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Abstract.

A climate model represents a multitude of processes on a variety of time and space scales; a canonical example of multi-

physics multi-scale modeling. The underlying climate system is physically characterized by sensitive dependence on initial

conditions, and natural stochastic variability, so very long integrations are needed to extract signals of climate change. Al-

gorithms generally possess weak scaling and can be I/O and/or memory bound. Such weak-scaling, I/O and memory-bound5

multi-physics codes present particular challenges to computational performance.

Traditional metrics of computational efficiency such as performance counters and scaling curves do not tell us enough

about real sustained performance from climate models on different machines. They also do not provide a satisfactory basis for

comparative information across models.

We introduce a set of metrics that can be used for the study of computational performance of climate (and Earth System)10

models. These measures do not require specialized software or specific hardware counters, and should be accessible to anyone.

They are independent of platform, and underlying parallel programming models. We show how these metrics can be used to

measure actually attained performance of Earth system models on different machines, and identify the most fruitful areas of

research and development for performance engineering.

We present results for these measures for a diverse suite of models from several modeling centres, and propose to use these15

measures as a basis for a CPMIP, a computational performance MIP.
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1 Introduction

Climate and weather models (henceforth Earth System models or ESMs) have always been among the most computationally

intensive scientific challenges. Strategic planning documents for high-performance computing such as André et al. (2014);

Cappello et al. (2013); Attig et al. (2011); Reed and Dongarra (2015); Wehner et al. (2011) all outline the challenges presented

by Earth system modeling to the coming generation of high-performance computing and data intensive computing.5

ESMs are a computing and data challenge with a particular profile, as this article will show. The needs of ESMs are driven

by trends in the science. Weather forecasting and the understanding of climate have both been synonymous with high-end

computing since its pioneering days (Dahan-Dalmedico, 2001). Besides understanding the functioning of the Earth system,

there are pressing needs on the science to serve other communities: ever since the seminal “Charney Report” of 1979 (Charney

et al., 1979), the Earth system modelling commmunity has also been increasingly responsive to the concerns about the human10

influence on climate. Computer simulations need to underpin scientific input to global policy decisions around possible mitiga-

tion and adaptation strategies. In the decades since, climate and weather have continued to be at the forefront of computational

science, to be pioneering users of evolving supercomputing architectures, and drivers for data science.

As available computing power has continued to increase following “Moore’s Law”, so has the computing power demanded

by Earth system modeling. ESMs consume computing along several axes, including resolution, as processes are included at15

finer and finer scale; complexity (to be defined more precisely below), as they seek to simulate, rather than prescribe, more

and more processes and feedbacks internal to the climate system, and ensemble size to sample uncertainty across the chaotic

non-linear dynamics that underlie complex systems. Where in this multi-dimensional domain of demand a given increase in

computing is applied, depends both on the scientific problem of interest, but also, crucially, on the type of computer available.

This is because different computing architectures are less or more suitable to increasing problem size along any of these axes.20

In addition, HPC architecture is at one of its transition points, or “disruptions”. The previous transition, around two decades

ago, moved HPC from the vector architectures of the Seymour Cray era, to distributed computing, based on networked clusters

of commodity computers. The current transition is based on the end of how Moore’s Law is traditionally understood (see e.g

Chien and Karamcheti, 2013), to a future where arithmetic and logic no longer gets faster on successive hardware generations,

but may in fact get slower, alongside increases in parallelization and heterogenous memory architectures. On the current25

generation of new machines, ESMs have been able to show only modest gains in some measure of performance (Balaji, 2015).

This means that traditional measures of computing power, such as flops (floating point operations per second) no longer appear

to be representative of what is actually available.

In this article, we will examine the gaps between theoretical and actual performance (Section 2) and show how existing

standard metrics of HPC performance are insufficient. We will demonstrate that there is sufficient diversity in ESMs so that30

no single measure, even a newly developed community one, is likely to be representative of the spectrum of ESMs. Rather we

seek to identify a suite of measures for ESMs whose defining characteristics are:

– they are universally available from current ESMs, and applicable to any underlying numerics, as well as any underlying

hardware architecture.
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– they are representative of actual performance of the ESMs running as they would in a science setting, not under ideal

conditions, or collected from representative subsets of code.

