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This study focuses on two new aspects on inverse modelling of volcanic emissions. First, we derive an observation 9 

operator for satellite retrievals of plume height, and second, we solve the inverse problem using an algorithm based on the 10 

4D-Var data assimilation method. The approach is first tested in a twin experiment with simulated observations and further 11 

evaluated by assimilating IASI SO2 plume height and total column retrievals in a source term inversion for the 2010 eruption 12 

of Eyjafjallajökull. The inversion resulted in temporal and vertical reconstruction of the SO2 emissions during the 1-21 May, 13 

2010 with formal vertical and temporal resolutions of 500 m and 12 hours. 14 

The plume height observation operator is based on simultaneous assimilation of the plume height and total column 15 

retrievals. The plume height is taken to represent the vertical centre of mass, which is transformed into the first moment of 16 

mass (centre of mass times total mass). This makes the observation operator linear and simple to implement. The necessary 17 

modifications to the observation error covariance matrix are derived. 18 

Regularisation by truncated iteration is investigated as a simple and efficient regularisation method for the 4D-Var based 19 

inversion. In the twin experiments, the truncated iteration was found to perform similarly to the commonly used Tikhonov 20 

regularisation, which in turn is equivalent to a Gaussian a priori source term. However, the truncated iteration allows the 21 

level of regularisation to be determined a posteriori without repeating the inversion. 22 

In the twin experiments, assimilating the plume height retrievals resulted in 5-20% improvement in root mean squared 23 

error but simultaneously introduced a 10-20% low bias on the total emission depending on assumed emission profile. The 24 

results are consistent with those obtained with real data. For Eyjafjallajökull, the comparison between results with and 25 

without assimilation of plume height retrievals shows that the estimated injection height was mostly constrained by the 26 

inversion even using only total column retrievals. However, comparison with the profile observations from the CALIOP 27 

instrument showed that assimilating the plume height retrievals improved the vertical distribution during episodes when the 28 

estimated injection height was not otherwise not sufficiently constrained. The a posteriori source term for Eyjafjallajökull 29 
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consisted of 0.29 Tg (with total column plume height retrievals) or 0.33 Tg (with total column retrievals only) erupted SO2 30 

of which 95% was injected below 11 (12) km.  31 

�� �������	�
���32 

Sulphur dioxide (SO2) is one of the major gas-phase species released in volcanic eruptions. Large SO2 releases pose a 33 

hazard to aviation, decrease air quality, and as precursors to sulphate aerosols, have a potential impact on Earth’s radiative 34 

balance (Bernard and Rose, 1990; Robock, 2000; Schmidt et al., 2015). Volcanic SO2 plumes can be detected by satellite 35 

instruments measuring in either UV or IR wavelengths - however, reliably forecasting the atmospheric transport of volcanic 36 

plumes is hindered by the lack of in-situ measurements to characterise the emission fluxes of volcanic species (Carn et al., 37 

2009; Stohl et al., 2011; Zehner, 2012). 38 

While methods based purely on satellite retrievals (Theys et al., 2013 and references therein) exist for inferring the total 39 

SO2 flux for a given eruption, a successful prediction of volcanic tracers generally requires information on the vertical profile 40 

of emissions. An important technique for assessing both vertical and temporal distribution of the emission fluxes is provided 41 

by inverse dispersion modelling, first demonstrated for volcanic emissions by Eckhardt et al. (2008). 42 

Inverse modelling of volcanic emissions has been based on using total column retrievals of SO2 or volcanic ash together 43 

with a Lagrangian (Kristiansen et al., 2010; Stohl et al., 2011) or Eulerian (Boichu et al., 2013; Boichu and Clarisse, 2014) 44 

dispersion models. In addition, Flemming and Inness (2013) devised a trajectory based scheme to evaluate the vertical 45 

emission profile, which was used together with assimilation of SO2 retrievals with the IFS (Integrated Forecast System) 46 

weather prediction system.  The previous studies have demonstrated that the vertical distribution of emissions can be inferred 47 

from total column retrievals in presence of sufficient vertical wind shear. However, in the case of the Eyjafjallajökull 48 

eruption in 2010, both Boichu et al. (2013) and Flemming and Inness (2013) pointed out a lack of wind shear and a 49 

subsequent difficulty at estimating the vertical distribution of emissions. 50 

Retrievals of SO2 plume height have been performed with various satellite instruments (Carboni et al., 2012; Rix et al., 51 

2012). Nevertheless, only a few studies have incorporated these data into models. Wang et al. (2013) derived a three-52 

dimensional SO2 distribution from retrievals by the Ozone Monitoring Instrument (OMI), and used the distribution to 53 

initialize CTM simulations for the 2008 eruption of Kasatochi. Wilkins et al. (2015) used 1D-Var ash retrievals for 54 

initialising dispersion simulations. However, neither of the studies used plume height retrievals in inverse modelling of 55 

volcanic emissions. 56 

The first objective of the present paper is to assess the usefulness of assimilating SO2 plume height retrievals from the 57 

Infrared Atmospheric Sounding Interferometer (IASI) instrument in a source term inversion. Throughout this paper, the term 58 

plume height will refer to the vertical centre of mass, which is consistent with the IASI retrievals of this study. Following 59 

this definition of plume height, we introduce in Section 3.2 an observation operator for the vertical centre of mass.  60 
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Since the observation operator only depends on the centre of mass and column loading, the vertical profile is only partly 61 

constrained. However, in contrast to the previous studies, this approach makes no further assumptions about the shape or 62 

thickness of the SO2 layer. This could be advantageous, since volcanic ash or SO2 layers vary considerably in depth (Dacre 63 

et al., 2014) and can be emitted in multiple, overlapping layers (Kristiansen et al., 2010). Although the variability of the 64 

vertical profiles may introduce uncertainty into the retrieval of the plume height, by assimilating only the centre of mass, we 65 

avoid forcing the model into a prescribed vertical profile whose uncertainty may be difficult to quantify. In contrast, our 66 

approach makes full use of the retrieval error estimates provided with the IASI data for both column mass and plume height, 67 

including the estimated correlation between plume height and mass errors. 68 

The second objective of this paper is to explore the connection between the source term inversion and the 4D-Var data 69 

assimilation widely used in numerical weather prediction. Elbern et al. (2000) showed that the 4D-Var assimilation method 70 

(Le Dimet and Talagrand, 1986) can be easily extended into estimating emission fluxes with a chemistry transport model. 71 

Elbern et al. (2007) further evaluated the joint estimation of emission flux and airborne concentration as a strategy for 72 

improving air quality forecasts. However, in this study, the 4D-Var method is formulated to include only the emission 73 

forcing, which results in a least squares problem similar to that solved by many existing inversion algorithms. The iterative 74 

solution employed in 4D-Var favours a different regularisation approach, which is in Section 4 compared to a more classical 75 

regularisation technique. 76 

Finally, we test the variational inversion method and assimilation of plume height retrievals for estimating temporal and 77 

vertical distribution of SO2 emission during the 2010 eruption of Eyjafjallajökull. Results of the inversion, presented in 78 

Section 5, indicate that although the vertical distribution of emissions is mostly constrained by the total column retrievals 79 

and the meteorological conditions, assimilation of plume height retrievals results in more vertically concentrated emission 80 

profile. In particular, emissions above 8-10 km between 5 and 9 May 2010 are reduced substantially which is consistent with 81 

the observations of the eruption column height as well as the IASI retrievals. 82 
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The transport and removal of SO2 was evaluated using the dispersion model SILAM (System for integrated modelling of 85 

atmospheric composition; Sofiev et al., 2015, http://silam.fmi.fi) version 5.3. The model includes chemical removal of SO2 86 

as described by Sofiev (2000) with the OH climatology of Spivakovsky et al. (2000). The computations were driven by the 87 

