
Response to reviewer comments  
J. Vira and co-authors 

We thank both referees for the extensive reviews. In the following we will address the comments of 

reviewer #1 and the specific comments of reviewer #2. The general comment of reviewer #2 has been 

addressed in our response on 13 December 2016. 

The main changes in the revised manuscript is extending experiments with synthetic data in Section 4 to 

cover assimilation of simulated plume height retrievals, and presenting a comparison between the 

simulated SO2 profiles and the lidar data from the CALIOP instrument. These major revisions are discussed 

in more detail in our response to reviewer #1. 

Due to the volume of new material, we have removed the discussions of two minor items present in the 

original submission. The omissions are Figure 5 and the related discussion (additional experiments with 

randomly generated source terms), and Figure 10 and the related discussion (inversion with a simplified 

observation error covariance matrix). 

The figures for Eyjafjallajökull have been rearranged as part of the comparisons for total columns are now 

presented together with the CALIOP data. Figures comparing the simulated total columns and plume 

heights with the IASI data for all days are included in a supplement. 

The manuscript with changes highlighted is attached to this pdf. 

The reviewer comments are presented with a blue italic font. 

Response to comments by reviewer #1 
We thank the referee for a thorough and detailed review. In order to address the main concerns raised by 

the referee, we have introduced the following major revisions to the manuscript: 

1. The experiments with synthetic observations are extended to cover the case with assimilation of 

simulated plume height retrievals. The results are consistent with those obtained for the 

Eyjafjallajökull eruption. Assimilation of plume height retrievals results in a more accurate source 

term (in the sense of RMS error), although the difference is small for some of the assumed source 

terms. However, the experiment also confirms that assimilation of plume heights may have 

negative impact on the estimated total emission.  

2. The results for Eyjafjallajökull are evaluated using profile data from the CALIOP instrument, and a 

detailed comparisons between the estimated injection height, the retrieved SO2 plume heights, 

and the radar observations of plume top are presented. The comparisons show consistently that 

the results with and without assimilation of plume heights are largely similar but the vertical 

distribution of the emissions especially on 6-9 May is improved by assimilation of plume height 

retrievals. For the other times, the injection height is mostly consistent with the data regardless 

whether the plume heights are assimilated or not. 

Ideally the results for total columns should be compared with independent satellite data. However, as 

noted in earlier studies about Eyjafjallajökull (Boichu et al., 2013; Flemming and Inness, 2013), this is 

unlikely to lead into useful conclusions due to the large differences between satellite products. For this 

reason, we have instead focused on the vertical distribution which we consider to be the most interesting 

of aspect of the present study. 



In  the  current  version  of  the  manuscript,  it  remains  unclear  what  the  benefit  of  the assimilation of 

the plume height is. Given the overall uncertainty and judging from the pictures, it seems that the plume 

height assimilation does not lead to an improvement. If this is the case it should be mentioned more clearly. 

We believe that the revised manuscript gives a more accurate and detailed picture of impact of assimilating 

the plume height. However, we hesitate to declare one inversion better than other, because drawing such a 

conclusion would require three-dimensional observational data that do not exist. The possible benefits of 

assimilating the plume height in addition to total column cannot be evaluated based on their impact on the 

simulated total columns or the total emission, because these quantities are fit optimally when only total 

column data are assimilated.  

Based on the experiments with synthetic data and the comparison to vertically resolved observations for 

Eyjafjallajökull, it seems reasonable to conclude that assimilating the plume height retrieval has a positive 

impact on the vertical distribution, even if the effect is small when taken over the whole eruption. Similarly, 

the experiments indicate that the impact on total columns and total emission is negative. Whether one of 

these effects outweighs the other depends on the application. 

The presented 4D-VAR approach does not take into account correctly the error statistics of the assimilating 

model as no model error co-variances are considered. This seems a simplification which should be better 

justified. 

We agree that the treatment of model errors is not ideal, however, as pointed out in the initial response to 

reviewer #2, the problem is challenging and we are not aware of any inversion study that would have 

addressed this aspect without simplifications. 

Inclusion of the model errors into the R-matrix is necessary because the inversion is performed in a single, 

long assimilation window. As discussed in the revised manuscript, it would be in principle possible to set up 

the inversion as a sequence of shorter assimilation windows as done by Elbern et al. (2007) in context of air 

quality forecasting. However, when the primary interest is to estimate an emission source, this approach 

becomes more complicated because of two opposing requirements. The first requirement is that the 

assimilation window needs to be short enough so that the model errors arising within the assimilation 

window are not significant – this is the basic assumption of the currently used strong-constraint 

assimilation methods. The second requirement is that the assimilation window should be long enough to 

effectively constrain the emission. Shorter assimilation windows may be useful for constraining constant or 

slowly varying emissions, but such assumptions would not hold for volcanic emissions. 

So far, the majority of studies on inverse modelling of atmospheric emissions have emphasized the second 

aspect and used long assimilation windows. This includes the inversions for volcanic emissions (Boichu et 

al., 2013; Kristiansen et al., 2010; Lu et al., 2016; Stohl et al., 2011), where the inversion is done for the 

entire eruption at once, but also inversions for other trace gas emissions (e.g. Meirink et al. 2008; Müller 

and Stavrakou, 2005) or for inverse modelling of accidental radioactive releases (e.g. Winiarek et al., 2014). 

An advantage of the long assimilation window without explicit model errors is that the no unphysical 

sources or sinks appear due to the assimilation, and the mass budget of the simulation remains closed. 

While this does not imply that the long-window approach is superior to the other options, a comparison of 

its advantages and disadvantages is outside the scope of the current paper. 

Also, it seems that the SILAM model did not consider a chemical loss for SO2, which – if this was the case – 

would be an unnecessary simplification of the model. 

As noted on L76 in Section 2.1 (Dispersion model), the model does include chemical removal of SO2. 

L 17: Clarify “vertical centre of mass” and “first moment” 



Done. 

L 20: Mention the relation of regularization with the a-priori estimate here. 

Done. 

L 50:  Discuss the issue of the “single value” plume height retrieval and the observed complex SO2 profiles 

and the resulting challenges for the assimilation. 

A discussion has been added onwards of L65. 

L 64:  Clarify the differences between the “inversion type studies” using Lagrangian models, the 4D-VAR 

approach for the assimilation of only concentrations and the inclusion of the emission term in these 4D-VAR 

systems. 

Additional discussion has been added on lines 70-76. 

L 91: Say what the data set entails: TC and plume heights retrievals 

“The algorithm and the dataset are explained in more detail by Carboni et al. (2012)” has been changed 

into “The algorithm and the IASI SO2 dataset (column amount and altitude) are explained in more detail by 

Carboni et al. (2012)”. 

L 99: What is the effective plume height? 

The effective altitude is the altitude of the mean of the Gaussian distribution that fits the measurements. 

We called it “effective” because we assume one SO2 layer with a Gaussian profile. To clarify we have 

changed the text: “The scheme determines the column amount and effective  altitude  of  the  SO2 plume” 

is changed into: “The scheme determines the column amount and the altitude (mean of Gaussian 

distribution) of the SO2 plume”. 

L 103: If this is the ash plume height - why the ash plume height? 

This is the altitude of the SO2 plume, not the ash plume; to avoid misunderstanding we have changed the 

text:  

“The altitude retrieved for the Eyjafjallajökull eruption plume” 

into  

“The SO2 altitude retrieved for the Eyjafjallajökull eruption”. 

L  155:  What  are  inversion  experiments. Please clarify the use of the terms "data assimilation" and 

"inversion" throughout the paper (see L64). 

The present study is best described as a (source term) inversion similarly to the studies cited in our 

response to the comment regarding the 4D-Var method. We nevertheless use the word “assimilate” in 

reference to the action of an observation operator (as in “to assimilate plume height retrievals”), since this 

is both intuitive and consistent with existing literature on inverse modelling. 

L 122:  The “inversion” with simulated observations is discussed before the Eyjafjallajökull case. So please 

also mention them here before. 

Done. 

L 128: Is the conversion of SO2 to SO4 considered in the study? 



Yes, as indicated above. A remark has been added also here. 

L 140: Please discuss that the standard 4D-VAR approach would include the model error in form of the 

background error covariance matrix. 

We have included a discussion on model errors and possible ways to handle them. 

L 146: Spell out L-BFGS-B 

Done. 

L 156: Define also y and m_ij 

Done. 

L 160: Provide the formulae for centre of mass and 1st moment of mass 

Done. 

L 175:  It is not clear if R also contains the error of the plume height retrieval.  Is this error also provided and 

used? 

The plume height retrieval error is provided and used. The corresponding text has been added. 

L 204: This is not surprising given that the model/background error is ignored in equation (2) 

L 209: Having only a diagonal model error covariance ignores the fact that the model advects the tracer. 

We refer to our response above regarding the 4D-Var formulation. 

L 219: Provide reference or explanation for the Tikhonov regularisation 

References have been added. 

L 252: Please describe the setting of the synthetic experiment better. What was period, region and 

meteorological data? Is only the emission term synthetic?  What are the synthetic observations? 

The section has been rewritten for more clarity. With synthetic observations we refer to simulated 

observations and observation errors. In addition, we have simplified the section by omitting the additional 

experiment (Fig. 5) with randomly generated source terms. 

L 315: What is meant by “overall need”? Why is there an assumption about the source term? I thought 

regularizations is introduced to avoid an prior assumption for the source term? From which of the above are 

these generalisations deduced? 

By the need for regularisation we meant that the sensitivity to under-regularisation varied between the 

assumed sources. However, we agree that this was formulated unclearly, and the paragraph has been 

rephrased. 

L 316: In which of the experiments there was no model error? Please clarify. Perhaps a table of all the 

synthetic experiments would be useful. 

We have clarified that model error was present in all experiments except for creating Fig. 2. 

L 320: Say exactly which type of experiment you refer to 

Done. 



L 322: Motivate this choice of the 9th and 13th iterate better. I thought that the L-curve needs to be 

examined for every case specifically. 

The iterates were chosen according to the algorithm described on lines 364-366 in the revised manuscript. 

We also examined the L-curves visually but kept the points chosen by the algorithm. The L-curves are 

provided in supplementary information. 

L 324: Over plotting the observed ash plume height in Figure 7 is not really instructive. You should try to plot 

the time series of the averaged emission centre from the two inversions together with the retrieved plume 

height (see Figure 13) in the vicinity of the volcano. This would show how much the plume height 

observations in the whole domain constrain the injection profile over the volcano. The observed ash plume 

height, which is basically the lower border of the ash plume, is less instructive. Consider showing he 

difference between the two inversions in Figure 7b. 

As stated in Arason et al. (2011), the radar time series actually represent the upper border of the ash 

plume. While we agree that comparing the radar data with the inversion results is somewhat ambiguous, 

we have decided to keep the comparison, since the radar data provide an independent dataset evaluating 

the estimated injection height. However, we have also added a chart showing the comparison of the 

emission centre of mass with plume height retrievals averaged within 50 and 500 km radiuses from the 

volcano. We hope that Fig. 8 also exposes the differences between the inversion results in Fig. 7. 

L 328: Stating the differences between the two inversions is not enough (see my general remark). Please say 

which of the two inversions is better. If this is no possible, say more clearly that this is the case. 

Please see our response to the general remark. 

L 337:  Please discuss in more detail, why the total emission change despite that fact that the assimilated 

total columns are the same. 

We have added (L562 onwards) a discussion regarding effects of the plume height assimilation on the total 

emission. 

The total emission changes because when only total columns are assimilated, the inversion has more 

degrees of freedom to match the observed horizontal distribution. When a vertical constraint is added, the 

simulated total columns must change unless the model describes the real transport perfectly, which is not a 

realistic assumption. To give a concrete example, in Fig. 13 in the revised manuscript, the TC-only run 

appears to fit better the total column data between 50° and 54° N, shown in the lower panel with the line 

plots. However, the comparison with IASI and CALIOP data shows that this corresponds to an unrealistic 

vertical distribution. As a consequence, the TC+CM run agrees worse with the total column, but is quite 

likely to agree better with the true, three-dimensional distribution. 

