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Abstract. A data assimilation system has been developed for the chemical transport forecast model

NMMB-MONARCH, with a focus on mineral dust, a prominent type of aerosol. An ensemble-

based Kalman filter technique (namely the Local Ensemble Transform Kalman Filter - LETKF) has

been utilized to optimally combine model background and satellite retrievals. Our implementation

of the ensemble is based on known uncertainties in the physical parametrizations of the dust emis-5

sion scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can

help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the

analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimi-

lation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact

in the analysis downwind from the strongest dust sources of Sahara and in the Arabian peninsula.10

An analysis-initialized forecast performs better (lower forecast error and higher correlation with ob-

servations) than a standard forecast, with the exception of underestimating dust in the long-range

Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1.

Particularly relevant is the improved forecast over Sahara throughout the forecast range thanks to the

assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets.15

The present study on mineral dust is a first step towards data assimilation with a complete aerosol

chemical transport model that includes multiple aerosol species.

1 Introduction

Among the different aerosol species, mineral dust is one of the main components of the atmospheric

aerosol loading and is of great interest for a variety of reasons. Mineral dust plays an important role20

in the earth’s energy balance and has a relevant impact on economical activities, on the ecosystem,

on health, as well as on weather and climate (Knippertz and Stuut, 2014). The strong dust storms
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occurring near emission sources constitute a big hazard to air traffic and road transport as they

can reduce the visibility down to few meters. However dust does not affect only local economies:

because of its transport over thousands of kilometres, it has an impact from local to global scales.25

Dust deposition provides nutrients to continental and marine ecosystems. African dust for example

has a role in fertilization of the Amazon rainforest (Yu et al., 2015), while dust deposition over oceans

has implication on sea biogeochemistry as the iron contained in the dust particles is a nutrient for

phytoplankton, whose photosynthetic activity in turn affects the carbon cycle (Jickels et al., 2005).

Dust has health implications both close and far from sources. For example, studies have shown30

the usefulness of dust aerosol climatologies to predict part of the year-to-year variability of the

seasonal incidence of meningitis in Niger (Pérez García-Pando et al., 2014), while particulate matter

measurements taken in areas far from sources show that Saharan dust outbreaks have adverse effects

of cardiovascular and respiratory conditions (Mallone et al., 2011; Morman and Plumlee, 2013;

Pandolfi at al., 2014). Mineral particles perturb the earth-atmosphere’s radiation budget through35

their interaction with the short-wave radiation, through scattering and absorption, and long-wave

radiation, through absorption and re-emission. Due to this redistribution of the energy, dust aerosols

can have a strong impact on atmospheric processes at short (weather) and long (climate) term periods

while they can affect atmospheric circulations at large spatial scales (e.g. Asian monsoons; Lau et

al. (2006)). Furthermore, this can generate feedback processes since changes in weather and climate40

can in turn lead to changes in the dust cycle.

Different types of ground-based (e.g., Kim et al., 2011; Pey at al., 2013) and space-borne (e.g.,

Kaufman et al., 2005; Luo et al., 2015) observations have been utilized to describe the variability

of atmospheric dust. However, due to either insufficient spatial representativeness or accuracy, the

spatio-temporal features of dust aerosols are not fully captured by the current observing system.45

Neither do models accurately describe atmospheric and surface dust concentrations (Huneeus et al.,

2011). High uncertainties are also in our knowledge of the optical and micro-physical properties of

dust, and in our representation of its vertical structure. The latter has implication on the radiation’s

budget and transport. On the other hand, an accurate quantification of dust’s spatial and temporal

distribution is key in correctly characterizing the effect that it has on the earth’s energy balance,50

as well as in improving the skill of forecasting its concentrations in the atmosphere as well as in

forecasting the weather (Pérez García-Pando at al., 2006; Grini et al., 2006; Chaboureau et al., 2011).

Regional and global centres, predicting the most important aerosol species or dust only, participate

in different model inter-comparison initiatives like the Aerosol Comparisons between Observations

and Models (AeroCom; Tsigaridis et al., 2007) project, the International Cooperative for Aerosol55

Prediction (ICAP; Sessions et al., 2015) initiative and the WMO Sand and Dust Storm Warning Ad-

visory and Assessment System (SDS-WAS; Terradellas et al., 2015). Multi-model ensemble spreads

give an indication of large uncertainties in the modelling schemes and confirm the need of a better

characterization of aerosols. Relatively recently because of these large uncertainties, the atmospheric
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composition community has begun to make use of data assimilation (DA) for a better characteriza-60

tion and prediction of atmospheric constituents such as aerosols and trace gases (Bocquet et al.,

2015). Though their dynamic is mainly driven by forcings such as emissions, recent studies showed

that the usage of observations through data assimilation has improved significantly the accuracy

of short-term forecast and the global monitoring of both aerosols and trace gases (Benedetti et al.,

2009; Elbern and Schmidt, 2001). Since the first experiments in the early 2000s, the assimilation65

of aerosol observations is now operational in some of the main aerosol forecasting centres (Ses-

sions et al., 2015). Zhang et al. (2014) have highlighted in particular the importance of a combined

assimilation of satellite products for aerosol forecast.

The Earth Sciences Department of the Barcelona Supercomputing Centre (ES-BSC) is implement-

ing a gas-aerosol module able to predict atmospheric composition at different spatial and temporal70

scales within the state-of-art meteorological model NMMB (Non-hydrostatic Multi-scale Model on

the B grid; Janjic and Gall, 2012). This modelling system is known as the Multiscale Online Non-

hydrostatic AtmospheRe CHemistry mode (NMMB-MONARCH). We report here on the extension

of NMMB-MONARCH with a data assimilation functionality using satellite aerosol optical depth.

NMMB-MONARCH version 1.0, as in Pérez García-Pando et al. (2011, where the model was pre-75

viously named NMMB/BSC-CTM), considers dust only but other aerosols are being implemented

(Spada et al., in prep). The focus of this work on mineral dust is justified by the operational ser-

vices provided by the NMMB-MONARCH. This model provides an operational dust forecast for

the Barcelona Dust Forecast Centre under an initiative of the World Meteorological Organization.

It participates in the multi-model dust ensemble of the aforementioned ICAP initiative, providing80

daily global dust forecast up to 120 hours. It also provides daily regional forecast up to 60 hours to

the WMO SDS-WAS system. Before this work, the system did not have an aerosol data assimila-

tion capability and dust was produced uniquely from model estimated surface emission fluxes. The

present study on mineral dust is a first step towards data assimilation with a complete aerosol chem-

ical transport model that includes multiple aerosol species (not only dust but also seasalt, sulphate85

and organics).

Previous studies of assimilation of dust aerosol only have been conducted for the Chinese Unified

Atmospheric Chemistry Environment - Dust (CUACE/Dust) forecast system (Niu et al., 2008; Wang

and Niu, 2013). These studies have used variational data assimilation techniques (3D-Var) which

require, in their most practical implementation, pre-calculated and constant in time model error90

structures. Alternatively, ensemble-based techniques use flow-dependent model error amplitudes and

structures which evolve during forecast and, in theory, should be able to capture better instabilities

in the background flow (Evensen, 1994; Kalnay et al., 2007). Dust AOD is currently assimilated at

the UK Met Office with a hybrid variational data assimilation technique (hybrid 4D-Var).

