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Abstract. Climate data is highly correlated through the physics and dynamics of the atmosphere.

Model evaluation often involves averages of various quantities over different regions and seasons

making it difficult from a statistical perspective to quantify the significance of differences that arise

between a model and observations. Here we present a strategy that makes use of a set of perfect

modeling experiments to quantify the effects of these correlations on model evaluation metrics. This5

information is incorporated into Bayesian inference through a precision parameter with informative

priors. These concepts are illustrated through an example of fitting a line through data that includes

either uncorrelated or correlated noise as well as to the calibration of CAM3.1. The concept of a pre-

cision parameter may be applied as a strategy to weight different climate model evaluation metrics

within a multivariate normal framework. From the example with CAM3.1, the precision parame-10

ter plays a central role in rescaling the estimated parametric uncertainties to better accommodate

modeling structural errors.

1 Introduction

Within Bayesian inference, calibration refers to the problem of estimating model parameters given

observations and uncertainties that affect model-data differences. The result of a calibration is a15

joint probability distribution whose maximum density identifies the region of parameter space where

model performance is optimal in the sense that a weighted sum of distance between the model

and observations is minimized. Among the challenges that exist for Bayesian calibration of climate

models is the question of how to assign weights to various observational targets, many of which are

highly correlated through the physics and fluid dynamics of the atmosphere. Here we present and20

discuss the use of a precision parameter which is a common device in Bayesian calibration to make

use of information concerning how data is scattered about the model to better quantify uncertainties

affecting model calibration.

One of the issues that needs to be considered in the application of a precision parameter to climate

model calibration is that uncertainties affecting model evaluation are high dimensional. A scalar25

will have limited scope to compensate for information that is missing within an evaluation metric
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concerning the many space and field dependencies that exist in the data. Thus one of our objectives

here is to show both the usefulness and limitations of using a scalar parameter to assess climate

model parametric uncertainties.

Ideally, dependency information is included within model evaluation metrics as it would provide30

an excellent way to determine whether a climate model is capturing observed climate phenomena for

the right reasons. However, it is still difficult to represent such dependency information mathemat-

ically (Mu et al., 2004). Here we explain how the use of a precision parameter can be enhanced by

additional information that can be obtained from a set of perfect modeling experiments in which the

only errors producing differences between a model and synthetic ‘observations’ come from internal35

variability. This inherently empirical approach allows us to assess the significance of the distance

between a model and data even though we don’t have a perfect representation of dependency infor-

mation. This circumstance is perhaps unique to climate models which are able to represent important

aspects of the chaotic motions of the fluid atmosphere and ocean and processes affecting the radia-

tive transport of energy between the top of the atmosphere and surface. Indeed, it would be difficult40

to design a more sophisticated statistical model of climate modeling errors than climate models

themselves.

Sections 2 and 3 provides background material concerning climate model calibration. While not

new, this material may be unfamiliar to physical scientists and will be important to the understanding

and application of ideas concerning use of idealized modeling experiments to help establish infor-45

mative priors to help deal with the sometimes arbitrary ways models are tested against observational

data.

2 Climate model evaluation metrics

2.1 Multivariate normal metric

In order to explain the effects of dependences on parameter uncertainties, consider a multivariate nor-50

mal statistical model for assessing the significance of the distance between the output of a simulation

with two observables d1 and d2. Suppose x̂1 is an estimate of observations d1 using climate model

g(m) with parameters m. If errors are normally distributed, which is a good assumption for monthly

mean or longer climate data, x̂1 = d1 + ε1, where ε1 is the model errors with ε1 ∼N(0,σ2
1). ε1 in-

cludes both the modeling error due to the grid resolution, the possibility of unparameterized physical55

processes (i.e. missing physics), uncertainty in the initial and surface forcing conditions, and the in-

strumental error. Many of these types of errors are hard to estimate particularly if the process that

generated them are correlated in space and time.
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If it is assumed that ε1 is distributed as a Gaussian with variance σ2
1 , the likelihood of simulating

data d1 with the model g(m) using parameters m is given by60

θ(d1|x̂1,m) =
1

σ1

√
2π
exp
(
− (x̂1− d1)2

2σ2
1

)
. (1)