ERA-Interim meteorological reanalysis (Dee et al., 2011) except for evaluating the simulated satellite retrievals described in 88 

Section 4, where operational ECMWF forecasts were used. 89 

SILAM includes a variational data assimilation module, which was previously used for assimilation of air quality 90 

monitoring data of SO2 by Vira and Sofiev (2012). The same 4D-Var implementation, including the adjoint codes, is used in 91 
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this study, but instead of estimating a refinement for a regional emission inventory, we seek to reconstruct the emissions for 92 

a single volcanic eruption as a function of time and injection height. 93 

The model was configured for a domain covering 50°E to 30°W and 30°N to 80°N. Horizontal resolution of 0.5° was 94 

used for the inversion, while the a posteriori simulations were run with a higher 0.25° resolution.  The vertical grid consists 95 

of 34 terrain-following z-levels with a 500 m resolution at the top of the domain increasing to 50 m near the surface. 96 

���� ������	��
���
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IASI is an infrared Fourier transform interferometer that measures in the spectral range 645–2760 cm-1 with spectral 98 

sampling of 0.25 cm-1 (apodized spectral resolution of 0.5 cm-1) and has global coverage every 12h. The lev1b dataset from 99 

EUMETSAT/CEDA archive is used in this study. 100 

The algorithm and the IASI SO2 dataset (column amount and altitude) are explained in more detail by Carboni et al. 101 

(2012). The same algorithm has been applied to other volcanic eruptions and successfully compared with other datasets 102 

(Carboni et al., 2016; Fromm et al., 2014; Koukouli et al., 2014; Schmidt et al., 2015; Spinetti et al., 2014). 103 

The main points of the retrieval scheme are: 104 

Retrievals are performed for the pixels that were identified by the SO2 detection scheme (Walker et al 2011, 2012). 105 

All the channels between 1100-1200 and 1300-1410 cm-1 are used in the iterative optimal estimation retrieval scheme to 106 

obtain SO2 column amount and altitude of the plume (in pressure, under the assumption that the vertical concentration of 107 

SO2 follows a Gaussian distribution) together with the surface temperature. The scheme determines the column amount and 108 

altitude (mean of a Gaussian profile) of the SO2 plume with high precision (up to 0.3 DU error in SO2 amount if the plume is 109 

near the tropopause), and it is well suited for plumes in lower troposphere. 110 

The IASI SO2 retrieval is not affected by underlying cloud. If the SO2 is within or below an ash or cloud layer its signal 111 

will be masked and the retrieval will underestimate the SO2 amount. In the case of ash this is discernible a posteriori by the 112 

value of the cost function. The altitude retrieved for the Eyjafjallajökull eruption plume (using the same dataset as in this 113 

paper) in the presence of underlying cloud is consistent with the CALIPSO vertical backscatter profile (Carboni et al 2016, 114 

Figs. 1,2,3). 115 

A comprehensive error budget for every pixel is included in the retrieval. This is derived from an error covariance matrix 116 

S� that is based on the SO2-free climatology of the differences between the IASI and forward modelled spectra. 117 

Note that the error covariance, S�, is defined to represent the effects of atmospheric variability not represented in the 118 

forward model, as well as instrument noise. This includes the effects of cloud and trace-gases which are not explicitly 119 

modelled. The matrix is constructed from differences between forward model calculations (for clear-sky) and actual IASI 120 

observations for wide range of conditions, when we are confident that negligible amounts of SO2 are present. It follows that 121 

a rigorous error propagation, including the incorporation of forward model and forward model parameter error, is built into 122 

the system, providing quality control and error estimates on the retrieved state. The retrieval state error covariance matrix, 123 

used for the assimilation in this work, is directly provided as output of the retrieval pixel by pixel.  124 
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Section 5 presents comparisons of the a posteriori simulation and the source term with the IASI plume height and total 126 

column observations. However, additional datasets required used for evaluating vertical structure of the inversion results. 127 

Due to the scarcity of vertically resolved SO2 data, the comparison is based on aerosol observations. The vertical profiles of 128 

the emitted plumes are compared with the backscatter profiles by a satellite-borne lidar, and the SO2 injection height is 129 

compared to plume top time series obtained with a C-band weather radar. The potentially different emission and transport of 130 

volcanic ash and SO2 introduces some ambiguity to the comparisons; however, as found in Section 5, the different data 131 

sources together with the IASI retrievals nevertheless form a fairly coherent picture. This supports the conclusion of Thomas 132 

and Prata (2011), who found that ash and SO2 were mostly collocated with each other during the Eyjafjallajökull eruption. 133 

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument (Winker et al., 2009) on board the 134 

CALIPSO satellite is near-nadir viewing, two-wavelength, polarisation-sensitive lidar. The comparisons in this study are 135 

shown for the 532 nm total backscatter. Hence, two main challenges are involved in using lidar data for evaluation of 136 

simulated SO2 plumes. First, the comparison relies on the assumption that the SO2 plume is collocated with an aerosol plume 137 

consisting either of primary particles (mainly volcanic ash) emitted in the eruption, or secondary particles (mainly sulphates) 138 

formed during the transport. Second, the volcanic plumes need to be distinguished from water or ice clouds. Although the 139 

vertical feature mask available with the CALIOP products provides a classification of aerosol and cloud types, as pointed out 140 

Liu et al. (2009) and Winker et al. (2012), thick volcanic ash plumes are frequently misclassified as ice clouds by the 141 

standard algorithm.  142 

The comparisons shown in Section 5 and Appendix A consist of CALIOP overpasses intersecting the simulated 143 

Eyjafjallajökull plumes. Cases where the CALIOP track is parallel to the plume are omitted, because this makes the profiles 144 

extracted from the model very sensitive to horizontal displacement errors. Three of the CALIOP profiles have been 145 

collocated with the IASI retrievals under the criteria of less than 2 h time difference and less than 150 km horizontal 146 

displacement. The three collocated CALIOP tracks were previously analysed for SO2 by Carboni et al. (2016) along with  147 

two additional ones for May 14 and 16; these tracks only intersected the edge of the SO2 plume and did not offer a useful 148 

comparison with the model. 149 

The estimated SO2 injection height is compared to the observations of plume top described by Arason et al. (2011). The 150 

dataset includes two plume top time series, one estimated from a C-band weather radar located at the Keflavik airport 155 151 

km from the volcano, and one estimated from imagery taken with a web camera located 34 km from the volcano. The 5-152 

minute radar data and the hourly web camera data are averaged in time to facilitate the comparison with the estimated 153 

emission. The radar data include values which indicate presence of a plume below the lowest observed height, and in order 154 

to maintain consistency with the published 6-hourly time series (Arason et al., 2011; Petersen et al., 2012a), and to avoid a 155 

high bias in the averaged values, the altitude of 2.5 km above sea level is assigned to these points.  156 
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Both datasets represent the highest altitude with measurable signal from the volcanic plume, and thus, the observed plume 157 

height might differ from the midpoint of the emitted layer. The radar data are consequently compared with 80th and 95th 158 

percentiles (altitudes with 80 or 95 % mass emitted below) of the emission. 159 

���� �����	
����
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The inversion algorithm is evaluated with two sets of experiments based on the eruption of Eyjafjallajökull in 2010, 161 

described in detail by Gudmundsson et al. (2012). The experiments covered the time between 1 and 21 May, 2010, which as 162 

shown by Flemming and Inness (2013) included the most significant SO2 releases. 163 