In this work we present the coupling of NMMB-MONARCH with an ensemble-based technique95

known as Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007; Miyoshi and Ya-
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mane, 2007). The LETKF scheme has shown to be particularly suitable for the assimilation of aerosol

information since it has been observed by Anderson et al. (2003) , Shinozuka and Redemann (2011),

and Schutgens et al. (2013) that aerosol fields have limited spatial correlations. Long-range transport

of dust could be an exception to this. Since detailed studies of spatial correlation length scales for100

dust long-range transport are still missing in the literature, in this work we assume that what has been

derived (limited spatial correlations) in general for aerosols is valid for dust. The utility of ensemble-

based techniques for global aerosol simulations has been shown in previous studies (Schutgens et

al., 2010a; Sekiyama et al., 2010; Rubin et al., 2016; and more recently Yumimoto et al., 2016). The

main novelty in our study is the creation of the ensemble, our implementation is based on known105

uncertainties in the physical parametrizations of the sophisticated dust emission scheme used by

the NMMB-MONARCH model, as well as in the use of observations particular relevant for dust

applications, like MODIS Deep Blue.

The NMMB-MONARCH chemical transport model is described in more detail in Section 2, with

emphasis on its dust module. A description of the data assimilation scheme and of the assimilated110

observations follows respectively in Section 3 and Section 4. We report then in Section 5 about the

characteristics of the simulations that we have run, in Section 6 about the evaluation methodology

that we have followed, and in Section 7 about the evaluation results of our simulation experiments.

The final section concludes the paper with a summary of this development, the main results achieved,

and future perspectives.115

2 The NMMB-MONARCH model and its mineral dust component

The ES-BSC is implementing a new gas-aerosol module within the NMMB meteorological model

from the Unites States National Centers for Environmental Prediction (NCEP). The new modelling

system is known as the NMMB-MONARCH (Pérez García-Pando et al., 2011; Jorba et al., 2012;

Spada et al., 2013; ?, where it was previously named NMMB/BSC-CTM), and is developed in col-120

laboration with NCEP and other research institutions. The chemistry (aerosols included) and meteo-

rology are fully on-line integrated. NMMB-MONARCH is able to work with a wide range of spatial

scales thanks to its unified non-hydrostatic dynamical core, keeping consistent parametrizations at

different spatial and temporal scales. Furthermore, the dynamical core and the coupled modules

are computationally highly efficient satisfying current and projected operational requirements. The125

rest of this section will briefly describe some characteristics of the dust component of the NMMB-

MONARCH, with particular focus on the emission scheme.

The dust emission scheme implemented in the NMMB-MONARCH follows the empirical rela-

tionship of Marticorena and Bergametti (1995) and Marticorena et al. (1995) according to which

the vertical dust flux is proportional to the horizontal sand flux. The horizontal to vertical flux ra-130

tio reflects the availability of dust in four soil populations (clay, silt, fine/medium sand, and coarse
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sand) (Tegen et al., 2002). The horizontal sand flux is modelled as the flux of the saltating particles

H simulated according to White (1979) and proportional to the third power of the wind friction

velocity. A soil moisture-dependent threshold on the friction velocity determines the velocity above

which the soil particles begin to move in horizontal saltation flux. This threshold is dynamically135

estimated according to soil characteristics. Soil moisture effects are included following Fecan et al.

(1999) through the soil moisture correction parameter included in the expression for the threshold

on the friction velocity. A sectional approach is used for the transport of dust particles, i.e. the dust

size distribution is decomposed in small size bins. More exactly, dust is modelled using eight dust

size bins varying from 0.1 to 10 microns, and, within each transport bin, dust is assumed to have140

a time-invariant lognormal distribution (Zender et al., 2003). The total vertical flux mass is dis-

tributed among the dust transport bins according to a specific dust distribution at sources. NMMB-

MONARCH uses a distribution over sources derived from D’Almeida (1987) which assumes that the

vertical dust flux is size distributed according to three lognormal background source modes. More

explicitly, the dust vertical mass flux Fb [kg s−1m−2] in a given transport bin b at each grid cell is145

given by

Fb = C S (1−V ) α H

3∑
i=0

mi Mi,b b= 1, . . . ,8 (1)

where S is a source erodibility factor defined on bare ground surfaces, representing the probability

to have accumulated sediments in the given grid cell that are potential dust sources; (1−V ) is the

grid’s fraction of bare soil; α [m−1] is the horizontal to vertical flux ratio calculated for four soil150

populations classes (clay, silt, fine/medium sand, and coarse sand); H [kg s−1m−1] is the horizontal

sand flux; Mi,k is the mass fraction of background source mode i carried in a transport bin k calcu-

lated following Zender et al. (2003), and weighted by specific background source mode coefficient

mi; and C is a global tuning factor empirically set to 0.768, which is meant to compensate for the

uncertainty associated with the different component of Fk. More details about the above formulation155

of dust emission can be found in Pérez García-Pando et al. (2011).

The mineral dust module has been extensively evaluated in studies at global and regional scales

(Pérez García-Pando et al., 2011; Haustein et al., 2012; Huneeus et al., 2011, 2016), showing that

its evaluation scores lie in the upper range of the AEROCOM model evaluation performance scores.

However, these evaluation efforts confirmed, similarly to other modelling systems, different sources160

of uncertainty in the NMMB-MONARCH dust modelling.

3 The data assimilation scheme

We have coupled the NMMB-MONARCH with the LETKF scheme (Hunt et al., 2007; Miyoshi and

Yamane, 2007; Schutgens et al., 2010a; Schutgens et al., 2013) with four-dimensional extension as

described in Hunt et al. (2007), in order to estimate optimal initial conditions for our dust model.165
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The overall scheme implements an iterative approach consisting in a forecast step and state estima-

tion step. The state estimation step combines information from mineral dust observations and a prior

first-guess, or background from our model. A short-term forecast is used as background information.

The background incorporates information from past observations, therefore the analysis is estimated

using both current and past observations. LETKF is a development of the ensemble-based transform170

Kalman filter (ETKF; Bishop et al., 2001) and of the local ensemble Kalman filter (LEKF; Ott et

al. , 2004), and is particularly suited to high-performance computing applications. A very attractive

feature of an ensemble-based technique is the use of a flow-dependent background error covariance,

which is derived from the ensemble of model states at the assimilation time, and evolves during

forecast. At any given time in fact the state estimate is represented by an ensemble of system states175

and its uncertainty is derived from the ensemble. LETKF has the advantageous feature that it ap-

plies localization, i.e. it performs the analysis locally (at each grid point only observations within a

certain distance are assimilated), allowing the global analysis to explore a much higher-dimensional

space than the subspace spanned by the ensemble (whose dimensionality is limited by the number

of ensemble members). Localization also reduces the effect of spurious long-range covariances, ef-180

fectively eliminating them after a given distance. This is particularly suitable for the assimilation of

aerosol information since, as mentioned in the introduction, it has been observed that aerosol fields

have limited spatial correlations (∼100 km). Schutgens et al. (2010a, b) have already shown the pos-

itive impact of assimilating aerosol ground station observations using a LETKF assimilation system

for the SPRINTARS model, while Sekiyama et al. (2010) used it to assimilated CALIOP vertical185

profiles in the MASINGAR model and Dai et al. (2013) used it to ingest MODIS observations in the

NICAM-SPRINTARS model.