In the case where the model simulates correlated observations d1 and d2, the joint likelihood for

simulating this data given the same model can be expressed as

θ(d1,d2|x̂1, x̂2,m) =
1

σ1σ22π(1− ρ2)
exp
(
− 1

2(1− ρ2)

[ (x̂1− d1)2

σ2
1

+65

(x̂2− d2)2

σ2
2

− 2ρ
(x̂1− d1)(x̂2− d2)

σ1σ2

])
, (2)

where ρ is the correlation coefficient of observables d1 and d2. Note that if ρ= 0, then θ(d1,d2|x̂1, x̂2,m)

becomes the product of the two Gaussian distributions θ(d1|x̂1,m) and θ(d2|x̂2,m) which is what

we would get if d1 and d2 were independent. Note that the probability density is not defined for

the case where the observations are perfectly correlated, ρ= 1. Written in matrix notation, the joint70

probability distribution for correlated observables d1 and d2 is

θ(d|x,m) =
1

2π|C| 12
exp
(
− 1

2
(x−d)TC−1(x−d)

)
(3)

where

x =


x̂1

x̂2


 , d =


d1

d2


 , and C =


 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2


 . (4)

The definition for k observations is75

θ(d|x,m) =
1√

(2π)k|C|
exp
(
− 1

2
(x−d)TC−1(x−d)

)
, (5)

which only works mathematically if C−1 exists. Since many observations of climate are strongly

correlated there is a good chance that the covariance matrix is rank deficient, its inverse is singular,

and its determinant is 0. The typical solution to this problem is to apply singular value decomposition

to C to identify a reduced number ke of orthogonal dimensions commonly referred to as empirical80

orthogonal functions or ‘eofs’ in the atmospheric sciences (e.g., Mu et al., 2004). The argument of

the exponent, when rotated into this orthogonal basis and truncated to include the first ke vectors

associated with the largest eigenvalues, follows a χ2
(ke) distribution with ke degrees of freedom

ke∑

i=1

[eofTi (x−d)]2

σ2
i

∼ χ2
(ke) (6)

If the model is unbiased, the χ2
(ke) distribution in this case will have an expected mean of ke and a85

variance of 2ke. Thus within a multivariate normal framework for testing a model against a set of

observational targets, the average value of the argument of the exponent within equation (3), which
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scales with the effective degrees of freedom, is an important determinant in the width of estimated

confidence intervals. Often climate model performance metrics involve averages over different re-

gions, seasons, and quantities, making estimates of parametric uncertainty arbitrary without some90

way to incorporate a scale in which to judge changes in model skill relative to a null hypothesis.

3 Model calibration with precision parameter S

We now introduce a precision parameter S that can scale an arbitrarily defined climate model eval-

uation matrix (Jackson et al., 2008). Statisticians often include a similar parameter within Bayesian

calibration as one can use information about how well a model matches data to determine uncer-95

tainties in parameters. One can think of it as representing uncertainties in the specification of C−1.

Simply scaling C−1 can not affect the relative weighting between different observational targets.

However such a factor can affect the presumed strength of the observational evidence, similar to

changing the effective degrees of freedom, such that solution probabilities are narrower or larger

depending on the size of model-data mismatch. By introducing S as an uncertain parameter in ad-100

dition to climate model parameters m we need to consider a distribution for representing its ‘prior’

uncertainty. Moreover, because of the relationships between S and the covariance matrix, the value

of S needs to scale with the errors that exist between a model and data. The point of this section is to

describe the selection of a prior distribution for S and to provide guidance on how its co-dependency

with model parameters m can be estimated through a hybrid of Metropolis and Gibbs sampling105

(Gelman et al., 2013).