The synthetic experiments indicate that the TC+CM inversions tend to have a low bias for total mass, which 

is consistent with the results for Eyjafjallajökull. The likely reason is the regularisation, which among 

different emissions with similar likelihood prefers the one with lowest squared sum. Whether a different 

cost function would avoid the negative effect on total emission is a question for a future study. 

L 341: A plot of the difference with the base case would be clearer. 

L 343: Check language “as spread as” 

L 344:  Again, it needs to be shown, that the results shown in Figure 10 are better or worse than the ones 

from Figure 7 before any conclusion can be drawn 



Due to the volume of new material added, and since this aspect is peripheral to the main discussion, we 

have omitted Fig. 10 and the associated text from the revised manuscript. 

L 349: In line 337 you say it is about 10%. Why is this the case? Were the observations errors different for 

the assimilated TC in the two cases? The TC and the plume height retrievals are not independent 

We rewritten the text for better self-consistency. The same observation errors were used in both 

experiments. The correlation between TC and plume height retrieval errors is taken into account as 

indicated now more clearly in Section 3.2. 

L 350: Please provide more evidence and discussion. 

More evidence (especially Fig. 8) and discussion has been added. 

L 355:  I find it actually quite interesting that the additional assimilation of the plume height has so little 

influence. 

L 357: Again, this is no proof that one inversion is better 

A more detailed discussion about the changes and similarities between the results has been added. 

L 366:  The differences between GOME-2 and IASI plume height retrievals should be discussed in more 

detail. The explanation is too short. 

We mention the GOME-2 retrievals, since they are one of the few published observations on SO2 plume 

height. As indicated, neither our data nor inverse modelling reproduces the GOME-2 plume height, but 

investigating the reasons for this would require a detailed comparison of the satellite products and the 

retrieval algorithms. 

L 366 and L 370: Compare your results for both the injection height and the SO2 mass with the results 

published in the literature, for example Boichu et al.  2013, Flemming and Inness, 2013.  This would be an 

important result and should be mentioned in the conclusion or abstract. 

Comparisons with Boichu et al. (2013), Flemming and Inness (2013) and Stohl et al. (2011)  have been 

added. 

L 376: Which other studies? Provide references. 

References (Boichu et al., 2013; Seibert et al., 2011) have been added. 

L 380:  This is all a bit unspecific. Please quantify the identified noise and how this could relate to the results 

from the 2010 case study. 

The section has been revised based on the new results using synthetic plume height observations in Section 

4.   

L 390: 1000 days wall clock time or simulated days? How long does it need on a typical high performance 

computer architecture?  What are the options for the parallelism of the application. 

The 1000 days are simulated days. We have added a discussion about the required wall clock time and the 

options for parallelisation in each case. 

L 400: It think it is fair to say that the assimilation of the plume height only had a small influence on the 

results. Also, the paper provides not enough evidence that one option is better than the other. 



We agree that the difference is mostly minor. We have expanded the Conclusions section to cover both 

similarities and differences between the inversions as well as the impacts on both vertical distribution and 

total mass. 

Response to specific comments by reviewer #2 
This response extends our earlier response posted on 13 December 2016 and addresses the specific 

remarks by reviewer #2. 

The reviewer comments are presented with a blue italic font. 

There is a systematic confusion between “plume height” and (height of) “centre of mass”. Both quantities 

seem interchangeable, so I would expect that this was described in a previous paper about the retrieval 

scheme. This should still be explained with proper references in section 2.2, with much more attention paid 

to the exact term used throughout the text (including title and abstract). Even if this was published already, 

consider adding a line plot in section 2.2 to compare the retrieved centre of mass with the plume height 

observed by radar and cameras (i.e. white dots and barely visible grey dots in figure 7). Note also that such 

a comparison directly above Eyjafjallajökull would still not be convincing for the downstream plume, where 

a multi-layered distribution probably happened. 

The term “plume height retrieval” is used previous literature (Carboni et al., 2016, 2012; Rix et al., 2012), 

where it is interpreted as the midpoint of some parametric representation of the vertical profile. Since our 

observation operator does not assume a specific shape of the profile, it is more accurately described as an 

observation operator for the centre of mass (or rather, the vertical first moment of mass). However, since 

this definition is rather technical we prefer to use the term plume height retrieval except in cases where 

the distinction is essential. 

We have added to the introduction a remark regarding the usage of “plume height” and “centre of mass” in 

the revised manuscript. The manuscript now uses “plume height” in all non-technical contexts. 

The revised manuscript includes a comparison between the simulated emission, the IASI retrievals and the 

plume top observations, and also comparisons of the simulated SO2 concentration with the CALIOP profiles 

and collocated IASI retrievals. 

What is the width of the Gaussian distribution assumed by the retrieval algorithm? The observation 

operator does not take into account this Gaussian shape. We are in a case where the vertical resolution 

leading to the simulated observation is much, much finer than the “vertical resolution” of the observation 

itself so this looks like a major oversight - especially in a context where Averaging Kernels were not taken 

into account. In order to simulate the observations correctly, the observation operator should first fit the 

modelled profile with a Gaussian shape before applying equation (4). Of course this should also be included 

in the adjoint of the observation operator... 

The width of the Gaussian used in IASI forward model is 100 mb. The retrievals were also tested assuming 

different widths (50 and 10 mb), which gave results consistent with each other within the error bars. 

The observation operator is based on the assumption that observations of the first moment of mass and 

the total column and the corresponding error covariance matrix are available. The retrievals (after 

application of the transformation described in Section 3.2) are consistent with this assumption, and the 

variability which is taken into account in the error estimates should not be included into the observation 

operator. Evaluating the centre of mass does not depend strongly on the model resolution. 

The sentence on lines 134-135 is extremely problematic as it seems to show a fundamental 

misunderstanding about assimilation theory: “Finally, the vector y of observations is given by the possibly 



non-linear observation operator H as y=H(x)+ε  where ε denotes the observation error.” H(x) is the model 

state in observation space. y-H(x) is the observation departure. Here ε does not denote only the observation 

error but all possible errors, including the model and representatitvity errors. Most importantly, y is not 

“given” by H, it is simulated by H! This awful confusion continues in equation (3) which does not provide y 

but the (total component of) H(x). 

The sentence has been rephrased. 

It appears from lines 307-312 that the assimilation algorithm can use both the algebraic solution with 

explicit computation of HM matrix, and the 4D-Var approach. This should be clearly explained in section 3.1. 

I assume that Vira and Sofiev (2012) provided all necessary details about this 4D-Var implementation and its 

adjoint model (e.g., was it generated automatically or manually? Is it as detailed as the forward model? 

How was it verified?). If that is the case, an additional reference and a few words may suffice. But if that 

was not the case, or if the 4D-Var implementation changed a lot (beyond the developments described in 

sections 3.2 and 3.3), then this should be fully described (since appropriate for the GMD journal). 

The adjoint model is same as in Vira and Sofiev, (2012). The difference is that in the 2012 study the 

emission adjustment was multiplicative, horizontally variable but vertically constant, while in the current 

study, the adjustment is additive and vertically variable but confined to a single column. This corresponds 

to a different summation of the adjoint variable when evaluating the gradient, but the adjoint code does 

not need to be changed. A remark has been added to the revised manuscript. 
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Abstract 10 

This study focuses on two new aspects on inverse modelling of volcanic emissions. First, we derive an observation 11 

operator for satellite retrievals of plume height, and second, we solve the inverse problem using an algorithm based the on 12 

the 4D-Var data assimilation method. The approach is first tested in a twin experiment with simulated observations and 13 

further evaluateddemonstrated by assimilating IASI SO2SO2 plume height and total column retrievals in a source term 14 

inversion for the 2010 eruption of Eyjafjallajökull. The inversion resulted in temporal and vertical reconstruction of the 15 

SO2SO2 emissions during the 1-201 May, 2010 with formal vertical and temporal resolutions of 500 m and 12 hours. 16 

The plume height observation operator is based on simultaneous assimilation of the plume height and total column 17 

retrievals. The plume height is taken to represent the vertical centre of mass, which is transformed into the first moment of 18 

mass (centre of mass times total mass). This makes the observation operator linear and simple to implement. The necessary 19 

modifications to the observation error covariance matrix are derived. 20 

Regularisation by truncated iteration is investigated as a simple and efficient regularisation method for the 4D-Var based 21 

inversion. In the twin experiments, the truncated iteration was found to perform similarly to the commonly used Tikhonov 22 

regularisation, which in turn is equivalent to a Gaussian a priori source term. However, the truncated iteration allows the 23 

level of regularisation to be determined a posteriori without repeating the inversion. 24 

In the twin experiments, assimilating the plume height retrievals resulted in 5-20% improvement in root mean squared 25 

error but simultaneously introduced a 10-20% low bias on the total emission depending on assumed emission profile. The 26 

results are consistent with those obtained with real data. For Eyjafjallajökull, the comparison between results with and 27 

without assimilation of plume height retrievals shows that the estimated injection height was mostly constrained by the 28 

inversion even using only total column retrievals. However, comparison with the profile observations from the CALIOP 29 

instrument showed that assimilating the plume height retrievals improved the vertical distribution during episodes when the 30 

estimated injection height was not otherwise not sufficiently constrained.  31 
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Regularisation by truncated iteration is investigated as a simple and efficient regularisation method for the 4D-Var based 32 

inversion. In an experiment with synthetic observations, the truncated iteration was found to perform similarly to the 33 

commonly used Tikhonov regularisation. However, the truncated iteration allows the amount of regularisation to be varied a 34 

posteriori, without repeating the inversion. For inverting the Eyjafjallajökull SO2 emission at the temporal and vertical 35 

resolution used in this study, the 4D-Var method required about 70% less computational effort than commonly used methods 36 

based on performing a separate model simulation for each degree of freedom in the estimated source term. 37 

Compared to the inversion using only total column retrievals, assimilating the plume height resulted in a vertical emission 38 

profile more closely matching the ash plume heights observed by radar. The a posteriori source term for Eyjafjallajökull 39 

consisted of gave an estimate of 0.29 Tg (with total column plume height retrievals) or 0.33 Tg (with total column retrievals 40 

only) erupted SO2SO2 of which 95% was injected below 11 (12) km. . 41 

1 Introduction 42 

Sulphur dioxide (SO2SO2) is one of the major gas-phase species released in volcanic eruptions. Large SO2SO2 releases 43 

pose a hazard to aviation, decrease air quality, and as precursors to sulphate aerosols, have a potential impact on the Earth’s 44 

radiative balance (Bernard and Rose, 1990; Robock, 2000; Schmidt et al., 2015). Volcanic SO2SO2 plumes can be detected 45 

by satellite instruments measuring in either UV or IR wavelengths - however, reliably forecasting the atmospheric transport 46 

of volcanic plumes is hindered by the lack of in-situ measurements to characterise the emission fluxes of volcanic species 47 

(Carn et al., 2009; Stohl et al., 2011; Zehner, 2012). 48 

While methods based purely on satellite retrievals (Theys et al., 2013 and references therein) exist for inferring the total 49 

SO2SO2 flux for a given eruption, a successful prediction of volcanic tracers generally requires information also on the 50 

vertical profile of emissions. An important technique for assessing both vertical and temporal distribution of the emission 51 

fluxes is provided by inverse dispersion modelling, first demonstrated for volcanic emissions by Eckhardt et al. (2008). 52 

The previous studies on iInverse modelling of volcanic emissions has have been based on using total column retrievals of 53 

SO2SO2 or volcanic ash together with a Lagrangian (Kristiansen et al., 2010; Stohl et al., 2011) or Eulerian (Boichu et al., 54 

2013; Boichu and Clarisse, 2014) dispersion models. In addition, Flemming and Inness (2013) devised a trajectory based 55 

scheme to evaluate the vertical emission profile, which was used together with assimilation of SO2SO2 retrievals with the 56 

IFS (Integrated Forecast System) weather prediction system.  The previous studies have demonstrated that the vertical 57 

distribution of emissions can be inferred from total column retrievals in presence of sufficient vertical wind shear. However, 58 

in the case of the Eyjafjallajökull eruption in 2010, both Boichu et al. (2013) and Flemming and Inness (2013) pointed out a 59 

lack of wind shear and a subsequent difficulty at estimating the vertical distribution of emissions. 60 