Here we discuss the basic concepts behind the LETKF algorithm, a more detailed description of

the scheme can be found in Hunt et al. (2007). Consider a state vector x of the dynamic variables of

a system (for our application this is dust mass mixing ratios). The mean analysis increment at a grid190

point is estimated as a linear combination of the background ensemble perturbations Xb :

x̄a = x̄b + Xbw (2)

where we use the superscripts a and b to denote respectively the analysis and background state

vector, and where the ith column of the matrix Xb is xb(i)− x̄b, {i= 1,2, . . . ,k} with k ensemble

members, i.e. the difference between the ith ensemble forecast xb(i) and the ensemble forecast mean195

x̄b. w is termed the "weight" matrix specifying what linear combination of the background ensemble

perturbations is added to the background mean to obtain the analysis ensemble. The "weight" matrix

is given by

w = [YbR−1Yb + (k− 1)I]−1YbR−1(yo− ȳb) (3)

where Yb is the background ensemble perturbation matrix in observation space (or background ob-200

servation ensemble perturbation matrix), R is the observation error covariance matrix which we
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assume diagonal, I is the identity matrix, yo is the vector of observations and ȳb is the mean back-

ground observation ensemble. The background observation ensemble is obtained applying the ob-

servation operator h(·) to the ensemble forecast members xb(i), i.e. yb(i) = h(xb(i)).

LETKF uses R-localization, i.e. the localization is performed in the observation error covariance205

matrix, making the influence of an observation on the analysis decay gradually toward zero as the

distance from the analysis location increases. To achieve this, the observation error is divided by

a distance dependent function that decays to zero with increasing distance: e−
dist2

l2 , where dist is

the distance in the grid space between an observation and the model grid in which the analysis is

calculated, and l is horizontal localisation factor.210

3.1 Ensemble perturbations

We run the data assimilation scheme under an imperfect model scenario assumption: each ensemble

member is run with a different perturbation of uncertain model parameters in the dust emission

scheme. In dust modelling, the emission source term is a particularly large contributor to model error

(Huneeus et al., 2011). In the case of NMMB-MONARCH one of the component to the uncertainty215

in the emission term has been identified for example in the vertical flux distribution at sources (Gama

et al., 2016).

The model ensemble is created perturbing the vertical flux of dust in each of the eight dust bins.

As described in Section 2, NMMB-MONARCH follows a sectional approach for dust, i.e. the size

distribution is decomposed in small size bins that from bin 1 to bin 8 go from 0.1 to 10 µm with220

division intervals at 0.18, 0.3, 0.6, 1, 1.8, 3, and 6 µm. This is equivalent to perturbing the total

vertical flux as well as its size distribution at sources. The perturbations are extracted imposing some

physical constraint: correlated noise is used across the bins so that noise correlation decreases with

increased difference of the normalized cubic radius among the bins; the noise is applied multiplica-

tively and has mean 1 and standard deviation of 30% of the unperturbed value in each bin; and the225

final distribution is unimodal. Figure 1 shows how the vertical flux is perturbed in our ensemble

simulations. Additionally, we have perturbed the threshold friction velocity for dust emission by ex-

tracting a multiplicative random factor from a normal distribution with mean 1 and spread 0.4. This

considers the uncertainty of the model with respect to both surface winds and soil humidity. At low

resolution, model surface winds are typically underestimated over dust sources. Also, the model uses230

the scheme of Fecan et al. (1999) to calculate the increase of the threshold friction velocity with soil

humidity, which is typically overestimated in arid regions (Haustein et al., 2015). The spin-up period

for the ensemble ensures that perturbations applied at the sources propagate everywhere in the globe.

For this reason at this first stage of development of our ensemble system we did not consider neces-

sary a combined meteorology and source perturbation. The structure of our source perturbations, for235

both types of perturbations, is temporally and spatially constant.
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3.2 Observation operator

Our state vector is the dust mass mixing ratios. Therefore an observation operator is needed to map

the ensemble mean state vector into the observation space. The simulated AOD at wavelength λ is

calculated at a given observation location according to the following linear operator:240

AODλ =

8∑
b=1

3

4ρbrb
MbQλb (4)

where ρb [kgm−3] is the particle mass density, rb [m] is the effective radius,Mb [kgm−2]is the dust

column mass loading calculated from each dust bin mixing ratio, andQλb is the extinction efficiency

factor which is calculated for using the Mie scattering theory assuming dust spherical, non soluble

particles, and, within a bin, a lognormal distribution for dust with geometric radius of 0.2986 µm245

and standard deviation of 2.0.

When using in the state vector the total mass mixing ratio, as we will explain in Section 5, an

ensemble averaged extinction efficiency is calculated as in Schutgens et al. (2010b) as an average of

the extinction efficiency of the individual bins weighted by the bin mixing ratios.

Hereafter, when we will use the term AOD without specifying the wavelength, we imply that we250

refer to aerosol optical depth at a wavelength of 550 nm, which is the most commonly reported value

in the literature.

4 Observational data

4.1 MODIS Dark Target and OMI

We consider for assimilation the MODIS Level 3 AOD product produced by the U.S. NRL and255

University of North Dakota (hereafter called NRL MODIS). The NRL MODIS product is produced

for the purpose of assimilation into aerosol transport models (Zhang and Reid, 2006; Hyer et al.,

2010; Shi et al., 2011), post-processing the Level 2 MODIS Dark Target product from the so-called

Collection 5 (Remer et al., 2008; Levy et al., 2007a, b), and is available both over land and ocean.

The MODIS Level 2 product is an average of the 1 km by 1 km retrievals (at nominal resolution)260

generated by the Dark Target algorithm applied to top-of-atmosphere reflectances observed by the

MODIS sensor on-board of the NASA polar-orbiting satellites Terra and Aqua. The NRL MODIS

Level 3 product is filtered and corrected in order to eliminate outliers and gross systematic biases,

spatially aggregated into a 1 by 1 degree mesh in order to avoid the assimilation of sub-grid features,

and an error is estimated for each observation. The product is generated every six hours at 0, 6, 12,265

18 UTC and is based on MODIS Level 2 observations in a 6 hour interval around those times. The

retrieval errors estimated by NRL/University of North Dakota were used for the observation errors.