The Bayes expression for estimating a set of parameters m and parameter S conditional on obser-

vations dobs is

p(m,S|dobs)∝ l(dobs|m,S)p(m,S) (7)

We start by assuming the priors for m and S are independent, i.e. p(m,S) = p(m)p(S). One choice110

for prior p(S) is the gamma distribution, p(S)∼Ga(α,β) with shape parameter α > 0 and rate

parameter β > 0,

p(S) =
βα

Γ(α)
Sα−1exp(−βS). (8)

This choice of the functional form for S is convenient as it is conditionally conjugate to the multi-

variate normal formulation of the likelihood function, which facilitates the use of Gibbs sampling115

for iteratively estimating co-dependencies between model parameters m and S within the likelihood.

The Ga(α,β) distribution appears as a skewed distribution with a mean and variance provided by

< S >=
α

β
(9)

and

var(S) =
α

β2
(10)120
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With the proposed gamma distribution for S, the distribution for the likelihood function, assuming

errors are multivariate normal, is

l(dobs|m,S)∝ S
ke

2 exp(−SE(m)) (11)

where E(m) is the metric of climate model performance, which for a multivariate normal errors is

the argument of the exponential given in equation (5)125

E(m) =
1
2

(g(m)−dobs)TC−1(g(m)−dobs). (12)

The term S
ke

2 is the pre-exponential factor for a Gaussian distribution which due to uncertainties in S

can no longer can be assumed to be constant. One may think of S
ke

2 as a scalar factor affecting |C|
1
2

in equation (5) which includes S as the factor affecting the precision of each of the ke independent

observations130

C =




1
S 0

. . .

0 1
S




[ke×ke]

, (13)

such that

|C|
1
2 = ( 1

S )
ke

2 . (14)

An important implication for assuming independence between priors for m and S is that we now

can use Gibbs sampling to iteratively estimate their co-dependency using two separate equations:135

p(m|S,dobs)∝ l(dobs|m,S)p(m)

∝ exp(−SE(m))p(m) (15)

and

p(S|m,dobs)∝ l(dobs|m,S)p(S)

∝ S
ke

2 +α−1exp(−S[E(m) +β]) (16)

The last expression for equation (16) comes from the the product of equation (11) and equation (8),

omitting constant factors. One can iteratively generate a value of m conditional on S and a value of140

S conditional on m in the following way:

1. To simulate m conditional on S, apply a Markov Chain sampling algorithm for m (equation

15) but just one iteration.

2. To simulate S conditional on m, sample from a gamma distribution (equation 16) which has

scale parameter ke

2 +α and rate parameterE(m)+β. The values for ke, α, and β are specified145

according to the empirical Bayes principles outlined in the following section.
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3. Repeat steps 1 and 2 several times until convergence is achieved.

According to this sampling strategy, the mean value for S conditional on m will be

< S >=
ke

2 +α

E(m) +β
. (17)

The mean value for S decreases with increasing errors between the model and data. As S decreases,150

the likelihood function becomes less discriminating of alternate models and estimates of confidence

intervals will increase in range. As will become clear in the example, the increase in range is not

arbitrary. It is precisely what is needed to account for any errors in the description of uncertainty in

the climate model metric as given by E(m), at least when the model is ‘perfect’.

4 Empirical Bayes155

The sampling of S within equation (16) depends on parameters ke, α, and β. While it is always

necessary to provide information about ke, it is common to select non-informative values for α

and β, such as α= 0 and β = 0, which would allow posterior estimates of S to be dominated by

information about model-data misfit coming from the log-likelihood (equation 12). As climate model

metrics often include multiple observational targets and quantities that are averaged over different160

regions and seasons, we propose a process to make use of a set of ‘perfect’ modeling experiments to

provide additional information about how all these different quantities could be weighted using S. A

‘perfect’ model is one where we replace model output for observational data. Repeated experiments

with different initial conditions explores the effects of internal variability on the metric of model

errors that is used within the likelihood function. Since we are using data to inform the prior, this is165

generally referred to as empirical Bayes. Sections 5 and 6 will apply empirical Bayes to the example

of fitting a line to data and discuss the application to climate model calibration.