– they measure performance across the entire lifecycle of modeling, and cover both data and computational load.

– they are easy to collect, requiring no specialized instrumentation or software, but can be acquired in the course of routine

production computing.5

These measures are described in Section 3. In Section 4 we show results from many current ESMs. We conclude in Section 5

with a proposal to collect these metric routinely from the globally coordinated modeling campaigns such as the Coupled Model

Intercomparison Project (CMIP: Meehl et al., 2000, now approaching its sixth generation in CMIP6). We hope thereby to

outline a computational and data profile for Earth System modeling across the enterprise, which may be useful to define the

kinds of machine most suited for this scientific and societal grand challenge in the exascale era.10

2 Theoretical and actual computational performance

2.1 HPC performance measures: a brief history

The most common measure of computational performance is the theoretical maximum number of floating-point (FP) operations

per second, or flops, achievable on a given machine. Computer vendors like to report this measure — peak flops — even though

it is not achievable in practice. Peak flops are calculated by simply multiplying the number of arithmetic units (arithmetic-logic15

units, or ALUs) in hardware by the clock speed and any concurrency supported by the hardware (for example, fused multiply-

add (FMA), or the advanced vector extensions, AVX, used in many modern processors to carry out multiple operations per

clock cycle).

Unless the algorithm is perfectly tuned to the hardware layout, it is impossible to keep all ALUs and their internal hardware

active all the time. A more practical measure is the maximum sustained flops that can be achieved with a real code. With20

the advent of parallel computing, the HPC community converged on a single code that was thought to be representative of

compute intensive tasks, and compared between machines. This Linpack linear algebra benchmark (Dongarra, 1988) became

the de facto HPC benchmark, and current supercomputer rankings, such as the Top 500 list1 are based on comparisons of

measured sustained flops obtained running Linpack.

Very early in the parallel computing era it was recognized that even Linpack does not truly characterize real application25

performance (see e.g the critique of the SPEC benchmarks in Dixit, 1991). One issue was the limitations imposed by memory.

Vector computers of the Seymour Cray era used specialized memory technology (called SRAM) to keep the vector regis-

ters filled. In the era of parallel computing, based on clusters constructed from commodity parts, it was often the case that

bandwidth from commodity memory (DRAM) constrained computational performance more than computational speed itself.

Accordingly, the STREAM benchmark (McCalpin, 1995) was developed to measure the performance obtained on FP codes30

1http://www.top500.org/
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when memory bandwidth is the limiting factor. This later led to a popular visual representation of performance limits imposed

by both memory bandwidth and computational intensity known as the “roofline” (Williams et al., 2009).

Over time the community came to develop suites of kernels or “mini-apps” representing a spectrum of algorithms in use in

HPC, such as the NAS Parallel Benchmarks (Bailey et al., 1991) and the HPC Challenge Suite (Luszczek et al., 2005). These

were supposed to characterize a broad range of issues including clock speed, parallel arithmetic, memory bandwidth, cache5

efficiency, and the like. The kernel approach to getting a better measure of real computing performance has now converged on

the HPCG benchmark (Dongarra et al., 2015), based on a popular elliptic solver, to supplement the HPC measure based on

Linpack.

Despite all this progress, the key issue in measuring and improving computational performance remains the shortfall of

actual performance obtained in real HPC applications relative to a theoretical ideal machine performance, often expressed as10

a percent of peak. The HPCG/HPC ratio, suitably normalized, is a good measure of this shortfall and has been steadily falling

with each succeeding transition. While 50% of peak flops was attainable on Cray vector machines of the 1980s (and even NEC-

SX machines into the current era), the figure of 10% was considered satisfactory in commodity parallel cluster architectures.

The current transition toward fine-grained parallelism based on Graphical Processing Unit (GPU) and Many-Integrated Core

(MIC) technology has pushed the “percent of peak” down into the single digits, as revealed by the HPCG/HPC ratio2. This15

trend warrants curbing one’s enthusiasm when looking at peak-flop ratings of today’s most powerful machines.