They include the instrumental error variance and the spatial representation error variance. Following
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the approach in Zhang et al. (2008), we assume uncorrelated observation errors. These observations

pertain to the total atmospheric aerosol column, not just to dust AOD. The selection of observa-270

tions in dust-dominated conditions is performed using retrievals of Ångström Exponent (AE) from

the original MODIS Level 3 product (Hubanks et al., 2008), for information about the size of the

particles, and using retrievals of Aerosol Absorbing Index (AAI) from the Ozone Monitoring Instru-

ment (OMI) sensor (Torres et al., 2007), for information about the absorption characteristics of the

particles. Ångström Exponent (AE) values are based on quality assurance-weighted 470 and 660nm275

optical depths over land, and 550 and 865nm optical depths over sea. Observations are selected when

daily MODIS Aqua or Terra products contain a value for AE<0.75 and daily OMI products contain

value for AAI>1.5. Figure 2 shows an example for the NRL MODIS Level 3 product for a day of

May 2007 after the filter for dust-dominated conditions is applied.

4.2 MODIS Deep Blue280

The MODIS Dark Target product does not provide information over very bright reflective surfaces,

including deserts, as the retrieval algorithm assumes low surface albedo. We consider the assimila-

tion of MODIS Deep Blue Level 3 daily AOD product from Collection 6 whose algorithm retrieves

AOD also over bright arid land surfaces, such as deserts. The Collection 6 product covers all cloud-

free and snow-free surfaces, and can be potentially very useful for mineral dust applications as it is285

able to provide observational constraint close to dust sources. The Deep Blue algorithm uses top-of-

atmosphere reflectances at 412 and 470 nm. In the presence of heavy dust load also the reflectance at

650 nm is used. The algorithm exploits the fact that, over most surfaces, darker surface and stronger

aerosol signal is seen in the blue wavelength range than at longer wavelengths. The quality of the

MODIS Deep Blue AOD product is improved in Collection 6 compared to Collection 5, as work of290

Sayer et al. (2014), based on Level 2 retrievals, showed. Similar findings, for the northern African

and Middle East deserts, were reported by Gkikas et al. (2015b), who used Level 3 retrievals over

the period 2002-2014.

We have applied to this product the same filter for dust-dominated conditions described in Section

4.1. In addition we have masked out Level 3 retrievals obtained with less than 30 Level 2 retrievals,295

since Gkikas et al. (2015a) showed that the agreement between MODIS-AERONET is improved

when the sub-pixel spatial representativeness is increased. The MODIS Deep Blue observations are

not corrected for possible systematic biases, however, we are aware that for future applications we

should address any possible bias in the product. It is important to notice that the Level 3 product is an

aggregation of Level 2 retrievals that is produced using the highest quality retrievals (i.e. retrievals300

with quality assurance flag value 3). Furthermore, we have applied a quality control on all the as-

similated observations based on normalized first-guess departures. As proxy for the normalization

factor, we have used the standard deviation of first-guess departures.
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A study by Sayer et al. (2014) shows that highest quality data have an absolute uncertainty of

approximately (0.086 + 0.56AOD550)/AMF , where AMF is the geometric air mass factor with a305

typical AMF value of 2.8. We have used this quantification of the uncertainty for the Level 3 product.

Furthermore, we have defined the representation component of the error as the standard deviation of

the values used in the aggregated product. Although a more accurate treatment for the representation

error could be envisaged following for example the approach of van Leeuwen (2014), we deem small

the impact that our approximation has on the analysis. Figure 3 shows an example for the MODIS310

Deep Blue Collection 6 Level 3 product for a day of May 2007 after the filter for dust-dominated

conditions is applied.

The number of MODIS Deep Blue and Dark Target observations used over the experimental

period is shown in Figure 4.

4.3 AERONET315

For validation purposes we have used observations from the ground-based stations of the global

Aerosol Robotic Network (AERONET; Holben et al., 1998) of direct-sun photometers. These ob-

servations have not been assimilated in our test simulations. In particular, we have used their re-

trievals of column-integrated aerosol optical depth from direct-sun photometric measurements. The

retrievals are obtained observing the extinction of direct solar radiation due to the presence of320

aerosols in the atmosphere. For this reason AERONET retrievals are not available under cloudy sky

conditions and during night-time. These observations suffer of a relatively sparse spatial coverage

but are very valuable for validation purposes as their uncertainty on these retrievals is estimated to be

between 0.01 and 0.02 (Eck et al., 1999). Several studies have in fact used the AERONET data for

validation purposes, or for the correction of biases in satellite measurements (Zhang and Reid, 2006;325

Hyer et al., 2010). We considered cloud-screened and quality-assured (Level 2.0) direct-sun AOD

retrievals between 440 and 870 nm. AERONET AOD at 550 nm was obtained using the Ångström

law.

5 Numerical simulation set up

We have run a set of different experiments (listed in Table 1): a control experiment to produce a330

5-day forecast (hereafter called Control experiment) with the same operational configuration (but

at a coarser resolution) and version that provides daily global forecast to the aforementioned ICAP

multi-model ensemble, and which is initialized for dust from the previous day 24 hour forecast

(FC+24). Assimilation experiments were run with NRL MODIS AOD (hereafter called DA-NRL

experiment) and with NRL MODIS AOD and MODIS Deep Blue AOD (hereafter called DA-NRL-335

DB experiment) with a preprocessing to the observations as described in Section 4. Additionally,

we have run also free ensemble simulations without assimilating any observation (hereafter called
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ENS-free-run). We have also run a 5-day forecast experiment initialized from the analysis produced

by the DA-NRL-DB experiment (hereafter called AN-initialized experiment) in order to evaluate

the impact of the analysis on the forecast. The Control experiment was run for five months in the340

spring/summer period of 2007 (from 1 April to 31 August 2007) starting from a cold start for dust

and with a spin up period of one month (April 2007) which is excluded from the analysis of the

results. Also the ensemble is spun up before data assimilation is applied.

We use a 24-hour assimilation window and observations are considered for assimilation at four

time slots within the window, at 0, 6, 12 and 18 UTC. The system uses as first-guess a 1-day forecast345

with output every 6 hours. Simulated observation and background departures are calculated at each

time slot. The time slots are exactly the ones corresponding to the times in which NRL MODIS

AOD observations are available. We are using the LETKF implementation with a four-dimensional

extension as described in Hunt et al. (2007). The state vector comprises of the mixing ratio at all

the time slots considered and so does the observation AOD vector. Background observation means350

ȳj and perturbation matrices Yj are formed at the various time slots j when the observations are

available. They are then vertically concatenated to form a combined background observation mean

ȳ and perturbation matrix Y. ȳ and Y are used for the calculation of a weight matrix w using the

standard LETKF, i.e. we calculate a single w based on all innovations throughout the day. This same

w is then applied to the state vector at different times throughout the assimilation window.355

We have tuned different aspects of the data assimilation system including testing the number of

ensemble members, different perturbations of the ensemble, and a different state vector for the con-

trol variables. Using 24 ensemble members did not produce a significant impact on the dust analysis

compared to the use of 12 ensemble members. This could be explained with our setting of a localiza-

tion factor which makes the influence of an observation on the analysis decay gradually toward zero360

as the distance from the analysis location increases. We have set the horizontal localization factor

to the value 1 in all the data assimilation experiments. This means that after 2 grid points the local-

ization function is very close to zero. The value chosen is in the range of the ones used in previous

studies such as Rubin et al. (2016) and Yumimoto and Takemura (2011). Covariance localization in

fact effectively eliminates background spatial correlations after a certain distance, and might have365

solved possible sampling errors introduced by the low dimensionality of the 12 member ensemble

compared to the 24 member ensemble. We also apply vertical localization following Miyoshi and

Yamane (2007) approach of localizing the error covariance vertically for radiance assimilation. The

observation error is divided by the square of the model AOD normalized sensitivity function.