Retrievals of SO2SO2 plume height have been performed with various satellite instruments (Carboni et al., 2012; Rix et 61 

al., 2012). Nevertheless, only a few studies have incorporated these data into models. Wang et al. (2013) derived a three-62 

dimensional SO2SO2 distribution from retrievals by the Ozone Monitoring Instrument (OMI), and used the distribution to 63 
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initialize CTM simulations for the 2008 eruption of Kasatochi. Wilkins et al. (2015) used 1D-Var ash retrievals for 64 

initialising dispersion simulations. However, neither of the studies used plume height retrievals in inverse modelling of 65 

volcanic emissions. 66 

The first objective of the present paper is to assess the usefulness of assimilating SO2SO2 plume height retrievals from the 67 

Infrared Atmospheric Sounding Interferometer (IASI) instrument in a source term inversion. Throughout this paper, the term 68 

plume height will refer to the vertical centre of mass, which is consistent with the IASI retrievals of this study. Following 69 

this definition of plume height, we introduce iIn Section 3.2 we develop an observation operator for the vertical centre of 70 

mass.  71 

Since the observation operator only depends on the centre of mass and column loading, the vertical profile is only partly 72 

constrained. However, in contrast to the previous studies, this approach makes no further assumptions about the shape or 73 

thickness of the SO2SO2 layer. This could be advantageous, since volcanic ash or SO2SO2 layers vary considerably in depth 74 

(Dacre et al., 2014) and can be emitted in multiple, overlapping layers (Kristiansen et al., 2010). Although the variability of 75 

the vertical profiles may introduce uncertainty into the retrieval of the plume height, by assimilating only the centre of mass, 76 

we avoid forcing the model into a prescribed vertical profile whose uncertainty may be difficult to quantify. In 77 

additioncontrast, our approach makes full use of the retrieval error estimates provided with the IASI data for both column 78 

mass and plume height, including the estimated correlation between plume height and mass errors. 79 

The second objective of this paper is to explore the connection between the source term inversion and the 4D-Var data 80 

assimilation widely used in numerical weather prediction. Elbern et al. (2000) showed that the 4D-Var assimilation method 81 

(Le Dimet and Talagrand, 1986) can be easily extended into estimating emission fluxes with a chemistry transport model. 82 

Elbern et al. (2007) further evaluated the joint estimation of emission flux and airborne concentration as a strategy for 83 

improving air quality forecasts. However, in this study, . the 4D-Var method is formulated to include only the emission 84 

forcing, which Under the assumption of a linear dispersion model and observations, the 4D-Var formulation results in a least 85 

squares problem similar to that solved by many existing inversion algorithms.  However, Tthe iterative solution employed in 86 

4D-Var favours a different regularisation approach, which is discussed compared in Section  4. to a more classical 87 

regularisation technique. 88 

Finally, we test the variational inversion method and assimilation of plume height retrievals for estimating temporal and 89 

vertical distribution of SO2SO2 emission during the 2010 eruption of Eyjafjallajökull. Results of the inversion, presented in 90 

Section 5, indicate that although the vertical distribution of emissions is mostly constrained by the total column retrievals 91 

and the meteorological conditions, assimilation of plume height retrievals results in more vertically concentrated emission 92 

profile. In particular, emissions above 8-10 km between 5 and 9 May are reduced substantially, which is consistent with 93 

radar-based estimatesthe observations of the eruption column height. 94 
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2 Model setup and observational data 95 

2.1 Dispersion model 96 

The transport and removal of SO2SO2 was evaluated using the dispersion model SILAM (System for integrated modelling 97 

of atmospheric composition; Sofiev et al., 2015, http://silam.fmi.fi) version 5.3. The model includes chemical removal of 98 

SO2SO2 as described by Sofiev (2000) with the OH climatology of Spivakovsky et al. (2000). The computations were driven 99 

by the ERA-Interim meteorological reanalysis (Dee et al., 2011) except for evaluating the simulated satellite retrievals 100 

described in Section 4, where operational ECMWF forecasts were used. 101 

SILAM includes a variational data assimilation module, which was previously used for assimilation of air quality 102 

monitoring data of SO2SO2 by Vira and Sofiev (2012). The same 4D-Var implementation, including the adjoint codes, is 103 

used in this studyThis study uses the same assimilation system, but instead of estimating a refinement for a regional emission 104 

inventory, we seek to reconstruct the emissions for a single volcanic eruption as a function of time and injection height. 105 

The model was configured for a domain covering 50°E to 30°W and 30°N to 80°N. Horizontal resolution of 0.5° was 106 

used for the inversion, while the a posteriori simulations were run with a higher 0.25° resolution.  The vertical discretisation 107 

grid consists of 34 terrain-following z-levels with a 500 m resolution at the top of the domain increasing to 50 m near the 108 

surface. 109 

2.2 Observations: tThe IASI dataset 110 

IASI is an infrared Fourier transform interferometer that measures in the spectral range 645–2760 cm-1 with spectral 111 

sampling of 0.25 cm-1 (apodized spectral resolution of 0.5 cm-1) and has global coverage every 12h. The lev1b dataset from 112 

EUMETSAT/CEDA archive is used in this study. 113 

The algorithm and the and the IASI SO2 dataset (column amount and altitude)dataset are explained in more detail by 114 

Carboni et al. (2012). The same algorithm has been applied to other volcanic eruptions and successfully compared with other 115 

datasets (Carboni et al., 2016; Fromm et al., 2014; Koukouli et al., 2014; Schmidt et al., 2015; Spinetti et al., 2014). 116 

The main points of the retrieval scheme are: 117 

Retrievals are performed for the pixels that were identified by the SO2SO2 detection scheme (Walker et al 2011, 2012). 118 

All the channels between 1100-1200 and 1300-1410 cm-1 are used in the iterative optimal estimation retrieval scheme to 119 

obtain SO2SO2 column amount and altitude of the plume (in pressure, under the assumption that the vertical concentration of 120 

SO2SO2 follows a Gaussian distribution) together with the surface temperature. The scheme determines the column amount 121 

and effective altitude (mean of a Gaussian profile) of the SO2SO2 plume with high precision (up to 0.3 DU error in SO2SO2 122 

amount if the plume is near the tropopause), and it is well suited for plumes in lower troposphere. 123 

The IASI SO2SO2 retrieval is not affected by underlying cloud. If the SO2SO2 is within or below an ash or cloud layer its 124 

signal will be masked and the retrieval will underestimate the SO2SO2 amount. In the case of ash this is discernible a 125 

posteriori by the value of the cost function. The altitude retrieved for the Eyjafjallajökull eruption plume (using the same 126 
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dataset as in this paper) in the presence of underlying cloud is consistent with the CALIPSO vertical backscatter profile 127 

(Carboni et al 2016, Figs. 1,2,3). 128 

A comprehensive error budget for every pixel is included in the retrieval. This is derived from an error covariance matrix 129 

S that is based on the SO2SO2-free climatology of the differences between the IASI and forward modelled spectra. 130 

Note that the error covariance, S, is defined to represent the effects of atmospheric variability not represented in the 131 

forward model, as well as instrument noise. This includes the effects of cloud and trace-gases which are not explicitly 132 

modelled. The matrix is constructed from differences between forward model calculations (for clear-sky) and actual IASI 133 

observations for wide range of conditions, when we are confident that negligible amounts of SO2SO2 are present. It follows 134 

that a rigorous error propagation, including the incorporation of forward model and forward model parameter error, is built 135 

into the system, providing quality control and error estimates on the retrieved state. The retrieval state error covariance 136 

matrix, used for the assimilation in this work, is directly provided as output of the retrieval pixel by pixel.  137 

2.3 Other observations 138 

Section 5 presents comparisons of the a posteriori simulation and the source term with the IASI plume height and total 139 

column observations. However, additional datasets required used for evaluating vertical structure of the inversion results. 140 

Due to the scarcity of vertically resolved SO2 data, the comparison is based on aerosol observations. The vertical profiles of 141 

the emitted plumes are compared with the backscatter profiles by a satellite-borne lidar, and the SO2 injection height is 142 

compared to plume top time series obtained with a C-band weather radar. The potentially different emission and transport of 143 

volcanic ash and SO2 introduces some ambiguity to the comparisons; however, as found in Section 5, the different data 144 

sources together with the IASI retrievals nevertheless form a fairly coherent picture. This supports the conclusion of 145 

(Thomas and Prata, (2011), who found that ash and SO2 were mostly collocated with each other during the Eyjafjallajökull 146 

eruption. 147 

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument (Winker et al., 2009) on board the 148 

CALIPSO satellite is near-nadir viewing, two-wavelength, polarisation-sensitive lidar. The comparisons in this study are 149 

shown for the 532 nm total backscatter. Hence, two main challenges are involved in using lidar data for evaluation of 150 

simulated SO2 plumes. First, the comparison relies on the assumption that the SO2 plume is collocated with an aerosol plume 151 

consisting either of primary particles (mainly volcanic ash) emitted in the eruption, or secondary particles (mainly sulphates) 152 

formed during the transport. Second, the volcanic plumes need to be distinguished from water or ice clouds. Although the 153 

vertical feature mask available with the CALIOP products provides a classification of aerosol and cloud types, as pointed out 154 

(Liu et al., (2009) and (Winker et al., (2012), thick volcanic ash plumes are frequently misclassified as ice clouds by the 155 

standard algorithm.  156 

The comparisons shown in Section 5 and Appendix A consist of CALIOP overpasses intersecting the simulated 157 

Eyjafjallajökull plumes. Cases where the CALIOP track is parallel to the plume are omitted, because this makes the profiles 158 

extracted from the model very sensitive to horizontal displacement errors. Three of the CALIOP profiles have been 159 
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collocated with the IASI retrievals under the criteria of less than 2 h time difference and less than 150 km horizontal 160 

displacement. The three collocated CALIOP tracks were previously analysed for SO2 by (Carboni et al., (2016) along with  161 

two additional ones for May 14 and 16; these tracks only intersected the edge of the SO2 plume and did not offer a useful 162 

comparison with the model. 163 

The estimated SO2 injection height is compared to the observations of plume top described by (Arason et al., (2011). The 164 

dataset includes two plume top time series, one estimated from a C-band weather radar located at the Keflavik airport 155 165 

km from the volcano, and one estimated from imagery taken with a web camera located 34 km from the volcano. The 5-166 

minute radar data and the hourly web camera data are averaged in time to facilitate the comparison with the estimated 167 

emission. The radar data include values which indicate presence of a plume below the lowest observed height, and in order 168 

to maintain consistency with the published 6-hourly time series (Arason et al., 2011; Petersen et al., 2012a), and to avoid a 169 

high bias in the averaged values, the altitude of 2.5 km above sea level is assigned to these points.  170 

Both datasets represent the highest altitude with measurable signal from the volcanic plume, and thus, the observed plume 171 

height might differ from the midpoint of the emitted layer. The radar data are consequently compared with 80th and 95th 172 

percentiles (altitudes with 80 or 95 % mass emitted below) of the emission. 173 

 174 

2.32.4 Inversion experiments 175 

The inversion algorithm is evaluated with two sets of experiments based on the eruption of Eyjafjallajökull in 2010, The 176 

eruption has been described in detail by Gudmundsson et al. (2012). The experiments covered the time between 1 and 21 177 

May, 2010, which as shown by Flemming and Inness (2013) included the most significant SO2SO2 releases. 178 

The observation operator and the variational inversion technique were first evaluated in experiments with synthetic data 179 

(Section 4), where the simulated observations mimicking the IASI retrievals are extracted from a model simulation. The 180 

simulations are repeated for several assumed artificial source terms. The synthetic experiments evaluate the impact of 181 

assimilating plume height retrievals in addition to total columns, and additionally compare two options for regularising the 182 

inverse problem.  183 

The IASI data were subsequently assimilated to invert for the SO2 emissions  forin the Eyjafjallajökull (2010) eruption. 184 