The observation operator and the variational inversion technique were first evaluated in experiments with synthetic data 164 

(Section 4), where the simulated observations mimicking the IASI retrievals are extracted from a model simulation. The 165 

simulations are repeated for several assumed artificial source terms. The synthetic experiments evaluate the impact of 166 

assimilating plume height retrievals in addition to total columns, and additionally compare two options for regularising the 167 

inverse problem.  168 

The IASI data were subsequently assimilated to invert for the SO2 emissions in the Eyjafjallajökull eruption. The 169 

inversion was performed both with and without assimilation of the plume height retrievals keeping the setups otherwise 170 

identical.  171 

In all inversion experiments, the emission flux density (kg m-1 s-1) was estimated for each model level in steps of 12 172 

hours. The model setup used in the synthetic experiments was otherwise identical to that used with the IASI data, but a lower 173 

vertical resolution of 1 km was used to reduce the computational cost.  174 

�� �		
�
���
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The forward problem for volcanic tracer transport is defined by the advection-diffusion equation: given the emission 176 

forcing � , solve  177 

(1) ( ) ( ) ( , ) ( , , ),
�

��� ��� � � �
�

�
� � � � � � � � � �

�
�   178 

where �  is the tracer concentration, �  is the wind vector, �  is the turbulent diffusivity tensor, and ( , , )� � � �  denotes the 179 

chemical and other sinks, which in this study include the wet and dry deposition of SO2 and its chemical conversion to SO4. 180 

���� ���
��
�����	�����������
����	
���181 

The inverse problem discussed in this paper is to determine the forcing � , given a set of observations depending on � . We 182 

assume that Eq. (1) has been discretised, and following the common notation in data assimilation literature, we denote the 183 

tracer concentrations, collectively for all time steps, with the state vector 
  . The state vector is related to the unknown 184 
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parameter vector �  by the model operator� , and to the observations � by the observation operator �  as ( )� ���� � �  , 185 

where �� denotes the true state. The random vector �  includes the effect of observation errors as well as the possible 186 

representativeness or model errors associated with � . 187 

If the errors follow a multivariate normal distribution with covariance matrix � , then a solution to the inverse dispersion 188 

problem can be sought by maximising the likelihood function, which is equivalent to minimising the cost function 189 

(2) 1( ) ( ( )) ( (
2

)
1

)�
� �

�
� � � � � � � �� � , 190 

where ( )�� ��  given the observational data � . 191 

The cost function assumes that the airborne concentrations, which comprise the state vector � , are completely determined 192 

by the emission. Therefore, contrary to chemical data assimilation studies such as Elbern et al. (2007), no term 193 

corresponding to the concentration in the beginning of assimilation is included. This is reasonable, since the inversion is 194 

performed in a single step, and the state and observation vectors in Eq. (2) cover the whole simulated period. The total SO2 195 

loading was low in the beginning of the assimilation due to the inactive phase of eruption and initial state was therefore 196 

unlikely to affect the inversion for the emission forcing. 197 

Model errors are not explicitly included in the cost function, as the relation between concentrations � and the emission �  198 

is taken as a strong constraint. Arranging the inversion into a sequence of shorter assimilation windows with a background 199 

term for the initial state would relax this constraint at the boundaries of assimilation windows. However, this would still not 200 

allow for model errors arising within the assimilation window, and problematically, the emitted mass would no longer be 201 

conserved between the assimilation windows. Consequently, we use a single assimilation window and adopt the approach of 202 

previous studies (Seibert et al., 2011; Stohl et al., 2011), where the model uncertainty is incorporated to the observation error 203 

covariance matrix � . The form of � is explained in more detail in Sections 3.2 and 3.3. 204 

If the model and observation operators are linear, represented by matrices � and � , then (2) becomes a linear least-205 

squares problem. For volcanic eruptions with a known location, the emission vector �  is zero almost everywhere, which 206 

makes it feasible to evaluate the matrix ��  and solve (2) algebraically. This is the basis for inversion methods of Boichu et 207 

al. (2013), Eckhardt et al. (2008) and Lu et al. (2016). 208 

As an alternative to the algebraic solution, the minimisation problem (2) can be solved with gradient-based, iterative 209 

algorithms, which avoids evaluating the matrix �� . In this study, the cost function is minimized using the L-BFGS-B (the 210 

limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm with bound constraints) algorithm of Byrd et al. (1995) which 211 

allows constraining the solution to non-negative values. Evaluating the gradient requires solving the adjoint problem for Eq. 212 

(1). The iteration is continued until a stopping criterion is satisfied, e.g. until the norm of the gradient is reduced by a 213 

prescribed factor. However, in Section 4 we will discuss truncating the iteration before formal convergence in order to 214 

control the regularization. 215 
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216 

Given the tracer concentration ( , , )� � � �  in three dimensions, the observation operator for column integrated mass ���  is 217 

given by  218 

(3) 
1

( , , )
�

��
�

��
�

� � � �� � � � ��   219 

where � ,� �� �  and ��  are the gridpoint coordinates�and ��  denotes the thickness (in meters) of the �th model level. The layer 220 

concentrations are often weighted with an averaging kernel (Eskes and Boersma, 2003) to account for the vertically varying 221 

sensitivity of the satellite retrieval. In this work, weighting is not applied because the IASI retrievals treat the plume height 222 

explicitly. 223 

In the retrievals, the plume height is represented by its centre of mass 224 

(4) ,
1

1
.

�

� �
�

�� �� � � ���
���

��	 �
�

  225 

It would be possible to develop an observation operator for ��	 , however, the operator would be nonlinear and only defined 226 

for nonzero columns. These problems can be overcome by replacing the centre of mass with the first moment of mass ���	 . 227 

Then, the observations consist of pairs ,( , )�� �� �� ��	� �  given by 228 

(5) 
,

1

1

�

�

� �
� �� �
� ��� �� � � �� �
� �
� �

�

�

�

� ���
�
�

��

� � �
�� ��

��
�

��

� �
�

�
� �

	
�

 , 229 

where ��  is the height of the �th model level and 
 and � refer to the horizontal coordinates. Transforming the observations of 230 

��	  into ���	  changes the magnitudes of observation errors, and introduces a correlation between the observation 231 

components �  and ���	 . However, this effect can be evaluated and included into the observation operator. 232 

The mean and standard deviation of �  and ��	  are denoted as �� ,��  and  �� ,� �  respectively.  Assuming that the 233 

errors of �  and ��	  are normally distributed, it can be shown that the variance of first moment equals 234 

(6) 

2 2 2 2 2 2

2

Var[

2 Cov[ , ]

+Cov[ , ] .