4.1 Effective degrees of freedom ke

Here we determine the effective number of degrees of freedom for a set of experiments in which we

use a climate model to simulate the effects of correlated noise on an evaluation metric. We start by170

assuming that the evaluation metric will be proportional to a χ2
(ke) distribution with ke degrees of

freedom,

E(m) =
A

2
χ2

(ke), (18)

where A is an unknown constant. E is related to degrees of freedom ke by <E >= Ake

2 and

var(E) = A2ke

2 where the angle brackets denote an ensemble mean and var(E) is the ensemble175

variance using Nexp number of perfect modeling experiment samples. It follows by substitution that

ke =
2<E >2

var(E)
. (19)
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This estimate is not very precise, especially without a lot of samples. For example, Figure (1) indi-

cates there is about a 30% error in estimates of ke using Nexp = 100 samples. If ke for these 100180

samples were estimated to be 21, then the actual ke of the data could as low as 14 or as high as 28.

Below we incorporate the uncertainty in the estimates of the degrees of freedom into the priors for

the precision parameter S.
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Figure 1. Uncertainty in the estimate of the effective degrees of freedom using equation(19) as a function of

the number of perfect modeling experiment samples Nexp. The 2σ uncertainty is expressed as a percentage of

ke.

4.2 Scale and rate parameters α and β

Using Nexp perfect modeling experiments, one may estimate values for the gamma distribution185

parameters α and β. The goal is to select values for S that would allow Nexp samples of SE(m)

to generate the same mean and 95% credible interval as a 1
2χ

2
(ke) distribution with ke degrees of

freedom,

< S >=
α

β
=

√
1
2ke

σE(m)
(20)

where 1
2ke is the variance of 1

2χ
2
(ke) and σE(m) is the standard deviation of E(m) using Nexp190

samples. The variance in S is based on the uncertainty in estimating σE(m) with only Nexp samples,

var(S) =
α

β2
= var(S̃Nexp)< S >2, (21)
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where samples of S̃Nexp are generated according to

{S̃Nexp}i =





√
1
2ke

{σχ2
(ke)
}Nexp




i

. (22)195

Here {σχ2
(ke)
}Nexp is an estimate of σχ2

(ke)
using Nexp samples. {σχ2

(ke)
}Nexp may be estimated any

number of times. Note that < S̃Nexp >∼ 1 because S̃ represents the scaling parameter for a cost

function in which the effective degrees of freedom is known. The expression for α ends up being

independent of the perfect modeling experiments,

α=
[
var(S̃Nexp)

]−1

. (23)200

5 Example: fitting a line

5.1 Uncorrelated noise

Suppose one has a linear model of some data dobs taken at 100 points x.

di = axi + b+ εi, i= 1, ...100 (24)

In this first case the data is noisy and uncorrelated with εi ∼N(0,25) and is generated with a= 2.5205

and b= 1. Using Nexp = 80 perfect modeling experiments (that is experiments where the model

generates its own data), one can determine an informative prior for S using equations in Section 4.

In our case, these estimates gave α= 140 and β = 161. Repeating this estimate with a different set

of perfect modeling experiments will yield similar but not equivalent results. The priors for a and b

are distributed uniformly, i.e. p(a)∝ 1 and p(b)∝ 1.210

Assuming all data are independent, i.e. ke = 100, Bayesian estimates of the optimal slope and

intercept and their uncertainties are nearly equivalent to estimates based on least squares estimation

(Figure 2; Table 1). The solutions are also nearly equivalent to estimates using non-informative

values for α and β, i.e. α= 0 and β = 0. The two estimates are the same since the log-likelihood and

the perfect modeling experiments assumed (correctly) that the data were uncorrelated data, resulting215

in similar posterior estimates of S ∼ 1.