2.2 Computational performance of ESMs

Earth System Models have always presented a particular set of issues for performance on HPC architectures. To begin with,

there is the problem of complexity. Climate science has been described as an attempt to simulate “the time evolution of the

Earth system, a complex evolving mixture of fluids and chemicals in a very thin layer atop a wobbling, spinning sphere with an20

unstable surface and a molten interior, zooming through space in a field of extra-terrestrial photons at all wavelengths. Between

sea and sky [lies] that thin layer of green scuzz that contain[s] all the known life in the universe, which itself [is] capable of

affecting the state of the whole system.” (Balaji, 2013) This growth in sophistication implies that the construction of an ESM

(Figure 1) now involves large development teams, consisting of specialists in different aspects of the climate system such as

atmospheric and oceanic dynamics, atmospheric chemistry, biosphere and land hydrology, and so on; with the whole system25

held together by a software framework. The framework may provide infrastructure services such as parallelism and I/O, as well

as a superstructure, expressing the algorithms of coupling between components.

The computational characteristics of ESM components can be quite diverse: a land component for instance may have no data

dependencies across cells, but highly multivariate representations of ecosystem dynamics inside a cell; whereas an atmospheric

dynamical core (dycore) may only encompass a few key variables representing momentum, mass and energy, but have strong30

cross-cell dependencies, which inhibit scaling. This is one reason why it is hard to define kernels, or “mini-apps”, representative

of an ESM. Even for a single component, such as a dycore (which solves the equations of fluid flow for atmosphere or ocean),

2http://goo.gl/yy6ZJ4, “Architectural Surprises Underpin New HPC Benchmark Results.”, HPCWire

2014-12-01
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Earth System Model

? ?? ?

Atmosphere Land Ice Ocean

? ?
AtmDyn AtmPhy

? ? ?
Rad H2O PBL

? ?
OcnBio OcnClr

? ?
LandBio LandH2O

Figure 1. Notional architecture of an ESM: The model is composed of components (or sub-models) each of which is itself composed of

components representing a group of one or more related processes. For example, within the atmosphere, the dynamical core (AtmDyn) is

only one component, alongside the “physics” (AtmPhy), which itself has subcomponents for radiation (RAD), clouds and moisture (H2O),

planetary boundary layer (PBL), and so on.

there is remarkable diversity of methods and approaches across models. Finite-difference (FD), finite-volume (FV), and finite-

element (FE) methods are all in use in the world’s major ESMs, as are both structured and unstructured grid approaches.

The dycore is quite often taken to be representative of the ESM as a whole. Dycores, regardless of numerics and mesh

choice, generally exhibit weak scaling, i.e the concurrency achieved scales with the problem size3. Scaling is capped beyond

some point for a fixed problem size, beyond which strong scaling is difficult to achieve. Thus, one may run a problem at higher5

resolution in the same time consuming more resources on a given machine (which might include a higher cost incurred in

increased time resolution as well), but a model at fixed resolution is capped in terms of time to solution, absent advances in

hardware or algorithm.

While dycores often consume the bulk of the resources devoted to performance engineering, their performance characteristics

are not in fact representative of a whole ESM. This is because of the complexity inherent in climate modeling. Beyond the10

dycore, there are many other components. As shown in Figure 1, these may comprise the “physics”, which is then further

composed of components representing radiative transfer, clouds and connvection, and the planetary boundary layer (PBL),

and so on. Many physical variables, of O(100) in modern ESMs, are needed to represent the full physics. Often these are local

processes, which may not be a problem for scaling, but significantly alter the load per thread. Secondly, the number of variables

3Since concurrency is usually achieved with a mixture of thread-based (shared-memory, such as OpenMP) and processor-based (distributed-memory, such

as MPI) parallelism, we prefer to use the neutral term concurrency here, to indicate the number of concurrent executing elements, regardless of how this is

achieved.
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Figure 2. Component layout of three ESMs, in processor-time space (time increasing downward). Each box represents a component which

is integrated either concurrently (coarse-grained concurrency, see text) in which case it is shown alongside the other components running at

the same time, or sequentially, in which case it is shown below the previous component. From Fladrich and Maisonnave (2014).