] � � � � � �

� �

	� 	

	
�� � � � � � �

� � ��

��

�	

� 	

� 	

   235 

Under similar assumptions, the covariance of �  and ���	  becomes 236 

(7) 2Cov[ , Cov[ ,] ].� � �� 	�� � � � ��� �	 � 	   237 
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Finally, the expectation of ����  is shifted due to the correlation between retrievals of �  and ��� : 238 

(8) E[ ] Cov[ , ]� �� ��� � � ���� � �   239 

The retrieval errors of different pixels are assumed to be uncorrelated. The observation error covariance matrix � is 240 

therefore block-diagonal, and its entries can be evaluated using Eqs. (6) and (7) from the retrieval error estimates  �� ,� �241 

and Cov[ , ]��� � , which are all included in dataset used in this study. However, even if the standard deviations are known 242 

accurately, the means ��  and � �  need to be substituted with the observed values of �  and ��� . The impact of this 243 

approximation is evaluated numerically in Section 4. 244 

Assimilation schemes commonly assume uncorrelated and unbiased observation errors. A non-diagonal � can be 245 

introduced with a transformation of variables: define 246 

(9) ( )��

�

� ��

� � �

� � �

�

�

�

� � ��

  247 

where �
� �  is the Cholesky factorisation of the inverse observation error covariance matrix 1�

�  and � �0,Cov[ , ]� ��� ��248 

corrects for the bias according to Eq. (8). Then, substituting the transformations of Eq. (9) into the cost function (2) shows 249 

that assimilation of �  with the original �  is equivalent to assimilation of �� using the transformed observation operator ��  250 

with unit matrix in place of �. 251 

The above formulas can be implemented as a preprocessing step for the observations. In summary, the procedure is then 252 

as follows: 253 

1. For each available IASI pixel � , evaluate the tuple , ,( , Cov[ , )]���� � � � �� � � �� �� �� ��� �  and the corresponding 254 

2x2 covariance matrix �� . 255 

2. Factorise 1�
�

�

�
� ��� � and transform the observations according to Eq. (9). 256 

3. Store the transformed observations � �� with their pixel-specific vertical weighting functions given by rows of the 257 

matrix ��
�� �� . 258 

After the transformation, the observations are handled identically to regular column observations with a vertical weighting 259 

function. 260 

���� 	�
��
�����������
�261 

The IASI retrievals used in this study include pixel-specific error estimates for total column and plume height retrievals. 262 

The estimates are derived statistically (Carboni et al., 2012) from differences between the transmission spectra computed by 263 

a forward model and those observed by IASI. Together with estimates for the correlation between plume height and total 264 

column retrieval errors, this provides the necessary input for equations (6) and (7).  265 
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The retrieval error estimates are only provided for pixels with positive SO2 detection. For the non-SO2 pixels, which are 266 

assimilated as zero values, a different estimate is used, based on the detection limits estimated by Walker et al. (2012). The 267 

detection limit was translated into a standard deviation of a Gaussian random variable assuming, conservatively, a 268 

probability of 0.95 for a correct detection.  269 

However, performing the inversions with � defined only by retrieval errors resulted in poor a posteriori agreement with 270 

the IASI data, which suggested that the retrieval errors are not sufficient to describe the discrepancy between the simulated 271 

and observed values. As will be shown with the synthetic experiments, the impact of model uncertainty is significant 272 

compared to the retrieval errors, and it needs to be taken into account. The problem of model errors affecting the inversion is 273 

discussed by Boichu et al. (2013), who found the impact to depend strongly on treatment of zero-value observations, and 274 

consequently chose to keep only every tenth zero-valued observation. 275 

In this study, the model errors are included by modifying the observation error covariance matrix, which is set to 276 

� ���� ������ � � , where ������  is constant, diagonal and determined experimentally. The model error standard deviation for 277 

total column observations is set to 2 DU for both the experiments using synthetic data (Section 4) and for the inversion for 278 

Eyjafjallajökull (Section 5), while the model error for the plume height retrievals was set to 2 km for the synthetic 279 

experiments and 1 km for the Eyjafjallajökull inversion. Reducing the plume height standard deviation to 1 km in the 280 

synthetic experiments resulted in large negative bias in the total emission, while increasing the standard deviation to 2 km 281 

did not significantly change the total emission in the inversion for Eyjafjallajökull. 282 

The model errors for plume height and total column are assumed uncorrelated and independent of the observation errors. 283 

However, their effect is propagated to the covariance matrix for first moment according to Eq. (6) . The actual model errors 284 

evolve dynamically and are likely to be variable and correlated in space and between the plume height and total column 285 

components; however, including these effects appears difficult in the current inversion approach. 286 

���� �����	
��	
����287 

The least squares problem (2) has a unique solution only if the matrix ��  is of full (numerical) rank. Furthermore, if 288 

��  is close to singular, the problem remains ill-posed, which results in a noisy solution. Consequently, some form of 289 

regularisation has been employed in all previous works based on the least-squares approach. 290 

A common option is the Tikhonov regularisation (Tikhonov, 1963; Engl et al., 2000), which introduces a penalty term 291 

into the cost function (2), which in the simplest form becomes 292 

(10) 1 2 2
,

,

( ) ( ) ( )
1

||
2

�
�

� � � � ��
� �

� �
�� �� � � �� � � ��   293 

where the summation is over levels ��and timesteps ���The weights ��  in Eq. (10) are set equal to the thickness of each 294 

model layer; this makes the penalty term consistent with its continuous counterpart 2( , )� � � 	 
	
� , which in turn ensures that 295 

the regularisation term does not depend on the vertical discretisation.  296 
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The penalty term can be modified to include a non-zero a priori source term. However, this approach is not taken in the 297 

present work. Instead, we aim to choose the level of regularisation optimally, so as to avoid excessive bias in the regularised 298 

solution. The need for regularisation depends on the coverage of observations, accuracy of the forward model as well as on 299 

the meteorological conditions controlling the dispersion. Thus, the regularisation parameter 2
�  cannot be chosen a priori.  300 

In this work,  a criterion known as the L-curve (Hansen, 1992) is used for determining the amount of regularisation. In the 301 

L-curve approach, the inversion is performed with various values of 2
� , and the residual �� ��  is plotted as a function of 302 

the solution norm � . For ill-posed inverse problems, the curve is typically L-shaped. The residual initially reduces quickly 303 

as the regularization is relaxed, however, for some value of 2
� , the curve flattens and reducing the regularization further 304 

only marginally improves the fit. This point, where L-curve reaches its maximum curvature, is taken to represent the optimal 305 

regularisation. In the present study, the L-curve is evaluated without the frequently used logarithmic transformation. 306 

The main advantage of the L-curve method is that it does not rely on a priori estimates for the observation error. This is 307 

useful, since in practice the discrepancy between simulated observations and the data is also affected by model errors, which 308 

are poorly known. The L-curve was, in effect, used in inverse modelling of volcanic SO2 also by Boichu et al. (2013). 309 

Changing the regularisation parameter requires the minimisation to be started over, which is costly in the variational 310 

inversion scheme where each iteration requires a model integration. However, as noted by Fleming (1990) and Santos 311 

(1996), the iteration itself forms a sequence of solutions with decreasing regularisation.  Thus, instead of minimising the 312 

regularised cost function (10), we iterate to minimise the original cost function (2), and truncate the iteration according to the 313 

L-curve criterion. This approach, known as regularisation by truncated iteration (Kaipio and Somersalo, 2006), or iterative 314 

regularisation (Hansen, 2010), provides a computationally efficient method to regularise large-scale inverse problems. In the 315 

following section, we show experimentally that the truncated iteration results in similar solutions for the source term 316 

inversion as the more common Tikhonov regularisation.  317 

�� ��������	
��
�
����	
��
�����
��318 

Regularisation by truncated iteration has been studied in detail especially for Krylov subspace based algorithms (Calvetti 319 

et al., 2002; Fleming, 1990; Kilmer and O’Leary, 2001). The effect of truncated iteration on quasi-Newton minimisation 320 

methods, such as the L-BFGS-B algorithm used in this work, has been studied less extensively. To evaluate the truncated 321 

iteration in comparison to Tikhonov regularisation for inverse modelling of volcanic emissions, we performed an experiment 322 

with synthetic observations extracted from forward model simulations. In addition to the comparison of regularisation 323 

methods, the synthetic experiments enable us to evaluate robustness of the L-curve method and to assess the impact of 324 

assimilation of plume height retrievals, and to quantify how model errors affect the source term estimate.  325 

