
Author comment regarding the assimilation method 
 

We thank the referee for the comments. The referee raises concerns regarding the validity of our inversion 

method. However, we are convinced that this is indeed a misunderstanding, caused by differing 

conventions within the fields of data assimilation and inverse modelling. In the following, we aim to address 

the question regarding validity of the assimilation method; we will address the specific comments (1-4) in 

the final response provided along with submission of the revised manuscript. 

 

In our inversion, contrary to numerical weather prediction, the observations are assimilated in a single 

window covering all 21 days. We realise that this aspect may not have been spelled out clearly enough in 

the manuscript, as it is only mentioned implicitly in section 3.1 (line 133: “state vector x is taken collectively 

for all time steps”). This important point will be stated upfront in the revised manuscript.  

Little SO2 was observed at the beginning of the assimilation window, which coincided with inactive phase of 

the eruption. It is therefore reasonable to assume that the SO2 concentrations within the assimilation 

window depended only on the emission flux f , given as a function of time and altitude. In this case, the cost 

function does not include a term for the background state b
x , and instead, the possible a priori constraints 

are given for the emission f : 
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where ( )=x fM  includes the model state on all time steps of the assimilation window, H , y ,  and R  

denote the observation operator, observation data, and observation error covariance matrix, and ( )fT  is a 

penalty functional. Most of the existing studies on inverting volcanic emissions have used a cost function 

similar to Eq. (1) with various forms of ( )fT , including an a priori emission source with a prescribed prior 

error covariance matrix (Eckhardt et al. (2008) and the subsequent works using the FLEXPART model), or 

Tikhonov regularisation with first or second order smoothness constraints (Boichu et al., 2013; Lu et al., 

2016). Since there is little prior information on smoothness of volcanic emissions, we chose the arguably 

simplest option of zeroth order Tikhonov regularisation (Eq. 9 in the manuscript) as the point of reference. 

A limitation of inversions based on Eq. (1) is that the model is taken as a strong constraint i.e., model errors 

developing within the assimilation window are not included in the cost function. Since the model errors are 

not negligible, their effect on the residual ( )−y xH  needs to be included into the observation error 

covariance matrix R . Also this aspect has been recognized by previous flux inversion studies for both 

volcanic (Seibert et al., 2011; Stohl et al., 2011) and other emissions (eg. Bergamaschi et al. (2005); 

Bocquet, (2012)). 

It would be possible to arrange the inversion into successive assimilation windows as done by Elbern et al.  

(2007) in context of air quality forecasting. In this case, the initial state should probably be included in the 

control vector; however, this would not remove the assumption of negligible model errors within the 

assimilation window. This approach is so far untested for volcanic emissions – Flemming and Inness (2013) 

estimated the emission fluxes in a separate step.  

The reviewer suggests that the truncated iteration is only a way to “prevent the system from wandering too 

far”, with which we respectfully disagree.  Truncated iteration (often simply called iterative regularisation) 

has been shown to be a computationally efficient method for regularising large-scale inverse problems, and 

it is discussed extensively in textbooks (e.g. Hansen, 2010; Kaipio and Somersalo, 2006) in addition to the 

papers (Calvetti et al., 2002; Fleming, 1990; Kilmer and O’Leary, 2001) cited in the manuscript.   



 

The behaviour of RMSE as a function of iteration number is therefore not an error, but fully consistent with 

what is expected for many iterative methods when applied to an ill-posed problem. As seen in the left 

panels of Figs. 3 and 4, the residual indeed decreases as the iteration proceeds. The eventual growth of 

RMSE, however, is an indication of overfitting the solution to noise. The noise will eventually contaminate 

the converged solution, whereas the early iterates are controlled by more robust low-frequency features of 

the data. Truncating the iteration prevents the overfitting and results in a more accurate solution than that 

obtained by allowing the iteration to converge.  

 

Although the self-regularising properties of iterative methods are rarely exploited in data assimilation, in 

our experiments the truncated L-BFGS-B iteration yielded solutions that were, depending on the point of 

truncation, similar or better in RMSE than those given by optimally tuned Tikhonov regularisation. With 

Tikhonov regularisation (Eq. 9), the iteration converges, although with weak regularisation (small 2
α ), the 

convergence becomes very slow.  

 

Due to the reasons explained above, the tests with 
B
J  and 

R
J  as suggested in the review are not actually 

possible. However, we can use the 
2

χ  condition to evaluate the consistency of the R  matrix. For a well-

specified inversion, linear regression theory implies (e.g. Tarantola, 2005) that the expectation of the 

unregularised cost function (Eq. 2 in the manuscript) at the minimum is  
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where n  is number of observations and p  is number of estimated parameters. For the Eyjafjalljökull 

inversion with assimilation of total column and plume height (centre of mass) retrievals, 1400p∼ , 
61.4 10n ⋅∼  and 4( ) 6 10

opt
J ⋅f ∼  with 

opt
f  given by the L-curve criterion. The apparent discrepancy is 

explained by the large proportion of zero observations with only small contribution to the total cost 

function. If the cost function is evaluated using only observations corresponding to positive SO2 detections, 

we have 5
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⋅f ∼ . Even if Eq. (2) does not strictly hold for subsets of observations, 

this suggests that our R is reasonably specified, especially given that the assumed values for model
R  are at 

best a crude approximation for the actual model uncertainty. 
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