meijl, H., Müller, C., Reilly, J., Robertson, R., Sands, R. 803 



25 
 

D., Schmitz, C., Tabeau, A., Takahashi, K., and Valin, H.: Agriculture and Climate Change in Global 804 
Scenarios: Why Don't the Models Agree, Agric. Econ., 45, 85-101, 2014b. 805 
Osborne, T., Rose, G., and Wheeler, T.: Variation in the global-scale impacts of climate change on crop 806 
productivity due to climate model uncertainty and adaptation, Agricultural and Forest Meteorology, 170, 807 
183-194, 2013. 808 
Pongratz, J., Lobell, D. B., Cao, L., and Caldeira, K.: Crop yields in a geoengineered climate, Nature Clim. 809 
Change, 2, 101-105, 2012. 810 
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000-Global monthly irrigated and rainfed crop areas 811 
around the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Global 812 
Biogeochemical Cycles, 24, Gb1011, 2010. 813 
Porwollik, V., Müller, C., Elliott, J., Chryssanthacopoulos, J., Iizumi, T., Ray, D. K., Ruane, A. C., Arneth, A., 814 
Balkovič, J., Ciais, P., Deryng, D., Folberth, C., Izaurralde, R. C., Jones, C. D., Khabarov, N., Lawrence, P. J., 815 
Liu, W., Pugh, T. A. M., Reddy, A., Sakurai, G., Schmid, E., Wang, X., de Wit, A., and Wu, X.: Spatial and 816 
temporal uncertainty of crop yield aggregations, European Journal of Agronomy, doi: 817 
10.1016/j.eja.2016.08.006, in press. in press. 818 
Ray, D. K., Gerber, J. S., MacDonald, G. K., and West, P. C.: Climate variation explains a third of global 819 
crop yield variability, Nat Commun, 6, 2015. 820 
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., and Foley, J. A.: Recent patterns of crop yield 821 
growth and stagnation, Nat. Commun., 3, 7, 2012. 822 
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J., Folberth, C., 823 
Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., and 824 
Jones, J. W.: Assessing agricultural risks of climate change in the 21st century in a global gridded crop 825 
model intercomparison, Proceedings of the National Academy of Sciences, 111, 3268-3273, 2014. 826 
Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburne, P., Antle, J. M., Nelson, 827 
G. C., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert, F., Wallach, D., Baigorria, G., and Winter, J. M.: 828 
The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies, 829 
Agricultural and Forest Meteorology, 170, 166-182, 2013. 830 
Rosenzweig, C. and Parry, M. L.: Potential impact of climate change on world food supply, Nature, 367, 831 
133-138, 1994. 832 
Rötter, R. P., Carter, T. R., Olesen, J. E., and Porter, J. R.: Crop-climate models need an overhaul, Nature 833 
Clim. Change, 1, 175-177, 2011. 834 
Ruane, A. C., Glotter, M., and et al.: Historic weather data uncertainty and its importance for crop 835 
modeling results, in prep., in prep. 836 
Ruane, A. C., Goldberg, R., and Chryssanthacopoulos, J.: Climate forcing datasets for agricultural 837 
modeling: Merged products for gap-filling and historical climate series estimation, Agricultural and 838 
Forest Meteorology, 200, 233-248, 2015. 839 
Russell, E. J.: A History of Agricultural Science in Great Britain, 1620-1954, Allen & Unwin, 1966. 840 
Sacks, W. J., Deryng, D., Foley, J. A., and Ramankutty, N.: Crop planting dates: an analysis of global 841 
patterns, Global Ecology and Biogeography, 19, 607-620, 2010. 842 
Sakurai, G., Iizumi, T., Nishimori, M., and Yokozawa, M.: How much has the increase in atmospheric CO2 843 
directly affected past soybean production?, Scientific Reports, 4, 4978, 2014. 844 
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year High-Resolution Global Dataset of 845 
Meteorological Forcings for Land Surface Modeling, Journal of Climate, 19, 3088-3111, 2006. 846 
Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., and Scanlon, B. R.: A global data set of the 847 
extent of irrigated land from 1900 to 2005, Hydrol. Earth Syst. Sci., 19, 1521-1545, 2015. 848 
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of 849 
terrestrial ecosystems: comparing two contrasting approaches within European climate space, Global 850 
Ecology and Biogeography, 10, 621-637, 2001. 851 