For the sake of computational convenience, the experiments in this section are not performed using the variational method 326 

described in Section 3.1, but instead the forward sensitivity matrix ���is evaluated by running a separate model simulation 327 
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for each component of the emission vector � . The sensitivity matrix is subsequently used for evaluating the cost functions 328 

(Eq. (2) for truncated iteration, Eq. (10) for Tikhonov regularisation) and the respective gradients required by the L-BFGS-B 329 

minimisation code. Evaluating the sensitivity matrix also provided an opportunity to numerically confirm the equivalence of 330 

the matrix-based and variational inversion methods. 331 

The experiments with synthetic data were set up for the same time (1 to 21 May, 2010) as the inversion for 332 

Eyjafjallajökull. The synthetic observations were evaluated by running forward simulations with a set of artificial source 333 

profiles (cases A to D) shown in the leftmost column of Figure 1. The synthetic observational data (total columns and first 334 

moments as explained in Section 3.2) correspond to the locations and times covered by the IASI overpasses during the 335 

simulated period. 336 

The artificial source terms A and B are defined arbitrarily, while cases C and D are realisations of a stochastic process 337 

where the total flux (kg/s) is given by a lognormal, temporally correlated random variable and the eruption height follows the 338 

relation of Mastin et al. (2009). At each time, a piecewise constant vertical profile is assumed with a transition at 75% of 339 

height. The emission rate is distributed evenly between the two sections. 340 

The simulations with artificial source terms were driven by the meteorological data valid for the simulated period. Two 341 

sets of meteorological input were used: the synthetic observations were generated using the operational ECMWF forecast 342 

fields, but to simulate the effect of model errors, the sensitivity matrix used in the inversions was evaluated using the ERA-343 

Interim as the meteorological driver. Although changing the meteorological driver does not cover all sources of model error, 344 

we expect the resulting perturbation to have statistical properties similar to the real model uncertainty. 345 

The effect of retrieval errors was simulated by perturbing the extracted (simulated) observations with additive Gaussian 346 

noise. In order to perturb the simulated plume height retrievals, the unperturbed simulated first moments and total columns 347 

were first converted back to the centre of mass and total column for the pixels with column density higher than 0.2 DU in the 348 

forward run. Then, both the simulated centre of mass and the total column were perturbed and transformed back to the 349 

(perturbed) total columns and first moments. The total columns were perturbed with standard deviation equal to 0.1 DU + 10 350 

% of the true value; the centres of mass were perturbed with a constant standard deviation of 1 km. A negative correlation 351 

coefficient of -0.9 was assumed between the perturbations to the total column and centre of mass. 352 

The error covariance matrix used in the inversion was supplemented with 2 DU and 2 km “model error” as described in 353 

Section 3.3. For the inversions using simulated plume height retrievals, the observation error covariance matrices were 354 

transformed according to Eqs.(6) –(8) using the perturbed centre of mass and total column values for �� and �� . 355 

The residual and solution norms, which define the L-curves, are evaluated consistently to the penalized cost function (10): 356 

(11) 
� � � �1

2

,
,| |

�� � � �

� �

�

� �
� �

�� �

�� � �� � � �� �

�
  357 
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where �  denotes the emission, �� ��  and ��  is the thickness of the �th model layer. To evaluate the L-curve for 358 

Tikhonov-regularisation, the parameter 2
�  was incremented in discrete steps given by 2 710 2�

�� � �
� for 0,1,2,...��  . The L-359 

BFGS-B minimization method with non-negativity constraint was used for both Tikhonov regularisation and the truncated 360 

iteration; in the case of Tikhonov regularisation, the iteration was continued for each 2
��  either until convergence or for 361 

maximum of 50 iterations. A zero-valued solution was always used as the first guess in the iteration. With the truncated 362 

iteration, the weights �� , required by Eqs. (10) and (11), are not explicitly included in the cost function. Instead, the same 363 

effect is achieved by transforming the parameter vector as 1/2
, ,
� � �� � � �� � � .  364 

The point where the L-curve flattens, which is taken as the final solution, was determined numerically. First, the points 365 

� �, �� �� �  are sorted according to increasing � . Then, the points where the residual increases are removed, and finally, 366 

the optimal point is chosen using the “triangle” algorithm of Castellanos et al. (2002). 367 

Figure 1 presents the inversion results using Tikhonov regularisation with total column observations, truncated iteration 368 

with total column observations, and truncated iteration with total column and plume height observations. Regardless of the 369 

assumed source term or inversion method, the emission timing is well captured within the 12 h resolution. The overall 370 

vertical profiles are also recovered, however, spurious features are present especially in cases B and C.  371 

For comparison, Figure 2 presents the solution corresponding to the case B in Figure 1 but evaluated without model errors 372 

– that is, using the same sensitivity matrix ��  for both evaluating the observations and performing the inversion. In this 373 

case, regularisation was not needed, and the true solution was recovered almost perfectly despite the noisy observations. 374 

Thus, the noise present in the estimated solutions in Figure 1 is mainly due to model error, which affects the elements of 375 

matrix � . All other results presented in this section are obtained in presence of model errors. 376 

Numerical evaluation of the inversion results in terms of RMSE and relative bias is presented in Table 1. The scores are 377 

evaluated for both truncated iteration and Tikhonov regularisation, each with and without plume height observations. 378 

Furthermore, two numbers are given for each case: the optimal value, corresponding to the regularisation (for Tikhonov, the 379 

value of 2
� , for truncated iteration, the iteration number) with lowest RMSE, and the L-curve value corresponding to the 380 

choice of regularisation as determined from the L-curve explained above. Clearly, the regularisation with optimal RMSE is 381 

not necessarily optimal with respect to bias. 382 

For all cases, the optimally truncated iteration had lower RMSE than the optimally tuned Tikhonov regularisation. 383 

However, this advantage was not always realised when the truncation was determined from the L-curves, which are shown in 384 

Figs. 3 and 4. For the Tikhonov regularisation, the L-curve solution was generally closer to the optimal. The difference is 385 

caused by differing features of the L-curves for the two regularisation methods: for the Tikhonov regularisation, the L-curve 386 

forms a convex graph varying smoothly with 2
� , while the curves formed by the L-BFGS-B iterates are neither smooth nor 387 

even monotonous. Although points where the residual increases are omitted from the search, points with a locally large 388 
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curvature remain in the curve, and such points are responsible for the under-regularised L-curve solutions in cases A and D 389 

when only total column was assimilated.  390 

In Figs. 3 and 4, the root mean squared error (RMSE) of the solution is shown next to each L-curve as a function of the 391 

regularisation parameter. As expected, the RMSE initially drops as the regularisation is relaxed, reaches a minimum, and 392 

eventually increases as the solution becomes contaminated by noise. This behaviour was especially clear when only total 393 

column observations were assimilated. When also centres of mass were assimilated, the minima in RMSE become weaker, 394 

and the RMSE with maximum number of iterations was only slightly higher than optimal. Thus, assimilating the centres of 395 

mass had the unintended but potentially useful side effect of making the inversion less sensitive to under-regularisation. 396 

