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General Response

We wish  to  thank  the  reviewers  for  their  interest  in  our  paper,  for  their  constructive
comments and useful suggestions that lead to an improved manuscript.

We first note that our model has been recently renamed, after the reviewing process of
another GMDD paper on the development of the model gas-phase chemistry component
(doi:10.5194/gmd-2016-141). We have substituted in the revised version of the manuscript
(also  in  the  title)  the  name NMMB/BSC-CTM with  the  new name NMMB-MONARCH,
where MONARCH stands for "Multiscale Online Nonhydrostatic AtmospheRe CHemistry
model". 

In the following, we report our answers to general and specific comments of the reviewers.
Reviewers’  questions  and  comments  are  shown  in  bold-italic,  our  answers  appear  in

standard type. 

Specific Response (Anonymous Reviewer #1)

Answer to general comment:

1. Overall, I think the figures need to be reworked. They are quite small and the font 
on the labels is too small to read on most of them, making it harder to evaluate the 
results.

We have reworked all the figures following the reviewer's suggestion.

Answer to specific comments:

1. Page 4, Line 98-100, what about the UK Met Office? They assimilate dust AOD in 
their unified model.

We say at page 18, lines 599-600, of the discussion paper that the UK Met Office 
assimilates MODIS Deep Blue over desert. Following your comment, we have now added 
it also in the introduction of the revised manuscript at page 3, lines 93-94.

2. Page 4, Lines 107-109, limited spatial correlations have been shown in some 
studies, depending on what they are sampling, but do you suspect this would be 
much longer for big dust transport events, especially coming off of the Sahara over 
the Atlantic ocean? This looks like it would be the case based on MODIS 
observations.

Correlations in dust AOD are automatically set by the ensemble. However, we limit their 
use because we use a small patch size. The reviewer has a good point. Spatial 
correlations in long-range dust transport (in particular for dust fine mode) deserve further 
investigation. We have added a comment about this in the introduction of the revised 



manuscript at page 4, lines 99-102. 

3. Page 5, I think it would be helpful to include units on the variables in the vertical 
dust mass flux equation. Also, what value do you use for C? This is constant 
globally? Is the source mode coefficient how you distribute the mass among the 
size bins? What threshold do you typically use for the friction velocity (when not 
perturbed for the ensembles)?

The units for the vertical dust mass flux equation have been added at page 5, lines 145-
151 of the revised manuscript. The variables for which we have not specified the units are 
unit-less. We have added also the value used for the constant C (0.768) at line 154, which 
is an updated value for the global constant estimated in paragraph 4.2.1 of Pérez et al. 
(2011). C is a tuning factor for the total vertical flux. As we say in the discussion paper  
(page 5, lines 146-148), the total vertical flux mass is distributed among the dust transport 
bins according to a specific dust distribution at sources derived from D’Almeida (1987) 
which assumes that the vertical dust flux is size distributed according to three lognormal 
background source modes. In few words, the mass is distributed at sources among the 8 
transport bins according to the coefficients represented with the red thick (red dashed, in 
the revised version) line in Figure 1. The threshold on the friction velocity is not fixed, but 
dynamically estimated as function of different soil characteristics, among which soil water 
content (please see equation 3 to 5 in Pérez et al., 2011). We have now specified also the 
latter in the revised manuscript at page 5, lines 135-136. 

4. Page 5, Line 165, what were the main sources of uncertainty identified in the 
evaluation efforts?

Emissions are identified as one of the sources of uncertainty. Quoting the referred 
evaluation studies, for example it has been detected an overestimation of the Bodélé 
emissions and the under estimation of the Mali/Mauritania border emissions. There are 
however evaluation sites, like Solar Village, where it has not been determined if errors in 
AOD are due to an inaccurate source prescription or to the inability of the model to 
reproduce the associated meteorology, or, sites like Izaña, where instead errors in AOD 
could be due to the deficiency in the model representation of the steep orography. Also, 
the model tends to overestimate the very low background concentrations far away from 
sources, which hints towards an overestimation of the smallest dust particles due to either 
inaccuracies in the size distribution of the emissions, vertical transport and/or removal. 

5. Page 6, to clarify your data assimilation approach, you might want to mention 
some specifics about the 4-dimensional extension of the LETKF and why you chose
to use the extension since you are assimilating observations regularly over 6 hour 
intervals with the NRL MODIS product. Do you expect to incorporate observations 
in the future that are asynchronous? Did you test at all the performance of the 
LETKF versus LETKF with the extension? This would be interesting.

We have not made the test without the 4D extension. It could be interesting to perform it, 
however this would require resources (and more I/O time). We are indeed assimilating 
asynchronous observations with some degree of approximation: the analysis is calculated 
once a day with observation slices of 6 hours; simulated observations and background 
departures are calculated at each time slot (every 6 hours) using the background 
ensemble for that time. As explained at page 11, lines 350-355, of the discussion paper we
concatenate observation vectors and background matrices and use the same analysis 
equation used for synchronous observations. In this, we are following the 4-dimensional 



extension of the LETKF described in Section 4 of Hunt et al. (2007). What we have not 
done, which, quoting Hunt could be of advantage, is to take into account the timing of the 
observations when deciding which of them to use in a given local analysis.

6. Page 7, Line 210-214, what units do you use to define the distance in the 
localization and what localization factor do you use? It’s hard to tell from this how 
much localization is used.

The distance in the localisation function is calculated in the grid space. We have specified 
this now in the revised manuscript at page 7, line 209. As we wrote at page 11, line 362, of
the discussion paper in the description of the experiment setup, we have set the horizontal
localization factor to the value 1, which means that after 2 grid points this function is very 
close to zero.

7. Page 7, Ensemble perturbations in the vertical flux, You are perturbing the 
distribution of dust emissions among the size bins, but the total mass flux is held 
fixed? Are the perturbations that you show in Figure 1 the same for all locations or 
does this vary by grid or region? It might be good to change the solid red line with 
the error bars in Figure 1 to make it easier to distinguish from the ensemble 
perturbed lines. Maybe to a dotted or dashed line? Also, it might be useful to show 
somewhere what sizes the bins correspond to.

Yes, we are perturbing the distribution of dust emission among the size bins, but the total 
mass flux is not held constant. As we wrote at page 7, line 223-225 of the discussion 
paper, the model ensemble is created perturbing the vertical flux of dust in each of the 
eight dust bins. This is equivalent to perturbing the total vertical flux as well as its size 
distribution at sources.

The source perturbations are constant in time and space as we wrote at page 8, lines 238-
239 of the discussion paper.

We have modified the style of the solid red line in Figure 1 (a dashed line in the revised 
version) to make it more visible, as the reviewer suggested. 

We have added the information about bin sizes in the ensemble perturbation section at 
page 7, lines 220-221 of the revised manuscript and in the caption of Figure 1.

8. Page 7, Ensemble perturbations in the threshold friction velocity perturbation. 
Again, do the random perturbations vary with location or are the same 
perturbations applied everywhere? This matters as it will determine your 
covariances and how an observation spatially impacts your model state.

Also these perturbations are spatial and temporally constant. We have now specified at 
page 7, line 236, of the revised manuscript that what we wrote at page 8, lines 238-239, of 
the discussion paper refers to both types of source perturbations. 

9. Page 8, Lines 237-239, if the structure of your source perturbations is temporally 
and spatially constant, you are essentially specifying your background covariances,
much in the way a variational approach operates. As you mention, this is the first 
stage of development, so I think that’s a reasonable first means for generating the 
ensemble and will probably help you do well near source regions, but you may have
problems for transport events.



The spin-up period for the ensemble ensures that perturbations applied at the sources 
propagate everywhere and dynamically create covariance structures due to the different 
size distribution, emissions, but also due to observation localization and limited patch size 
for the local analysis. The background covariances therefore are not constant. However, 
implementing spatially (and temporally) varying perturbations should be tested in the future
in case it can better represents model uncertainty.

10. Page 8-9. MODIS Dark Target, I would increase the size of Figure 2, it’s too small 
to see. It would probably also be useful to see some sort of summary of the 
observations over the experimental time period, perhaps a data count to see where 
your simulations are being constrained or a mean of your observations. Also, I’m 
concerned about using over-land AE as a filter for dust. It’s been shown that this 
product is pretty binary (see Levy et al. 2010) and more problematic for coarse 
mode aerosol than fine. Have you checked to make sure you aren’t getting other 
aerosol in there, like biomass burning aerosol? Perhaps this could be contributing 
to some of the bias that you are seeing.

We have increased the size and resolution of Figure 2.

We have added a plot of observation counts over the experiment period (Figure 4 of the
revised manuscript). 

AE over land has indeed considerable uncertain. To overcome this shortcoming in our dust
filter we have added a quality control on the assimilated observations based on normalized
first-guess departures that rejects observations that are too far from the background (as
we say at page 9, lines 304-306 of the discussion paper). We are aware that this is only a
temporary solution until we will run the assimilation with a complete aerosol model. 

11. Page 10, Numerical Setup. The Control is the exact same model as the ensemble
free run, the only difference in the ensemble free run is you have perturbed dust 
emissions (either in the distribution in the bins or threshold friction velocity) and 
the control is a single run?

Yes, that is correct.

12. Page 11, Lines 358-360. I suspect your insensitivity to ensemble size is a result 
of how you are generating the ensembles themselves (you are sampling from a 
specified distribution) and also maybe you are heavily localizing (can’t tell without 
units though). This will likely change as you add other perturbations to your system
and you may find that you need a much larger ensemble as 12-24 members is quite 
small.

This hypothesis will have to be tested. There is evidence that the number of ensemble 
members (if not too small) does not matter too much as long as the model is kept close to 
a reanalysis. 

13. Page 11, Lines 365-367. Did including vertical localization make much of a 
difference for AOD assimilation? I’m not sure if you tested it without, but I would 
think that this wouldn’t have much impact for a column-integrated observation.

Yes, vertical localization does not have much impact without any vertical observational 
constrain. Since our vertical localization is using the background sensitivity in the vertical, 



it is equivalent to distribute the mass increments according to the model background 
vertical profile. 

14. Page 12, your use of error as observation minus model is a bit confusing to me. 
The bias for example would have a negative value when the model is biased high. 
Typically, you would use your estimator (model) minus the expected value 
(observation). I would suggest flipping this so that your bias maps in Figure 11 and 
stat tables/bar graphs don’t confuse the reader into thinking the model is biased 
low when the opposite is true.

We have changed our convention for the model field error which was defined at page 12, 
line 407, of the discussion paper, now defined with an opposite sign in the revised 
manuscript at page 13, line 409. We have changed accordingly the sign of the bias in 
Table 3, Figure 12 to 16 of the revised manuscript.

15. Page 13, Section 7.1 I think it would be beneficial in Figure 5 to also show the 
difference between the DA experiments and your ensemble free run (or control). The
difference between the DT+DB simulation and the free run is pretty clear, but harder
to see with the DT run. Also, I assume this is dust AOD only? If so, you should 
probably put that in the Figure caption and mention that in the text as well (Page 13,
line 444). Are these differences persistent over the entire simulation since you only 
show one month?

We have added the difference plots between the DA experiments and the ensemble free 
run (bottom panels of Figure 6 of the revised manuscript). 

Yes, Figure 5 refers to dust AOD only, we have specified this in the text (page 14, line 448)
and figure caption (Figure 6) of the revised manuscript.

The difference between the experiments vary during the different months according to 
differences in the dust emissions and transport over time, but the conclusions stay valid. 

16. Figure 6, Does the DT simulation’s coefficient of variation look similar to the 
DT+DB? If so, you might want to mention that in the text. If they are different, you 
should probably show both. Also, does the mean AOD change much with the 
different perturbation schemes (Figure 6 and 7)?

The DT simulation's coefficient of variation shows higher values in the Northern 
Hemisphere compared to the DT+DB simulation. These differences are due to less 
observational constraint over land when DB is not used. We have added the plot (central 
panel of Figure 7 of the revised manuscript), as suggested, and comments in the 
manuscript at page 14, line 457 of the revised manuscript. 

17. In Figure 6, I’m surprised that you have considerable spread in places that I 
wouldn’t expect, like near the poles in the Southern hemisphere. Are the ensemble 
members being inflated as part of the data assimilation?

No, we have not used inflation. Please note that the plot shows a normalized spread. A 
considerable normalized spread is expected in the Southern Hemisphere (SH): there the 
values of dust AOD are quite small, while the ensemble members show differences among
them due the perturbation of emissions in the SH sources in South America, Africa and 
Australia. Prompt by this question, we have double checked how the ensemble spread 



evolves from zero on the first day of the spin-up, to values greater than zero only close to 
the sources in the first days of the spin-up, to finally propagate everywhere in the SH by 
the end of the spin-up period. We have also added a comment in the text about this at 
page 14, lines 458-461 since it is a point that raised questions by both reviewers.