The inversion was performed both with and without assimilation of the plume height retrievals keeping the setups otherwise 185 

identical.  186 

3 In all inversion experiments, the emission flux density (kg m-1 s-1) was estimated for each model level in steps of 12 187 

hours. The model setup used in the synthetic experiments was otherwise identical to that used with the IASI data, but a lower 188 

vertical resolution of 1 km was used to reduce the computational cost.  189 

 190 
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  191 

43 Assimilation and inversion methods 192 

The forward problem for volcanic tracer transport is defined by the advection-diffusion equation: given the emission 193 

forcing f , solve  194 

(1) ( ) ( ) ( , ) ( , , ) ,


        


c
c K c f x t s c x t

t
V   195 

where c  is the tracer concentration, V  is the wind vector, K  is the turbulent diffusivity tensor, and ( , , )s c x t  denotes the 196 

chemical and other sinks., which in this study include the wet and dry deposition of SO2 and its chemical conversion to SO4. 197 

4.13.1 Variational source term inversion 198 

The inverse problem discussed in this paper is to determine the forcing f , given a set of observations depending on c . 199 

We assume that Eq. (1) has been discretised, and following the common notation in data assimilation literature, we denote 200 

the tracer concentrations, collectively for all time steps, with the state vector x  . The state vector is related to the unknown 201 

parameter vector f  by the model operator , and to the.  observations y by the observation operator  as ( ) 
t

xy  , 202 

where 
t

x denotes the true state. The random vector  includes the effect of observation errors as well as the possible 203 

representativeness or model errors associated with . 204 

Finally, the vector y  of observations is given by the possibly non-linear observation operator  as ( ) y x ε , where 205 

ε  denotes the observation error. 206 

If the observation errors follow a multivariate normal distribution with covariance matrix R  , then a solution to the 207 

inverse dispersion problem can be sought by maximising the likelihood function, which is equivalent to minimising the cost 208 

function 209 

(2) 1
( ) ( ( )) ( (

2
)

1
)


 

T
J f y - x R y x , 210 

where ( )x f .. Model errors are not explicitly included in the cost function. 211 

The cost function assumes that the airborne concentrations, which comprise the state vector x , are completely determined 212 

by the emission. Therefore, contrary to chemical data assimilation studies such as (Elbern et al. , (2007), no term 213 

corresponding to the concentration in the beginning of assimilation is included. This is reasonable, since the inversion is 214 

performed in a single step, and the state and observation vectors in Eq. (2) cover the whole simulated period. The total SO2 215 

loading was low in the beginning of the assimilation due to the inactive phase of eruption and initial state was therefore 216 

unlikely to affect the inversion for the emission forcing. 217 
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Model errors are not explicitly included in the cost function, as the relation between concentrations x and the emission f  218 

is taken as a strong constraint. Arranging the inversion into a sequence of shorter assimilation windows with a background 219 

term for the initial state would relax this constraint at the boundaries of assimilation windows. However, this would still not 220 

allow for model errors arising within the assimilation window, and problematically, the emitted mass would no longer be 221 

conserved between the assimilation windows. Consequently, we use a single assimilation window and adopt the approach of 222 

previous studies (Seibert et al., 2011; Stohl et al., 2011), where the model uncertainty is incorporated to the observation error 223 

covariance matrix R . The form of R is explained in more detail in Sections 3.2 and 3.3. 224 

Model errors are not explicitly included in the cost function. f  225 

If the model and observation operators are linear, represented by matrices M and H , then (2) becomes a linear least-226 

squares problem. For volcanic eruptions with a known location, the emission vector f  is zero almost everywhere, which 227 

makes it feasible to evaluate the matrix H M  and solve (2) algebraically. This is the basis for inversion methods of Boichu et 228 

al. (2013), Eckhardt et al. (2008) and Lu et al. (2016). 229 

As an alternative to the algebraic solution, the minimisation problem (2) can be solved with gradient-based, iterative 230 

algorithms, which avoids evaluating the matrix H M . In this study, the cost function is minimized using the L-BFGS-B (the 231 

limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm with bound constraints) algorithm of Byrd et al. (1995) which 232 

allows constraining the solution to non-negative values. Evaluating the gradient requires solving the adjoint problem for Eq. 233 

(1).  234 

The iteration is continued until a stopping criterion is satisfied, e.g. until the norm of the gradient is reduced by a 235 

prescribed factor. However, in Section 4 we will discuss truncating the iteration before formal convergence in order to 236 

control the regularization. 237 

 238 

4.23.2 Assimilation of plume height retrievals 239 

Given the tracer concentration ( , , )c x y z  in three dimensions, the observation operator for column integrated mass 
i j

m  is 240 

given by  241 

(33) 
1

( , , )



 

N

ij

k

k i j k
w c x y zm   242 

where  ,
i j

x y  and 
k

z  are the gridpoint coordinates and 
k

w  denotes the thickness (in meters) of the kth model level. The layer 243 

concentrations are often weighted with an averaging kernel (Eskes and Boersma, 2003) to account for the vertically varying 244 

sensitivity of the satellite retrieval. In this work, weighting is not applied because the IASI retrievals treat the plume height 245 

explicitly. 246 

In the retrievals, the plume height is represented by its centre of mass.  247 
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(4) 
,

1

1
.



 
N

C M ij k k i jk

ki j

cwZ z
m

  248 

It would be possible to develop an observation operator for
C M

Z , however, the operator would be nonlinear and only defined 249 

for nonzero columns. These problems can be overcome by replacing the centre of mass with the first moment of mass
C M

m Z . 250 

Then, the observations consist of pairs 
,

( , )
i j i j C M ij

Zm m  given by 251 

(54) 
,

1

1





 

 
 

  
   
 

 
 





N

k ijk

k

N

ij

k k i

i j C M

jk

k

ij

w c
m

m
z w

Z
c

 , 252 

where 
k

z  is the height of the kth model level and i and j refer to the horizontal coordinates. Transforming the observations of 253 

C M
Z  into 

C M
m Z  changes the magnitudes of observation errors, and introduces  a correlation between the observation 254 

components m  and
C M

m Z . However, this effect can be evaluated and included into the observation operator. 255 

The mean and standard deviation of m  and 
C M

Z  are denoted as 
m

,
m

 and  
z

,.
z
 respectively. Denote the means 256 

and standard deviations of m  and 
C M

Z  with , 
m z

 and 
m

 and 
z
. Assuming that the errors of m  and 

C M
Z  are normally 257 

distributed, it can be shown that the variance of first moment equals 258 

(6) 

2 2 2 2 2 2

2

V a r[

2 C o v[ , ]

+ C o v[ , ] .

]      

 

 



C M m z z m m z

m z C M

C M

m Z

m Z

m Z

  259 

(5)   260 

Under similar assumptions, the covariance of m  and 
C M

m Z  becomes 261 

(7) 
2

C o v[ , C o v[ ,] ] .   
C M m z m C M

m m Z m Z   262 

(6)   263 

Finally, the expectation of 
C M

m Z  is shifted due to the correlation between retrievals of m  and 
C M

Z : 264 

(8) E [ ] C o v[ , ]  
C M m Z C M

m Z m Z   265 

(7)  . 266 

The retrieval errors of different pixels are assumed to be uncorrelated. The observation error covariance matrix R is 267 

therefore block-diagonal, and its entries can be evaluated using Eqs. (6) and (7) from the retrieval error estimates  
m

,
z

268 

and C o v[ , ]
C M

m Z , which are all included in dataset used in this study.the known covariances of m  and 
C M

Z  using Eqs. (5) 269 

and (6). However, even if the standard deviations m
C M

Z are known accurately, the means 
m

 and 
z
 need to be 270 
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substituted with the observed values of m  and
C M

Z . R The impact of this approximation is evaluated numerically in 271 

Section 4. 272 

Assimilation schemes commonly assume uncorrelated and unbiased observation errors. A non-diagonal R can be 273 

introduced with a transformation of variables: define 274 

(9) ( )

T -1

y = L

L L R

b

=

y

H = L H

  275 

(8)   276 

where 
T

L L  is the Cholesky factorisation of the inverse observation error covariance matrix 
1

R  and  0, C ov[ , ]
C M

m Zb277 

corrects for the bias according to Eq. (8) (7). Then, substituting the transformations of Eq. (9) (8) into the cost function (2) 278 

shows that assimilation of y  with the original R  is equivalent to assimilation of y using the transformed observation 279 

operator H  with unit matrix in place of R. 280 

The above formulas can be implemented as a preprocessing step for the observations. In summary, the procedure is  then 281 

as follows: 282 

1. For each available IASI pixel i , evaluate the tuple 
, ,

( , C o v[ , )]
i i i i C M i i C M i

Z Zm mmy b  and the corresponding 283 

2x2 covariance matrix
i

R . 284 

2. Factorise 1


i

T

i i
LR L and transform the observations according to Eq. (9) (8). 285 

3. Store the transformed observations 
i

y with their pixel-specific vertical weighting functions given by rows of the 286 

matrix 
i

H L H . 287 

After the transformation, the observations are handled identically to regular column observations with a vertical weighting 288 

function. 289 

4.33.3 Observation errors 290 

The IASI retrievals used in this study include pixel-specific error estimates for total column and plume height retrievals. 291 

The estimates are derived statistically (Carboni et al., 2012) from differences between the transmission spectra computed by 292 

a forward model and those observed by IASI. Together with estimates for the correlation between plume height and total 293 

column retrieval errors, this provides the necessary input for equations (6) and (7) (5) and (6).  294 

The retrieval error estimates are only provided for pixels with positive SO2SO2 detection. For the non-SO2SO2 pixels, 295 

which are assimilated as zero values, a different estimate is used, based on the detection limits estimated by Walker et al. 296 

(2012). The detection limit was translated into a standard deviation of a Gaussian random variable assuming, conservatively, 297 

a probability of 0.95 for a correct detection.  298 
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However, performing the inversions with R defined only by retrieval errors resulted in poor a posteriori agreement with 299 

the IASI data, which suggested that the retrieval errors are not sufficient to describe the discrepancy between the simulated 300 

and observed values. As will be found shown in with the synthetic experiments, the impact of model uncertainty is 301 

significant compared to the retrieval errors, and it needs to be taken into account. The problem of model errors affecting the 302 

inversion is discussed by Boichu et al. (2013), who found the impact to depend strongly on treatment of zero-value 303 

observations, and consequently chose to keep only every tenth zero-valued observation. 304 

In this study, the model errors are included by modifying the observation error covariance matrix, which is set to 305 

 
o bs m odel

R R R , where 
m o d el

R  is constant, diagonal and determined experimentally. The model error standard deviation for 306 

total column observations is set to 2 DU for both the experiments using synthetic data (Section 4) and for the inversion for 307 

Eyjafjallajökull (Section 5), while the model error for the plume height retrievals was set to 2 km for the synthetic 308 

experiments and 1 km for the Eyjafjallajökull inversion. Reducing the plume height standard deviation to 1 km in the 309 

synthetic experiments resulted in large negative bias in the total emission, while increasing the standard deviation to 2 km 310 

did not significantly change the total emission in the inversion for Eyjafjallajökull. 311 

and corresponds to experimentally determined constant standard deviations of 2 DU for total column and 1 km for the 312 

plume height. 313 

The model errors for plume height and total column are assumed uncorrelated and independent of the observation errors. 314 

However, their effect is propagated to the covariance matrix for first moment according to Eq. (6)  (5). The actual model 315 

errors evolve dynamically and are likely to be variable and correlated in space and between the plume height and total 316 

column components; however, a more advanced treatmentincluding these effects appears difficult in the current inversion 317 

approach. 318 

4.43.4 Regularization 319 

The least squares problem (2) has a unique solution only if the matrix H M  is of full (numerical) rank. Furthermore, if 320 

H M  is close to singular, the problem remains ill-posed, which results in a noisy solution. Consequently, some form of 321 

regularisation has been employed in all previous works based on the least-squares approach. 322 

A common option is the Tikhonov regularisation (Tikhonov, 1963; Engl et al., 2000; Tikhonov, 1963), which introduces a 323 

penalty term into the cost function (2), which in the simplest form becomes 324 

(10) 
1 2 2

,

,

( ) ( ) ( )
1

||
2




    
T

k n

k n

k
w fJ f y H x R y H x   325 

(9) ,  326 

where the summation is over levels k and timesteps n. The weights 
k

w  in Eq. (10)(9) are set equal to the thickness of each 327 

model layer; this makes the penalty term consistent with its continuous counterpart 
2