5.2 Correlated noise

We next consider the same problem but now where the data is affected by correlated noise. Estimates

of the empirical Bayes parameters presumes that we have an adequate model of the uncertainties af-

fecting the data. For this example we use a reddening process with parameter r to generate correlated220

noise η from uncorrelated noise εi ∼N(0,25),

ηi = rηi−1 +
√

(1− r2)εi, (25)

8

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-20, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 4 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



x
0 5 10 15 20

y

-10

0

10

20

30

40

50

60

observations
noiseless true line
Metropolis outcome

# 
oc

cu
re

nc
es

a
2 2.5 3

× 104

0

2

4

6

8

10

12

14

b
-5 0 5 10

× 104

0

2

4

6

8

10

12

14

Figure 2. Example of fitting a line through noisy uncorrelated data (top) using ke = 100,α= 140, and β = 161.

Also shown are solution marginal distributions for slope (a) and intercept (b). Although the estimated slope and

intercept (green dashed lines) are slightly offset from their true values (red dashed lines), they are within the

uncertainty of the fit. Solutions are nearly identical to those using mostly non-informative choices for prior on

S, i.e. p(S)∼Ga(α,β) with α= 0, and β = 0.
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Table 1. Results of different solution strategies for estimating slope (a) and intercept (b) when fitting a line

through 100 data points with uncorrelated noise (equation 24). Estimates of optimal values for slope and inter-

cept were nearly identical with a= 2.54 and b= 1.58. Similarly, uncertainties in these estimates were nearly

identical whether the Bayes estimates used informed or uninformed priors or estimates were based on a least

squares estimation.

solution strategy ke α β σa σb < S >

Metropolis w/ unformative priors 100 0 0 0.081 0.99 1.09

Metropolis w/ informative priors 100 140 161 0.084 0.98 1.10

Least squares estimation – – – 0.081 0.94 –

where i is an index of consecutive data points. The model with correlated noise is

di = axi + b+ ηi. (26)

Such a reddening process occurs naturally within climate data from the way the ocean integrates225

weather noise from the atmosphere, producing power at longer time scales. Figure (3) shows the

same model as before but with noise drawn from a red noise process with r = 0.8 (equation 25).

Correlations affect systematic changes in slope and intercept over a range of x values (Figure 3).

Thus we should expect that inferences of the slope and intercept are more uncertain.

Using Nexp = 80 perfect modeling experiments with a red noise process model affecting 100230

data points, we estimate ke = 20, α= 111, and β = 488. Table 2 shows the uncertainties in the es-

timates for the slope and intercept using either informative or uninformative values for the effective

degrees of freedom ke or values for α, and β. Estimates using ke = 20 using either informed or un-

informed priors give comparable results, both indicating uncertainties are much larger when data are

correlated. The least squares estimation solution, while giving identical estimates of the slope and235

intercept, give much smaller estimates of the uncertainty comparable to estimates with the Metropo-

lis algorithm that assumes data were uncorrelated (i.e. ke = 100). The estimates of uncertainty from

the least squares estimation are not large enough to include the model’s actual slope and intercept,

thus are too narrow.

The results show that the largest uncertainties come from the lower estimates of the effective240

degrees of freedom and uninformative priors for S. Including an informative prior for S can reduce

this uncertainty and still (barely) accommodate the true values of the slope and intercept (Figure

3). However this is not true for providing informative priors for S without good information about

the effective degrees of freedom. From this respect is it perhaps more important to provide good

information about the effective degrees of freedom than informative priors for S. The following245

section discusses one potentially useful strategy for making use of empirical estimates of S.
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Figure 3. Example of fitting a line through data with correlated noise using Metropolis sampling and informa-

tive priors for ke = 20, α= 111, and β = 488. Also shown are solution marginal distributions for slope (a)

and intercept (b). In contrast to the example with uncorrelated data (Figure 2) the estimated optimal parameter

values (green dashed lines) are far from the true values (red dashed lines) and are only barely within estimated

uncertainties.
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Table 2. Estimates of uncertainties in estimating slope (a) and intercept (b) when fitting a line through 100 data

points with correlated noise using a reddening process with r = 0.8. The estimates of the optimal values for a

and b were the same for all solution strategies including least squares estimation with a= 3.05 and b=−4.55.