18. Page 14, Lines 460-462. This sentence implies the more spread the better since 
you’ll just push towards the observations. However, your goal is to really have 
sufficient spread that represents the uncertainty in the system. Have you tried to 
determine whether or not the spread that you are generating is representative of the
uncertainty?

We have modified the sentence since, as the reviewer correctly pointed out, it implied that 
the more spread the better, adding the text at page 14, lines 469-477 of the revised 
manuscript. We have calculated the ratio between prior total spread and RMSE and found 
that our ensemble configuration is under representing uncertainty.  As stated in other part 
of the manuscript, other perturbations should be tested in the future.

19. Figure 8, I would remove the color bars here for each subplot to save space and 
increase the individual plot size and font size (same for all the figures). I also 
wonder if you increase the number of bins in your scatterplot, whether the 
asymmetry that you talk about would be more apparent.

We have used one colour bar for all the sub-plots, increased font size, figure resolution, 
and also the number of bins in the scatter plots in Figure 9 of the revised manuscript.

20. Figure 9, The analysis increments that you are showing are in dust AOD? If so, 
you should add that to the figure caption or labels.

Yes, the analysis increments are in dust AOD. We have specified it now in the figure 
caption (Figure 10 of the revised manuscript) and in the text at page 15, line 496.

21. Page 15, Section 7.2 For AERONET sites in transport regions, such as La 
Parguera, it looks like the dust AOD has decreased with data assimilation compared
to the control. However, the analysis increments shown in Figure 9 show an 
increase in AOD. Perhaps the prior state has decreased so much with the near-
source corrections that the increase observed over the oceans still produces an 
AOD at sites impacted by transport that is still less than the control? I’m curious 
what you found with that.

Yes, it is as the reviewer writes: as a result of the near-source corrections, the overall AOD
in La Parguera is less than the control. The analysis increments show local changes while 
the AOD found in La Parguera is a result of both the local analysis corrections plus the 
mass transported from Africa which is affected by other local analysis corrections 
(reduction of mass over Sahara). 

22. Figure 11, I would put one colorbar at the bottom of each column of figures then 
maybe add one label at the top of each column (Control, DA-NRL, DA-NRL-DB) and 
add one label on the y-axis for each row (Bias, RMSE, Corr, FRGE). That way you 
can increase the size of each map and make the labels larger. Also, it’s so small that
it is impossible to see any difference in the circle sizes and there is no reference to 
use to determine what number of samples the circle size corresponds to.



We have used one colour bar for each sub-plot row (as columns represent different 
statistics with different colour bars), and added one label for each column (experiment) 
and row (statistics) in Figure 12 of the revised manuscript. We have also added one row 
for the number of observation samples per stations to have a clearer reference, increased 
font size and resolution.

23. Figure 14 and 15 need to be fixed, the labels are way too small to be able to 
read. It makes it hard to evaluate your forecast results.

We have increased font size, figure resolution and, to save space, we have removed the 
bars relative to the standard deviation (SD), in Figure 15 and 16 of the revised manuscript,
as it can be derived from the bias and RMSE statistics. 

24. I wonder if you might want to show in your statistics bar graphs the average 
dust AOD as well to give some context to how large the errors really are and maybe 
considering adding error bars (maybe through bootstrapping) to your statistics to 
test if the differences are statistically significant.

We have added in the plots of the bar graphs in Figure 13 to 16 of the revised manuscript 
the average value of AOD for the observations  used for validation (indicating the number 
in one of the upper corner of the plot) and specified this in the figure captions. We have 
also specified in the text at page 17, lines 554-557 and lines 578-579, whether the results 
for the correlation are statistically significant. 

Comments on technical corrections:

1. Page 3, Line 67, change “to different model inter-comparison” to “in different 
model inter-comparison”

We have changed it accordingly, thanks. 

2. Page 3, Line 73, saying the community resorted to data assimilation makes it 
sound kind of negative. Maybe you could say something like...because of these 
large uncertainties, the atmospheric composition community has begun to make 
use of data assimilation for better characterizing and predicting.…

We have changed it accordingly, thanks. 

3. Page 3, Line 79, you might want to cite the Sessions et al. 2015 paper after the 
sentence where you mention that assimilation of aerosol observations is now 
operational at many forecasting centers.

We have added it. Thanks for the suggestion.

4. Page 10, Line 325. You should probably cite the AERONET uncertainty

We have added it. Thanks for the suggestion.

5. As a suggestion on your equations, you may want to go through and make sure 
the variables are consistent across equations. For example, in equation 4 the size 
bins 1 through 8 are indicated with a b while in equation 1 they are indicated with a 



k. Later k refers to ensemble members. This might confuse the reader. Also, it 
would be useful to include units with your variables.

We have changed the variable for the size bins in equation 1 of the revised manuscript to 
have consistency and avoid confusion with the letter used for the ensemble members. We 
have added the units also for variables used for the AOD operator, unless they are unit-
less, at page 8, line 242, of the revised manuscript.

6. Page 13, regions for validation (Lines 430-440). I think in Figure 4 it would be 
good to list the regions associated with each box. You can probably just put this in 
the figure caption and say which color box goes with which region, to tie the map to
Table 2.

We have added it as suggested, thanks.

7. For Figures 5,6,7, the colorbars are the same on the different subplots within 
each figure, so I would only show the colorbar once to save space and make the 
maps larger. They are too small to see clearly.

We have used one colour bar for the plots sharing the same one in Figure 6, 7, 8 of the 
revised manuscript and made the maps larger and at a higher resolution.

8. In the caption for Figure 10, you should mention that this is the analysis AOD and
not the prior.

We have added it as suggested, thanks. 

9. Page 17, Line 567-568. This sentence isn’t very clear. You are referring to the 
Sahara? Better temporal evolution, reflected by the increase in correlation with 
AERONET over time?

We have  rewritten  the  sentence at  page 18,  lines  593-595.  We were  referring  to  the
SubSahel and ShortAtl regions where the correlation degrades after day 1. 

Specific Response (Anonymous Reviewer #2)

Answer to general comments:

1. The abstract is quite prolixity. Abstracts should include only important 
information.

We have reduced the abstract as suggested, thanks.

2. I cannot read some figures due to poor resolution and small labels. The authors 
should re-draw the figures.

We have reworked all the figures following the reviewer' s suggestion making them bigger, 
bigger fonts and at a higher resolution.

Answers to specific comments:

1. Page 6, line 187: The authors use 100 km as the cut-off (localization) length. How 



do you estimate this values? For example, Rubin et al. (2016) and Yumimoto and 
Takemura (2011) used more longer length (1000 and about 600 km).

Rubin et al., Atmos. Chem. Phys., 16, 3927-3951, 2016, doi:10.5194/acp-16-3927- 
2016
Yumimoto and  Takemura,  Geophys  Res.  Lett.,  38,  L21802, 
doi:10.1029/2011GL049258

Please see our answer to the specific comment n.6 of reviewer#1. Our cut-off length is 
hence longer than 100km and in the range of the values used in the studies mentioned by 
the reviewer. We have added the references suggested to put it in the context of other 
studies. 

2. Page 7, line 212:
"h" is already used in line 209. Use another character to represent horizontal 
localization factor.

We have changed the letter for the horizontal localization factor at page 7, lines 208 and 
210 to avoid confusion. Thanks for spotting it out. 

3. Section 3.0:
Ensemble-based methods usually use inflation methods. Does this system use any 
inflation method?

We have not used inflation in the experiments described in the manuscript. We take the 
reviewer's question as a suggestion for our future tests when with other perturbations, in 
case the ensemble spread is not representing well enough model uncertainty.

4. Figure 1:
Can you add ensemble mean of the vertical flux in the figure?

We have added a line (dash-dotted) in Figure 1 for the mean of the ensemble 
perturbations.

5. Page 8, line 237-239:
You use AOT (optical column amount) as the observational constraint. How does 
the system adjust 3D mass concentration fields of dust bins from the 2D 
observational constraint?

This is explained at page 11, lines 365-367 of the discussion paper.

6. Page 9, line 274:
Do you consider error in AE? AE over the land may have much large uncertainty 
than ocean. Can you separate the dust-dominant condition correctly over the land?

We appreciate this concern and in fact use a quality control on the observations. Please 
see our answer to specific comment n. 10 of reviewer #1. 

7. Page 9, line 276:
Coverage and observation time of MODIS do not correspond to those of OMI 
(particularly for AOTs from Terra satellite). How do you derive the AOTs under dust-
dominant condition when there is no OMI observation corresponding to? You do 



not use MODIS measurements from Terra satellite?

We use both Terra and Aqua, and, as we wrote at page 8, section 4.1, of the discussion 
paper, we have used only Level 3, daily, products. When there is no OMI observation, data
are not selected for assimilation. 

8. Page 11, Line 344:
The authors extend the system to 4D-LETKF. What are the merits of the extension 
instead of sequential assimilation? You assimilate AOD with 6-hour interval. I read 
literature suggests that 4-dimentional methods (smoothers) have advantages in 
assimilating observation with fine temporal resolution comparing with 3-
dimentional methods (filters). However, the 6-hour interval is not so short (actually 
longer for 4D-LETKF). Addition to this, the main purpose of this study is improving 
of forecasting with assimilation. Why do you choice smoother for this purpose 
rather than filter? Did you try the 3D-LETKF? Did you find that the 4D-LETKF is 
superior to the 3D-LETKF in forecast performance?

Please see our answer to specific comment n. 10 of reviewer #1. It is true however that the
literature suggests that it the 4D extension has merits for temporal resolutions finer than 
the resolution we have used, hence it would be worth testing in any future 3D extension. 

9. Page 11, Line 344:
Do you introduce temporal localization? The assimilation window (24 hours) is too 
long to examine assimilation without the temporal localization.

No, we have not tested temporal localization for this system. Thank you for the suggestion.
Tests by the authors with the LETKF on a different model system have shown no 
significant difference with a 12 hour window. 

10. Page 11, line 365:
The authors use the vertical localization. What are the merit of that for assimilating 
vertically integrated observations?

This feature has been implemented to have a system that can handle also the assimilation
of profiles, and it is not having impact with integrated observations. Please see our answer
to specific comment n. 13 of reviewer #1.

11. Figure 6:
I think this figure shows ensemble spread of dust AOD. Why the spread exhibits 
much large value all over the Southern hemisphere?

Please note that the plot shows a normalized spread, which is expected to be considerable
on the in the Southern Hemisphere. For more details, please see our answer to specific 
comment n. 17 of reviewer #1.

12. Figure 10:
Could you adjust the vertical axis of panels?  For example, AOD values at 
Lecce_University are too small to plot with vertical axis of 0.0-4.0. Could you add 
MODIS-measured AOD on the panels? It would be good to see difference (error) in 
MODIS AOD.

We prefer to use the same vertical axis for the different validation sites to have the 



different ranges of AOD values that we are validating in the different regional domains of 
Figure 4 of the discussion paper, close and far from sources, visually clear. 

We have added MODIS AOD from the set of assimilated observations in the time-series of 
Figure 11 of the revised manuscript. Note, however, that these satellite observations are 
not an independent reference of validation for the analysis, nor are entirely representative 
of the observational constraint used to calculate the analysis in the given station location, 
without taking into account the localisation function and observation uncertainty of all the 
observation in the local patch around the station location.

13. Page 14, line 456:
’Top’ should be left. ‘bottom’ should be right.

We have change it accordingly, thanks.

14. Page 14, line 460:
The higher spread does not mean the better spread (background error covariance). 
If you used the larger perturbation, you’d obtain the higher spread.

We have modified the sentence following the good point that the reviewer had made. For 
more details, please see our answer to specific comment n. 18 of reviewer #1. 

15. Figure 11:
Do you compare model result with AERONET observation in daily average? hourly 
average? or monthly value?

We use the closest AERONET value in a +/- 30 minute interval from the model time step, 
and we use only one value without doing any averaging. We have specified this in the 
section Methodology for the evaluation of the simulations at page 13, lines 425-426 of the 
revised manuscript.

16. Figure 9:
There are some regions where the DA-NRL-DB shows opposite increment from the 
DA-NRL. For example, the DA-NRL-DB obtains negative increment around Somalia 
Peninsula. However the DA-NRL shows positive one. Does this mean there is 
biasses between the Dark-target and the Deep Blue AODs?