We have tested the usage of different perturbations of the dust emission scheme: a perturbation370

of the mass vertical flux per dust bin, or a the perturbation of both the mass vertical flux and the

threshold on the wind friction velocity. As we show in the next section, the latter configuration was

deemed better as it spans a larger space of possible system states.
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We have tested two different options for the state vector: a control variable consisting of the mix-

ing ratio of eight individual dust bins or the total dust mixing ratio defined as the sum of the eight375

dust bins at each grid point and for all the vertical levels. In the latter case the mixing ratios for the

individual dust bin after data assimilation are determined from the background, i.e. from their rela-

tive fractions before assimilation. The observation operator is calculated using the original mixing

ratio following the approach for the observation operator in Schutgens et al. (2010b). The tests that

we have performed show that representing individually the bins in the state vector does not have380

any significant impact on the analysis, while it increases the computational cost of the assimilation

compared to using the total mixing ratio. Moreover, the use of a bulk approach is common in sys-

tems assimilating total AOD values as the observations are not able to fully constrain the individual

bin profiles. We should note that this choice of state vector makes still meaningful the creation of

the ensemble perturbing the vertical flux for the individual bins, as this allows us to express in the385

background the uncertainty in the size distribution at sources, and to span a larger space of possible

system states.

In the next section we show the results of assimilating NRL MODIS NRL and MODIS Deep

Blue observations using 12 ensemble members obtained perturbing the mass vertical flux per bin at

sources together with the threshold on the wind friction velocity, as described in Section 3.1, and390

using the total dust mixing ratio as analysis variable in the state vector. All simulations were run on

a global domain with 40 hybrid pressure-σ layers, 5 hPa top pressure, and a horizontal resolution

of 2.8 by 2 degree. The NCEP final analysis at 1 by 1 degree at 0 UTC were used to initialize the

meteorology at every forecast run.

6 Methodology for the evaluation of the simulations395

The evaluation of the simulations is done in three stages: (a) an internal check of the data assimilation

system; (b) evaluation of the analysis using as reference independent observations; (c) evaluation of

a 5-day forecast with and without analysis initialization using as reference independent observations.

The consistency of the data assimilation system is checked through considerations on statistics

of the ensemble, of simulation departures from assimilated observations, and of the temporal mean400

of assimilation increments. The ensemble mean and the coefficient of variation for the ensemble

are calculated with and without data assimilation. The coefficient of variation is defined as ratio

of the standard deviation of the ensemble to the ensemble mean. Additionally, statistics for first-

guess (FG) and analysis (AN) departures are calculated, where departures are defined as difference

between assimilated observations and simulations (first-guess or analysis), while mean increments405

are defined as temporal mean of differences between analysis and first-guess at the different time

slots of the assimilation window.
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The evaluation of analysis and forecast with respect to independent observations are performed in

terms of statistics of model field errors ei from observations, where ei =mi− oi, with index i indi-

cating an instance of observation oi and wheremi is the model field in observation space, bi-linearly410

interpolated at the observation location. We consider the root mean square error (RMSE), the mean

error (BIAS), the standard deviation of the error (SD), the fraction gross error (FRGE), and the

correlation coefficient (CORR) of the model AOD compared to either quality-assured (Level 2.0)

AERONET or to satellite retrievals. The FRGE = 2
n

∑n
i=0 |

oi−mi

oi+mi
| is added to the most widely

used set of statistics for the error as it behaves symmetrically with respect to under and over estima-415

tion without emphasizing the outliers, and is normalized to the sum of observation and simulation

values. The SD of the error, though it can be derived from the other statistics, is also reported so

to make more explicit the changes in the bias-free mean square error and aid the interpretation of

the evaluation results. The above set of evaluation statistics are calculated for measurements from

individual ground-based stations, groups of stations, regional domains observed by satellite sensors,420

and globally.

For AERONET AOD measurements dust-dominated conditions are identified using the approach

of Basart et al. (2009) as follows: AOD is classified as ’Dust’ AOD when the associated AE<0.75;

we set ’Dust’ AOD to 0 when the associated AE>1.3; we identify a mixed aerosol type when the

associated 0.75<AE<1.3. The latter values are excluded from the validation. We use the AERONET425

AOD value closest to the model time step and within a ±30 minute interval. For satellite AOD

retrievals we use the set of satellite observations quality controlled and filtered for dust-dominated

conditions used in the assimilation step. We use these satellite observations to validate uniquely

the forecast range following the assimilation window. We show the forecast evaluation statistics

corresponding to measurements and simulations at 12 UTC only, so that they refer to an approximate430

equal number of pair of observations and model simulated values at each forecast lead time that we

are considering. Hence a smaller number of AERONET observations (at 12 UTC only) are used to

verify the forecast compared to the ones used in the evaluation of the analysis.

We have identified eight regions of interest for the validation purposes in our study period, namely:

Long Atlantic transport (LongAtl), Short Atlantic transport (ShortAtl), Sub-Sahel (SubSahel), Sa-435

hara (Sahara), Extended Mediterranean (ExtMediter), Middle East (MiddleEast), Central Asia (Ce-

nAsia), East Asia (EastAsia). These names do not necessary correspond to the conventional names

of exact geographical locations but are meant to identify regional domains in a convenient way ac-

cording to dust intrusions and to group observational stations. Most of regional domains contain

ground-based stations with a minimum number of observations during the study period (stations440

with less than 30 ’Dust’ observations are discarded), with the exception of Central and East Asia.