(each typically a 3D array) is a significant burden on memory. The scaling behavior can be significantly different when “fully

loaded” with physics.

A second feature of multi-component codes is that an ESM is quite often set up to run multiple component codes concurrently

as separate excutables each with their own processor decomposition. This component architecture of ESMs is quite diverse

(Alexander and Easterbrook, 2015), but typically most include at least two such components set up to run concurrently, in a5

mode we term coarse-grained concurrency (Balaji et al., 2016). This raises issues of load balance, configuring components

to execute in roughly the same amount of time, so no processors sit idle. In such a “coupled” setting, components may not be

able to run at their individual optimal scaling point, but rather at the scaling point which is optimal for the ESM as a whole. In

addition, there are overheads associated with the coupling software itself. Components are generally allowed to have their own

grid resolutions and timescales, and the coupler is responsible for exchanging information in a manner respecting numerical10

stability, accuracy, and above all, conservation of the quantities exchanged among the components. The coupling overhead

must be taken into account in an ESM performance study. Coarse-grained concurrency may be increasingly prevalent in ESM

architectures in the future, because of current hardware trends (Balaji et al., 2016). The parallel component layout of some

typical ESMs is show in Figure 2.

A third consequence of complexity is that a large number of variables needs to be analyzed in scientific experiments in-15

volving ESMs. I/O is often ignored in scaling studies (including the standard HPC benchmarks other than those specifically
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measuring I/O performance), although rigorous and careful studies, such as the recent AVEC report4 do take it into account.

Both synchronous (blocking) and asynchronous (non-blocking) I/O subsystems are in use in ESMs. In the first instance, they

will directly contribute to the measured time to solution, and in the latter, they will contribute to the cost in terms of additional

processors devoted to I/O. In terms of real performance, it is important to include I/O, as the relative cost of computation and

I/O is essential to defining a balanced machine suitable for ESMs.5

We come to the third axis (see Section 1) along which Earth system modeling consumes computing power, that of ensemble

size. The underlying dynamics of an ESM are chaotic, with a sensitive dependence on initial conditions, as has been known

since the pioneering studies of Lorenz (1963). In climate and weather modeling, chaotic uncertainty is captured by running

an ensemble of simulations with slightly perturbed initial conditions, and examining the results in the form of a probability

distribution, rather than an exact outcome. This has serious implications for understanding the performance of ESMs, as now10

the science is limited by the capacity of the computer (i.e aggregated simulation time across an ensemble) rather than its

capability (simulation time of a single instance). ESMs run for science maybe run in both capability mode (fastest time to

solution for a single instance) or capacity mode (best use of a computer allocation for an ensemble of runs), depending on

need; both need to be assessed.

A final point regarding Earth system modeling is that runs may be resident on a system for very long times. Climate sim-15

ulations often run for centuries or millennia of simulated time, taking wallclock time measured in months. This means that

in actual practice, the time to solution is dependent on many factors, including the stability of the machine, the design of the

queuing system, and the robustness of the workflow.

In summary, Earth system modeling has a particular computational and data profile which must be taken into account in

measuring the computational “performance” of a given model on a given machine. The profile of climate computing is that20

of a multi-scale, multi-physics code, organized into a hierarchy of components that may be scheduled serially or concurrently,

held together by sophisticated coupling algorithms that themselves carry a cost. Individual components generally exhibit weak

scaling, are memory-bound, and may carry a significant I/O load. The models are executed for very long periods of time, so

that a significant cost is associated with the workflow and machine policies enabling sustained sequences of jobs. Finally, the

models are sometimes run at their optimal speed, but quite often require large ensembles of simulations, so that they are in25

practice optimized for capacity rather than capability.