Yes, as the reviewer says, this could be due to unresolved conflicting biases between the 
two types of retrievals. We have added this comment also in the revised manuscript at 
page 15, lines 503-505.
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Abstract. A data assimilation system has been developed for the chemical transport forecast model

NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH, with a focus on mineral dust, a prominent type of aerosol.

Before this work, the system did not have an aerosol data assimilation capability and dust was

produced uniquely from model estimated surface emission fluxes. As emissions are recognized as

a major factor limiting the accuracy of dust modelling, remote sensing observations from satellites5

have been used to improve the description of the atmospheric dust load in the model. An ensemble-

based Kalman filter technique (namely the Local Ensemble Transform Kalman Filter - LETKF)

has been utilized to optimally combine model background and satellite retrievals. Our implementa-

tion of the ensemble is based on known uncertainties in the physical parametrizations of the dust

emission scheme. We have considered for assimilation satellite Aerosol Optical Depth (AOD) at10

550 nm retrieved from measurements of top-of-atmosphere reflectances by the Moderate Resolution

Imaging Spectroradiometer (MODIS) sensor on-board the NASA Aqua and Terra satellites, after

applying a mineral dust filter. In particular we have assimilated two MODIS Level 3 AOD products:

the U.S. Naval Research Laboratory (NRL) and University of North Dakota AOD, which is available

over land and ocean, with the exclusion of bright reflective surfaces and is based on the MODIS15

Dark Target Collection 5 Level 2 product, and the MODIS Deep Blue Collection 6 AOD, which

is available over land including bright arid surfaces, such as deserts. Data assimilation experiments

using the LETKF scheme have been evaluated against observations from the Aerosol Robotic Network

(AERONET) of ground-based stations and against MODIS satellite retrievals. Experiments showed

that
✿✿✿✿✿✿✿

MODIS AOD retrievals using the Dark Target algorithm can help NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH20

to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow

in the Sahel region and over the African Atlantic coast. The additional assimilation of
✿✿✿✿✿✿✿✿✿✿

assimilation

✿✿

of
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿

AOD retrievals based on the Deep Blue algorithm has a further positive impact in the

analysis downwind from the strongest dust sources of Sahara and in the Arabian peninsula. An

1



analysis-initialized forecast performs better (lower forecast error and higher correlation with ob-25

servations) than a standard forecast, with the exception of underestimating dust in the long-range

Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1.

Particularly relevant is the improved forecast over Sahara throughout the forecast range thanks to the

assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets.

The present study on mineral dust is a first step towards data assimilation with a complete aerosol30

chemical transport model that includes multiple aerosol species.

1 Introduction

Among the different aerosol species, mineral dust is one of the main components of the atmospheric

aerosol loading and is of great interest for a variety of reasons. Mineral dust plays an important role

in the earth’s energy balance and has a relevant impact on economical activities, on the ecosystem,35

on health, as well as on weather and climate (Knippertz and Stuut, 2014). The strong dust storms

occurring near emission sources constitute a big hazard to air traffic and road transport as they

can reduce the visibility down to few meters. However dust does not affect only local economies:

because of its transport over thousands of kilometres, it has an impact from local to global scales.

Dust deposition provides nutrients to continental and marine ecosystems. African dust for example40

has a role in fertilization of the Amazon rainforest (Yu et al., 2015), while dust deposition over oceans

has implication on sea biogeochemistry as the iron contained in the dust particles is a nutrient for

phytoplankton, whose photosynthetic activity in turn affects the carbon cycle (Jickels et al., 2005).

Dust has health implications both close and far from sources. For example, studies have shown

the usefulness of dust aerosol climatologies to predict part of the year-to-year variability of the45

seasonal incidence of meningitis in Niger (Pérez García-Pando et al., 2014), while particulate matter

measurements taken in areas far from sources show that Saharan dust outbreaks have adverse effects

of cardiovascular and respiratory conditions (Mallone et al., 2011; Morman and Plumlee, 2013;

Pandolfi at al., 2014). Mineral particles perturb the earth-atmosphere’s radiation budget through

their interaction with the short-wave radiation, through scattering and absorption, and long-wave50

radiation, through absorption and re-emission. Due to this redistribution of the energy, dust aerosols

can have a strong impact on atmospheric processes at short (weather) and long (climate) term periods

while they can affect atmospheric circulations at large spatial scales (e.g. Asian monsoons; Lau et

al. (2006)). Furthermore, this can generate feedback processes since changes in weather and climate

can in turn lead to changes in the dust cycle.55

Different types of ground-based (e.g., Kim et al., 2011; Pey at al., 2013) and space-borne (e.g.,

Kaufman et al., 2005; Luo et al., 2015) observations have been utilized to describe the variability

of atmospheric dust. However, due to either insufficient spatial representativeness or accuracy, the

spatio-temporal features of dust aerosols are not fully captured by the current observing system.
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Neither do models accurately describe atmospheric and surface dust concentrations (Huneeus et al.,60

2011). High uncertainties are also in our knowledge of the optical and micro-physical properties of

dust, and in our representation of its vertical structure. The latter has implication on the radiation’s

budget and transport. On the other hand, an accurate quantification of dust’s spatial and temporal

distribution is key in correctly characterizing the effect that it has on the earth’s energy balance,

as well as in improving the skill of forecasting its concentrations in the atmosphere as well as in65

forecasting the weather (Pérez García-Pando at al., 2006; Grini et al., 2006; Chaboureau et al., 2011).

Regional and global centres, predicting the most important aerosol species or dust only, partic-

ipate to
✿

in
✿

different model inter-comparison initiatives like the Aerosol Comparisons between Ob-

servations and Models (AeroCom; Tsigaridis et al., 2007) project, the International Cooperative for

Aerosol Prediction (ICAP; Sessions et al., 2015) initiative and the WMO Sand and Dust Storm Warn-70

ing Advisory and Assessment System (SDS-WAS; Terradellas et al., 2015). Multi-model ensemble

spreads give an indication of large uncertainties in the modelling schemes and confirm the need

of a better characterization of aerosols. Relatively recently
✿✿✿✿✿✿

because
✿✿

of
✿✿✿✿✿

these
✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿✿✿

uncertainties, the

atmospheric composition community has resorted to
✿✿✿✿✿

begun
✿✿

to
✿✿✿✿✿

make
✿✿✿

use
✿✿✿

of data assimilation (DA)

for a better characterization and prediction of atmospheric constituents such as aerosols and trace75

gases (Bocquet et al., 2015). Though their dynamic is mainly driven by forcings such as emissions,

recent studies showed that the usage of observations through data assimilation has improved signifi-

cantly the accuracy of short-term forecast and the global monitoring of both aerosols and trace gases

(Benedetti et al., 2009; Elbern and Schmidt, 2001). Since the first experiments in the early 2000s,

the assimilation of aerosol observations is now operational in some of the main aerosol forecasting80

centres
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Sessions et al., 2015) . Zhang et al. (2014) have highlighted in particular the importance of

a combined assimilation of satellite products for aerosol forecast.

The Earth Sciences Department of the Barcelona Supercomputing Centre (ES-BSC) is implement-

ing a gas-aerosol module able to predict atmospheric composition at different spatial and temporal

scales within the state-of-art meteorological model NMMB (Non-hydrostatic Multi-scale Model on85

the B grid; Janjic and Gall, 2012). This modelling system is known as the NMMB/BSC-Chemical

Transport Model (NMMB/BSC-CTM
✿✿✿✿✿✿✿✿

Multiscale
✿✿✿✿✿✿✿

Online
✿✿✿✿✿✿✿✿✿✿✿✿✿

Nonhydrostatic
✿✿✿✿✿✿✿✿✿✿✿

AtmospheRe
✿✿✿✿✿✿✿✿✿✿

CHemistry

✿✿✿✿

mode
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(NMMB-MONARCH). We report here on the extension of NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH

with a data assimilation functionality using satellite aerosol optical depth. NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH

version 1.0, as in Pérez García-Pando et al. (2011)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pérez García-Pando et al. (2011, where the model was previously named NMMB/BSC-CTM)90

considers dust only but other aerosols are being implemented (Spada et al., in prep). The focus of this

work on mineral dust is justified by the operational services provided by the NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH.

This model provides an operational dust forecast for the Barcelona Dust Forecast Centre under an

initiative of the World Meteorological Organization. It participates in the multi-model dust ensemble

of the aforementioned ICAP initiative, providing daily global dust forecast up to 120 hours. It also95

provides daily regional forecast up to 60 hours to the WMO SDS-WAS system. Before this work,
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the system did not have an aerosol data assimilation capability and dust was produced uniquely from

model estimated surface emission fluxes. The present study on mineral dust is a first step towards

data assimilation with a complete aerosol chemical transport model that includes multiple aerosol

species (not only dust but also seasalt, sulphate and organics).100

Previous studies of assimilation of dust aerosol only have been conducted for the Chinese Unified

Atmospheric Chemistry Environment - Dust (CUACE/Dust) forecast system (Niu et al., 2008; Wang

and Niu, 2013). These studies have used variational data assimilation techniques (3D-Var) which

require, in their most practical implementation, pre-calculated and constant in time model error

structures. Alternatively, ensemble-based techniques use flow-dependent model error amplitudes and105

structures which evolve during forecast and, in theory, should be able to capture better instabilities

in the background flow (Evensen, 1994; Kalnay et al., 2007).
✿✿✿✿

Dust
✿✿✿✿

AOD
✿✿

is
✿✿✿✿✿✿✿✿

currently
✿✿✿✿✿✿✿✿✿✿

assimilated
✿✿

at

✿✿

the
✿✿✿✿

UK
✿✿✿✿

Met
✿✿✿✿✿

Office
✿✿✿✿

with
✿

a
✿✿✿✿✿✿

hybrid
✿✿✿✿✿✿✿✿✿

variational
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿

technique
✿✿✿✿✿✿✿

(hybrid
✿✿✿✿✿✿✿

4D-Var).
✿

In this work we present the coupling of NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH with an ensemble-

based technique known as Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007;110

Miyoshi and Yamane, 2007). The LETKF scheme has shown to be particularly suitable for the as-

similation of aerosol information since it has been observed by Anderson et al. (2003) , Shinozuka

and Redemann (2011), and Schutgens et al. (2013) that aerosol fields have limited spatial correla-

tions.
✿✿✿✿✿✿✿✿✿

Long-range
✿✿✿✿✿✿✿✿

transport
✿✿

of
✿✿✿✿

dust
✿✿✿✿✿✿

could
✿✿

be
✿✿✿

an
✿✿✿✿✿✿✿✿

exception
✿✿

to
✿✿✿✿

this.
✿✿✿✿✿

Since
✿✿✿✿✿✿✿

detailed
✿✿✿✿✿✿

studies
✿✿✿

of
✿✿✿✿✿✿

spatial

✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿

length
✿✿✿✿✿

scales
✿✿✿

for
✿✿✿✿

dust
✿✿✿✿✿✿✿✿✿

long-range
✿✿✿✿✿✿✿✿

transport
✿✿✿

are
✿✿✿✿

still
✿✿✿✿✿✿

missing
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

literature,
✿✿

in
✿✿✿

this
✿✿✿✿✿

work115

✿✿

we
✿✿✿✿✿✿✿

assume
✿✿✿

that
✿✿✿✿✿

what
✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿✿

derived
✿✿✿✿✿✿✿

(limited
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿

correlations)
✿✿✿

in
✿✿✿✿✿✿

general
✿✿✿

for
✿✿✿✿✿✿✿

aerosols
✿✿

is
✿✿✿✿✿

valid

✿✿

for
✿✿✿✿✿

dust.
✿

The utility of ensemble-based techniques for global aerosol simulations has been shown

in previous studies (Schutgens et al., 2010a; Sekiyama et al., 2010; Rubin et al., 2016; and more

recently Yumimoto et al., 2016). The main novelty in our study is the creation of the ensemble, our

implementation is based on known uncertainties in the physical parametrizations of the sophisticated120

dust emission scheme used by the NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH model, as well as in the

use of observations particular relevant for dust applications, like MODIS Deep Blue.

The NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH chemical transport model is described in more de-

tail in Section 2, with emphasis on its dust module. A description of the data assimilation scheme

and of the assimilated observations follows respectively in Section 3 and Section 4. We report then125

in Section 5 about the characteristics of the simulations that we have run, in Section 6 about the

evaluation methodology that we have followed, and in Section 7 about the evaluation results of our

simulation experiments. The final section concludes the paper with a summary of this development,

the main results achieved, and future perspectives.
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2 The NMMB/BSC Chemical Transport Model
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH
✿✿✿✿✿✿

model and its mineral130

dust component

The ES-BSC is implementing a new gas-aerosol module within the NMMB meteorological model

from the Unites States National Centers for Environmental Prediction (NCEP). The new modelling

system is known as the NMMB/BSC-CTM (Pérez García-Pando et al., 2011; Jorba et al., 2012; Spada et al., 2013)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pérez García-Pando et al., 2011; Jorba et al., 2012; Spada et al., 2013; Badia et al., 2016, where it was previously named NMMB/BSC-CTM)135

and is developed in collaboration with NCEP and other research institutions. The chemistry (aerosols

included) and meteorology are fully on-line integrated. NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH is

able to work with a wide range of spatial scales thanks to its unified non-hydrostatic dynamical

core, keeping consistent parametrizations at different spatial and temporal scales. Furthermore, the

dynamical core and the coupled modules are computationally highly efficient satisfying current and140

projected operational requirements. The rest of this section will briefly describe some characteristics

of the dust component of the NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH, with particular focus on the

emission scheme.

The dust emission scheme implemented in the NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH
✿

follows

the empirical relationship of Marticorena and Bergametti (1995) and Marticorena et al. (1995) ac-145

cording to which the vertical dust flux is proportional to the horizontal sand flux. The horizontal

to vertical flux ratio reflects the availability of dust in four soil populations (clay, silt, fine/medium

sand, and coarse sand) (Tegen et al., 2002). The horizontal sand flux is modelled as the flux of the

saltating particles H simulated according to White (1979) and proportional to the third power of the

wind friction velocity. A soil moisture-dependent threshold on the friction velocity determines the150

velocity above which the soil particles begin to move in horizontal saltation flux.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

threshold
✿✿

is

✿✿✿✿✿✿✿✿✿✿

dynamically
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿✿

soil
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics.
✿

Soil moisture effects are included following

Fecan et al. (1999) through the soil moisture correction parameter included in the expression for

the threshold on the friction velocity. A sectional approach is used for the transport of dust parti-

cles, i.e. the dust size distribution is decomposed in small size bins. More exactly, dust is modelled155

using eight dust size bins varying from 0.1 to 10 microns, and, within each transport bin, dust is

assumed to have a time-invariant lognormal distribution (Zender et al., 2003). The total vertical flux

mass is distributed among the dust transport bins according to a specific dust distribution at sources.

NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH
✿

uses a distribution over sources derived from D’Almeida

(1987) which assumes that the vertical dust flux is size distributed according to three lognormal160

background source modes. More explicitly, the dust vertical mass flux Fk
✿✿

Fb
✿✿✿✿✿✿✿✿✿✿✿✿

[kg s−1m−2] in a

given transport bin k
✿

b at each grid cell is given by

F kb = C S (1−V ) α H

3∑

i=0

mi M i,ki,b
✿

kb= 1, . . . ,8 (1)
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where S is a source erodibility factor defined on bare ground surfaces, representing the probability

to have accumulated sediments in the given grid cell that are potential dust sources; (1−V ) is the165

grid’s fraction of bare soil; α
✿✿✿✿✿

[m−1] is the horizontal to vertical flux ratio calculated for four soil

populations classes (clay, silt, fine/medium sand, and coarse sand); H
✿✿✿✿✿✿✿✿✿✿

[kg s−1m−1]
✿

is the horizontal

sand flux; Mi,k is the mass fraction of background source mode i carried in a transport bin k calcu-

lated following Zender et al. (2003), and weighted by specific background source mode coefficient

mi; and C is a global tuning factor
✿✿✿✿✿✿✿✿✿

empirically
✿✿✿

set
✿✿

to
✿✿✿✿✿

0.768, which is meant to compensate for the170

uncertainty associated with the different component of Fk. More details about the above formulation

of dust emission can be found in Pérez García-Pando et al. (2011).

The mineral dust module has been extensively evaluated in studies at global and regional scales

(Pérez García-Pando et al., 2011; Haustein et al., 2012; Huneeus et al., 2011, 2016), showing that

its evaluation scores lie in the upper range of the AEROCOM model evaluation performance scores.175

However, these evaluation efforts confirmed, similarly to other modelling systems, different sources

of uncertainty in the NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH dust modelling.

3 The data assimilation scheme

We have coupled the NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH
✿

with the LETKF scheme (Hunt et

al., 2007; Miyoshi and Yamane, 2007; Schutgens et al., 2010a;
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Schutgens et al., 2013 ) with four-180

dimensional extension as described in Hunt et al. (2007), in order to estimate optimal initial con-

ditions for our dust model. The overall scheme implements an iterative approach consisting in a

forecast step and state estimation step. The state estimation step combines information from mineral

dust observations and a prior first-guess, or background from our model. A short-term forecast is

used as background information. The background incorporates information from past observations,185

therefore the analysis is estimated using both current and past observations. LETKF is a development

of the ensemble-based transform Kalman filter (ETKF; Bishop et al., 2001) and of the local ensem-

ble Kalman filter (LEKF; Ott et al. , 2004), and is particularly suited to high-performance computing

applications. A very attractive feature of an ensemble-based technique is the use of a flow-dependent

background error covariance, which is derived from the ensemble of model states at the assimilation190

time, and evolves during forecast. At any given time in fact the state estimate is represented by an

ensemble of system states and its uncertainty is derived from the ensemble. LETKF has the advan-

tageous feature that it applies localization, i.e. it performs the analysis locally (at each grid point

only observations within a certain distance are assimilated), allowing the global analysis to explore a

much higher-dimensional space than the subspace spanned by the ensemble (whose dimensionality195

is limited by the number of ensemble members). Localization also reduces the effect of spurious

long-range covariances, effectively eliminating them after a given distance. This is particularly suit-

able for the assimilation of aerosol information since, as mentioned in the introduction, it has been
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observed that aerosol fields have limited spatial correlations (∼100 km). Schutgens et al. (2010a, b)

have already shown the positive impact of assimilating aerosol ground station observations using a200

LETKF assimilation system for the SPRINTARS model, while Sekiyama et al. (2010) used it to as-

similated CALIOP vertical profiles in the MASINGAR model and Dai et al. (2013) used it to ingest

MODIS observations in the NICAM-SPRINTARS model.

Here we discuss the basic concepts behind the LETKF algorithm, a more detailed description of

the scheme can be found in Hunt et al. (2007). Consider a state vector x of the dynamic variables of205

a system (for our application this is dust mass mixing ratios). The mean analysis increment at a grid

point is estimated as a linear combination of the background ensemble perturbations Xb :

x̄
a = x̄

b +Xbw (2)

where we use the superscripts a and b to denote respectively the analysis and background state

vector, and where the ith column of the matrix Xb is x
b(i) − x̄

b, {i= 1,2, . . . ,k} with k ensemble210

members, i.e. the difference between the ith ensemble forecast xb(i) and the ensemble forecast mean

x̄
b. w is termed the "weight" matrix specifying what linear combination of the background ensemble

perturbations is added to the background mean to obtain the analysis ensemble. The "weight" matrix

is given by

w = [YbR−1Yb +(k− 1)I]−1YbR−1(yo − ȳ
b) (3)215

where Yb is the background ensemble perturbation matrix in observation space (or background ob-

servation ensemble perturbation matrix), R is the observation error covariance matrix which we

assume diagonal, I is the identity matrix, yo is the vector of observations and ȳ
b is the mean back-

ground observation ensemble. The background observation ensemble is obtained applying the ob-

servation operator h(·) to the ensemble forecast members xb(i), i.e. yb(i) = h(xb(i)).220

LETKF uses R-localization, i.e. the localization is performed in the observation error covariance

matrix, making the influence of an observation on the analysis decay gradually toward zero as the

distance from the analysis location increases. To achieve this, the observation error is divided by a

distance dependent function that decays to zero with increasing distance: e−
dist

2

h2

✿✿✿✿✿✿

e−
dist

2

l2 , where dist

is the distance
✿

in
✿✿✿

the
✿✿✿✿

grid
✿✿✿✿✿

space
✿

between an observation and the model grid in which the analysis is225

calculated, and h
✿

l is horizontal localisation factor.

3.1 Ensemble perturbations

We run the data assimilation scheme under an imperfect model scenario assumption: each ensemble

member is run with a different perturbation of uncertain model parameters in the dust emission

scheme. In dust modelling, the emission source term is a particularly large contributor to model230

error (Huneeus et al., 2011). In the case of NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH
✿

one of the

component to the uncertainty in the emission term has been identified for example in the vertical

flux distribution at sources (Gama et al., 2016).
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The model ensemble is created perturbing the vertical flux of dust in each of the eight dust bins.

As described in Section 2, NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH follows a sectional approach235

for dust, i.e. the size distribution is decomposed in small size bins
✿✿✿

that
✿✿✿✿

from
✿✿✿

bin
✿✿

1
✿✿

to
✿✿✿

bin
✿✿

8
✿✿

go
✿✿✿✿✿

from

✿✿✿

0.1
✿✿

to
✿✿✿

10
✿✿✿

µm
✿✿✿✿

with
✿✿✿✿✿✿✿✿

division
✿✿✿✿✿✿✿

intervals
✿✿

at
✿✿✿✿✿

0.18,
✿✿✿✿

0.3,
✿✿✿✿

0.6,
✿✿

1,
✿✿✿

1.8,
✿✿✿

3,
✿✿✿

and
✿✿

6
✿✿✿✿

µm. This is equivalent to

perturbing the total vertical flux as well as its size distribution at sources. The perturbations are

extracted imposing some physical constraint: correlated noise is used across the bins so that noise

correlation decreases with increased difference of the normalized cubic radius among the bins; the240

noise is applied multiplicatively and has mean 1 and standard deviation of 30% of the unperturbed

value in each bin; and the final distribution is unimodal. Figure 1 shows how the vertical flux is

perturbed in our ensemble simulations. Additionally, we have perturbed the threshold friction veloc-

ity for dust emission by extracting a multiplicative random factor from a normal distribution with

mean 1 and spread 0.4. This considers the uncertainty of the model with respect to both surface245

winds and soil humidity. At low resolution, model surface winds are typically underestimated over

dust sources. Also, the model uses the scheme of Fecan et al. (1999) to calculate the increase of

the threshold friction velocity with soil humidity, which is typically overestimated in arid regions

(Haustein et al., 2015). The spin-up period for the ensemble ensures that perturbations applied at the

sources propagate everywhere in the globe. For this reason at this first stage of development of our250

ensemble system we did not consider necessary a combined meteorology and source perturbation.

The structure of our source perturbations,
✿✿✿

for
✿✿✿✿

both
✿✿✿✿✿

types
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

perturbations,
✿

is temporally and spatially

constant.

3.2 Observation operator

Our state vector is the dust mass mixing ratios. Therefore an observation operator is needed to map255

the ensemble mean state vector into the observation space. The simulated AOD at wavelength λ is

calculated at a given observation location according to the following linear operator:

AODλ =
8∑

b=1

3

4ρbrb
MbQλb (4)

where ρb [
✿✿✿✿✿✿

kgm−3] is the particle mass density, rb [
✿✿

m] is the effective radius, Mb [
✿✿✿✿✿✿

kgm−2]is the dust

column mass loading calculated from each dust bin mixing ratio, and Qλb is the extinction efficiency260

factor which is calculated for using the Mie scattering theory assuming dust spherical, non soluble

particles, and, within a bin, a lognormal distribution for dust with geometric radius of 0.2986 µm

and standard deviation of 2.0.

When using in the state vector the total mass mixing ratio, as we will explain in Section 5, an

ensemble averaged extinction efficiency is calculated as in Schutgens et al. (2010b) as an average of265

the extinction efficiency of the individual bins weighted by the bin mixing ratios.
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Hereafter, when we will use the term AOD without specifying the wavelength, we imply that we

refer to aerosol optical depth at a wavelength of 550 nm, which is the most commonly reported value

in the literature.

4 Observational data270

4.1 MODIS Dark Target and OMI

We consider for assimilation the MODIS Level 3 AOD product produced by the U.S. NRL and Uni-

versity of North Dakota ((hereafter called NRL MODIS). The NRL MODIS product is produced

for the purpose of assimilation into aerosol transport models (Zhang and Reid, 2006; Hyer et al.,

2010; Shi et al., 2011), post-processing the Level 2 MODIS Dark Target product from the so-called275

Collection 5 (Remer et al., 2008; Levy et al., 2007a, b), and is available both over land and ocean.

