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Response to Reviewer # 1 Reviewer comment given in blue.
General recommendation The topic of the paper is model calibration and the

new thing it seems to introduce is the scaling factor S. While this is of general
interest for GMD readers, the paper should not be published in its present form. I
have several reasons for this: 1) It is not clear to me what is new in this manuscript
relative to the older one by the same authors (Jackson et al, 2008) where the scale
factor is already introduced. 2) The reason why this remains unclear is that the
paper is so poorly written that almost everything remains unclear. In fact, I stopped
reading after section 4 because at that point I still did not have any clue about what
the authors intend to develop. 3) The mathematics used lacks clear definitions
(see below) which is probably the main reason why much of the paper is non-
understandable. I found that I was always guessing what the authors intended to
say. Furthermore it seems that there are inconsistencies (see below). 4) References
to similar or related work, in particular to introductory texts on model calibration,
are missing. There is no mentioning, let alone discussion, of previous work (except
from the same group), no comparison with other approaches, no pros or cons. For
all these reasons I suggest to reject this paper.

We thank the reviewer for his or her time to review the manuscript.
The objective of the paper concerns an aspect of Bayesian calibration related

to inclusion of a precision parameter S. We did not try to introduce or explain
Bayesian calibration which, in retrospect, may have been helpful to provide.

We first want to point out that while the results of Jackson et al., (2008) include
an uncertain precision parameter ‘S’ to account for uncertainties in the covariance
matrix, Jackson et al. (2008) “defers to a future work to discuss the details of
the treatment of S in our approach to quantifying the effects of observational and
other sources of uncertainty in our estimates of parametric uncertainties.” In that
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paper, Jackson and co-authors do not present the results on their estimates of ‘S’
nor discuss how that parameter affected the calibration outcomes. Inclusion of
such a parameter is common practice within Bayesian calibration, thus its inclusion
should not be considered novel then or now. What prompted the writing of the
current manuscript is our deepening understanding of its interpretation, both its
strength and limitations, and a more thorough look at how it affects calibration
results. More importantly, we had previously failed to recognize the importance of
a parameter for the effective degrees of freedom, which we we show in the present
manuscript is critical to correctly estimating the statistical significance of model-
data differences. What we provide that is new in this regard is a way to take an
ensemble of model output to estimate the effective degrees of freedom as well as
provide a rationale for setting values to the parameters for the gamma distribution
priors. Since we are using ‘data’ to inform the prior, this empirical approach is
considered non-standard within Bayesian inference which typically eschews such
approaches.

We were remiss in not mentioning the small but growing work in climate model
calibration. There are a few papers that use Bayesian inference for climate model
calibration (e.g. Rougier 2007; Jarvinen et al., 2010; Hakkarainen et al., 2012;
Hauser et al., 2012). These papers do not explicitly use or call attention to a preci-
sion parameter. There are other papers that deal with non-Bayesian approaches to
climate model calibration (e.g. Neelin et al, 2010; Rowlands et al, 2012; Mauritsen
et al, 2012; Shiogama et al., 2013; Schirber et al. 2013).

1. Although background material on model calibration is provided in Sect. 2, it does
not suffice to my feeling. Readers without experience in model calibration want to
have a more basic introduction or alternatively references to more basic introduc-
tion. Certainly, there is some literature on this topic and it is not good that (almost)
nothing is cited in the introduction. It should be stated what is novel, different,
better, etc., in the presented method in comparison with other approaches.

We agree some introductory material on Bayesian calibration would be helpful.

2. The mathematical introduction in section 2 is unclear in various respects and insuf-
ficient. a) It is unclear whether d means either a quantity like ”temperature”, or a
specified value of that quantity, as ”300K”. In the latter case, is it the ”true” value
of the observable or a measured datum subject to measurement error? Accordingly
it is unclear whether x̂ is an estimate of the true value or simply a model result for
an observable d, that differs from the measured d. In the first case, the residuum
ε can be viewed as a random quantity, but in the second case it is given as d− x̂
which in turn are both given as well, thus ε should be non-random in that case. I
guess that the probability space is the space of parameter vectors m, but that is not
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stated as well.