The ground-based stations are listed in Table 2, and shown in the map in Figure 5 together with

regional domains used for the validation of the experiments either against ground-based or satellite

observations.
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7 Evaluation results445

7.1 Ensemble, departure and increment statistics

We compare here the dust fields in the Control, ENS-free-run, DA-NRL and DA-NRL-DB experi-

ment in terms of mean values and, when applicable, ensemble spread. Figure 6 shows the dust AOD

values averaged over a month of the study period for the four above experiments, and the difference

in AOD between the data assimilation experiments and the ENS-free-run. By visual inspection it can450

be noticed that the ensemble mean of the ENS-free-run experiment compares well with the Control

experiment, which suggests that the ensemble perturbations are altering only at a small extent the

model mean state as defined by a standard run. The analysis clearly shows conspicuous changes in

the dust field compared to the Control experiment or the ENS-free-run. Figure 7 shows the coefficient

of variation for AOD in the ENS-free-run and the data assimilation experiments. Data assimilation455

clearly lowers the values of the coefficient of variation in the regions where observations are present,

with values lower for the DA-NRL-DB than for the DA-NRL experiment, which indicates a reduc-

tion of the ensemble spread due to the assimilated observations. The high values of the coefficient of

variation in the Southern Hemisphere, with or without data assimilation, are due to the perturbation

of the dust sources present in the south part of the globe. These values are not negligible due to460

differences among the ensemble members normalized to small dust AOD values. The ensemble of

Figure 7 (and Figure 6) is created perturbing the emitted mass vertical flux for each dust bin and the

threshold on the friction velocity generating dust horizontal flux. Creating the ensemble without per-

turbing the threshold on the friction velocity produces a reduced spread. See Figure 8 for this second

configuration of the ensemble with coefficient of variation for the ENS-free-run in the left panel and465

for the experiment with data assimilation in the right panel. Perturbing the threshold on the friction

velocity has an impact on the spread also outside source regions because, as explained earlier, the

spin-up period for the ensemble ensures that perturbations applied at the sources propagate every-

where. Furthermore this ensemble configuration better represents model uncertainty since the ratio

of the prior total spread (the square root of the sum of the ensemble background variance and the470

observation error variance) to the prior RMSE (of the ensemble background against NRL MODIS

and MODIS Deep Blue observations) is closer to 1 compared to when no perturbation is applied to

the threshold on the friction velocity. It should be noted, however, that this chosen ensemble con-

figuration is under representing uncertainty since it has a prior total spread smaller than the RMSE

(ratio equal to 0.82). Other better perturbations should to be tested for a future implementation since475

an under representation of the background uncertainty might translate to giving a lower weight to

the observations with respect to the background.

We evaluate in the rest of this section the assimilation experiments in terms of statistics of the

departures of the analysis and first-guess from the assimilated satellite observations. Figure 9 shows

for May to August 2007 first guess dust AOD (on the left panels) and analysis dust AOD (on the480
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right panels) versus observations for the DA-NRL and DA-NRL-DB experiment. The departure

statistics with respect to the two sets of observations that we have assimilated are in Table 3. In

both experiments a smaller scatter and a higher correlation coefficient for the analysis indicate that

the assimilation improves the agreement with observations and hence a positive sanity check of the

data assimilation system. The asymmetric behaviour of all the analysis scatter plots suggests that the485

system is more successful in correcting too high AOD values than correcting too low AOD values,

which could be due to the fact that usually we have larger observation errors and smaller ensemble

spread for low AOD values. The BIAS is significant smaller than the RMSE and the RMSE improves

in the analysis over the forecast. The issue of a higher BIAS in the analysis departures compared to

the first-guess departures has been identified in other assimilation system (see Benedetti et al. (2009),490

Section 4) and might be attributed to the fact that AOD is a positive definite variable, as this provides

a deviation from the Gaussianity condition in the prior which is assumed in the analysis step. A

solution to this problem worth investigating in the future would consist in applying a transformation

of the state variables into new variables which present Gaussian features, a procedure known as

Gaussian anamorphosis (Amezcua and Van Leeuwen, 2014).495

Figure 10 shows global maps of mean dust AOD analysis increments, i.e. the monthly-averaged

difference between analysis and short-term forecast, respectively in the case in which only NRL

MODIS AOD observations are assimilated and in the case in which also MODIS Deep Blue AOD

observations are assimilated. Both experiments show non-zero systematic increments which are to be

interpreted as systematic corrections that these sets of observations are making, in particular remov-500

ing mass close to sources and, to a lesser extent, adding mass in the outflow. The spatial distribution

of the increments highlights the role that MODIS Deep Blue observations play in particular over

the Sahara dust sources. There are some regions where the two data assimilation experiments show

opposite increments. This could be due to unresolved conflicting biases between the two types of

MODIS retrievals.505

7.2 Validation of the analysis

We perform in this section a validation of the dust fields simulated either with or without data as-

similation through a comparison with observations from ground-based stations that have not been

assimilated for May to August 2007. We calculate the statistics for individual stations and for groups

of stations. Figure 11 shows the time-series of dust AOD values for May to August 2007 for the510

Control experiment (blue), for the analysis of the DA-NRL (green) and of the DA-NRL-DB (red)

experiment, and for AERONET observations in dust-dominated conditions (black) at six locations

within the different regional domains of Figure 5, which are in the proximity of dust sources (Taman-

rasset in Algeria), affected by short-range dust transport (Dakar in Senegal, Ilorin in Nigeria, and

Hamim in the United Arab Emirates), or affected by long-range dust transport in Europe (Lecce in515

Italy), and across the Atlantic (La Parguera in Puerto Rico). For reference, also the MODIS AOD
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observations from the assimilated dataset (NRL and Deep Blue) which are at the closest distance and

within a 2 degree radius from the location of the AERONET station are included in the time-series

(magenta circles). Note, however, that these latter observations are not an independent reference

for validation of the analyses, nor are entirely representative of the observational constraint used520

to calculate the analysis in the given station location. The time-series show an overestimation in

the Control experiment of the optical depth near the sources, and to a smaller extent in the transport

which clearly suggests that the model tends to overestimating dust emissions. The current calibration

for model version 1.0 has the shortcoming to accurately capture long-range transport at the expenses

of an overestimation over the sources. This overestimation is reduced with data assimilation. By a525

first eyeball inspection, the AOD simulation variance is reduced by data assimilation and is more in

accordance with the AOD observation variance.

Maps in Figure 12 show results of validation statistics calculated for the full study period at each

AERONET station for the three experiments performed. These maps allow us to appreciate the

strongest features of the three simulations at individual AERONET stations and how those stations530

are representative of the regional domains that we have identified. The Control experiment shows

that the strongest BIAS and highest RMSE are in the sub-Sahel region. The BIAS indicates that the

model systematically over-predicts AOD in that region. The highest FRGE are in the long transport

over the Atlantic or Europe as expected in areas of low AOD values. The correlation between model

and observation values is in general lower near source areas than in outflow regions. This could be535

due to the too coarse model resolution not able to follow as good as the observations the dynamic of

the dust field near source areas. The assimilation of MODIS NRL observations decreases some of the

strongest biases in particular in the dust outflow regions in Sahel and over the African Atlantic coast,

which is reflected in a reduced FRGE and RMSE, and is associated with improved correlation. The

assimilation of the MODIS Deep Blue observations additionally to the NRL MODIS observations540

is of further benefit: it reduces the BIAS and RMSE downwind from the strongest dust sources of

Sahara. It is also relevant to notice that the additional assimilation of MODIS Deep Blue observations

improves the correlation over the above areas and in the Arabian peninsula.