solution strategy ke α β σa σb < S >

Metropolis w/ informative ke and S 20 111 488 0.19 2.15 0.22

Metropolis w/ informative ke 20 0 0 0.26 3.06 0.15

Metropolis w/ informative S 100 111 488 0.16 1.87 0.27

Metropolis w/ uninformative priors 100 0 0 0.10 1.17 0.78

Least squares estimation – – – 0.10 1.11 –

6 Component weighting

One of the main limitations of precision parameter S as discussed above is that it can not affect

the relative weighting among observational constraints. This relative weighting among observations

is supposed to occur within a covariance matrix C. Defining such a matrix becomes increasingly250

challenging as one expands the number of observables, regions, and seasons that typically are incor-

porated into climate model evaluation metrics. Here we describe a way one could choose to weight

different components of a cost function within a multivariate normal framework using a separate

< Sq > for each quantity q.

Suppose one has created a set of Nq model evaluation metrics E(m)q providing a normalized255

measure of distance between a model and observations for different fields, regions, or seasons as

specified by index q. Summing these cost components assumes these measures are independent,

which is not likely true. WithNexp perfect modeling experiments one can generate separate estimates

of {ke}q and< Sq > such that each component may be normalized separately and together such that

the total cost function may be generated by260

StotE(m)tot = Stot

Nq∑

q=1

< Sq >E(m)q (27)

where p(Stot)∼Ga(α,β). As formulated here, this process does not give any flexibility to adapt

individual component weightings during sampling as the gamma priors only apply to Stot. However

this process does give opportunity to include correlation information, albeit that generated by the

perfect model, into the total cost metric.265

7 Application of S to the calibration of CAM3.1

Although a precision parameter S has been included in previous calibrations of CAM3.1 (Jackson

et al., 2008), it was not fully explained nor did Jackson et al. (2008) evaluate the extent to which

the outcome of those calculations were being affected by S. Here we present the results of a new
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calibration that is related to the calculation reported in Jackson et al. (2008) in which Multiple Very270

Fast Simulated Annealing (MVFSA) sampling (Jackson et al., 2004) is used to calibrate six param-

eters important to clouds, convection, and radiation within Community Atmosphere Model version

3.1 (CAM3.1) (Collins et al., 2006) with a resolution of 2.8◦ longitude by 2.8◦ latitude (T42) with

26 vertical levels. Important differences from the previous calculation include shorter 2-year rather

than 11-year model integrations with specified climatological sea surface temperatures and sea ice,275

using only the last year for comparison to observations, and the use of ERA-40 (Uppala et al., 2005)

for vertically averaged (mass weighted) air temperature and humidity, zonal winds at 300 mb, and

sea level pressure, Willmott and Matsuura (2000) for 2-m air temperature over land, CERES2 (Loeb

et al., 2010) for long and shortwave cloud forcing, OAFlux data (Yu et al., 2008) for latent heat fluxes

over the ocean, and GPCP (Adler et al., 2009) for precipitation. Unlike Jackson et al. (2008), we did280

not make use of any available data for low, medium, and high cloud amounts, estimates of short

and longwave radiation at the top of the atmosphere, or surface latent and sensible heat fluxes other

than what was mentioned above concerning OAFlux data. These changes were made to make the

calibration mimic the process that occurs within the NCAR Atmosphere Model Working Group for

evaluating the effects of different parameter choices as represented by the group’s Diagnostics Pack-285

age (https://www2.cesm.ucar.edu/working-groups/amwg/amwg-diagnostics-package) and “Top 10”

Taylor metrics. Similar to Jackson et al. (2008), we consider the same six parameters and same 30◦