26 
 

Spiertz, H.: Agricultural sciences in transition from 1800 to 2020: Exploring knowledge and creating 852 
impact, European Journal of Agronomy, 59, 96-106, 2014. 853 
Stehfest, E., Heistermann, M., Priess, J. A., Ojima, D. S., and Alcamo, J.: Simulation of global crop 854 
production with the ecosystem model DayCent, Ecological Modelling, 209, 203-219, 2007. 855 
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, Journal of 856 
Geophysical Research-Atmospheres, 106, 7183–7192, 2001. 857 
Thenkabail, P. S., Biradar, C. M., Noojipady, P., Dheeravath, V., Li, Y., Velpuri, M., Gumma, M., 858 
Gangalakunta, O. R. P., Turral, H., Cai, X., Vithanage, J., Schull, M. A., and Dutta, R.: Global irrigated area 859 
map (GIAM), derived from remote sensing, for the end of the last millennium, International Journal of 860 
Remote Sensing, 30, 3679-3733, 2009. 861 
Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide at Mauna Loa Observatory: 862 
2. Analysis of the NOAA GMCC data, 1974–1985, Journal of Geophysical Research: Atmospheres, 94, 863 
8549-8565, 1989. 864 
van Bussel, L. G. J., Stehfest, E., Siebert, S., Müller, C., and Ewert, F.: Simulation of the phenological 865 
development of wheat and maize at the global scale, Global Ecology and Biogeography, 24, 1018-1029, 866 
2015. 867 
Waha, K., van Bussel, L. G. J., Müller, C., and Bondeau, A.: Climate-driven simulation of global crop 868 
sowing dates, Global Ecology and Biogeography, 21, 247-259, 2012. 869 
Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley, T., Maechler, M., 870 
Magnusson, A., Moeller, S., Schwartz, M., and Venables, B.: gplots: Various R Programming Tools for 871 
Plotting Data. R package version 3.0.1., http://CRAN.R-project.org/package=gplots, 2016. 872 
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The Inter-Sectoral Impact 873 
Model Intercomparison Project (ISI–MIP): Project framework, Proceedings of the National Academy of 874 
Sciences of the United States of America, 111, 3228-3232, 2014. 875 
Wheeler, T. and von Braun, J.: Climate change impacts on global food security, Science, 341, 508-513, 876 
2013. 877 
Williams, J. R.: The EPIC model. In: Computer models of watershed hydrology., Water Resources 878 
Publications, Littleton, CO, 1995. 879 
Wirsenius, S.: Human Use of Land and Organic materials, 2000.Thesis for the degree of Doctor of 880 
Philosophy, Department of Physical Resource Theory, Chalmers University of Technology and Göteborg 881 
University, Göteborg, Sweden, 255 pp., 2000. 882 
Wu, X., Vuichard, N., Ciais, P., Viovy, N., de Noblet-Ducoudré, N., Wang, X., Magliulo, V., Wattenbach, M., 883 
Vitale, L., Di Tommasi, P., Moors, E. J., Jans, W., Elbers, J., Ceschia, E., Tallec, T., Bernhofer, C., Grünwald, 884 
T., Moureaux, C., Manise, T., Ligne, A., Cellier, P., Loubet, B., Larmanou, E., and Ripoche, D.: ORCHIDEE-885 
CROP (v0), a new process based Agro-Land Surface Model: model description and evaluation over 886 
Europe, Geosci. Model Dev. Discuss., 8, 4653-4696, 2015. 887 
You, L., S.Crespo, Guo, Z., Koo, J., Ojo, W., Sebastian, K., Tenorio, M. T., Wood, S., and Wood-Sichra, U.: 888 
Spatial Produciton Allocation Model (SPAM) 2000 Version 3 Release 2, 2010. 889 
You, L., Wood-Sichra, U., Fritz, S., Guo, Z., See, L., and Koo, J.: Spatial Production Allocation Model 890 
(SPAM) 2005 v2.0, available from http://mapspam.info 2014a. 891 
You, L., Wood, S., Wood-Sichra, U., and Wu, W.: Generating global crop distribution maps: From census 892 
to grid, Agricultural Systems, 127, 53-60, 2014b. 893 