( , ) f z t d td z , which in turn ensures that 328 

the regularisation term does not depend on the vertical discretisation.  329 
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The penalty term can be modified to include a non-zero a priori source term. However, this approach is not taken in the 330 

present work. Instead, we aim to choose the level of regularisation optimally, so as to avoid excessive bias in the regularised 331 

solution. The need for regularisation depends on the coverage of observations, accuracy of the forward model as well as on 332 

the meteorological conditions controlling the dispersion. Thus, the regularisation parameter 2
  cannot be chosen a priori.  333 

In this work,  a criterion known as the L-curve (Hansen, 1992) is used for determining the amount of regularisation. In the 334 

L-curve approach, the inversion is performed with various values of 2
 , and the residual y H x  is plotted as a function of 335 

the solution norm f . For ill-posed inverse problems, the curve is typically L-shaped. The residual initially reduces quickly 336 

as the regularization is relaxed, however, for some value of 2
 , the curve flattens and reducing the regularization further 337 

only marginally improves the fit. This point, where L-curve reaches its maximum curvature, is taken to represent the optimal 338 

regularisation. In the present study, the L-curve is evaluated without the frequently used logarithmic transformation. 339 

The main advantage of the L-curve method is that it does not rely on a priori estimates for the observation error. This is 340 

useful, since in practice the discrepancy between simulated observations and the data is also affected by model errors, which 341 

are poorly known. The L-curve was, in effect, used in inverse modelling of volcanic SO2SO2 also by Boichu et al. (2013). 342 

Changing the regularisation parameter requires the minimisation to be started over, which is costly in the variational 343 

inversion scheme where each iteration requires a model integration. However, as noted by Fleming (1990) and Santos 344 

(1996), the iteration itself forms a sequence of solutions with decreasing regularisation.  Thus, instead of minimising the 345 

regularised cost function (10)(9), we iterate to minimise the original cost function (2), and truncate the iteration according to 346 

the L-curve criterion. This approach, known as regularisation by truncated iteration (Kaipio and Somersalo, 2006), or 347 

iterative regularisation (Hansen, 2010), provides a computationally efficient method to regularise large-scale inverse 348 

problems. In the following section, we show experimentally that the truncated iteration such an approach results in similar 349 

solutions for the source term inversion as the more common Tikhonov regularisation.  350 

54 Experiments with synthetic data 351 

Regularisation by truncated iteration has been studied in detail especially for Krylov subspace based algorithms (Calvetti 352 

et al., 2002; Fleming, 1990; Kilmer and O’Leary, 2001). The effect of truncated iteration on quasi-Newton minimisation 353 

methods, such as the L-BFGS-B algorithm used in this work, has been studied less extensively. To evaluate the truncated 354 

iteration in comparison to Tikhonov regularisation for inverse modelling of volcanic emissions, we performed an experiment 355 

with synthetic observations extracted from forward model simulations. In addition to the comparison of regularisation 356 

methods, the synthetic experiments enable us to evaluate robustness of the L-curve method and to assess the impact of 357 

assimilation of plume height retrievals, and to quantify how model errors affect the source term estimate.  358 

For the sake of computational convenience, the experiments in this section are not performed using the variational method 359 

described in Section 3.1, but instead the forward sensitivity matrix HM is evaluated by running a separate model simulation 360 

Field Code Changed



13 

 

for each component of the emission vector f . The sensitivity matrix is subsequently used for evaluating the cost functions 361 

(Eq. (2) for truncated iteration, Eq. (10) for Tikhonov regularisation) and the respective gradients required by the L-BFGS-B 362 

minimisation code. Evaluating the sensitivity matrix also provided an opportunity to numerically confirm the equivalence of 363 

the matrix-based and variational inversion methods. 364 

The experiments with synthetic data were set up for the same time (1 to 21 May, 2010) as the inversion for 365 

Eyjafjallajökull. The synthetic observations were evaluated by running forward simulations with a set of artificial source 366 

profiles (cases A to D) shown in the leftmost column of Figure 1. The synthetic observational data (total columns and first 367 

moments as explained in Section 3.2) correspond to the locations and times covered by the IASI overpasses during the 368 

simulated period. 369 

The artificial source terms A and B are defined arbitrarily, while cases C and D are realisations of a stochastic process 370 

where the total flux (kg/s) is given by a lognormal, temporally correlated random variable and the eruption height follows the 371 

relation of Mastin et al. (2009). At each time, a piecewise constant vertical profile is assumed with a transition at 75% of 372 

height. The emission rate is distributed evenly between the two sections. 373 

The simulations with artificial source terms were driven by the meteorological data valid for the simulated period. 374 

However, Ttwo sets of meteorological input were used: the synthetic observations were generated using the operational 375 

ECMWF forecast fields, and but to simulate the effect of model errors, the sensitivity matrix for used in the inversions was 376 

evaluated using the ERA-Interim as the meteorological driver. Although changing the meteorological driver does not cover 377 

all sources of model error, we expect the resulting perturbation to have statistical properties similar to the real model 378 

uncertainty. 379 

The effect of retrieval errors was simulated by 380 

For the sake of computational convenience, the experiments in this section were carried out by pre-evaluating the forward 381 

sensitivity matrix HM by running a separate model simulation for each component of the emission vector f . In order to 382 

simulate the effect of model errors, the matrix HM was evaluated with both the ERA-Interim and operational ECMWF 383 

forecast fields as meteorological drivers.  384 

The sensitivity matrix for inversions was extracted from the run with ERA-Interim meteorological data. The set of 385 

synthetic observations of the SO2 column density, on the other hand, was evaluated from the model run based on the 386 

operational meteorological fields and used as the data for the inversion experiments. The perturbing simulated the extracted 387 

(simulated) observations were perturbed with additive Gaussian noise. In order to perturb the simulated plume height 388 

retrievals, the unperturbed simulated first moments and total columns were first converted back to the centre of mass and 389 

total column for the pixels with column density higher than 0.2 DU in the forward run. Then, both the simulated centre of 390 

mass and the total column were perturbed and transformed back to the (perturbed) total columns and first moments. The total 391 

columns were perturbed with standard deviation equal to 0.1 DU + 10 % of the true values; the centres of mass were 392 

perturbed with a constant standard deviation of 1 km. A negative correlation coefficient of -0.9 was assumed between the 393 

perturbations to the total column and centre of mass. 394 
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The error covariance matrix used in the inversion was supplemented with 2 DU and 2 km “model error” as described in 395 

Section 3.3. For the inversions using simulated plume height retrievals, the observation error covariance matrices were 396 

transformed according to Eqs.(6) –(8) –   using the perturbed centre of mass and total column values for 
Z

and 
m


Z
. 397 

 with standard deviation equal to 1 DU + 30% of the true value. The observation error covariance matrix used in the 398 

inversion was supplemented with 2 DU “model error” as described in Section 3.3. 399 

The residual and solution norms, which define the L-curves, are evaluated consistently to the penalized cost function (10) 400 

(9): 401 
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where f  denotes the emission, x M f  and 
k

w  is the thickness of the kth model layer. To evaluate the L-curve for 404 

Tikhonov-regularisation, the parameter 2
  was incremented in discrete steps given by 

2 7
1 0 2


 

i

i
for 0 ,1, 2 , ...i  . The L-405 

BFGS-B minimization method with non-negativity constraint was used for both Tikhonov regularisation and the truncated 406 

iteration; in the case of Tikhonov regularisation, the iteration was continued until convergence for each 
2


i

 either until 407 

convergence or for maximum of 50 iterations. A zero-valued solution was always used as the first guess in the iteration. 408 

With the truncated iteration, the weights 
k

w , required by Eqs. (10) and (11) (9) and (10), are not explicitly included in the 409 

cost function. Instead, the same effect is achieved by transforming the parameter vector as 
1 / 2

, ,
 

kk n k n
f w f .  410 

The point where the L-curve flattens, which is taken as the final solution, was determined numerically. First, the points 411 

 , f H x y  are sorted according to increasing f . Then, the points where the residual increases are removed, and finally, 412 

the optimal point is chosen using the “triangle” algorithm of Castellanos et al. (2002). 413 

Figure 1Figure 1 presents the inversion results using Tikhonov regularisation with total column observations, truncated 414 

iteration with total column observations, and truncated iteration with total column and centre of massplume height 415 

observations. Regardless of the assumed source term or inversion method, the emission timing is well captured within the 12 416 

h resolution. The overall vertical profiles are also recovered, however, spurious features are present especially in cases B and 417 

C.  418 

For comparison, Figure 2 presents the solution corresponding to the case B in Figure 1Figure 1 but evaluated without 419 

model errors – that is, using the same sensitivity matrix H M  for both evaluating the observations and performing the 420 

inversion. In this case, regularisation was not needed, and the true solution was recovered almost perfectly despite the noisy 421 
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observations. Thus, the noise present in the estimated solutions in Figure 1Figure 1 is mainly due to model error, which 422 

affects the elements of matrix M . All other results presented in this section are obtained in presence of model errors. 423 

 424 

Numerical evaluation of the inversion results in terms of RMSE and relative bias is presented in Table 1. The scores are 425 

evaluated for both truncated iteration and Tikhonov regularisation, each with and without plume height observations. 426 

Furthermore, two numbers are given for each case: the optimal value, corresponding to the regularisation (for Tikhonov, the 427 

value of 2
 , for truncated iteration, the iteration number) with lowest RMSE, and the L-curve value corresponding to the 428 

choice of regularisation as determined from the L-curve explained above. Clearly, the regularisation with optimal RMSE is 429 

not necessarily optimal with respect to bias. 430 

For all cases, the optimally truncated iteration had lower RMSE than the optimally tuned Tikhonov regularisation. 431 

However, this advantage was not always realised when the truncation was determined from the L-curves, which are shown in 432 

Figs. 3 and 4. For the Tikhonov regularisation, the L-curve solution was generally closer to the optimal. The difference is 433 

caused by differing features of the L-curves for the two regularisation methods: for the Tikhonov regularisation, the L-curve 434 

forms a convex graph varying smoothly with 2
 , while the curves formed by the L-BFGS-B iterates are neither smooth nor 435 

even monotonous. Although points where the residual increases are omitted from the search, points with a locally large 436 

curvature remain in the curve, and such points are responsible for the under-regularised L-curve solutions in cases A and D 437 

when only total column was assimilated.  438 

In 34 cases out of 40, the RMSE of the solution determined from the L-curve was within 20% from the optimally 439 

regularised solution. Of the remaining six cases, two were over-regularised and four were under-regularised.  440 

In Figs. 3 and 4, the root mean squared error (RMSE) of the solution is shown next to each L-curve as a function of the 441 

regularisation parameter. As expected, the RMSE initially drops as the regularisation is relaxed, reaches a minimum, and 442 

eventually increases as the solution becomes contaminated by noise. This behaviour was especially clear when only total 443 

column observations were assimilated. When also centres of mass were assimilated, the minima in RMSE become weaker, 444 

and the RMSE with maximum number of iterations was only slightly higher than optimal. Thus, assimilating the centres of 445 

mass had the unintended but potentially useful side effect of making the inversion less sensitive to under-regularisation. 446 

 447 

Since the regularised cost function (10) favours solutions with a small squared norm, the inversion is expected to 448 

underestimate the true emission. If only total column observations are used, the underestimation remains small, being 5 – 449 

10% for the L-curve solutions with truncated iteration, and up to 15 % for the corresponding Tikhonov regularised solutions. 450 

However, when the plume height observations were included, the negative biases increased to 15-25% even when using 451 

truncated iteration.   452 

Magnitude of the negative bias turned out to be sensitive to the assumed model uncertainty as described by the covariance 453 

matrix 
m d l

R  . Reducing the standard deviation for plume height errors to 1 km resulted in negative biases between 25 and 454 
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35%. 
Z

1 As a further sensitivity test, we evaluated the effect of approximating the true values for total column and 455 

plume height with the respective observed values when transforming the observation error covariance matrix, as explained in 456 