S to 30◦ N domain and seasonal (DJF, MAM, JJA, SON) averages for making model comparisons

to data as well as include a term in our cost function for global annual mean radiative balance. For

the updated calculation, we completed 2261 experiments over 16 independent MVFSA chains.290

The metrics for each of these observational targets consists of taking the spatial mean of grid point

differences divided by the spatial variance in the observational data. Global radiative balance was

the exception insofar as we were seeking solutions that were within a 1 Wm−2 of the target radiative

balance of 0.5 Wm−2. A set of 20 idealized experiments were used to estimate the variance for each

field and season which was used to weight each component of the cost according to equation 27.295

The total cost calculation was given by the average of 41 cost components (ten quantities over four

seasons and the component for global radiative balance). The calculation does not include prior in-

formation about degrees of freedom, but does include prior information for the gamma parameters

using the 20 idealized experiments to get α= 3.45 and β = 0.0094. The mean for the prior distri-

bution for S is 367.0. While it would have been better to include prior information about degrees of300

freedom, the dominant source of uncertainty likely comes from the inability of the model to match

all of the data simultaneously. S captures this type of uncertainty and our purpose here is to highlight

this aspect of the calibration.

The result of the calibration is an ensemble representing uncertainties in specifying seven param-

eters (six model parameters and S) such that the model is consistent with observational data. While305

the number of ensemble members are relatively few (2261 samples), previous work has shown that
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MVFSA sampling is particularly efficient at providing qualitative estimates of the posterior proba-

bility of the solution uncertainties (Jackson et al., 2008; Villagran et al., 2008). The marginal distri-

butions for the six CAM3.1 model parameters and precision parameter S as well as the distribution

of cost values for this ensemble is shown in Figure 4. The marginals are fairly broad, with many310

of the sixteen optimal parameter configurations covering a wide range of values. However that is

not to say these parameters are unimportant. On the contrary, these parameters have a significant

influence on simulated climates. The broad posterior distributions come about, in part, because of

co-dependencies that arise during sampling model parameters to be consistent with observational

data (Table 3). For instance the critical relative humidity for high clouds (rhminh) which perhaps315

has the flattest distribution, is also the parameter that is the most strongly dependent on the choice

of all the other parameters.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

alfa [fraction]
0.5 1 1.5 2 2.5

x 104

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

tau [s]
1 2 3 4 5 6 7 8 9 10

x 10−6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

ke [(kg m-2 s-1)-1/2 s-1]
14 16 18 20 22 24

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Cost [no units]

0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

rhminh [fraction]
0.8 0.85 0.9 0.95
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

rhminl [fraction]
1 2 3 4 5 6

x 10−3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

c0 [m-1]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

S [no units]

(a) (b) (c) (d)

(e) (f) (g) (h)

R
el

at
iv

e 
Fr

eq
ue

nc
y

R
el

at
iv

e 
Fr

eq
ue

nc
y

Figure 4. Marginals for 6 parameters within CAM3.1 important to clouds, convection, and radiation as well as

for precision parameter S. Marginals are generated from 1948 samples of 2261 total which excludes experiments

containing a cost greater than 25. Red dots indicate place in parameter space where each of the 16 chains were

minimized. Black dot indicates the default model configuration. The parameters are alfa for the initial cloud

downdraft mass flux, tau for the consumption rate of CAPE, ke for the environmental air entrainment rate,

rhminh for the high cloud critical relative humidity, rhminl for the low cloud critical relative humidity, and c0

for the precipitation efficiency.