 894 

  895 

http://cran.r-project.org/package=gplots
http://mapspam.info/


27 
 

Table 1: GGCMs participating in the study, model type and key references. 896 

Crop model Model type Key literature 

CGMS-WOFOST Site-based process model de Wit and van Diepen (2008) 

CLM-Crop Ecosystem Model  Drewniak et al. (2013)  

EPIC-BOKU Site-based process model (based on EPIC) EPIC v0810 - Izaurralde et al. (2006); Williams (1995) 

EPIC-IIASA Site-based process model (based on EPIC) EPIC v0810 - Izaurralde et al. (2006); Williams (1995) 

EPIC-TAMU Site-based process model (based on EPIC) EPIC v1102 - Izaurralde et al. (2012) 

GEPIC Site-based process model (based on EPIC) EPIC v0810 - Liu et al. (2007); Williams (1995); Folberth et al. 
(2012) 

LPJ-GUESS Ecosystem Model Lindeskog et al. (2013); Smith et al. (2001) 

LPJmL Ecosystem Model Waha et al. (2012), Bondeau et al. (2007)  

ORCHIDEE-crop Ecosystem Model Wu et al. (2015) 

pAPSIM Site-based process model APSIM v7.5 - Elliott et al. (2014b); Keating et al. (2003)  

pDSSAT Site-based process model pDSSAT v1.0 - Elliott et al. (2014b); DSSAT v4.5 - Jones et al. 
(2003)  

PEGASUS Ecosystem model v1.1 - Deryng et al. (2014), v1.0 - (Deryng et al., 2011) 

PEPIC Site-based process model (based on EPIC) EPIC v0810 - Liu et al. (2016), Williams (1995) 

PRYSBI2 Empirical/process hybrid Sakurai et al. (2014) 
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Table 2: Data availability by GGCM, crop and harmonization setting. Crosses (X) indicate availability, dashes (-) indicate that 899 
data was not supplied. The three columns per crop are the different harmonization settings on management (default, 900 
fullharm and harm-suffN, see above). 901 

GGCM Maize Wheat Rice Soybean 
 Default 

fullharm
 

harm
-

suffN 

default 

Fullharm
 

harm
-

suffN 

default 

fullharm
 

harm
-

suffN 

default 

fullharm
 

harm
-

suffN 

CGMS-
WOFOST X - - X - - X - - X - - 

CLM-Crop X X X X X X X X X X X X 
EPIC-BOKU X X X X X X X X X X X X 
EPIC-IIASA X X X X X X X X X X X X 
EPIC-
TAMU - X X - X X - - - - - - 

GEPIC X X X X X X X X X X X X 
LPJ-GUESS X - X X - X X - X X - X 
LPJmL X - X X - X X - X X - X 
ORCHIDEE-
crop X X X X X X X X X X X - 

pAPSIM X X X X X X - - - X X X 
pDSSAT X X X X X X X X X X X X 
PEGASUS X X X X X X - - - X X X 
PEPIC X X X X X X X X X X X X 
PRYSBI2 X - - X - - X - - X - - 
 902 
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 904 

Figure 1: Time series of GGCMI simulations (solid colored lines) and FAOstat reference data (dashed line) for maize after de-905 
trending. Numbers in the legend next to model names indicate the Pearson correlation coefficient, asterisks indicate the p-906 
values (*** for p<0.001, ** for p <0.05, * for p < 0.1, n.s. for not significant). This figure displays the 'default' setting, except 907 
for EPIC-TAMU, which only supplied the fullharm setting simulations (see Table 2). The (sb) flag indicates that the time series 908 
had been shifted backwards by a year to achieve a better match. 909 
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 911 