Since the regularised cost function (10) favours solutions with a small squared norm, the inversion is expected to 397 

underestimate the true emission. If only total column observations are used, the underestimation remains small, being 5 – 398 

10% for the L-curve solutions with truncated iteration, and up to 15 % for the corresponding Tikhonov regularised solutions. 399 

However, when the plume height observations were included, the negative biases increased to 15-25% even when using 400 

truncated iteration.   401 

Magnitude of the negative bias turned out to be sensitive to the assumed model uncertainty as described by the covariance 402 

matrix ����  . Reducing the standard deviation for plume height errors to 1 km resulted in negative biases between 25 and 403 

35%. As a further sensitivity test, we evaluated the effect of approximating the true values for total column and plume height 404 

with the respective observed values when transforming the observation error covariance matrix, as explained in Section 3.2. 405 

Using, unrealistically, the true values in the inversion, the relative biases were reduced to 16-21%. The RMSE was reduced 406 

by up to ~15%. It can be noted that none of the tested setups describe an observation error covariance matrix that would 407 

perfectly match the perturbations applied the simulated observations, since the model errors, simulated by using a different 408 

meteorological driver, are not well described by additive, white noise. Taking the cross-correlations and spatial variation of 409 

model errors into account might lead into different optimal ���� .  410 

While the experiments in this section were performed by pre-evaluating the matrix �� , in 4D-Var, the multiplications 411 

by ��  and its transpose are replaced by forward and adjoint model evaluations. Although the approaches are formally 412 

equivalent, this change results in a slightly different sequence of iterations from which the L-curve is evaluated. To 413 

investigate this difference, we performed the inversion using the real IASI data using both approaches. The two solutions are 414 

shown in Figure 5. The total released mass differs by less than 1% between the solutions, and the emission patterns are 415 

qualitatively similar. The differences for individual values, although larger, appear small compared to the inversion errors. 416 

In summary, the experiment with synthetic data showed that the truncated iteration resulted in solutions similar to those 417 

obtained with the more common Tikhonov regularisation. This makes the truncated iteration, in combination with the L-418 

curve, an attractive option for regularising the variational source term inversion. On the other hand, no regularisation was 419 

needed in absence of model error which indicates that the need for regularisation is likely to also depend on quality of the 420 
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forward model. This emphasizes the need for a robust method to determine the appropriate regularisation according to the 421 

situation at hand. 422 

�� �������	�
�����
�
�	�
����������������
423 

Optimising the source term following the regularisation strategy (truncated iteration) described in Section 3.4 results in 424 

satellite-derived estimates on the temporal and vertical emission profiles, as well as on the total emitted amount. The 425 

solutions presented here correspond to iterates chosen from the L-curve using the algorithm described in Section 3.4. For 426 

assimilation of column mass only, the 9th iterate was chosen; with column mass and plume height assimilation, the 13th 427 

iterate was chosen. Similarly to the synthetic experiments, the initial iterate was a zero solution. The L-curves are shown in 428 

the supplementary information. 429 

Figure 6 shows the temporal and vertical distribution of the SO2 emission obtained both with and without assimilation of 430 

plume height. The plume height time series estimated from radar and camera observations (Petersen et al., 2012b) are plotted 431 

on top of the emission distributions. Both the camera and radar observations represent the top of the visible plume, and even 432 

if the visible plume does not necessarily coincide with the SO2 plume, the plume height observations provide an indication of 433 

the eruption activity.  434 

Figure 7shows the vertical profile of emissions integrated over the whole period. The bulk of emissions are between 2 and 435 

8 km even if only column density is assimilated. Assimilating the plume height retrievals further decreases the fraction of 436 

emissions above 8 km. When the plume height is assimilated, about 85% of total emission is estimated below 8 km and 437 

about 95% below 11 km. Without assimilation of plume heights, the 95% level raises to 12 km. 438 

The strongest emission occurred during 6th May. However, the vertical distribution of the peak depends on whether the 439 

plume height is assimilated. While the maximum occurs at 5-6 km, if plume height is not assimilated, secondary maxima 440 

appear at 11 km, reaching 13 km on 9th May. If plume height retrievals are assimilated, the emission above about 8 km is 441 

strongly suppressed. Similarly, on 18th May, the isolated emissions at 10 and 15 km are largely removed when the plume 442 

height is assimilated.  443 

A more quantitative view on the effect of assimilating the plume height retrievals is given by Figure 8, which compares 444 

the estimated centre of mass of the SO2 emission with the retrieved plume heights. The plume heights are shown as averages 445 

within both 50 and 500 km radius from the volcano. The averages over wider area have better temporal coverage and they 446 

are likely to be less affected by unresolved temporal or spatial variations in the plume height. The retrievals with estimated 447 

error larger than 5 km are excluded from the averaging (although used in assimilation). 448 

In addition, Figure 8 includes radar and camera observations of the plume top which are compared with the 80th and 95th 449 

percentiles of the emission. The 95th percentile, although formally more representative of the top of emissions, shows very 450 

large fluctuations compared to both observations and the 80th percentile, which suggests that the highest percentiles might 451 

not be a robust way to characterise the plume top in the inversion results.  452 
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Over the whole period, the inversion results show a larger variability of injection height in comparison to both IASI and 453 

the radar or camera time series. Between May 4 and 5 and later May 10 and 17, the average IASI retrievals and the emission 454 

centre of mass agree mostly within 1-2 km, as do the radar observations with the 80th percentile of emission. An exception is 455 

the evening of May 11 when the injection height appears overestimated, however, the total emission rate was low at that 456 

time. Assimilation of plume height retrievals had little impact on the injection height during these times. 457 

Between May 6 and 10, the injection height is overestimated in comparison with both IASI and radar observations. 458 

Assimilating the plume height retrievals improves the comparison, but the injection height remains 2-5 km too high 459 

compared to the averaged IASI retrievals. A similar overestimation occurs on May 17 and 18. Assimilating the plume height 460 

again reduces the overestimation significantly on those days, however, both the centre of mass and the percentiles remain 461 

overestimated. 462 

The total released mass of SO2 is 0.33 Tg when the plume height is not assimilated and 0.29 Tg when the plume height is 463 

assimilated. Figure 8d, which depicts the emission flux as a function of time, shows that while the largest difference in 464 

emission rate is during the peaks of 6th May, the assimilation of plume heights tends to decrease the emission rate 465 

throughout the eruption. 466 

The SO2 column densities simulated a posteriori are shown for 5-7 May in Figure 9 along with the corresponding IASI 467 

retrievals. The overall patterns are well reproduced, although the column density is underestimated for some parts of the 468 

plume, especially on 6th and 7th of May. Due to the smaller total emission, the column densities are slightly lower when 469 

plume height is assimilated. Comparisons of the total columns for all 21 days are presented in the supplementary material. 470 