Table 3. Sample correlation for CAM3.1 parameters within the posterior distribution. Parameters are defined

within Figure 4.
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alfa tau ke rhminh rhminl c0

alfa 1 0.35 0.17 0.31 0.15 0.09

tau 0.35 1 0.02 0.22 0.12 -0.07

ke 0.17 0.02 1 0.12 0.17 0.09

rhminh 0.31 0.22 0.12 1 -0.22 0.19

rhminl 0.15 0.12 0.17 -0.22 1 -0.09

c0 0.09 -0.07 0.09 0.19 -0.09 1

320

The posterior mean value for < S >= 0.19 (Figure 4h) is quite a bit smaller from the prior mean

value of < S >= α
β = 367. Costs using observational data are quite a bit larger than those that oc-

curred in the idealized experiments where model output was used as a surrogate for observational

data. This has the effect of making the sampling algorithm more accepting of alternate model config-

urations and increasing the parametric uncertainties. Figure 5 illustrates which model configurations325

were accepted or rejected by different choices of parameters rhminh and rhminl which control the

critical relative humidity for cloud formation for high clouds and low clouds, respectively. Estimates

of the response surface, given by changes in cost values as a function of these two parameters, show

that the parameter settings that allow CAM3.1 to have the lowest total cost (Figure 5a) are not the

same for particular cost components such as column average relative humidity (Figure 5b), global330

radiative balance (Figure 5c), and shortwave cloud forcing (Figure 5d). The models that ended up

being selected most frequently (and define the modes of the posterior distribution) represents a com-

promise. The sixteen model configurations representing separate optimizations (given by the red

dots) are distributed near the center of these competing choices. All these configurations have a cost

associated with their radiative balance of less than 50, which corresponds to models being within335

4 Wm−2 of the target radiative balance. So while the cost function for radiative balance specified

acceptability to be models that were within 1 Wm−2 of radiative balance, the high cost values and

S allowed the sampling algorithm to accept models with comparable skill that happen to include

models with a larger energy imbalance.

8 Summary340

The strength of observational evidence is a key part in testing hypotheses concerning the physics of

climate change. Since much of the data that is used to evaluate hypotheses are correlated, it becomes

important to include the effects of these correlations on model evaluation metrics to appropriately

account for observational evidence when testing different model versions. Here we proposed a way

to make use of perfect modeling experiments as a surrogate for missing observational data to esti-345

mate the effects of these correlations on climate model evaluation metrics. We introduce a precision

parameter S that uses empirical Bayes to specify informative values for information concerning

the effective degrees of freedom ke and/or values for the scale and rate parameters α and β for a
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Figure 5. Estimates of the response surface for total cost (a), column average relative humidity (b), radiative

balance (c), and shortwave cloud forcing (d). Each panel color shows a weighted averaged of experiments whose

cost is less than 25 (given by the white ‘+’) Jackson (2009). Experiments whose cost values are greater than 25

are indicated by a black ‘+’ symbol. The sixteen red dots correspond to experiments whose cost were minimum

within their respective sampling chains. The black dot corresponds to the default value of CAM3.1. The results

of 2261 experiments are shown. All cost values have no units.
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gamma prior distribution. We connected these concepts together to show how they work for a simple

example of fitting a line and discuss how these same concepts could be used to assign weights to350

different sub-components of a model evaluation metric. This framework assumes errors are multi-

variate normal. The mean value for the precision parameter adapts to changes in size of the model

evaluation metric including model biases (or ‘discrepancies’ in Bayesian statistical terminology).

While assumptions of multivariate normal errors are often appropriate for long-term mean climate

data, no such assumption can be made for model biases. So while the use a precision parameter355

is one way to expand uncertainties in proportion to model biases, prediction errors are not related

in any obvious way to commonly proposed climate model evaluation metrics (Klocke et al., 2011;

Masson and Knutti, 2013; Sanderson and Sanderson, 2013; Caldwell et al., 2014). While some have

proposed including a statistical model that compensates biases in model predictions (Brynjarsdottir

and O’Hagan, 2014), it is not clear how this can be accomplished for high-dimensional systems. One360

of the advantages of using precision parameter S is that its interpretation is fairly straightforward

mathematically and scientifically. This makes it a good starting point to think about how to address

even more challenging aspects of quantifying uncertainties in climate projections using observational

data.

9 Code availability365

Matlab and R code for generating the results shown in figures (2) and (3) may be found at Jackson

and Huerta (2015).
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