In the example we were dealing mainly with modeling error. So d may be consid-
ered a true value with model estimate x̂ and error ε.

b) If I accept that ε is a gaussian random quantity, I still do not see why its expecta-
tion value should be zero, in particular when there is missing physics in the model
which could easily produce a bias.

Quite true. In this simple example, we are providing background concerning the
use of a covariance matrix to account for dependencies between two observables.
This becomes useful in our explanation of the limits of using of a single precision
parameter to ‘correct’ for deficiencies in the specification of a covariance matrix.
The point you bring up is important and we discuss it within the final section of the
paper as any biases will be included in estimates of S through the log-likelihood E.

c) As the meaning of both d and x remain unclear, it is unclear what eq. 1 actually
means. Is it, as a function of parameter vector m, the probability that x̂ comes out
as d?

yes

d) To my view the chain of arguments gets broken where the authors mention that
the covariance matrix can be rank deficient. Here they enter into a side topic (eofs)
that does not lead to the goal, which I think is to demonstrate how covariance leads
to problems in model calibration. And to my opinion, the latter goal is not reached
at all.

On the contrary, we think it is useful to think about the log-likelihood and the mul-
tivariate normal distribution as a test statistic with ke degrees of freedom. Here we
connect ke to the well established notion in climate data analysis where it is com-
mon to limit comparisons between models and data to the eo f s with the largest
eigenvalues. We want to connect the use of the precision parameter S to a lack of
knowledge of how many eo f s are unique given the dependencies that exist among
the data used to test the model. The common assumption in climate model calibra-
tion is that all the data are independent.

e) Finally, if ε ∼ N(0,σ2), then of course ε2

σ2 ∼ χ2 (equation 6). In this sense,
the argument under the exponential function of a gaussian distribution is always
χ2 distributed. In a similar way one could say that the log of ε is log-normally
distributed. It is true, but I do not understand why this is stated here. Further I do
not understand why the mean and variance of the χ2 are important instead of the
mean and variance of the gaussian.

In section 4.1, we use the mean and variance of a distribution of cost values to
estimate the effective degrees of freedom as well as values for the two parameters
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needed for the gamma distribution prior. In particular, in a perfect model situation
where the target observations make use of model output, the distribution of cost
values generated from internal variability will be distributed like a χ2 distribution
with ke degrees of freedom.

3. Section 3. a) What is a “climate model evaluation matrix”? As it may be arbitrarily
defined, how is it related to the covariance matrix in section 2?

Sorry, this was poorly worded. We think of precision parameter S as a factor mul-
tiplying the covariance matrix within the log-likelihood. It is the same covariance
matrix we were working with in section 2.

b) 2nd sentence: I dont see the argument. I understand that information on model
matching data can be used to determine parameter uncertainties, but how does this
statement follow from the first part of the sentence, namely, that statisticians often
use a scaling factor in calibration?

What we wrote was not clear. Here we introduce the use of a precision parameter S
to account for uncertainties in the specification of C. This is commonly done within
Bayesian calibration. In particular one can update S using information about the
scatter between a model and data.

c) Please explain how the likelihood function of eq. 11 can be a gaussian although
S is not considered a constant. If it is not a gaussian, then it is questionable whether
a gamma distribution for S is still a conjugate prior.

The likelihood function conditional on m looks like a Gamma distribution for
S, this is why the gamma prior on S works as conjugate in the Gibbs Sampling
scheme.

d) How can it be explained that the covariance matrix is suddenly reduced to a
diagonal matrix in equation 13. Is this because of the EOF transformation? How
can the reader see this in equations 12 and 13?