Figure 10 shows the simulated plume height (evaluated as centre of mass) for 7-9 May, which corresponds to the period 471 

of overestimated injection height shown in Figure 8. Compared to IASI, the inversion using only total columns tends to 472 

overestimate the plume height for all three days. As expected from Figure 8, when the plume height retrievals are 473 

assimilated, the overestimation is reduced, but not entirely removed. 474 

A more detailed evaluation of the vertical profiles is enabled by comparison with the CALIOP lidar backscatter data. It 475 

should be noted that the most prominent features in the CALIOP data are regular clouds; in particular, this includes the near-476 

constant layers located at 1-2 km altitude.  477 

In Figure 11, the simulated SO2 concentration is plotted as contours together with the CALIOP attenuated backscatter data 478 

collected on May 6 and 8, 2010.  On both days, the track segment intersects the SO2 plume near its source. On May 6, this 479 

part of the volcanic plume is obscured by a cloud, but a distinctive aerosol layer is visible south of 60° N. This layer is 480 

reproduced by the model, however, the observed vertical extent is much thinner than modelled, indicating that the vertical 481 

variation of the transport was not sufficient to resolve the emission vertically. The plume height for the thickest part of the 482 

plume is nevertheless reproduced within ~2 km, and hence, assimilating the plume height retrievals had only little impact on 483 

the simulated plume. 484 

 On May 8, the highest simulated concentrations coincide with a strong backscatter signal at 3-4 km altitude close to the 485 

emission (near 62° N). The altitude is consistent with the averaged IASI plume height retrievals shown in Figure 8, whereas 486 
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the simulated vertical extent between 2 and 7.5 km is again too wide. While a second layer between 8 and 12 km is present 487 

in the CALIOP data, the horizontal extent of this feature is far too wide to represent the volcanic plume. A third simulated 488 

SO2 layer is present at 13 km only if plume height retrievals are not assimilated; this demonstrates the difference of injection 489 

heights seen in Figure 8.  490 

The CALIOP track on May 8 also crosses an older SO2 plume around 48° N, where the simulated vertical extent is 491 

compatible with the CALIOP data. However, a prominent layer extending between 50° and 55° N is present in the CALIOP 492 

data. The layer is classified partly as cloud and partly aerosol in the CALIOP vertical feature mask (not shown), but the layer 493 

does not coincide with the simulated SO2 plume. However, Figures 9 and 10 indicate that the simulated plume was 494 

erroneously displaced towards west during the evening of May 7. Taking this into account, it is feasible that the observed 495 

backscatter would be caused by the volcanic plume. The 3-4 km altitude of the layer would agree with the IASI plume height 496 

retrievals (Figure 10) and support the below 5 km injection heights indicated by the IASI and radar data in Figure 8. 497 

Figures 12 through 14  combine the simulated SO2 profiles and the CALIOP data with collocated IASI total column and 498 

plume height retrievals. The simulated vertical distributions are mostly consistent with both the CALIOP and the IASI data. 499 

In Figure 12, the 3-4 km mean altitude of the peak reaching 20 DU according to the IASI data is reproduced by the model. 500 

The altitude of the plume extending towards south (between 48-50° N) is also reproduced given the higher retrieval 501 

uncertainty. The column densities up to 20 DU, however, are not reproduced: the highest simulated values are displaced 502 

towards west and remain below 10 DU.  503 

Figures 13 and 14 show generally similar level of agreement in the vertical structures. In both figures, the northern part of 504 

the plume (55-60° N) is partly obscured by a cloud, which is reflected by the large retrieval error estimates. In both figures, 505 

assimilating only total column retrievals resulted in several isolated SO2 layers between altitudes of 10-15 km. Presence of 506 

these layers is supported by neither IASI nor CALIOP data. Even if the corresponding SO2 emissions did not coincide with 507 

ash emissions, some CALIOP signal could be expected due to the sulphate particles forming in the plume. Altogether, the 508 

comparisons in Figs. 12 through 14 and the comparison of the emission profiles (Figure 8) support the conclusion that the 509 

emissions above 8-10 km on 6-9 May were an artefact and probably related to insufficient wind shear. 510 

Further comparisons with CALIOP data on 14 to 17 May are shown in Appendix A. The simulated vertical distributions 511 

generally coincide with layers observed by CALIOP; however, assimilation of plume height retrievals had little impact on 512 

the simulated plumes at those times. 513 

�� ����������	514 

No a priori assumptions regarding shape the emission profile were made in this study. The comparison with the IASI 515 

retrievals, CALIOP data and weather radar observations of the plume shows that the resulting vertical distributions were 516 

frequently in good agreement with the observations even if only total column retrievals were used in the inversion. The most 517 

notable exception were the emissions between 6 and 10 May, when the injection height was strongly overestimated, and 518 
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although assimilating the plume height retrievals improved the agreement, the discrepancy was not fully resolved. Since the 519 

plume height retrievals are introduced as a weak constraint, a complete match between the inversion results and the 520 

observation data is not expected. However, some of the discrepancies remain too large to be explained by retrieval errors 521 

even together with the assumed model 1 km uncertainty. 522 

Generally, two factors could lead to an inaccurate reconstruction of the vertical profile from the total column 523 

observations. First, the horizontal transport patterns on different altitudes might be too similar for resolving the vertical 524 

structure. Second, the simulated horizontal patterns might be too inaccurate due to errors or low resolution of the transport 525 

model or its input data. Since the inversion does not allow for systematic model errors, including the plume height retrievals 526 

in the inversion is expected to improve the vertical profile mainly in the first case. The discrepancy remaining between the 527 

observed and modelled plume heights suggests that model errors were at least partly responsible for the overestimation of 528 

injection heights on 6-10 May. 529 

The main effect of assimilating the plume height retrievals was the reduction of emissions above 10-12 km. Although 530 

these emissions are not large compared to the total emission, this outcome has some qualitative significance, since without 531 

assimilation of plume heights, some emissions would be assigned above the tropopause. In addition to the data presented in 532 

the previous section, previous studies based on lidar data (Ansmann et al., 2010) or aircraft measurements (Schumann et al., 533 

2011) do not suggest significant injection above the 10 km altitude. However, these studies were mainly focused on volcanic 534 

ash instead of SO2. On the other hand, the SO2 plume height estimates derived from the GOME-2 satellite instrument by Rix 535 

et al. (2012) do indicate heights above 10 km and up to 13 km on 5th of May. Neither our data nor inverse modelling 536 

reproduces this result, as the plume heights retrieved from IASI data are below 6 km for that day, which agrees with the 537 

modelled plume heights (not shown) even when only total column retrievals are included in the inversion.  538 

Among the previous emissions estimates for Eyjafjallajökull, Flemming and Inness (2013) estimated a 0.25 Tg total SO2 539 

release using GOME-2 satellite retrievals, and 0.14 Tg using the OMI retrievals. Our estimates of 0.29-0.33 Tg are higher, 540 

especially compared OMI, but this is consistent with the higher total SO2 burden estimated (Carboni et al., 2012) from the 541 

IASI data used in this study. Using the GOME-2 data, Flemming and Inness (2013) furthermore estimated SO2 injection 542 

heights (defined as centres of 2-3 km thick layers) to mostly between 4 and 6 km above sea level with a peak reaching 10 km 543 

on May 19th. This agrees reasonably well with our mean profile (Figure 7), although contrary to our results without plume 544 

height assimilation, Flemming and Inness (2013) did not obtain the injection heights above 6 km on May 6th and 7th. 545 

Boichu et al. (2013) used the IASI retrievals of Clarisse et al. (2012) to invert for temporally resolved SO2 emissions of 546 

Eyjafjallajökull between May 1th and 12th, 2010, and estimated a total emission of about 0.17 Tg. Our inversion yielded for 547 

the same time 0.21 (total column and plume height retrievals) or 0.23 (total column only) Tg of SO2. The larger total 548 

emission in our study might be due to assumptions regarding plume height in the IASI retrievals. The retrievals used by 549 