The MODIS Level 2 product is an average of the 1 km by 1 km retrievals (at nominal resolution)

generated by the Dark Target algorithm applied to top-of-atmosphere reflectances observed by the

MODIS sensor on-board of the NASA polar-orbiting satellites Terra and Aqua. The NRL MODIS

Level 3 product is filtered and corrected in order to eliminate outliers and gross systematic biases,280

spatially aggregated into a 1 by 1 degree mesh in order to avoid the assimilation of sub-grid features,

and an error is estimated for each observation. The product is generated every six hours at 0, 6, 12,

18 UTC and is based on MODIS Level 2 observations in a 6 hour interval around those times. The

retrieval errors estimated by NRL/University of North Dakota were used for the observation errors.

They include the instrumental error variance and the spatial representation error variance. Following285

the approach in Zhang et al. (2008), we assume uncorrelated observation errors. These observations

pertain to the total atmospheric aerosol column, not just to dust AOD. The selection of observa-

tions in dust-dominated conditions is performed using retrievals of Ångström Exponent (AE) from

the original MODIS Level 3 product (Hubanks et al., 2008), for information about the size of the

particles, and using retrievals of Aerosol Absorbing Index (AAI) from the Ozone Monitoring Instru-290

ment (OMI) sensor (Torres et al., 2007), for information about the absorption characteristics of the

particles. Ångström Exponent (AE) values are based on quality assurance-weighted 470 and 660nm

optical depths over land, and 550 and 865nm optical depths over sea. Observations are selected when

daily MODIS Aqua or Terra products contain a value for AE<0.75 and daily OMI products contain

value for AAI>1.5. Figure 2 shows an example for the NRL MODIS Level 3 product for a day of295

May 2007 after the filter for dust-dominated conditions is applied.

4.2 MODIS Deep Blue

The MODIS Dark Target product does not provide information over very bright reflective surfaces,

including deserts, as the retrieval algorithm assumes low surface albedo. We consider the assimila-

tion of MODIS Deep Blue Level 3 daily AOD product from Collection 6 whose algorithm retrieves300
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AOD also over bright arid land surfaces, such as deserts. The Collection 6 product covers all cloud-

free and snow-free surfaces, and can be potentially very useful for mineral dust applications as it is

able to provide observational constraint close to dust sources. The Deep Blue algorithm uses top-of-

atmosphere reflectances at 412 and 470 nm. In the presence of heavy dust load also the reflectance at

650 nm is used. The algorithm exploits the fact that, over most surfaces, darker surface and stronger305

aerosol signal is seen in the blue wavelength range than at longer wavelengths. The quality of the

MODIS Deep Blue AOD product is improved in Collection 6 compared to Collection 5, as work of

Sayer et al. (2014), based on Level 2 retrievals, showed. Similar findings, for the northern African

and Middle East deserts, were reported by Gkikas et al. (2015b), who used Level 3 retrievals over

the period 2002-2014.310

We have applied to this product the same filter for dust-dominated conditions described in Section

4.1. In addition we have masked out Level 3 retrievals obtained with less than 30 Level 2 retrievals,

since Gkikas et al. (2015a) showed that the agreement between MODIS-AERONET is improved

when the sub-pixel spatial representativeness is increased. The MODIS Deep Blue observations are

not corrected for possible systematic biases, however, we are aware that for future applications we315

should address any possible bias in the product. It is important to notice that the Level 3 product is an

aggregation of Level 2 retrievals that is produced using the highest quality retrievals (i.e. retrievals

with quality assurance flag value 3). Furthermore, we have applied a quality control on all the as-

similated observations based of
✿✿

on
✿

normalized first-guess departures. As proxy for the normalization

factor, we have used the standard deviation of first-guess departures.320

A study by Sayer et al. (2014) shows that highest quality data have an absolute uncertainty of

approximately (0.086+0.56AOD550)/AMF , where AMF is the geometric air mass factor with a

typical AMF value of 2.8. We have used this quantification of the uncertainty for the Level 3 product.

Furthermore, we have defined the representation component of the error as the standard deviation of

the values used in the aggregated product. Although a more accurate treatment for the representation325

error could be envisaged following for example the approach of van Leeuwen (2014), we deem small

the impact that our approximation has on the analysis. Figure 3 shows an example for the MODIS

Deep Blue Collection 6 Level 3 product for a day of May 2007 after the filter for dust-dominated

conditions is applied.

✿✿✿

The
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿

Deep
✿✿✿✿

Blue
✿✿✿✿

and
✿✿✿✿✿

Dark
✿✿✿✿✿✿

Target
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿

used
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

experimental330

✿✿✿✿✿

period
✿✿

is
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿

Figure
✿✿

4.
✿

4.3 AERONET

For validation purposes we have used observations from the ground-based stations of the global

Aerosol Robotic Network (AERONET; Holben et al., 1998) of direct-sun photometers. These ob-

servations have not been assimilated in our test simulations. In particular, we have used their re-335

trievals of column-integrated aerosol optical depth from direct-sun photometric measurements. The
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retrievals are obtained observing the extinction of direct solar radiation due to the presence of

aerosols in the atmosphere. For this reason AERONET retrievals are not available under cloudy sky

conditions and during night-time. These observations suffer of a relatively sparse spatial coverage

but are very valuable for validation purposes as their uncertainty on these retrievals is estimated to be340

between 0.01 and 0.02
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Eck et al., 1999) . Several studies have in fact used the AERONET data for

validation purposes, or for the correction of biases in satellite measurements (Zhang and Reid, 2006;

Hyer et al., 2010). We considered cloud-screened and quality-assured (Level 2.0) direct-sun AOD

retrievals between 440 and 870 nm. AERONET AOD at 550 nm was obtained using the Ångström

law.345

5 Numerical simulation set up

We have run a set of different experiments (listed in Table 1): a control experiment to produce a

5-day forecast (hereafter called Control experiment) with the same operational configuration (but

at a coarser resolution) and version that provides daily global forecast to the aforementioned ICAP

multi-model ensemble, and which is initialized for dust from the previous day 24 hour forecast350

(FC+24). Assimilation experiments were run with NRL MODIS AOD (hereafter called DA-NRL

experiment) and with NRL MODIS AOD and MODIS Deep Blue AOD (hereafter called DA-NRL-

DB experiment) with a preprocessing to the observations as described in Section 4. Additionally,

we have run also free ensemble simulations without assimilating any observation (hereafter called

ENS-free-run). We have also run a 5-day forecast experiment initialized from the analysis produced355

by the DA-NRL-DB experiment (hereafter called AN-initialized experiment) in order to evaluate

the impact of the analysis on the forecast. The Control experiment was run for five months in the

spring/summer period of 2007 (from 1 April to 31 August 2007) starting from a cold start for dust

and with a spin up period of one month (April 2007) which is excluded from the analysis of the

results. Also the ensemble is spun up before data assimilation is applied.360

We use a 24-hour assimilation window and observations are considered for assimilation at four

time slots within the window, at 0, 6, 12 and 18 UTC. The system uses as first-guess a 1-day forecast

with output every 6 hours. Simulated observation and background departures are calculated at each

time slot. The time slots are exactly the ones corresponding to the times in which NRL MODIS

AOD observations are available. We are using the LETKF implementation with a four-dimensional365

extension as described in Hunt et al. (2007). The state vector comprises of the mixing ratio at all

the time slots considered and so does the observation AOD vector. Background observation means

ȳj and perturbation matrices Yj are formed at the various time slots j when the observations are

available. They are then vertically concatenated to form a combined background observation mean

ȳ and perturbation matrix Y. ȳ and Y are used for the calculation of a weight matrix w using the370
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standard LETKF, i.e. we calculate a single w based on all innovations throughout the day. This same

w is then applied to the state vector at different times throughout the assimilation window.

We have tuned different aspects of the data assimilation system including testing the number of

ensemble members, different perturbations of the ensemble, and a different state vector for the con-

trol variables. Using 24 ensemble members did not produce a significant impact on the dust analysis375

compared to the use of 12 ensemble members. This could be explained with our setting of a local-

ization factor which makes the influence of an observation on the analysis decay gradually toward

zero as the distance from the analysis location increases. We have set the horizontal localization

factor to the value 1 in all the data assimilation experiments.
✿✿✿✿

This
✿✿✿✿✿

means
✿✿✿✿

that
✿✿✿✿

after
✿✿

2
✿✿✿✿

grid
✿✿✿✿✿✿

points

✿✿

the
✿✿✿✿✿✿✿✿✿✿

localization
✿✿✿✿✿✿✿✿

function
✿✿

is
✿✿✿✿

very
✿✿✿✿✿

close
✿✿

to
✿✿✿✿✿

zero.
✿✿✿✿

The
✿✿✿✿✿

value
✿✿✿✿✿✿

chosen
✿✿

is
✿✿

in
✿✿✿

the
✿✿✿✿✿

range
✿✿✿

of
✿✿✿

the
✿✿✿✿

ones
✿✿✿✿✿

used380

✿✿

in
✿✿✿✿✿✿✿

previous
✿✿✿✿✿✿

studies
✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rubin et al. (2016) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Yumimoto and Takemura (2011) . Covariance lo-

calization in fact effectively eliminates background spatial correlations after a certain distance, and

might have solved possible sampling errors introduced by the low dimensionality of the 12 mem-

ber ensemble compared to the 24 member ensemble. We also apply vertical localization following

Miyoshi and Yamane (2007) approach of localizing the error covariance vertically for radiance as-385

similation. The observation error is divided by the square of the model AOD normalised
✿✿✿✿✿✿✿✿✿

normalized

sensitivity function.

We have tested the usage of different perturbations of the dust emission scheme: a perturbation

of the mass vertical flux per dust bin, or a the perturbation of both the mass vertical flux and the

threshold on the wind friction velocity. As we show in the next section, the latter configuration was390

deemed better as it spans a larger space of possible system states.

We have tested two different options for the state vector: a control variable consisting of the mix-

ing ratio of eight individual dust bins or the total dust mixing ratio defined as the sum of the eight

dust bins at each grid point and for all the vertical levels. In the latter case the mixing ratios for the

individual dust bin after data assimilation are determined from the background, i.e. from their rela-395

tive fractions before assimilation. The observation operator is calculated using the original mixing

ratio following the approach for the observation operator in Schutgens et al. (2010b). The tests that

we have performed show that representing individually the bins in the state vector does not have

any significant impact on the analysis, while it increases the computational cost of the assimilation

compared to using the total mixing ratio. Moreover, the use of a bulk approach is common in sys-400

tems assimilating total AOD values as the observations are not able to fully constrain the individual

bin profiles. We should note that this choice of state vector makes still meaningful the creation of

the ensemble perturbing the vertical flux for the individual bins, as this allows us to express in the

background the uncertainty in the size distribution at sources, and to span a larger space of possible

system states.405

In the next section we show the results of assimilating NRL MODIS NRL and MODIS Deep

Blue observations using 12 ensemble members obtained perturbing the mass vertical flux per bin at
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sources together with the threshold on the wind friction velocity, as described in Section 3.1, and

using the total dust mixing ratio as analysis variable in the state vector. All simulations were run on

a global domain with 40 hybrid pressure-σ layers, 5 hPa top pressure, and a horizontal resolution410

of 2.8 by 2 degree. The NCEP final analysis at 1 by 1 degree at 0 UTC were used to initialize the

meteorology at every forecast run.

6 Methodology for the evaluation of the simulations

The evaluation of the simulations is done in three stages: (a) an internal check of the data assimilation

system; (b) evaluation of the analysis using as reference independent observations; (c) evaluation of415

a 5-day forecast with and without analysis initialization using as reference independent observations.

The consistency of the data assimilation system is checked through considerations on statistics

of the ensemble, of simulation departures from assimilated observations, and of the temporal mean

of assimilation increments. The ensemble mean and the coefficient of variation for the ensemble

are calculated with and without data assimilation. The coefficient of variation is defined as ratio420

of the standard deviation of the ensemble to the ensemble mean. Additionally, statistics for first-

guess (FG) and analysis (AN) departures are calculated, where departures are defined as difference

between assimilated observations and simulations (first-guess or analysis), while mean increments

are defined as temporal mean of differences between analysis and first-guess at the different time

slots of the assimilation window.425

The evaluation of analysis and forecast with respect to independent observations are performed

in terms of statistics of model field errors ei from observations, where ei = oi −mi
✿✿✿✿✿✿✿✿✿✿

ei =mi − oi,

with index i indicating an instance of observation oi and where mi is the model field in observation

space, bi-linearly interpolated at the observation location. We consider the root mean square error

(RMSE), the mean error (BIAS), the standard deviation of the error (SD), the fraction gross error430

(FRGE), and the correlation coefficient (CORR) of the model AOD compared to either quality-

assured (Level 2.0) AERONET or to satellite retrievals. The FRGE = 2
n

∑n

i=0 |
oi−mi

oi+mi

| is added

to the most widely used set of statistics for the error as it behaves symmetrically with respect to

under and over estimation without emphasizing the outliers, and is normalized to the sum of obser-

vation and simulation values. The SD of the error, though it can be derived from the other statistics,435

is also reported so to make more explicit the changes in the bias-free mean square error and aid

the interpretation of the evaluation results. The above set of evaluation statistics are calculated for

measurements from individual ground-based stations, groups of stations, regional domains observed

by satellite sensors, and globally.