The chart plots for the validation statistics calculated for all the AERONET stations considered

(hereafter called global statistics) and for stations grouped according to regional domains of interest545

are respectively in Figure 13 and Figure 14. Global statistics show that assimilation produces in

general a better representation of dust concentrations in the atmosphere, and that the assimilation of

Deep Blue retrievals has a positive impact over the assimilation of Dark Target retrievals only.

When considering the regional domains, the assimilation of NRL MODIS AOD has a positive

impact on the quality of the analysis everywhere, with the only exception of a slightly increase of550

RMSE in the Middle East region. This positive impact is more pronounced in the short Atlantic

transport and in the sub-Sahel region. The additional assimilation of MODIS Deep Blue AOD has

a considerable positive impact in the Sahara, sub-Sahel and Middle East regions, and neutral or
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slightly detrimental in the rest of the transport, in particular in the long range Atlantic transport. The

correlations for the global domain and for all the regional domains are highly statistically signifi-555

cant with the exception of the Sahara region (in the Control and DA-NRL experiments only) where

number of observations is smaller than other regional domains.

It should be noted, however, when interpreting the above statistics that the validation against

AERONET observations may introduce significant errors when comparing a global model grid-box

against a point observation (Schutgens et al., 2016).560

7.3 Validation of the forecast

We have validated the forecast up to 5 days ahead initialized at 0 UTC from either the control

experiment or an analysis (from DA-NRL-DB). We have calculated for May to August 2007 the

errors for the forecast at 12, 36, 60, 84, 108 hours (hereafter indicated as FC+12, FC+36, FC+60,

FC+84, FC+108) with respect to either AERONET observations or satellite observations. As men-565

tioned when describing our evaluation methodology, we use as reference the set of satellite obser-

vations from the Dark Target and Deep Blue algorithm ingested in the assimilation step, i.e quality-

controlled and filtered for dust-dominated conditions. They are used only to validate the forecast

range following the assimilation window. As expected, all the validation statistics worsen with in-

creased forecast step in both experiments (see Figure 15 for global statistics). The impact of initializ-570

ing the model with a dust analysis is positive in the first day. The analysis produces a better forecast

in terms of BIAS and RMSE (and also SD of the error) up to FC+108, and a better correlation in

the first day. The correlation is slightly lower from FC+36 onwards. The conclusions drawn by val-

idating against AERONET or satellite observations are equivalent. Results calculated for regional

domains (Figure 16) show that the Control experiment tends to overestimate AOD everywhere with575

the exception of central and east Asia. This suggests an overestimation in particular of the Sahara

emissions which is consistent with the bias found in the analysis and which is maintained during the

forecast. The correlations for the global domain and for all the regional domains, at all forecast lead

times, are highly statistically significant. Initializing the 0 UTC forecast with the DA-NRL-DB dust

analysis reduces the overestimation compared to satellite retrievals in the first day of the forecast580

consistently with the improvement observed in the analysis in the previous section. However, this

produces an underestimation of AOD in the long-range Atlantic transport during all the forecast lead

times, which, because of the relatively small AOD values in that area, is reflected in particular in

the FGRE. Although there is an overestimation of AOD, there is a better agreement of the temporal

evolution in that region. The underestimation of AOD in the Atlantic transport might be due to too585

strong deposition which affects in particular the long-range transport, and in the standard run is com-

pensated by an overestimation over the sources. As said earlier, a shortcoming of the current model

calibration is to capture well the long-range transport at the expenses of an overestimation over the

sources, which data assimilation reduces. To identify the exact cause for it will require, however,
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further investigation together with a better adjustment of the current model parameters. With the590

exception of this underestimation of AOD across the Atlantic, all the error statistics and correlation

coefficients are improved in the first day of the forecast in all the regional domains. The error of the

analysis-initialized forecast is lower also in the rest of the forecast range (up to 5 days), though, after

day 1, the correlation with satellite observations in some regions (SubSahel and ShortAtl) is lower

for the analysis-initialized forecast than for a standard forecast. It is particularly relevant to notice595

that the dust forecast over Sahara is improved for all the statistics and throughout the forecast range.

8 Conclusions

We have developed a data assimilation system for the NMMB-MONARCH model version 1.0, which

considers dust only, while other aerosols are being implemented. We have coupled the NMMB-

MONARCH with an ensemble-based data assimilation technique known as LETKF. For this purpose600

we have created a forecast ensemble based on known uncertainties in the physical parametrizations

of the mineral dust emission scheme. We have processed satellite aerosol optical depth retrievals for

assimilation with a dust filter. Due to the presence of other aerosols in the selection of dust-dominated

conditions, uncertainties might have been introduced in our assimilation process. It should be noted

however that the identification of dust-dominated conditions is performed in this study as a proof605

of concept to demonstrate the potential of using data assimilation in NMMB-MONARCH, and will

not be strictly necessary in a future model upgrade including all the major aerosol species. Still,

efforts towards aerosol speciation could continue to be pursued when assimilating information about

total aerosol optical properties. In this respect, operational centres currently rely merely on model

background to distribute assimilation increments among the different aerosol species.610

Assimilation experiments showed that aerosol optical depth retrieved with the Dark Target algo-

rithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true

for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The ad-

ditional assimilation of Deep Blue retrievals has a further positive impact in the analysis downwind

from the strongest dust sources of Sahara and in the Arabian peninsula.615

An analysis-initialized forecast performs better (lower forecast error and higher correlation) than

a standard forecast everywhere in the first day of the forecast. The only exception to this is an un-

derestimation of the forecast of AOD in the long-range Atlantic transport. The error of the analysis-

initialized forecast is lower also in the rest of the forecast range (up to 5 days), though, after day

1, in sub-Sahel and short Atlantic transport the temporal evolution of dust is less in agreement with620

independent observations, compared to a standard forecast. Particularly relevant is the improved

forecast over Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals

over areas not easily covered by other observational datasets. To the best of our knowledge, this is

the first study quantifying the benefit of assimilating MODIS Deep Blue from Collection 6 specif-
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ically for mineral dust simulations. This product is currently operationally assimilated by the UK625

Met Office who consider only Deep Blue observations over desert, and by the European Centre for

Medium-Range Weather Forecasts.

In our future implementation of the forecast ensemble, we plan to exploit spatial patterns of vari-

ation in model parameter uncertainty, for example source-dependent uncertainties, as well as un-

certainties in the deposition term. A better representations of uncertainties in dust emission flux630

inherently will help the representation of uncertainties in other parts of the dust cycle. A recent

study by Rubin et al. (2016) shows that, for their system, a combined meteorology and aerosol

source ensembles are necessary to produce sufficient spread in outflow regions. Notwithstanding

that their conclusion might be system-dependent, we will be take into account their results in our

future studies.635

9 Code availability

Copies of the code are readily available upon request from the corresponding authors.
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Table 1. Characteristics of the simulation runs.