There is a mistake with this equation. What it should be is
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4) Section 4. In Section 2 ke was introduced as the effective degrees of freedom,
following from an EOF decomposition of the modelled fields. This gives the reader
the impression that the determination of ke is relatively straightforward. Now, in
section 4.1., nothing remains clear. It is not clear where the EOF decomposition
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is in this derivation. The factor A/2 is introduced seemingly without necessity,
because it is already gone in eq. 19, just after its introduction in eq. 18. It is not at
all clear why and how the number of experiments affects ke.

The EOF decomposition does not necessarily tell you what ke should be. More
importantly many cost functions being used by climate scientists do not lend them-
selves to EOF decomposition as they often involve arbitrary number of fields, re-
gions, and seasons. The early sections of the manuscript were making an illustra-
tion of how dependencies affect the degrees of freedom. Here we show an alternate
way to estimate the effective degrees of freedom using a ensemble of cost values
that may be arbitrarily defined.

The factor of A is there to emphasize that the distribution of cost values as we
have defined it will only be proportional to a χ2 distribution. A is the constant of
proportionality. We show that A drops out.

Minor problems

1. Why is there a section 2.1 when there is no section 2.2?

Thanks for pointing this out.

2. A square root is missing in eq. 2.

Thanks for finding that error.

3. Misuse of the ”=” sign in eq. 6 and in eq. 18

Ok

4. line 99: replace phrase ”probabilities are narrower”.

Ok

5. Check brackets in eq. 11.

They look ok.

Response to Reviewer # 2 Reviewer comment given in blue.
This paper, which is statistical in nature, does not achieve the level of clarity which
would be appropriate .... Moreover, the authors’ statistical model used to link simu-
lator output and observations is ... inverted compared to the dominant model in the
statistical field of Computer Experiments, which asserts the existence of a ’best’
parameterisation m* for which d — m* = g(m*) + epsilon + e where epsilon is a
contribution from structural uncertainty and e is a contribution from measurement
error, both multivariate (the dependence of epsilon on m* is usually suppressed).
Because the characteristics of epsilon and e are rather different, it pays to separate
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them; e in particular may have a zero expectation and diagonal variance matrix.
This model has been dominant for nearly 20 years, and it is the standard model
within which we might consider ’calibration’, which is finding the conditional dis-
tribution m* — d, on the basis of a prior distribution for m*.

By contrast, the authors’ statistical model is not even clear, because line 54
and eq (1) are incompatible, and the idea of the model correlating the observations
makes little sense – observations do not care about models! I think the authors go
on to adopt the standard model given above, with (5) being the likelihood function
under a fully-Gaussian model for epsilon + e. But there is no m on the righthand
side of (5), and x is never properly defined, so it is hard to say. I think the authors
are saying that we should include an uncertain scale parameter in the covariance
function of epsilon. This is hardly innovative....

We thank the reviewer for sharing his or her perspectives. We are familiar with
the statistical literature and discussion surrounding the treatment systematic errors,
epsilon, between the model and data. We intentionally do not include it here as
we are unaware of any decent way to include it within climate model calibration.
We discuss the need for its treatment in section 8 and how its neglect affects the
interpretation of precision parameter S.

We also acknowledge that inclusion of a precision parameter S is not new.
What is new is our approach to making use of climate model output to help deter-
mine the effective degrees of freedom ke as well as the two parameters that define
the gamma distribution prior for S. Since nearly all of these concepts are new to cli-
mate scientists, one of the goals of our manuscript was explain how all this works
using a simple example of fitting a line through a set of points.

We stand by our description of the simple model in section 2 that makes use
of equation (1) that follows from those in line 54 insofar as typical climate models
g(m) = x̂ can only provide statistical estimates of observables d. That is because
climate models are turbulent and one can not expect model output to exactly match
observations. Moreover, climate scientists often use climate models to estimate the
kinds of correlations that exist in data. This is the central idea of our ‘empirical’
Bayes approach to this problem. We are using the output of a set of experiments
to learn about the effective degrees of freedom that exist within our data so that we
can inform the prior distributions for the precision parameter S.
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