For AERONET AOD measurements dust-dominated conditions are identified using the approach440

of Basart et al. (2009) as follows: AOD is classified as ’Dust’ AOD when the associated AE<0.75;

we set ’Dust’ AOD to 0 when the associated AE>1.3; we identify a mixed aerosol type when the
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associated 0.75<AE<1.3. The latter values are excluded from the validation.
✿✿✿

We
✿✿✿

use
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

AERONET

✿✿✿✿

AOD
✿✿✿✿✿

value
✿✿✿✿✿✿

closest
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

time
✿✿✿✿

step
✿✿✿✿

and
✿✿✿✿✿✿

within
✿

a
✿✿✿✿✿

±30
✿✿✿✿✿✿

minute
✿✿✿✿✿✿✿

interval.
✿

For satellite AOD

retrievals we use the set of satellite observations quality controlled and filtered for dust-dominated445

conditions used in the assimilation step. We use these satellite observations to validate uniquely

the forecast range following the assimilation window. We show the forecast evaluation statistics

corresponding to measurements and simulations at 12 UTC only, so that they refer to an approximate

equal number of pair of observations and model simulated values at each forecast lead time that we

are considering.
✿✿✿✿✿✿

Hence
✿

a
✿✿✿✿✿✿

smaller
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿✿

AERONET
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

(at
✿✿✿

12
✿✿✿✿✿

UTC
✿✿✿✿

only)
✿✿✿

are
✿✿✿✿✿

used
✿✿

to450

✿✿✿✿✿

verify
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿

ones
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

evaluation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

analysis.

We have identified eight regions of interest for the validation purposes in our study period, namely:

Long Atlantic transport (LongAtl), Short Atlantic transport (ShortAtl), Sub-Sahel (SubSahel), Sa-

hara (Sahara), Extended Mediterranean (ExtMediter), Middle East (MiddleEast), Central Asia (Ce-

nAsia), East Asia (EastAsia). These names do not necessary correspond to the conventional names455

of exact geographical locations but are meant to identify regional domains in a convenient way ac-

cording to dust intrusions and to group observational stations. Most of regional domains contain

ground-based stations with a minimum number of observations during the study period (stations

with less than 30 ’Dust’ observations are discarded), with the exception of Central and East Asia.

The ground-based stations are listed in Table 2, and shown in the map in Figure 5 together with460

regional domains used for the validation of the experiments either against ground-based or satellite

observations.

7 Evaluation results

7.1 Ensemble, departure and increment statistics

We compare here the dust fields in the Control, ENS-free-run, DA-NRL and DA-NRL-DB experi-465

ment in terms of mean values and, when applicable, ensemble spread. Figure 6 shows the
✿✿✿

dust AOD

values averaged over a month of the study period for the four above experiments
✿

,
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

difference

✿✿

in
✿✿✿✿

AOD
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

ENS-free-run. By visual inspection it

can be noticed that the ensemble mean of the ENS-free-run experiment compares well with the Con-

trol experiment, which suggests that the ensemble perturbations are not altering
✿✿✿✿✿✿

altering
✿✿✿✿

only
✿✿

at
✿✿

a470

✿✿✿✿

small
✿✿✿✿✿✿

extent
✿

the model mean state as defined by a standard run. The analysis clearly shows con-

spicuous changes in the dust field compared to the Control experiment
✿✿

or
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

ENS-free-run. Figure

7 shows the coefficient of variation for AOD in the ENS-free-run and DA-NRL-DB experiment
✿✿✿

the

✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿

experiments. Data assimilation clearly lowers the values of the coefficient of vari-

ation in the regions where observations are present,
✿✿✿

with
✿✿✿✿✿✿

values
✿✿✿✿✿

lower
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

DA-NRL-DB
✿✿✿✿

than
✿✿✿

for475

✿✿

the
✿✿✿✿✿✿✿✿

DA-NRL
✿✿✿✿✿✿✿✿✿✿

experiment,
✿

which indicates a reduction of the ensemble spread due to the assimilated

observations. The ensemble
✿✿✿

high
✿✿✿✿✿✿

values
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

coefficient
✿✿

of
✿✿✿✿✿✿✿✿

variation
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

Southern
✿✿✿✿✿✿✿✿✿✿✿

Hemisphere,
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✿✿✿✿

with
✿✿

or
✿✿✿✿✿✿✿

without
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation,
✿✿✿

are
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿

of
✿✿✿✿

the
✿✿✿✿

dust
✿✿✿✿✿✿✿

sources
✿✿✿✿✿✿

present
✿✿

in
✿✿✿✿

the

✿✿✿✿

south
✿✿✿✿

part
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

globe.
✿✿✿✿✿

These
✿✿✿✿✿✿

values
✿✿✿

are
✿✿✿✿

not
✿✿✿✿✿✿✿✿

negligible
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿

among
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble

✿✿✿✿✿✿✿

members
✿✿✿✿✿✿✿✿✿✿

normalized
✿✿

to
✿✿✿✿✿

small
✿✿✿✿

dust
✿✿✿✿

AOD
✿✿✿✿✿✿

values.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

ensemble
✿

of Figure 7 (and Figure 6) is created480

perturbing the emitted mass vertical flux for each dust bin and the threshold on the friction veloc-

ity generating dust horizontal flux. Creating the ensemble without perturbing the threshold on the

friction velocity produces a reduced spread. See Figure 8 for this second configuration of the en-

semble with ensemble mean and coefficient of variation for the ENS-free-run in the top panels, and

✿✿✿

left
✿✿✿✿✿

panel
✿✿✿

and
✿✿✿

for the experiment with data assimilation in the bottom panels
✿✿✿

right
✿✿✿✿✿

panel. Perturbing485

the threshold on the friction velocity has an impact on the spread also outside source regions be-

cause, as explained earlier, the spin-up period for the ensemble ensures that perturbations applied at

the sources propagate everywhere. A smaller spread
✿✿✿✿✿✿✿✿✿✿

Furthermore
✿✿✿

this
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿✿✿

configuration
✿✿✿✿✿

better

✿✿✿✿✿✿✿✿

represents
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿

since
✿✿✿✿

the
✿✿✿✿

ratio
✿✿

of
✿✿✿

the
✿✿✿✿✿

prior
✿✿✿✿

total
✿✿✿✿✿✿

spread
✿✿✿✿

(the
✿✿✿✿✿✿

square
✿✿✿✿

root
✿✿

of
✿✿✿✿

the
✿✿✿✿

sum

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿✿

variance
✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

error
✿✿✿✿✿✿✿✿

variance)
✿✿✿

to
✿✿✿

the
✿✿✿✿

prior
✿✿✿✿✿✿✿

RMSE
✿✿✿

(of490

✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿

against
✿✿✿✿

NRL
✿✿✿✿✿✿✿

MODIS
✿✿✿✿

and
✿✿✿✿✿✿✿

MODIS
✿✿✿✿

Deep
✿✿✿✿✿

Blue
✿✿✿✿✿✿✿✿✿✿✿

observations)
✿✿

is
✿✿✿✿✿

closer
✿✿

to
✿✿

1

✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿

when
✿✿✿

no
✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿

is
✿✿✿✿✿✿

applied
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

threshold
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

friction
✿✿✿✿✿✿✿

velocity.
✿✿

It
✿✿✿✿✿✿

should
✿✿✿

be

✿✿✿✿✿

noted,
✿✿✿✿✿✿✿✿

however,
✿✿✿

that
✿✿✿

this
✿✿✿✿✿✿

chosen
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿✿

configuration
✿✿

is
✿✿✿✿✿

under
✿✿✿✿✿✿✿✿✿✿

representing
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿

since
✿✿

it
✿✿✿

has

✿

a
✿✿✿✿

prior
✿✿✿✿✿

total
✿✿✿✿✿

spread
✿✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿

RMSE
✿✿✿✿✿

(ratio
✿✿✿✿✿

equal
✿✿

to
✿✿✿✿✿

0.82).
✿✿✿✿✿

Other
✿✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿✿✿

should

✿✿

to
✿✿

be
✿✿✿✿✿

tested
✿✿✿

for
✿

a
✿✿✿✿✿

future
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿✿✿✿

since
✿✿

an
✿✿✿✿✿

under
✿✿✿✿✿✿✿✿✿✿✿✿

representation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿✿✿✿

uncertainty495

might translate to giving a lower weight to
✿✿

the
✿

observations with respect to the background, therefore

the ensemble with higher spread is used in the simulations described in the rest of the paper.
✿

.

We evaluate in the rest of this section the assimilation experiments in terms of statistics of the

departures of the analysis and first-guess from the assimilated satellite observations. Figure 9 shows

for May to August 2007 first guess
✿✿✿✿

dust AOD (on the left panels) and analysis
✿✿✿

dust
✿

AOD (on the500

right panels) versus observations for the DA-NRL and DA-NRL-DB experiment. The departure

statistics with respect to the two sets of observations that we have assimilated are in Table 3. In

both experiments a smaller scatter and a higher correlation coefficient for the analysis indicate that

the assimilation improves the agreement with observations and hence a positive sanity check of the

data assimilation system. The asymmetric behaviour of all the analysis scatter plots suggests that the505

system is more successful in correcting too high AOD values than correcting too low AOD values,

which could be due to the fact that usually we have larger observation errors and smaller ensemble

spread for low AOD values. The BIAS is significant smaller than the RMSE and the RMSE improves

in the analysis over the forecast. The issue of a higher BIAS in the analysis departures compared to

the first-guess departures has been identified in other assimilation system (see Benedetti et al. (2009),510

Section 4) and might be attributed to the fact that AOD is a positive definite variable, as this provides

a deviation from the Gaussianity condition in the prior which is assumed in the analysis step. A

solution to this problem worth investigating in the future would consist in applying a transformation
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of the state variables into new variables which present Gaussian features, a procedure known as

Gaussian anamorphosis (Amezcua and Van Leeuwen, 2014).515

Figure 10 shows global maps of mean
✿✿✿

dust
✿✿✿✿✿

AOD analysis increments, i.e. the monthly-averaged

difference between analysis and short-term forecast, respectively in the case in which only NRL

MODIS AOD observations are assimilated and in the case in which also MODIS Deep Blue AOD

observations are assimilated. Both experiments show non-zero systematic increments which are to be

interpreted as systematic corrections that these sets of observations are making, in particular remov-520

ing mass close to sources and, to a lesser extent, adding mass in the outflow. The spatial distribution

of the increments highlights the role that MODIS Deep Blue observations play in particular over

the Sahara dust sources.
✿✿✿✿✿

There
✿✿✿

are
✿✿✿✿

some
✿✿✿✿✿✿✿

regions
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿

two
✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿

show

✿✿✿✿✿✿✿

opposite
✿✿✿✿✿✿✿✿✿✿

increments.
✿✿✿✿

This
✿✿✿✿✿

could
✿✿✿

be
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿✿

unresolved
✿✿✿✿✿✿✿✿✿

conflicting
✿✿✿✿✿

biases
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿

two
✿✿✿✿✿

types
✿✿✿

of

✿✿✿✿✿✿

MODIS
✿✿✿✿✿✿✿✿✿

retrievals.525

7.2 Validation of the analysis

We perform in this section a validation of the dust fields simulated either with or without data as-

similation through a comparison with observations from ground-based stations that have not been

assimilated for May to August 2007. We calculate the statistics for individual stations and for groups

of stations. Figure 11 shows the time-series of
✿✿✿

dust
✿

AOD values for May to August 2007 for the530

Control
✿✿✿✿✿✿✿✿✿

experiment (blue),
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿

of
✿✿✿

the DA-NRL (green) ,
✿✿✿

and
✿✿

of
✿✿✿

the DA-NRL-DB (red)

experiment, and for AERONET observations in dust-dominated conditions (black) at six locations

within the different regional domains of Figure 5, which are in the proximity of dust sources (Taman-

rasset in Algeria), affected by short-range dust transport (Dakar in Senegal, Ilorin in Nigeria, and