Experiment Ensemble Dust initial conditions Spin-up Dust initial conditions

name configuration at 0 UTC on day 1 period at 0 UTC after day 1

Control No Cold start 1 month FC+24

from previous day run

ENS-free-run Yes Warm start 11 days FC+24

from Control of the individual members

from previous day run

DA-NRL Yes Warm start None Analysis at 0 UTC

from ENS-Free-run of the individual members

from previous day DA cycle

DA-NRL-DB Yes Warm start None Analysis at 0 UTC

from ENS-Free-run of the individual members

from previous day DA cycle

AN-initialized No Warm start None Ensemble mean analysis

from Control from DA-NRL-DB
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Table 2. Regional domains and respective groups of AERONET stations used for validation purposes

Regional domain (short name) AERONET stations

Long Atlantic transport (LongAtl) La_Parguera, White_Sands_HELSTF, Univ_of_Houston

Short Atlantic transport (ShortAtl) Capo_Verde, Dakar, La_Laguna

Sub-Sahel (SubSahel) IER_Cinzana, Banizoumbou, Ilorin, Agoufou

Sahara (Sahara) Tamanrasset_INM

Extended Mediterranean (ExtMediter) Saada, FORTH_CRETE, Lecce_University, Rome_Tor_Vergata

Villefranche, Avignon, Evora, Barcelona, Granada

Middle East (MiddleEast) SEDE_BOKER, Solar Village, Hamim

Central Asia (CenAsia) None

East Asia (EastAsia) None

Table 3. Statistics of departures of first guess and analysis from assimilated observations, calculated for May to

August 2007.

Experiment (departures) Observations BIAS RMSE CORR FRGE SD

DA-NRL (FG) NRL -0.074 0.37 0.59 0.66 0.36

DA-NRL (AN) NRL -0.118 0.27 0.75 0.54 0.24

DA-NRL-DB (FG) NRL -0.160 0.35 0.58 0.70 0.31

DA-NRL-DB (AN) NRL -0.169 0.29 0.72 0.61 0.24

DA-NRL-DB (FG) DB -0.001 0.35 0.40 0.49 0.35

DA-NRL-DB (AN) DB -0.075 0.23 0.64 0.35 0.22
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Figure 1. Distribution of the mass vertical flux at sources across the eight dust transport bins for the different

ensemble members in different colours, where the bin sizes from bin 1 to bin 8 go from 0.1 to 10 µm with

division intervals at 0.18, 0.3, 0.6, 1, 1.8, 3, and 6 µm. The distribution derived from D’Almeida (1987), and

used in the standard forecast, is the dashed red line, with horizontal bars indicating the standard deviation of the

noise used to create the perturbations. The mean of the ensemble perturbations is the dash-dotted line.

Figure 2. Aerosol optical depth (top) and its associated observation error (bottom) for May 10 2007 for the

NRL MODIS Level 3 product after the application of a filter for dust-dominated conditions.
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Figure 3. Aerosol optical depth (top) and its associated observation error (bottom) for May 10 2007 for the

MODIS Deep Blue Collection 6 Level 3 product after the application of a filter for dust-dominated conditions.

Figure 4. Number of NRL MODIS and MODIS Deep Blue Level 3 observations assimilated between May and

August 2007.

29



Figure 5. Map of AERONET stations and of the different regional domains used for validation purposes. The

regional domains are indicated with different colours: Long Atlantic transport (LongAtl) in blue, Short Atlantic

transport (ShortAtl) in red, Sub-Sahel (SubSahel) in orange, Sahara (Sahara) in green, Extended Mediterranean

(ExtMediter) in yellow, Middle East (MiddleEast) in pink, Central Asia (CenAsia) in granada, and East Asia

(EastAsia) in cyan.

30



Figure 6. Dust optical depth averaged for the month of May 2007 for the Control (top left), ENS-free-run (top

right), DA-NRL (centre left), DA-NRL-DB (centre right) experiment, and dust optical depth difference between

the DA-NRL (bottom left), DA-NRL-DB (bottom right) and the ENS-free-run experiment.
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Figure 7. Coefficient of variation for the month of May 2007 for the ENS-free-run (top), DA-NRL (centre) and

DA-NRL-DB (bottom) experiment, when the ensemble is created perturbing the emitted mass vertical flux for

each dust bin and the threshold on the friction velocity generating dust horizontal flux.

Figure 8. Coefficient of variation for the month of May 2007 for the ENS-free-run (left) and DA-NRL-DB

(right) experiment, when the ensemble is created perturbing the emitted mass vertical flux for each dust bin.
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Figure 9. Binned scatter plots of the counts of the logarithm of assimilated observations and first-guess (left

plot) and analysis (right plot) for the DA-NRL experiment (top row) and DA-NRL-DB experiment (central and

bottom rows), calculated for May to August 2007. A logarithmic scale is used for the counts.
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Figure 10. Mean dust AOD analysis increments for May to August 2007 at 12 UTC for the DA-NRL experiment

(left) and for the DA-NRL-DB experiment (right).
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Figure 11. Time-series of AOD values for May and August 2007 in La Parguera (top left), Dakar (top right),

Ilorin (centre left), Tamanrasset INM (centre right), Lecce University (bottom left), and Hamim (bottom right)

for Control (blue), DA-NRL (green), DA-NRL-DB (red) experiment, for MODIS AOD (NRL and DB; magenta

circles), and for AERONET AOD (black triangles) in dust-dominated conditions. Analysis values are used for

the data assimilation experiments.
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Figure 12. Maps of validation statistics: BIAS, RMSE, CORR, FRGE for the Control (left), DA-NRL (centre)

and DA-NRL-DB (right) experiment calculated against AERONET AOD for a selection of stations providing

observations during the study period (May to August 2007). Maps of the observation counts used for validation

are shown in the bottom row.

Figure 13. BIAS, RMSE, CORR, FRGE and SD for the Control experiment, for the experiment assimilating

MODIS NRL observations (DA-NRL) and for the experiment assimilating MODIS NRL and MODIS Deep

Blue observations (DA-NRL-DB) calculated against AERONET observations for all the stations in Figure 5.

The dust mean AOD for the observations used for validation during the experiment period is also reported.
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Figure 14. BIAS, RMSE, CORR, FRGE and SD for the Control experiment, the DA-NRL experiments and the

DA-NRL-DB experiment calculated against AERONET observations for groups of stations within the regional

domains in Figure 5. The dust mean AOD for the observations used for validation during the experiment period

is also reported.
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Figure 15. BIAS, RMSE, CORR, and FRGE for the forecast at 12, 36, 60, 84 and 108 hours of the Control

(blue) and AN-initialized (red) experiment, i.e. the experiment initialized with the DA-NRL-DB analysis, cal-

culated against AERONET observations (left) and against global satellite retrievals, both NRL MODIS and

MODIS Deep Blues, (right) filtered for dust-dominated conditions. The AERONET stations are the ones in

Figure 5. The dust mean AOD for the observations used to validate the 12 hour forecast during the experiment

period is also reported.
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Figure 16. As the right panel of Figure 15 but for the different regional domains of Figure 5

.
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