Section 3.2. Using, unrealistically, the true values in the inversion, the relative biases were reduced to 16-21%. The RMSE 457 

was reduced by up to ~15%. It can be noted that none of the tested setups describe an observation error covariance matrix 458 

that would perfectly match the perturbations applied the simulated observations, since the model errors, simulated by using a 459 

different meteorological driver, are not well described by additive, white noise. Taking the cross-correlations and spatial 460 

variation of model errors into account might lead into different optimal
m d l

R .  461 

 462 

 463 

The total emitted mass is underestimated by < 10 % for the solution from truncated and by up to about 15 % for the 464 

Tikhonov-regularised solution. The underestimation is expected due to the form of cost function (9). However, the inversion 465 

results show that the negative bias is not necessarily large unless the problem is regularised too strongly. 466 

For comparison, Figure 2 presents the solution corresponding to the case B in Figure 1 but evaluated without model errors 467 

– that is, using the same sensitivity matrix H M  for both evaluating the observations and performing the inversion. In this 468 

case, regularisation was not needed, and the true solution was recovered almost perfectly despite the noisy observations. 469 

Thus, the noise present in the estimated solutions in Figure 1 is mainly due to model error, which affects the elements of 470 

matrix M .  471 

The L-curves corresponding to each case in Figure 1 are shown in Figs. 3 and 4. The root mean squared error (RMSE) of 472 

the solution is shown next to each L-curve as a function of the regularisation parameter. When measured by the solution 473 

RMSE, an optimal regularisation indeed existed in each case. In case A, where the solution varies smoothly in time and 474 

space, the solution error is only moderately sensitive to the regularisation.  The L-curve formed by the L-BFGS-B iterates is 475 

shallow in this case, which caused the algorithm to choose an unnecessarily high number of iterations. However, the 476 

negative effect on the solution quality was small. For the Tikhonov regularisation, the regularisation parameter was 477 

determined almost optimally. 478 

The choice of regularisation was more critical in the remaining cases. In cases B and C, the L-curve has a clear plateau 479 

after initial decrease, and the chosen corner point is close to optimal for the both regularisation methods. In case D, the 480 

truncated iteration leads to a somewhat under-regularised solution similar to case A.  481 

Outcome of the four experiments indicates that the need for regularisation varies strongly depending on the true source, 482 

whose characteristics also affect how accurately the algorithm determines the optimal regularisation. We used the stochastic 483 

source terms to evaluate this more quantitatively. Figure 5 presents the RMSE as a function of the iteration number for 40 484 

realisations of the stochastic source term used in cases C and D. The optimal iteration numbers chosen from each L-curve are 485 

marked with stars. 486 
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The RMS errors shown in Figure 5 are normalised by the minimum error for each inversion, which shows that in most 487 

cases, the inversion was only moderately sensitive to the exact point of truncation. In 34 cases out of 40, the RMSE of the 488 

solution determined from the L-curve was within 20% from the optimally regularised solution. Of the remaining six cases, 489 

two were over-regularised and four were under-regularised.  490 

While the experiments in this section were performed by pre-evaluating the matrix H M , in 4D-Var, the multiplications 491 

by H M  and its transpose are replaced by forward and adjoint model evaluations. Although the approaches are formally 492 

equivalent, this change results in a slightly different sequence of iterations from which the L-curve is evaluated. To 493 

investigate this difference, we performed the inversion using the real IASI data using both approaches. The two solutions are 494 

shown in Figure 5Figure 6. The total released mass differs by less than 1% between the solutions, and the emission patterns 495 

are qualitatively similar. The differences for individual values, although larger, appear small compared to the inversion 496 

errors. 497 

In summary, the experiment with synthetic data showed that the truncated iteration resulted in solutions similar to those 498 

obtained with the more common Tikhonov regularisation. This makes the truncated iteration, in combination with the L-499 

curve, an attractive option for regularising the variational source term inversion. On the other hand, the overall need for 500 

regularisation depended strongly on the assumed source term. nNo regularisation was needed in absence of model error, 501 

which indicates that the need for regularisation is likely to also depend on quality of the forward model. This emphasizes the 502 

need for a robust method to determine the appropriate regularisation according to the situation at hand. 503 

65 Inversion results for Eyjafjallajökull 504 

Optimising the source term following the regularisation strategy (truncated iteration) described in Section 3.4 results in 505 

satellite-derived estimates on the temporal and vertical emission profiles, as well as on the total emitted amount. The 506 

solutions presented here correspond to iterates chosen from the L-curve as using the algorithm described in Section 3.4. For 507 

assimilation of column mass only, the 9th iterate was chosen; with column mass and plume height assimilation, the 13th 508 

iterate was chosen. Similarly to the synthetic experiments, the initial iterate was a zero solution. The L-curves are shown in 509 

the supplementary information. 510 

. 511 

Figure 7Figure 6 shows the temporal and vertical distribution of the SO2SO2 emission obtained both with and without 512 

assimilation of plume height. The plume height time series estimated from radar and camera observations (Petersen et al., 513 

2012b) are plotted on top of the emission distributions. Both the camera and radar observations represent the top of the 514 

visible plume, and eEven if the visible plume does not necessarily coincide with the SO2SO2 plume, the plume height 515 

observations provide an indication of the eruption activity.  516 

 Figure 7shows the vertical profile of emissions integrated over the whole period. The bulk of emissions are between 2 517 

and 8 kilometreskm even if only column density is assimilated. Assimilating the plume height retrievals further decreases the 518 
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fraction of emissions above 8 km. When the plume height is assimilated, about 85% of total emission is estimated below 8 519 

km and about 95% below 11 km. Without assimilation of plume heights, the 95% level raises to 12 km.. 520 

The total released mass of SO2 is 0.33 Tg when plume height is not assimilated and 0.29 Tg when plume height is 521 

assimilated. Figure 9 depicts the emission flux as a function of time and shows that while the largest difference in emission 522 

rate is during the peaks of 6th May, the assimilation of plume heights tends to decrease the emission rate throughout the 523 

eruption. 524 

 525 

The strongest emission occurred during 6th May. However, the vertical distribution of the peak depends on whether the 526 

plume height is assimilated. While the maximum occurs at 5-6 km, if plume height is not assimilated, secondary maxima 527 

appear at 11 km, reaching 13 km on 9th May. If plume height retrievals are assimilated, the emission above about 8 km is 528 

strongly suppressed. Similarly, on 18th May, the isolated emissions at 10 and 15 km are essentially largely removed when 529 

the plume height is assimilated.  530 

A more quantitative view on the effect of assimilating the plume height retrievals is given by Figure 8, which compares 531 

the estimated centre of mass of the SO2 emission with the retrieved plume heights. The plume heights are shown as averages 532 

within both 50 and 500 km radius from the volcano. The averages over wider area have better temporal coverage and they 533 

are likely to be less affected by unresolved temporal or spatial variations in the plume height. The retrievals with estimated 534 

error larger than 5 km are excluded from the averaging (although used in assimilation). 535 

In addition, Figure 8 includes radar and camera observations of the plume top which are compared with the 80th and 95th 536 

percentiles of the emission. The 95th percentile, although formally more representative of the top of emissions, shows very 537 

large fluctuations compared to both observations and the 80th percentile, which suggests that the highest percentiles might 538 

not be a robust way to characterise the plume top in the inversion results.  539 

Over the whole period, the inversion results show a larger variability of injection height in comparison to both IASI and 540 

the radar or camera time series. Between May 4 and 5 and later May 10 and 17, the average IASI retrievals and the emission 541 

centre of mass agree mostly within 1-2 km, as do the radar observations with the 80th percentile of emission. An exception is 542 

the evening of May 11 when the injection height appears overestimated, however, the total emission rate was low at that 543 

time. Assimilation of plume height retrievals had little impact on the injection height during these times. 544 

Between May 6 and 10, the injection height is overestimated in comparison with both IASI and radar observations. 545 

Assimilating the plume height retrievals improves the comparison, but the injection height remains 2-5 km too high 546 

compared to the averaged IASI retrievals. A similar overestimation occurs on May 17 and 18. Assimilating the plume height 547 

again reduces the overestimation significantly on those days, however, both the centre of mass and the percentiles remain 548 

overestimated. 549 

The total released mass of SO2 is 0.33 Tg when the plume height is not assimilated and 0.29 Tg when the plume height is 550 

assimilated. Figure 8d, which depicts the emission flux as a function of time, shows that while the largest difference in 551 
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emission rate is during the peaks of 6th May, the assimilation of plume heights tends to decrease the emission rate 552 

throughout the eruption. 553 

 554 

 555 

Figure 8 shows the vertical profile of emissions integrated over the whole period. The bulk of emissions are between 2 556 

and 8 kilometres even if only column density is assimilated. Assimilating the plume height retrievals further decreases the 557 

fraction of emissions above 8 km. When the plume height is assimilated, about 85% of total emission is estimated below 8 558 

km and about 95% below 11 km. 559 

The total released mass of SO2 is 0.33 Tg when plume height is not assimilated and 0.29 Tg when plume height is 560 

assimilated. Figure 9 depicts the emission flux as a function of time and shows that while the largest difference in emission 561 

rate is during the peaks of 6th May, the assimilation of plume heights tends to decrease the emission rate throughout the 562 

eruption. 563 

The inversion results of Figure 7 can be compared with those in Figure 10, which are obtained by assimilating both total 564 

column and plume height but neglecting all off-diagonal observation error covariance matrix elements. The distribution of 565 

emissions differs strongly from both cases in Figure 7, and the vertical distribution remains as spread as with assimilation of 566 

total column only.  The treatment of observation errors as described in Section 3.2 is therefore a necessary step for successful 567 

assimilation of the plume height retrievals. 568 

The SO2SO2 column densities simulated a posteriori are shown for 5-710 May in Figure 9 Figs. 11 and 12,  along with the 569 

corresponding IASI retrievals. The overall patterns are well reproduced, although the column density is underestimated for 570 

some parts of the plume, especially on 7th 6th and 8th 7th of May. Due to the smaller total emission, the column densities 571 

are slightly lower when plume height is assimilated, however, the difference is small. Comparisons of the total columns for 572 

all 21 days are presented in the supplementary material. 573 

Figure 10 shows the simulated plume height (evaluated as centre of mass) for 7-9 May, which corresponds to the period 574 

of overestimated injection height shown in Figure 8. Compared to IASI, the inversion using only total columns tends to 575 

overestimate the plume height for all three days. As expected from Figure 8, when the plume height retrievals are 576 

assimilated, the overestimation is reduced, but not entirely removed. 577 

A more detailed evaluation of the vertical profiles is enabled by comparison with the CALIOP lidar backscatter data. It 578 

should be noted that the most prominent features in the CALIOP data are regular clouds; in particular, this includes the near-579 

constant layers located at 1-2 km altitude.  580 

In Figure 11, the simulated SO2 concentration is plotted as contours together with the CALIOP attenuated backscatter data 581 

collected on May 6 and 8, 2010.  On both days, the track segment intersects the SO2 plume near its source. On May 6, this 582 

part of the volcanic plume is obscured by a cloud, but a distinctive aerosol layer is visible south of 60° N. This layer is 583 

reproduced by the model, however, the observed vertical extent is much thinner than modelled, indicating that the vertical 584 

variation of the transport was not sufficient to resolve the emission vertically. The plume height for the thickest part of the 585 
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plume is nevertheless reproduced within ~2 km, and hence, assimilating the plume height retrievals had only little impact on 586 

the simulated plume. 587 

 On May 8, the highest simulated concentrations coincide with a strong backscatter signal at 3-4 km altitude close to the 588 

emission (near 62° N). The altitude is consistent with the averaged IASI plume height retrievals shown in Figure 8, whereas 589 

the simulated vertical extent between 2 and 7.5 km is again too wide. While a second layer between 8 and 12 km is present 590 

in the CALIOP data, the horizontal extent of this feature is far too wide to represent the volcanic plume. A third simulated 591 

SO2 layer is present at 13 km only if plume height retrievals are not assimilated; this demonstrates the difference of injection 592 

heights seen in Figure 8.  593 

The CALIOP track on May 8 also crosses an older SO2 plume around 48° N, where the simulated vertical extent is 594 

compatible with the CALIOP data. However, a prominent layer extending between 50° and 55° N is present in the CALIOP 595 

data. The layer is classified partly as cloud and partly aerosol in the CALIOP vertical feature mask (not shown), but the layer 596 

does not coincide with the simulated SO2 plume. However, Figures 9 and 10 indicate that the simulated plume was 597 

erroneously displaced towards west during the evening of May 7. Taking this into account, it is feasible that the observed 598 

backscatter would be caused by the volcanic plume. The 3-4 km altitude of the layer would agree with the IASI plume height 599 

retrievals (Figure 10) and support the below 5 km injection heights indicated by the IASI and radar data in Figure 8. 600 