Boichu et al. (2013) assumed constant 7 km plume height, while the retrieved plume heights in this study were frequently 550 

lower especially near the volcano, and this would result in a higher retrieved values for the total column. For the emission, 551 
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Boichu et al. (2013) assumed a constant injection height of 6 km, which turns out to coincide with the maximum of the mean 552 

profile (Figure 7) obtained in this study. 553 

Stohl et al. (2011) determined the temporal and vertical distribution of volcanic ash emissions for the Eyjafjallajökull 554 

eruption with an inversion constrained by SEVIRI ash retrievals and an a priori source derived from plume top observations. 555 

Although the ash and SO2 emissions cannot be compared quantitatively, the mean vertical profile obtained using ECMWF 556 

meteorological data (Fig. 2 in Stohl et al. (2011) is not very different from the one in Figure 7. In both profiles, the emissions 557 

are restricted mainly below 8 km and have maxima at 6 km. 558 

Including the plume height retrievals in the inversion resulted in a total emission 12% lower than with total column 559 

retrievals only. Similar differences were observed in the experiments with synthetic data discussed in Section 4, where the 560 

inversion results were biased low by 15-20% using both plume height and total column retrievals and by only 2-10% using 561 

total columns only.   562 

In ideal conditions, assimilating the plume height information should not affect the simulated total columns. However, 563 

adding a vertical constraint to the inversion can never improve the agreement for total columns, and in presence of realistic 564 

model uncertainty, a negative effect can be expected. The systematic tendency towards smaller emission may be caused by 565 

the regularisation, which penalises the quadratic norm of the solution. The synthetic experiments indicated that introducing 566 

the plume height retrievals did not allow relaxing the regularisation, since the optimal level (as identified from the parameter 567 

2
� ) was similar with and without the plume height observations. 568 

On the other hand, the synthetic experiments also indicated that the estimation error for the total emission was only 569 

moderately sensitive to the differences of the assumed source terms. The estimate for total emission was also robust with 570 

regard to the vertical resolution, as halving the vertical resolution of the reconstruction (compare Figs. 5 and 6) resulted in 571 

only minimal change in the total emission. The estimated total emission could, nevertheless, be affected by biases in the 572 

satellite retrievals, or by model errors not exposed by the change of meteorological driver. 573 

The experiments with synthetic data furthermore showed that the need for regularisation, or in Bayesian terms, the need 574 

for a priori information, was strongly affected by uncertainty of the forward model. The efforts needed to handle zero-valued 575 

observations in this and other studies (Boichu et al., 2013; Seibert et al., 2011) support this conclusion. The errors arising 576 

from the dispersion model are likely to be correlated in space, and therefore, introducing the corresponding non-diagonal 577 

elements in the error covariance matrix �  could improve the inversion results. While the regularisation used in this work is 578 

equivalent to a zero-valued a priori source, a more informative a priori source could be accommodated with a change of 579 

variables. Other forms of regularisation proposed for the volcanic source term inversion include second-order temporal 580 

smoothing (Boichu et al., 2013), which also could be handled by truncated iteration as discussed by Calvetti et al. (2002).  581 

The variational inversion method is computationally efficient if high temporal or vertical resolution is desired for the 582 

reconstruction.  In the current configuration, the reconstructed solution had formally 1360 degrees of freedom. Each iteration 583 

consisting of one forward and one adjoint integration, the 25 iterations would require model integrations equivalent to about 584 

1000 simulated days. In comparison, evaluating the matrix ��  directly would require 1360 model integrations, and if the 585 
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sensitivity was evaluated in windows of e.g. 72 hours, almost 4000 simulated days would be required. The matrix-based 586 

approach is, however, more easily parallelised, while the parallelisation of the variational method relies on the dispersion 587 

model. In our configuration, one iteration took about 5 minutes wall clock time on a 20-core node of a Cray XC30 588 

supercomputer. 589 

A drawback of the 4D-Var inversion method is that the a posteriori error covariance matrix for the source term is difficult 590 

to evaluate.  However, Monte Carlo techniques could be used to sample the a posteriori uncertainty.  591 

�� �������	���
592 

We have presented an observation operator for retrievals of the vertical centre of mass of a tracer plume. The operator is 593 

based on transforming the centre of mass into first moment of mass using the retrieval of total column. The approach was 594 

tested by performing a source term inversion using both artificial data and the SO2 retrievals from the IASI instrument during 595 

the Eyjafjallajökull eruption in May 2010. The inverse problem was solved with the 4D-Var method embedded into the 596 

SILAM dispersion model, and the truncated iteration is proposed as an efficient regularisation method for the 4D-Var 597 

inversion. Using both real and synthetic data, the 4D-Var method was shown to produce a similar solution as the more 598 

common algebraic method, but at lower computational cost. 599 

The inversion results for Eyjafjallajökull were compared to radar based ash plume observations and CALIOP lidar 600 

profiles. The comparisons show that assimilating the plume height retrievals reduced the overestimation of injection height 601 

during individual periods of 1-3 days. However, for most of the simulated 21 days, the injection height was constrained by 602 

meteorological conditions and assimilation of the plume height retrievals had only small impact. 603 

When the plume height was assimilated, about 85% of the 0.29 Tg total emission was below 8 km and about 95% was 604 

below 11 km. Compared to previous modelling studies (Boichu et al., 2013; Flemming and Inness, 2013), the total emission 605 

is 15-20% larger taking into account the differences in temporal coverage of the studies.  606 

Introducing the plume height retrievals in the inversion may have an adverse effect on the estimated total emission. In the 607 

experiment with artificial observations, the inversions with only total column data had a negative bias of 2-10% which 608 

increased to 15-20% when the plume height observations were included. In the inversion for Eyjafjallajökull, performing the 609 

inversion using only total column retrievals resulted in ~15% larger total emission, which is consistent with the experiments 610 

with simulated observations. 611 

Experiments with both synthetic and real data suggest that the inversion is sensitive to errors in the forward model, and to 612 

their assumed uncertainty. Methods more robust to model errors are a topic suitable for future research. 613 
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Let �  and �  be scalar random variables with means and variances �� , �� , 2
� �  and 2

�� . Then, it follows from the 630 

definitions for variance and covariance that 631 

(12) 2 2 2 2 2 2 2 2 2Var[XY] Cov[ , ] Cov[2 , ], ] Cov[� � � � � � � �� � � � � �� � � � � � � � � � � � ��   632 

and 633 

(13) 2 2Cov[X,XY]=E[X Cov[ E[ ]E[ ]] [ ] , ]� � ���� ���  . 634 

To expand 2 2Cov[ , ]� �  and 2 ]Cov[ ,� � we assume that �  and �  are normally distributed. We first define normalized 635 

auxiliary variables 636 

(14) ,
� �

� �

� �

� �
� �� �

� �

� �
� �   637 

Then, by expressing ��  as  638 

(15) 21� � �
� � ���� � �   639 

where Cov[ , ]�
� �� � �  and ~ (0,1)�� �  independent of �� , it is simple to verify that 640 

(16) 
2 2 2

2

Cov[

Cov[

, ] 2

, ] 0.

�

�

� �

� �

� �

� �

�
  641 

For the original random variables �  and � , we find by substituting (14) into the definition, expanding the terms, and 642 

using identities (16) that 643 

(17) 2 22 , ] 2 [ ,Cov[X Cov Cov[ ,] 4 ]� �� � � �� �� ��   644 

and 645 

(18) 2 , ] 2Cov[ Cov[ , ]�� �� � ��  . 646 

Formulas (6) and (7) now follow by combining Eqs.  (17) and (18) with (12) and (13). 647 
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