Hamim in the United Arab Emirates), or affected by long-range dust transport in Europe (Lecce in535

Italy), and across the Atlantic (La Parguera in Puerto Rico).
✿✿✿

For
✿✿✿✿✿✿✿✿✿

reference,
✿✿✿✿

also
✿✿✿

the
✿✿✿✿✿✿✿

MODIS
✿✿✿✿✿

AOD

✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿✿✿✿

dataset
✿✿✿✿✿

(NRL
✿✿✿

and
✿✿✿✿✿

Deep
✿✿✿✿✿

Blue)
✿✿✿✿✿

which
✿✿✿

are
✿✿

at
✿✿✿

the
✿✿✿✿✿

closest
✿✿✿✿✿✿✿

distance
✿✿✿✿

and

✿✿✿✿✿

within
✿✿

a
✿

2
✿✿✿✿✿✿

degree
✿✿✿✿✿

radius
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

location
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

AERONET
✿✿✿✿✿✿

station
✿✿✿

are
✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

time-series

✿✿✿✿✿✿✿

(magenta
✿✿✿✿✿✿✿✿

circles).
✿✿✿✿✿

Note,
✿✿✿✿✿✿✿✿

however,
✿✿✿

that
✿✿✿✿✿

these
✿✿✿✿✿

latter
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

are
✿✿✿

not
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿✿✿✿

reference

✿✿

for
✿✿✿✿✿✿✿✿✿

validation
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

analyses,
✿✿✿

nor
✿✿✿

are
✿✿✿✿✿✿✿

entirely
✿✿✿✿✿✿✿✿✿✿✿✿

representative
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿✿✿

constraint
✿✿✿✿✿

used540

✿✿

to
✿✿✿✿✿✿✿

calculate
✿✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿

in
✿✿✿

the
✿✿✿✿✿

given
✿✿✿✿✿✿

station
✿✿✿✿✿✿✿✿

location.
✿

The time-series show an overestimation in

the Control experiment of the optical depth near the sources, and to a smaller extent in the transport

which clearly suggests that the model tends to overestimating dust emissions. The current calibration

for model version 1.0 has the shortcoming to accurately capture long-range transport at the expenses

of an overestimation over the sources. This overestimation is reduced with data assimilation. By a545

first eyeball inspection, the AOD simulation variance is reduced by data assimilation and is more in

accordance with the AOD observation variance.

Maps in Figure 12 show results of validation statistics calculated for the full study period at each

AERONET station for the three experiments performed. These maps allow us to appreciate the
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strongest features of the three simulations at individual AERONET stations and how those stations550

are representative of the regional domains that we have identified. The Control experiment shows

that the strongest BIAS and highest RMSE are in the sub-Sahel region. The BIAS indicates that the

model systematically over-predicts AOD in that region. The highest FRGE are in the long transport

over the Atlantic or Europe as expected in areas of low AOD values. The correlation between model

and observation values is in general lower near source areas than in outflow regions. This could be555

due to the too coarse model resolution not able to follow as good as the observations the dynamic of

the dust field near source areas. The assimilation of MODIS NRL observations decreases some of the

strongest biases in particular in the dust outflow regions in Sahel and over the African Atlantic coast,

which is reflected in a reduced FRGE and RMSE, and is associated with improved correlation. The

assimilation of the MODIS Deep Blue observations additionally to the NRL MODIS observations560

is of further benefit: it reduces the BIAS and RMSE downwind from the strongest dust sources of

Sahara. It is also relevant to notice that the additional assimilation of MODIS Deep Blue observations

improves the correlation over the above areas and in the Arabian peninsula.

The chart plots for the validation statistics calculated for all the AERONET stations considered

(hereafter called global statistics) and for stations grouped according to regional domains of interest565

are respectively in Figure 13 and Figure 14. Global statistics show that assimilation produces in

general a better representation of dust concentrations in the atmosphere, and that the assimilation of

Deep Blue retrievals has a positive impact over the assimilation of Dark Target retrievals only.

When considering the regional domains, the assimilation of NRL MODIS AOD has a positive im-

pact on the quality of the analysis everywhere, with the only exception of a slightly increase of RMSE570

in the Middle East region. This positive impact is more pronounced in the short Atlantic transport and

in the sub-Sahel region. The additional assimilation of MODIS Deep Blue AOD has a considerable

positive impact in the Sahara, sub-Sahel and Middle East regions, and neutral or slightly detrimental

in the rest of the transport, in particular in the long range Atlantic transport.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿

for
✿✿✿

the

✿✿✿✿✿

global
✿✿✿✿✿✿

domain
✿✿✿✿

and
✿✿✿

for
✿✿

all
✿✿✿

the
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿

domains
✿✿✿

are
✿✿✿✿✿✿

highly
✿✿✿✿✿✿✿✿✿✿

statistically
✿✿✿✿✿✿✿✿

significant
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

exception575

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

Sahara
✿✿✿✿✿

region
✿✿✿

(in
✿✿✿

the
✿✿✿✿✿✿

Control
✿✿✿✿

and
✿✿✿✿✿✿✿✿

DA-NRL
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿

only)
✿✿✿✿✿

where
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

observations

✿

is
✿✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿✿✿

other
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿✿

domains.
✿

It should be noted, however, when interpreting the above statistics that the validation against

AERONET observations introduces
✿✿✿

may
✿✿✿✿✿✿✿✿

introduce
✿✿✿✿✿✿✿✿✿

significant errors when comparing a global model

grid-box against a point observation (Schutgens et al., 2016).580

7.3 Validation of the forecast

We have validated the forecast up to 5 days ahead initialized at 0 UTC from either the control

experiment or an analysis (from DA-NRL-DB). We have calculated for May to August 2007 the

errors for the forecast at 12, 36, 60, 84, 108 hours (hereafter indicated as FC+12, FC+36, FC+60,

FC+84, FC+108) with respect to either AERONET observations or satellite observations. As men-585
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tioned when describing our evaluation methodology, we use as reference the set of satellite obser-

vations from the Dark Target and Deep Blue algorithm ingested in the assimilation step, i.e quality-

controlled and filtered for dust-dominated conditions. They are used only to validate the forecast

range following the assimilation window. As expected, all the validation statistics worsen with in-

creased forecast step in both experiments (see Figure 15 for global statistics). The impact of initializ-590

ing the model with a dust analysis is positive in the first day. The analysis produces a better forecast

in terms of BIAS and RMSE (and also SD of the error) up to FC+108, and a better correlation in

the first day. The correlation is slightly lower from FC+36 onwards. The conclusions drawn by val-

idating against AERONET or satellite observations are equivalent. Results calculated for regional

domains (Figure 16) show that the Control experiment tends to overestimate AOD everywhere with595

the exception of central and east Asia. This suggests an overestimation in particular of the Sahara

emissions which is consistent with the bias found in the analysis and which is maintained during the

forecast.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿✿

domain
✿✿✿✿

and
✿✿

for
✿✿✿

all
✿✿✿

the
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿✿

domains,
✿✿

at
✿✿

all
✿✿✿✿✿✿✿

forecast
✿✿✿✿

lead

✿✿✿✿✿

times,
✿✿✿

are
✿✿✿✿✿

highly
✿✿✿✿✿✿✿✿✿✿

statistically
✿✿✿✿✿✿✿✿✿

significant.
✿

Initializing the 0 UTC forecast with the DA-NRL-DB dust

analysis reduces the overestimation compared to satellite retrievals in the first day of the forecast600

consistently with the improvement observed in the analysis in the previous section. However, this

produces an underestimation of AOD in the long-range Atlantic transport during all the forecast lead

times, which, because of the relatively small AOD values in that area, is reflected in particular in

the FGRE. Although there is an overestimation of AOD, there is a better agreement of the tempo-

ral evolution in that region. The underestimation of AOD in the Atlantic transport might be due to605

too strong deposition which affects in particular the long-range transport, and in the standard run

is compensated by an overestimation over the sources. As said earlier, a shortcoming of the current

model calibration is to capture well the long-range transport at the expenses of an overestimation

over the sources, which data assimilation reduces. To identify the exact cause for it will require,

however, further investigation together with a better adjustment of the current model parameters.610

With the exception of this underestimation of AOD across the Atlantic, all the error statistics and

correlation coefficients are improved in the first day of the forecast in all the regional domains. The

error of the analysis-initialized forecast is lower for more than 4 days into the forecast
✿✿✿

also
✿✿

in
✿✿✿

the
✿✿✿✿

rest

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

forecast
✿✿✿✿✿

range
✿✿✿✿

(up
✿✿

to
✿

5
✿✿✿✿✿

days), though, after day 1, the temporal evolution is less in agreement

(lower correlation )
✿✿✿✿✿✿✿✿✿

correlation with satellite observations in some regions (SubSahel and ShortAtl) ,615

compared to
✿✿

is
✿✿✿✿✿

lower
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

analysis-initialized
✿✿✿✿✿✿

forecast
✿✿✿✿

than
✿✿✿

for a standard forecast. It is particularly

relevant to notice that the dust forecast over Sahara is improved for all the statistics and throughout

the forecast range.
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8 Conclusions

We have developed a data assimilation system for the NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH620

model version 1.0, which considers dust only, while other aerosols are being implemented. We

have coupled the NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH
✿

with an ensemble-based data assimi-

lation technique known as LETKF. For this purpose we have created a forecast ensemble based

on known uncertainties in the physical parametrizations of the mineral dust emission scheme. We

have processed satellite aerosol optical depth retrievals for assimilation with a dust filter. Due to the625

presence of other aerosols in the selection of dust-dominated conditions, uncertainties might have

been introduced in our assimilation process. It should be noted however that the identification of

dust-dominated conditions is performed in this study as a proof of concept to demonstrate the poten-

tial of using data assimilation in NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH, and will not be strictly

necessary in a future model upgrade including all the major aerosol species. Still, efforts towards630

aerosol speciation could continue to be pursued when assimilating information about total aerosol

optical properties. In this respect, operational centres currently rely merely on model background to

distribute assimilation increments among the different aerosol species.

Assimilation experiments showed that aerosol optical depth retrieved with the Dark Target al-

gorithm can help NMMB/BSC-CTM
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

NMMB-MONARCH to better characterize atmospheric dust.635

This is particularly true for the analysis of the dust outflow in the Sahel region and over the African

Atlantic coast. The additional assimilation of Deep Blue retrievals has a further positive impact in

the analysis downwind from the strongest dust sources of Sahara and in the Arabian peninsula.

An analysis-initialized forecast performs better (lower forecast error and higher correlation) than

a standard forecast everywhere in the first day of the forecast. The only exception to this is an un-640

derestimation of the forecast of AOD in the long-range Atlantic transport. The error of the analysis-

initialized forecast is lower also in the rest of the forecast range (up to 5 days), though, after day

1, in sub-Sahel and short Atlantic transport the temporal evolution of dust is less in agreement with

independent observations, compared to a standard forecast. Particularly relevant is the improved

forecast over Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals645

over areas not easily covered by other observational datasets. To the best of our knowledge, this is

the first study quantifying the benefit of assimilating MODIS Deep Blue from Collection 6 specif-

ically for mineral dust simulations. This product is currently operationally assimilated by the UK

Met Office who consider only Deep Blue observations over desert, and by the European Centre for

Medium-Range Weather Forecasts.650

In our future implementation of the forecast ensemble, we plan to exploit spatial patterns of vari-

ation in model parameter uncertainty, for example source-dependent uncertainties, as well as un-

certainties in the deposition term. A better representations of uncertainties in dust emission flux

inherently will help the representation of uncertainties in other parts of the dust cycle. A recent

study by Rubin et al. (2016) shows that, for their system, a combined meteorology and aerosol655
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source ensembles are necessary to produce sufficient spread in outflow regions. Notwithstanding

that their conclusion might be system-dependent, we will be take into account their results in our

future studies.

9 Code availability

Copies of the code are readily available upon request from the corresponding authors.660
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Table 1. Characteristics of the simulation runs.