Figures 12 through 14  combine the simulated SO2 profiles and the CALIOP data with collocated IASI total column and 601 

plume height retrievals. The simulated vertical distributions are mostly consistent with both the CALIOP and the IASI data. 602 

In Figure 12, the 3-4 km mean altitude of the peak reaching 20 DU according to the IASI data is reproduced by the model. 603 

The altitude of the plume extending towards south (between 48-50° N) is also reproduced given the higher retrieval 604 

uncertainty. The column densities up to 20 DU, however, are not reproduced: the highest simulated values are displaced 605 

towards west and remain below 10 DU.  606 

Figures 13 and 14 show generally similar level of agreement in the vertical structures. In both figures, the northern part of 607 

the plume (55-60° N) is partly obscured by a cloud, which is reflected by the large retrieval error estimates. In both figures, 608 

assimilating only total column retrievals resulted in several isolated SO2 layers between altitudes of 10-15 km. Presence of 609 

these layers is supported by neither IASI nor CALIOP data. Even if the corresponding SO2 emissions did not coincide with 610 

ash emissions, some CALIOP signal could be expected due to the sulphate particles forming in the plume. Altogether, the 611 

comparisons in Figs. 12 through 14 and the comparison of the emission profiles (Figure 8) support the conclusion that the 612 

emissions above 8-10 km on 6-9 May were an artefact and probably related to insufficient wind shear. 613 

Further comparisons with CALIOP data on 14 to 17 May are shown in Appendix A. The simulated vertical distributions 614 

generally coincide with layers observed by CALIOP; however, assimilation of plume height retrievals had little impact on 615 

the simulated plumes at those times. 616 

The plume height, evaluated as centre of mass, for 6-9 May is shown in Figure 13. Compared to IASI, the simulation 617 

based only on assimilation of total columns tends to overestimate the plume height for all four days. When the plume height 618 

retrievals are assimilated, the overestimation is reduced consistently, although not entirely removed. 619 
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76 Discussion 620 

No a priori assumptions regarding shape the emission profile were made in this study. If only total column retrievals are 621 

used in the inversion, the estimated source term includes isolated emissions reaching up to 15 km. With plume height 622 

assimilation, the vertical distribution becomes more concentrated and also more consistent with the plume observed with the 623 

radar, which suggests that the vertical distribution SO2 and ash emissions was mostly similar.  624 

The centre of mass retrievals only partly constrain the vertical distribution, and hence some emission remains between 8 625 

and 12 km, and the overestimation of plume height is reduced but not removed in the a posteriori simulations. However, 626 

given the about 1 km uncertainty in the IASI plume height retrievals and the 1 km assumed model uncertainty (Section 3.3) 627 

included into the observation errors, the inversion results for plume height are consistent with the assumptions of the 628 

inversion.No a priori assumptions regarding shape the emission profile were made in this study. The comparison with the 629 

IASI retrievals, CALIOP data and weather radar observations of the plume shows that the resulting vertical distributions 630 

were frequently in good agreement with the observations even if only total column retrievals were used in the inversion. The 631 

most notable exception were the emissions between 6 and 10 May, when the injection height was strongly overestimated, 632 

and although assimilating the plume height retrievals improved the agreement, the discrepancy was not fully resolved. Since 633 

the plume height retrievals are introduced as a weak constraint, a complete match between the inversion results and the 634 

observation data is not expected. However, some of the discrepancies remain too large to be explained by retrieval errors 635 

even together with the assumed model 1 km uncertainty. 636 

Generally, two factors could lead to an inaccurate reconstruction of the vertical profile from the total column 637 

observations. First, the horizontal transport patterns on different altitudes might be too similar for resolving the vertical 638 

structure. Second, the simulated horizontal patterns might be too inaccurate due to errors or low resolution of the transport 639 

model or its input data. Since the inversion does not allow for systematic model errors, including the plume height retrievals 640 

in the inversion is expected to improve the vertical profile mainly in the first case. The discrepancy remaining between the 641 

observed and modelled plume heights suggests that model errors were at least partly responsible for the overestimation of 642 

injection heights on 6-10 May. 643 

The main effect of assimilating the plume height retrievals was the reduction of emissions above 10-12 km. Although 644 

these emissions are not large compared to the total emission, this outcome has some qualitative significance, since without 645 

assimilation of plume heights, some emissions would be assigned above the tropopause. In addition to the data presented in 646 

the previous section, pPrevious studies based on Lidar lidar observations data (Ansmann et al., 2010) or, aircraft 647 

measurements (Schumann et al., 2011) or inverse modelling (Stohl et al., 2011) do not suggest significant injection above the 648 

10 km altitude. However, these studies were mainly focused on volcanic ash instead of SO2SO2, and as shown by Thomas 649 

and Prata (2011) , ash and SO2 were not always transported together. On the other hand, In contrast, tthe SO2SO2 plume 650 

height estimates derived from the GOME-2 satellite instrument by Rix et al. (2012) do indicate heights above 10 km and up 651 

to 13 km on 5th of May. However, Neither our data nor inverse modelling reproduces this result, as the plume heights 652 
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retrieved from IASI data are below 6 km for that day, which agrees with the modelled plume heights (not shown) even when 653 

only total column retrievals are included in the inversion.  654 

Among the previous emissions estimates for Eyjafjallajökull, Flemming and Inness (2013) estimated a 0.25 Tg total 655 

SO2SO2 release using GOME-2 satellite retrievals, and 0.14 Tg using the OMI retrievals. Our estimates of 0.29-0.33 Tg are 656 

higher, especially compared OMI, but this is consistent with the higher total SO2SO2 burden estimated (Carboni et al., 2012) 657 

from the IASI data used in this study. Using the GOME-2 data, (Flemming and Inness, (2013) furthermore estimated SO2 658 

injection heights (defined as centres of 2-3 km thick layers) to mostly between 4 and 6 km above sea level with a peak 659 

reaching 10 km on May 19th. This agrees reasonably well with our mean profile (Figure 7), although contrary to our results 660 

without plume height assimilation, Flemming and Inness (2013) did not obtain the injection heights above 6 km on May 6th 661 

and 7th. 662 

(Boichu et al., (2013) used the IASI retrievals of (Clarisse et al., (2012) to invert for temporally resolved SO2 emissions of 663 

Eyjafjallajökull between May 1th and 12th, 2010, and estimated a total emission of about 0.17 Tg. Our inversion yielded for 664 

the same time 0.21 (total column and plume height retrievals) or 0.23 (total column only) Tg of SO2. The larger total 665 

emission in our study might be due to assumptions regarding plume height in the IASI retrievals. The retrievals used by 666 

Boichu et al. (2013) assumed constant 7 km plume height, while the retrieved plume heights in this study were frequently 667 

lower especially near the volcano, and this would result in a higher retrieved values for the total column. For the emission, 668 

Boichu et al. (2013) assumed a constant injection height of 6 km, which turns out to coincide with the maximum of the mean 669 

profile (Figure 7) obtained in this study. 670 

(Stohl et al., (2011) determined the temporal and vertical distribution of volcanic ash emissions for the Eyjafjallajökull 671 

eruption with an inversion constrained by SEVIRI ash retrievals and an a priori source derived from plume top observations. 672 

Although the ash and SO2 emissions cannot be compared quantitatively, the mean vertical profile obtained using ECMWF 673 

meteorological data (Fig. 2 in Stohl et al. (2011) is not very different from the one in Figure 7. In both profiles, the emissions 674 

are restricted mainly below 8 km and have maxima at 6 km. 675 

Including the plume height retrievals in the inversion resulted in a total emission 12% lower than with total column 676 

retrievals only. Similar differences were observed in the experiments with synthetic data discussed in Section 4, where the 677 

inversion results were biased low by 15-20% using both plume height and total column retrievals and by only 2-10% using 678 

total columns only.   679 

In ideal conditions, assimilating the plume height information should not affect the simulated total columns. However, 680 

adding a vertical constraint to the inversion can never improve the agreement for total columns, and in presence of realistic 681 

model uncertainty, a negative effect can be expected. The systematic tendency towards smaller emission may be caused by 682 

the regularisation, which penalises the quadratic norm of the solution. The synthetic experiments indicated that introducing 683 

the plume height retrievals did not allow relaxing the regularisation, since the optimal level (as identified from the parameter 684 

2
 ) was similar with and without the plume height observations. 685 
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On the other hand, the synthetic experiments also indicated that the estimation error for the total emission was only 686 

moderately sensitive to the differences of the assumed source terms. The estimate for total emission was also robust with 687 

regard to the vertical resolution, as halving the vertical resolution of the reconstruction (compare Figs. 5 and 6) resulted in 688 

only minimal change in the total emission. The estimated total emission could, nevertheless, be affected by biases in the 689 

satellite retrievals, or by model errors not exposed by the change of meteorological driver. 690 

2
  691 

The experiments with synthetic data furthermore (Section 4) showed that the need for regularisation, or in Bayesian terms, 692 

the need for a priori information, strongly depends on the situation. In addition, the need for regularisation, was stronglyor in 693 

Bayesian terms, the need for a priori information, was strongly affected by uncertainty of the forward model,.  and Tthe 694 

efforts needed to handle zero-valued observations in this and other studies (Boichu et al., 2013; Seibert et al., 2011) support 695 

this conclusion. The errors arising from the dispersion model are likely to be correlated in space, and therefore, introducing 696 

the corresponding non-diagonal elements in the error covariance matrix R  could improve the inversion results.  697 

The model errors resulted in noisy temporal and vertical emission profiles in the synthetic experiments and probably also in 698 

the real inversions. However, the estimates for total emission were fairly robust regardless of the assumed source term or 699 

perturbations to the forward model. Also, halving the vertical resolution of the reconstruction (compare Figs.  6 and 7) 700 

resulted in only minimal change in the total emission. Nevertheless, the estimates of the total emission could be affected by 701 

biases in the satellite retrievals, or by model errors not exposed by the change of meteorological driver. 702 

While the regularisation used in this work is equivalent to a zero-valued a priori source, a more informative a priori source 703 

could be accommodated with a change of variables. Other forms of regularisation proposed for the volcanic source term 704 

inversion include second-order temporal smoothing (Boichu et al., 2013), which also could be handled by truncated iteration 705 

as discussed by Calvetti et al. (2002).  706 

The variational inversion method is computationally efficient if high temporal or vertical resolution is desired for the 707 

reconstruction.  In the current configuration, the reconstructed solution had formally 1360 degrees of freedom. Each iteration 708 

consisting of one forward and one adjoint integration, the 25 iterations would require model integrations equivalent to about 709 

about 1000 simulated daysdays to be simulated. In comparison, evaluating the matrix H M  directly would require 1360 710 

model integrations, and if the sensitivity was evaluated in windows of e.g. 72 hours, almost 4000 simulated days would be 711 

required. The matrix-based approach is, however, more easily parallelised, while the parallelisation of the variational method 712 

relies on the dispersion model. In our configuration, one iteration took about 5 minutes wall clock time on a 20-core node of 713 

a Cray XC30 supercomputer. 714 

A drawback of the 4D-Var inversion method is that the a posteriori error covariance matrix for the source term is difficult 715 

to evaluate.  However, Monte Carlo techniques could be used to sample the a posteriori uncertainty.  716 
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87 Conclusions 717 