Figure 2: As figure 1 but for wheat. 912 
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 914 

Figure 3: As figure 1 but for rice. EPIC-TAMU, PEGASUS and pAPSIM did not supply data for rice. 915 
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 917 

Figure 4: As figure 1 but for soybean. EPIC-TAMU did not supply data for soybean. 918 
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 920 

Figure 5: relationship of global mean bias and time series correlation for maize across all GGCMs (colors) and harmonization 921 
settings (symbols). Dashed line indicates a linear fit, whose explanation power (R2) is given in the right hand corner. 922 
Significance levels are as in figure 1. 923 
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 925 

Figure 6: time series correlation coefficients for the top 10 maize producer countries. Rows display the individual countries 926 
ordered by production; left-hand labels describe the best performing GGCM for that country and the correlation coefficients. 927 
White boxes indicate that correlations are not statistically significant. Each column displays individual GGCM x harmonization 928 
combinations, omitting all for which data is not available. The leftmost column displays the best correlation coefficient for 929 
each country (row), corresponding to the row labels on the left. Color legend key on top includes a histogram (cyan line) that 930 
shows the distribution of correlation coefficients across the ensemble and the top-10 producer countries, excluding the 931 
“best” column. 932 
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 934 

Figure 7: As figure 6, but for mean bias (t/ha) of simulated yields for the top 10 producer countries for maize. 935 
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 937 

Figure 8: Taylor diagram of maize yield simulations aggregated to national level against FAO statistics data after removing 938 
trends but preserving national mean yields. A perfect match with FAO statistics data would be at the dark green box on the x-939 
axis, having a normalized standard deviation of 1 (distance to origin, blue contour lines) and a correlation of 1 (angle) as well 940 
as a centered RMSD of zero (green contour lines). Symbols represent the different GGCMs, colors indicate the harmonization 941 
setting. Non-significant correlations are shaded in lighter hues. Individual countries are weighted by their maize production 942 
according to FAOstat data (2014). 943 
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 945 

Figure 9: Analysis of time series correlation between the two gridded yield reference data sets after removing trends via a 946 
moving average (see methods). Grey areas depict areas where there is no statistically significant correlation between the two 947 
data sets (p>0.1), white areas have no yield data for that crop in at least one of the two data sets. Panel A) shows coefficients 948 
of determination (R2) for maize, B) for wheat, C) for rice, D) for soybean. 949 
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 951 

Figure 10: Analysis of time series correlation between the GGCM ensemble simulations for maize (selecting best correlation 952 
across the GGCMs per grid cell) and the Ray2012 reference data set after removing trends via a moving average (see 953 
methods). Grey areas depict areas where none of the GGCMs finds a statistically significant correlation; white areas have no 954 
yield data for that crop in Ray2012 data sets. Panel A) shows coefficients of determination (R2) for the default setting, B) for 955 
the fullharm setting, C) for the harm-suffN setting, and D) shows the original coefficients of determination as reported by Ray 956 
et al. (2015) for an ensemble of 27 regression models. 957 
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fol 960 

Figure 11: Boxplot of R2 distribution for each GGCM-harmonization setting for maize. Boxes span the interquartile range (25-961 
75 percentiles); whiskers expand to the most remote value within 1.5 times the interquartile range. Values outside this range 962 
are considered outliers and are depicted as dots. The “ensemble best” shows the GGCMI skill-based (correlation coefficient) 963 
ensemble, “ensemble X Ray” is the same but only for those pixels where , and both are not independent from FAO national 964 
data also report significant correlations, “Ray2015” is the distribution of values as published by Ray et al. (2015), “Ray X 965 
ensemble” is as Ray2015 but only for the area where also the GGCMI ensemble reports significant correlation coefficients. 966 
The distribution is weighted by production, following the Ray2012 data set. Numbers at the top describe the fraction of the 967 
total harvested area for which significant correlations could be found, which ranges between 963% (ensemble best, default), 968 
632% to 1923% for the individual GGCMs and 68% for Ray et al. (2015). 969 
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