Experiment Ensemble Dust initial conditions Spin-up Dust initial conditions

name configuration at 0 UTC on day 1 period at 0 UTC after day 1

Control No Cold start 1 month FC+24

from previous day run

ENS-free-run Yes Warm start 11 days FC+24

from Control of the individual members

from previous day run

DA-NRL Yes Warm start None Analysis at 0 UTC

from ENS-Free-run of the individual members

from previous day DA cycle

DA-NRL-DB Yes Warm start None Analysis at 0 UTC

from ENS-Free-run of the individual members

from previous day DA cycle

AN-initialized No Warm start None Ensemble mean analysis

from Control from DA-NRL-DB
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Table 2. Regional domains and respective groups of AERONET stations used for validation purposes

Regional domain (short name) AERONET stations

Long Atlantic transport (LongAtl) La_Parguera, White_Sands_HELSTF, Univ_of_Houston

Short Atlantic transport (ShortAtl) Capo_Verde, Dakar, La_Laguna

Sub-Sahel (SubSahel) IER_Cinzana, Banizoumbou, Ilorin, Agoufou

Sahara (Sahara) Tamanrasset_INM

Extended Mediterranean (ExtMediter) Saada, FORTH_CRETE, Lecce_University, Rome_Tor_Vergata

Villefranche, Avignon, Evora, Barcelona, Granada

Middle East (MiddleEast) SEDE_BOKER, Solar Village, Hamim

Central Asia (CenAsia) None

East Asia (EastAsia) None

Table 3. Statistics of departures of first guess and analysis from assimilated observations, calculated for May to

August 2007.

Experiment (departures) Observations BIAS RMSE CORR FRGE SD

DA-NRL (FG) NRL 0.074
✿✿✿✿

-0.074
✿

0.37 0.59 0.66 0.36

DA-NRL (AN) NRL 0.118
✿✿✿✿

-0.118
✿

0.27 0.75 0.54 0.24

DA-NRL-DB (FG) NRL 0.160
✿✿✿✿

-0.160
✿

0.35 0.58 0.70 0.31

DA-NRL-DB (AN) NRL 0.169
✿✿✿✿

-0.169
✿

0.29 0.72 0.61 0.24

DA-NRL-DB (FG) DB 0.001
✿✿✿✿

-0.001
✿

0.35 0.40 0.49 0.35

DA-NRL-DB (AN) DB 0.075
✿✿✿✿

-0.075
✿

0.23 0.64 0.35 0.22
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Figure 1. Distribution of the mass vertical flux at sources across the eight dust transport bins for the different

ensemble members in different colours,
✿✿✿✿✿

where
✿✿✿

the
✿✿✿

bin
✿✿✿✿

sizes
✿✿✿✿

from
✿✿✿

bin
✿

1
✿✿

to
✿✿✿

bin
✿✿

8
✿✿

go
✿✿✿✿

from
✿✿✿

0.1
✿✿

to
✿✿✿

10
✿✿✿

µm
✿✿✿✿

with

✿✿✿✿✿✿

division
✿✿✿✿✿✿✿

intervals
✿✿

at
✿✿✿✿

0.18,
✿✿✿

0.3,
✿✿✿✿

0.6,
✿✿

1,
✿✿✿✿

1.8,
✿✿

3,
✿✿✿

and
✿

6
✿✿✿✿

µm. The distribution derived from D’Almeida (1987),

and used in the standard forecast, is in thick
✿✿

the
✿✿✿✿✿✿

dashed red
✿✿✿

line, with horizontal bars indicating the standard

deviation of the noise used to create the perturbations.
✿✿✿

The
✿✿✿✿

mean
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿

perturbations
✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dash-dotted

✿✿✿

line.

Figure 2. Aerosol optical depth (left
✿✿

top) and its associated observation error (right
✿✿✿✿✿

bottom) for May 10 2007 for

the NRL MODIS Level 3 product after the application of a filter for dust-dominated conditions.
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Figure 3. Aerosol optical depth (left
✿✿

top) and its associated observation error (right
✿✿✿✿✿

bottom) for May 10 2007

for the MODIS Deep Blue Collection 6 Level 3 product after the application of a filter for dust-dominated

conditions.

Figure 4. Map
✿✿✿✿✿✿

Number
✿

of AERONET stations
✿✿✿✿

NRL
✿✿✿✿✿✿

MODIS
✿

and of the different regional domains used for

validation purposes.
✿✿✿✿✿✿

MODIS
✿✿✿✿✿

Deep
✿✿✿

Blue
✿✿✿✿✿

Level
✿

3
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿✿

assimilated
✿✿✿✿✿✿✿

between
✿✿✿

May
✿✿✿

and
✿✿✿✿✿✿

August
✿✿✿✿✿

2007.
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Figure 5.
✿✿✿✿

Map
✿✿

of
✿✿✿✿✿✿✿✿✿

AERONET
✿✿✿✿✿✿

stations
✿✿✿

and
✿✿

of
✿✿

the
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿

domains
✿✿✿✿

used
✿✿

for
✿✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿✿

purposes.
✿✿✿✿

The

✿✿✿✿✿✿

regional
✿✿✿✿✿✿

domains
✿✿✿

are
✿✿✿✿✿✿✿

indicated
✿✿✿✿

with
✿✿✿✿✿✿

different
✿✿✿✿✿✿

colours:
✿✿✿✿✿

Long
✿✿✿✿✿✿

Atlantic
✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿✿

(LongAtl)
✿✿

in
✿✿✿✿

blue,
✿✿✿✿

Short
✿✿✿✿✿✿✿

Atlantic

✿✿✿✿✿✿

transport
✿✿✿✿✿✿✿✿

(ShortAtl)
✿✿

in
✿✿✿

red,
✿✿✿✿✿✿✿✿

Sub-Sahel
✿✿✿✿✿✿✿✿

(SubSahel)
✿✿

in
✿✿✿✿✿✿

orange,
✿✿✿✿✿

Sahara
✿✿✿✿✿✿✿

(Sahara)
✿✿

in
✿✿✿✿✿

green,
✿✿✿✿✿✿✿

Extended
✿✿✿✿✿✿✿✿✿✿✿

Mediterranean

✿✿✿✿✿✿✿✿✿

(ExtMediter)
✿✿

in
✿✿✿✿✿✿

yellow,
✿✿✿✿✿✿

Middle
✿✿✿

East
✿✿✿✿✿✿✿✿✿✿✿

(MiddleEast)
✿✿

in
✿✿✿✿

pink,
✿✿✿✿✿✿

Central
✿✿✿

Asia
✿✿✿✿✿✿✿✿

(CenAsia)
✿✿

in
✿✿✿✿✿✿✿

granada,
✿✿✿

and
✿✿✿✿

East
✿✿✿✿

Asia

✿✿✿✿✿✿✿✿

(EastAsia)
✿

in
✿✿✿✿✿

cyan.
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Figure 6. Aerosol
✿✿✿✿

Dust optical depth averaged for the month of May 2007 for the Control (top left), ENS-free-

run (top right), DA-NRL (bottom
✿✿✿✿

centre
✿

left),
✿✿✿✿✿✿✿✿✿✿✿

DA-NRL-DB
✿✿✿✿✿

(centre
✿✿✿✿✿

right)
✿✿✿✿✿✿✿✿✿

experiment, and
✿✿✿

dust
✿✿✿✿✿

optical
✿✿✿✿✿

depth

✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿

the
✿✿✿✿✿✿✿✿

DA-NRL
✿✿✿✿✿✿

(bottom
✿✿✿✿

left), DA-NRL-DB (bottom right)
✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

ENS-free-run
✿

experiment.
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Figure 7. Coefficient of variation for the month of May 2007 for the ENS-free-run (left
✿✿

top),
✿✿✿✿✿✿✿✿

DA-NRL
✿✿✿✿✿✿

(centre)

and DA-NRL-DB (right
✿✿✿✿✿

bottom) experiment, when the ensemble is created perturbing the emitted mass vertical

flux for each dust bin and the threshold on the friction velocity generating dust horizontal flux.

Figure 8. Coefficient of variation for the month of May 2007 for the ENS-free-run (left) and DA-NRL-DB

(right) experiment, when the ensemble is created perturbing the emitted mass vertical flux for each dust bin.
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Figure 9. Binned scatter plots of the counts of the logarithm of assimilated observations and first-guess (left

plot) and analysis (right plot) for the DA-NRL experiment (top row) and DA-NRL-DB experiment (central and

bottom rows), calculated for May to August 2007. A logarithmic scale is used for the counts.
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Figure 10. Analysis mean
✿✿✿✿

Mean
✿✿✿✿

dust
✿✿✿✿

AOD
✿✿✿✿✿✿

analysis
✿

increments for May to August 2007 at 12 UTC for the

DA-NRL experiment (left) and for the DA-NRL-DB experiment (right).

35



Figure 11. Time-series of AOD values for May and August 2007 in La Parguera (top left), Dakar (top right),

Ilorin (centre left), Tamanrasset INM (centre right), Lecce University (bottom left), and Hamim (bottom right)

for Control (blue), DA-NRL (green), DA-NRL-DB (red) experiment,
✿✿

for
✿✿✿✿✿✿

MODIS
✿✿✿✿

AOD
✿✿✿✿✿

(NRL and
✿✿✿

DB;
✿✿✿✿✿✿✿

magenta

✿✿✿✿✿✿

circles),
✿✿✿

and for AERONET AOD in dust-dominated conditions (black triangles)
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

dust-dominated
✿✿✿✿✿✿✿✿

conditions.

✿✿✿✿✿✿

Analysis
✿✿✿✿✿

values
✿✿✿

are
✿✿✿✿

used
✿✿

for
✿✿✿

the
✿✿✿

data
✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿

experiments.
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Figure 12. Maps of validation statistics: BIAS, RMSE, CORR, FRGE for the Control (left), DA-NRL (centre)

and DA-NRL-DB (right) experiment calculated against AERONET AOD for a selection of stations providing

observations during the study period (May to August 2007). The size
✿✿✿✿

Maps
✿

of the circles is proportional to

✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

counts
✿✿✿

used
✿✿✿

for
✿✿✿✿✿✿✿

validation
✿✿✿

are
✿✿✿✿✿

shown
✿✿

in the number of the available samples
✿✿✿✿✿

bottom
✿✿✿✿

row.

Figure 13. BIAS, RMSE, CORR, FRGE and SD for the Control experiment, for the experiment assimilating

MODIS NRL observations (DA-NRL) and for the experiment assimilating MODIS NRL and MODIS Deep

Blue observations (DA-NRL-DB) calculated against AERONET observations for all the stations in Figure 5.

✿✿✿

The
✿✿✿

dust
✿✿✿✿✿

mean
✿✿✿✿

AOD
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

used
✿✿✿

for
✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿

during
✿✿

the
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿✿

period
✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿

reported.
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Figure 14. BIAS, RMSE, CORR, FRGE and SD for the Control experiment, the DA-NRL experiments and the

DA-NRL-DB experiment calculated against AERONET observations for groups of stations within the regional

domains in Figure 5.
✿✿✿

The
✿✿✿

dust
✿✿✿✿✿

mean
✿✿✿✿

AOD
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

used
✿✿✿

for
✿✿✿✿✿✿✿

validation
✿✿✿✿✿✿

during
✿✿

the
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿✿

period

✿

is
✿✿✿✿

also
✿✿✿✿✿✿

reported.
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Figure 15. BIAS, RMSE, CORR, FRGE and SD
✿✿✿✿✿

FRGE
✿

for the forecast at 12
✿✿

12, 36
✿

36, 60
✿✿

60, 84
✿✿

84
✿

and 108

✿✿✿

108 hours of the Control (blue) and AN-initialized (red) experiment, i.e. the experiment initialized with the

DA-NRL-DB analysis, calculated against AERONET observations (left) and against global satellite retrievals,

both NRL MODIS and MODIS Deep Blues, (right) filtered for dust-dominated conditions. The AERONET

stations are the ones in Figure 5.
✿✿✿

The
✿✿✿

dust
✿✿✿✿

mean
✿✿✿✿✿

AOD
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿

validate
✿✿✿

the
✿✿

12
✿✿✿✿

hour
✿✿✿✿✿✿

forecast

✿✿✿✿✿

during
✿✿

the
✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿✿

period
✿✿

is
✿✿✿

also
✿✿✿✿✿✿✿

reported.
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Figure 16. BIAS, RMSE, CORR, FRGE and SD for
✿✿

As
✿

the forecast at 12, 36, 60, 84 and 108 hours
✿✿✿✿

right

✿✿✿✿

panel of
✿✿✿✿✿

Figure
✿✿

15
✿✿✿

but
✿✿

for
✿

the Control (blue) and AN-initialized (red) experiment, i.e. the experiment initialized

with the DA-NRL-DB analysis, calculated in different regional domains against satellite retrievals (both NRL

MODIS and MODIS Deep Blue) filtered for dust-dominated conditions.
✿

of
✿✿✿✿✿✿

Figure
✿

5

✿

.
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