We have presented an observation operator for retrievals of the vertical centre of mass of a tracer plume. The operator is 718 

based on transforming the centre of mass into first moment of mass using the retrieval of total column. The approach was 719 

tested by performing a source term inversion using both artificial data and the SO2SO2 retrievals from the IASI instrument 720 

during the Eyjafjallajökull eruption in May 2010. The inverse problem was solved with the 4D-Var method embedded into 721 

the SILAM dispersion model, and the truncated iteration is proposed as an efficient regularisation method for the 4D-Var 722 

inversion. Using both real and synthetic data, the 4D-Var method was shown to produce a similar solution as the more 723 

common algebraic method, but at lower computational cost. 724 

The inversion results for Eyjafjallajökull were compared to radar based ash plume observations and CALIOP lidar 725 

profiles. The comparisons show that assimilating the plume height retrievals reduced the overestimation of injection height 726 

during individual periods of 1-3 days. However, for most of the simulated 21 days, the injection height was constrained by 727 

meteorological conditions and assimilation of the plume height retrievals had only small impact. 728 

 729 

Assimilating the plume height retrievals reduced the vertical spread of the SO2 injection. When the plume height was is 730 

assimilated, about 85% of the 0.29 Tg total emission was below 8 km and about 95% was below 11 km. Compared to 731 

previous modelling studies (Boichu et al., 2013; Flemming and Inness, 2013), the total emission is 15-20% larger taking into 732 

account the differences in temporal coverage of the studies.  733 

Introducing the plume height retrievals in the inversion may have an adverse effect on the estimated total emission. In the 734 

experiment with artificial observations, the inversions with only total column data had a negative bias of 2-10% which 735 

increased to 15-20% when the plume height observations were included. In the inversion for Eyjafjallajökull, performing the 736 

inversion using only total column retrievals resulted in ~15% larger total emission, which is consistent with the experiments 737 

with simulated observations. 738 

The injection profile obtained by assimilating the plume height retrievals is more consistent with the radar and camera 739 

based observations of the ash plume.  740 

The inverse problem was solved with the 4D-Var method embedded into the SILAM dispersion model. Truncated 741 

iteration is proposed as an efficient regularisation method for the 4D-Var inversion. Using both real and synthetic data, the 742 

4D-Var method was shown to produce a similar solution as the more common algebraic method, but at considerably lower 743 

computational cost. 744 

Experiments with both synthetic and real data suggest that the inversion is sensitive to errors in the forward model, and to 745 

their assumed uncertainty. Methods more robust to model errors are a topic suitable for future research. 746 
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 757 

Appendix A: Additional comparisons with CALIOP data 758 
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 759 

Figure A1. Comparison of simulated SO2 concentration (µg m-3) compared to CALIOP total backscatter at 532 nm on 14 (panel a), 760 
16 (b) and 17 (c) May, 2010. The inversion with only total column retrievals is shown in dashed contours. The contour levels 10, 50, 761 
and 100 in panel a, 6, 30 and 60 in panel b and 5, 25 and 50 in panel c. 762 
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 765 

 766 

 767 

 768 

Appendix B: moments of products of correlated Gaussian random variables 769 

Let X  and Y  be scalar random variables with means and variances 
X

, 
Y

, 
2


X

 and 
2


Y

. Then, it follows from the 770 

definitions for variance and covariance that 771 

(1211) 
2 2 2 2 2 2 2 2 2

V a r[X Y ] C o v[ , ] C o v[2 , ], ] C o v[            
X Y X Y Y X X Y

Y X Y X YX   772 

and 773 

(1312) 
2 2

C o v [X ,X Y ]= E [X C o v[ E [ ]E [ ]] [ ] , ]  XYXY X YE  . 774 

To expand 
2 2

C o v[ , ]X Y  and 
2

]C o v[ ,X Y we assume that X  and Y  are normally distributed. We first define normalized 775 

auxiliary variables 776 

(1413) ,
 

 

 
 

X Y

x Y

X Y
X Y  . 777 

Then, by expressing Y  as  778 

(1514) 
2

1  XcY c Z  , 779 

where C o v[ , ]c X Y  and ~ (0,1)Z  independent of X , it is simple to verify that 780 

(1615) 

2 2 2

2

C o v[

C o v[

, ] 2

, ] 0 .





X Y

X Y

c
  781 

For the original random variables X  and Y , we find by substituting (14)(13) into the definition, expanding the terms, and 782 

using identities (16)(15) that 783 

(1716) 
2 22

, ] 2 [ ,C o v [X C o v C o v [ ,] 4 ]  
X Y

Y XY YX   784 

and 785 

(1817) 
2

, ] 2C o v[ C o v[ , ]
X

X X YY  . 786 

Formulas (5) and (6) now follow by combining Eqs. (17)(16) and (18)(17) with (12)(11) and (13)(12). 787 
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 939 

 940 

Figure 11. Estimated emission flux (kg m-1 s-1) in source term inversions with simulated data. True source terms for the four cases 941 
(A to D) are shown in the left column. Solutions using truncated iteration are shown in the middle column, solutions using 942 
Tikhonov regularisation are shown in the right column.The remaining columns show the inversion results using Tikhonov 943 
regularisation, using truncated iteration with total column data, and using truncated iteration with total column and plume height 944 
data. 945 
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 947 
Figure 22. Estimated emission flux with synthetic data: inversion results for the case B in Figure 1Figure 1 assuming a perfect 948 
forward model. 949 

Table 1. Bias and RMSE with respect to the true source term (case A…D) in experiments with synthetic data with assimilation of 950 
total column (TC) and total column and centre of massplume height (TC+CM). Values are shown for both optimal regularisation 951 
(regularisation parameter or iteration number with the lowest RMSE) and for the regularisation chosen from L-curve. Relative 952 
bias is defined as the difference between estimated and true total emission divided by the true total emission. 953 

Case 
 

Tikhonov regularisation Truncated iteration 

  

RMSE Relative bias RMSE Relative bias 

  

Optimal L-curve Optimal L-curve Optimal L-curve Optimal L-curve 

A TC 48.0 48.0 -5 % -5 % 45.2 51.2 -3 % -2 % 

 
TC+CM 39.8 39.8 -19 % -19 % 36.5 36.7 -17 % -17 % 

B TC 65.1 65.6 -8 % -12 % 61.4 61.9 -8 % -8 % 

 
TC+CM 59.3 60.2 -18 % -23 % 56.9 58.4 -18 % -17 % 

C TC 21.1 21.1 -13 % -13 % 20.6 21.9 -8 % -4 % 

 
TC+CM 18.5 18.6 -20 % -24 % 17.8 18.1 -17 % -17 % 

D TC 32.4 33.6 -15 % -11 % 31.1 38.0 -8 % -6 % 

 
TC+CM 29.3 29.5 -27 % -24 % 27.3 28.0 -24 % -21 % 

 954 
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 957 

Figure 33. L-curve (left) and RMS error (right) for inversions with simulated data for cases A and B in Figure 1Figure 1. The 958 
iterate (for truncated iteration) or the regularisation parameter (for Tikhonov regularisation) chosen from the L-curve is marked 959 
with a star. 960 
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 962 

Figure 44. L-curve (left) and RMS error (right) for inversions with simulated data for cases C and D in Figure 1Figure 1. The 963 
iterate (for truncated iteration) or regularisation parameter (for Tikhonov regularisation) chosen from the L -curve is marked with 964 
a star. 965 
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 967 

Figure 5. The normalised RMSE with respect to iteration number. Each grey line corresponds to an inversion with a randomly 968 
generated source term. The colourful stars denote solutions chosen from the L-curve. 969 

  
Figure 56. Inversion results with real observations: emission flux (kg m-1 s-1) obtained using 4D-Var (left) and by evaluating the 970 
sensitivity matrix (right). The inversions are based on total column observations. 971 
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 972 

  973 

Figure 67. Inversion results for Eyjafjallajökull. Left: emission flux (kg m-1 s-1) with assimilation of column mass only. Right: 974 
assimilation of column mass and plume height with full observation error covariance matrix. White dots denote plume height 975 
observations by radar, grey dots denote plume height observations with a camera. 976 
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 977 

 978 

Figure 78. Time-integrated emission of SO2SO2 (kg m-1) during the simulated period as function of height (m) for the source term 979 
inversions with (greenred) and without (blue) plume height assimilation. 980 

 981 
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 982 

Figure 9. Estimated SO2 emission flux (kg s-1) as function of time with (green) and without (blue) assimilation of plume height 983 
retrievals. 984 

 985 

Figure 10. Inversion results for Eyjafjallajökull: emission flux (kg m-1 s-1) with assimilation of column density and plume 986 

height but neglecting off-diagonal elements in the observation error covariance matrix. White dots denote plume height 987 

observations by radar, grey dots denote plume height observations with a camera. 988 
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 989 
  990 
  991 
 992 

Figure 8. Inversion results for Eyjafjallajökull. Panels a and b: centre of mass of SO2 injection and average IASI plume height 993 
within 50 and 500 km from the volcano; panel c: 95th and 80th percentiles of SO2 injection and the plume top altitudes observed 994 
by radar and camera; panel d: estimated emission rate (kg s-1). Inversions using only total column retrievals are plotted in blue; 995 
inversions using total column and plume height retrievals are plotted in red. Fully correlated errors are assumed for evaluating 996 
the error bars for IASI data. The data with retrieval error estimate larger than 5 km not included. The radar and camera 997 
observations are averaged to time steps of 6 hours. The centres of mass and percentiles of the inversion results are evaluated for 998 
the 12 hour steps emitting at least 1% of the total emission. All altitudes are above sea level.  999 
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 1002 

Figure 11. SO2 column loading (DU) for the a posteriori simulation with assimilation of plume height (top) and for the IASI 1003 
column retrievals (bottom row). Results for 5, 6 and 7th May, 2010 are shown in the columns from left to right. The evening 1004 
overpasses are shown for IASI, the model fields are valid at 22 UTC. 1005 

  1006 
Figure 9. SO2 column loading (DU) for the IASI column retrievals (left column), for the a posteriori simulation with assimilation of 1007 
total column only (middle) and with assimilation of total column and plume height retrievals. Results for 5, 6 and 7th May, 2010 1008 
are shown in the rows from top to bottom. The evening overpasses are shown for IASI, the model fields are valid at 22 UTC. 1009 
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Figure 12. As Figure 11, but 8-10 May, 2010. 1014 
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 1015 

 1016 

Figure 10. Retrieved SO2 plume height (km, left column) and the simulated plume height (as centre of mass) without and with 1017 
assimilation of plume height retrievals for 7-9 (top to bottom row) May, 2010. The difference (without plume height – with plume 1018 
height) of the simulations is shown in the rightmost column. 1019 
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 1021 

 1022 

Figure 13. Simulated SO2 plume height (centre of mass, km) without (left) and with (middle) assimilation of plume height 1023 
retrievals for 6-9 (top to bottom row) May, 2010. The corresponding IASI retrievals are shown in the right column. 1024 
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 1027 

 1028 

Figure 11. Comparison of simulated SO2 with CALIOP data for 14 UTC on 6 May (top) and 04 UTC on 8 May, 2010 (bottom). 1029 
Left: the simulated SO2 total column (DU, with assimilation of both total column and plume height) with the CALIPSO track 1030 
plotted with dashed line. Right: CALIOP total attenuated backscatter at 532 nm with the simulated SO2 concentration represented 1031 
by contours. The solid contours correspond to assimilation of both total column and plume height, the dashed contours correspond 1032 
to assimilation of total column only. The contour levels are 10, 50 and 100 µg m-3. 1033 
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 1035 

 1036 

Figure 12. CALIOP total attenuated backscatter, simulated SO2 concentration (contour levels indicated on the figure title) and 1037 
collocated IASI plume height retrievals at ~14 UTC on May 7, 2010. The solid lines and contours correspond to inversion using 1038 
total column and plume height retrievals, dashed lines and contours correspond to inversion using total column retrievals only. 1039 
The modelled and retrieved column densities are shown in maps on the left and as a 1D plot along the CALIOP track on the 1040 
bottom. The full CALIOP track segment is marked in the map of simulated SO2 columns (top-left), the track segment where the 1041 
collocated IASI data are extracted is shown in the map of retrieved SO2 columns (bottom-left). The model SO2 columns shown in 1042 
the map are from the inversion using both total column and plume height retrievals. 1043 
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 1044 

Figure 13. As Figure 12 but for May 9, 2010. 1045 Formatted: Caption
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 1046 

Figure 14. As Figure 12 but for May 10, 2010. In the 1D column density plot below the CALIOP curtain, two IASI data points with 1047 
values 32±30 and 19±26 DU are outside the plot range. 1048 
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