2.3 Real model performance: an alternate approach

The premise of this paper is that existing measures of computational performance do not give the Earth system science commu-

nity adequate information about the actual model performance obtained in running production scientific runs. Such information

is needed for a range of practical applications which go beyond the prediction of performance for traditional applications such30

as benchmarking new machines, to include the decisions needed to plan scientific experiments with real codes on specific

hardware.
4http://www.nws.noaa.gov/ost/nggps/dycoretesting.html
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These features, required to assess real model performance in a scientific domain, require understanding the particular domain

computational profile – in this case, the profile summarised at the end of Section 2.2 – and developing appropriate metrics to

study performance.

Typical questions that ESM users have when they plan or run an experiment include:

– How long will the experiment take (including data transfer and post-processing)?5

– How many nodes5 can be efficiently used in different phases of the experiment?

– Are there bottlenecks in the experiment workflow, either from software or from system policies, such as queue structure

and resource allocation?

– How much short-term/medium-term/long-term storage (disk, tape, etc.) is needed?

– Can/should the experiment be split up in parallel chunks (e.g. How many ensemble members should be run in parallel?)?10

What is the best use of my (limited) allocation?

Although these questions are clearly related to the computational performance of ESMs, they are not answered by examina-

tion of FLOP rates or speed-up curves.

We propose therefore an alternate approach. We have devised a set of computational performance metrics that directly

address the concerns of this domain of science. The metrics have been chosen to satisfy several conditions:15

– they are universally available from current ESMs, and applicable to any underlying numerics, as well as any underlying

hardware architecture.

– they are representative of actual performance of the ESMs running as they would in a science setting, not under ideal

conditions, or collected from representative subsets of code.

– they measure performance across the entire lifecycle of modeling, and cover both data and computational load.20

– they are extremely easy to collect, requiring no specialized instrumentation or software, but can be acquired in the course

of routine production computing.

These metrics will form the basis of a framework for routinely collecting these data from large coordinated modeling exper-

iments. They are intended to serve as an adjunct to traditional, more idealized, measures of performance. They will allow the

community as a whole to have a unified basis to evaluate technological advances through the lens of community concerns, and25

articulate community needs for computational and data architecture.

5Although the number of computational elements is measured in cores, allocation is usually done in units of nodes of, say, 32 cores sharing memory.
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3 The CPMIP metrics

We propose below in Section 5 a systematic effort to collect metrics for a variety of climate models participating in common

experiments. This proposed “model intercomparison project” (MIP) is to be called CPMIP: the Computational Performance

MIP. The metrics proposed take into account the structure of ESMs and how they are run in production. Issues addressed

include the following.5

1. Models can have two optimal points of interest: one for speed (minimizing time to solution, maximizing simulated years

per day or SYPD); the second for best use of a resource allocation (minimizing compute-hours per simulated year, or

CHSY). A single ESM experiment may contain both phases. For instance, a climate experiment is often initialized from

an idealized initial state, and a long “spinup” phase (measured in centuries for an AOGCM, millennia if the model

includes a carbon cycle for instance, see e.g Dunne et al., 2012) where we would run the model in speed or capability10

mode (the two terms are used interchangeably). After the spinup phase we have a near-equilibrium initial state of the

climate which may be used to seed many experiments in parallel, in which case we would switch the configuration to

throughput or capacity mode. We call these the S-mode and T-mode respectively.

Figure 3 illustrates the S- and T-modes from a typical scaling study, in this case of a GFDL model configuration called

c96l32 running on a platform called c3. We see that the model is capable of running at 50 SYPD (simulated years per15

day, a quantity precisely defined below in Section 3.2). However by then, the scaling is beginning to suffer. In practice,

we find that the best use of a computer allocation is to run the model at 35 SYPD, where the performance slope starts

to change, indicating loss of scaling. The best throughput, measured in CHSY (also defined below in Section 3.2) is

achieved at the lower processor count (1200 instead of 1600).

2. Computational cost scales with the number of degrees of freedom in the model. We factorize this number separately into20

resolution (number of spatial degrees of freedom) and complexity (number of prognostic variables). This separation is

useful because performance varies inversely across resolution and complexity in weak-scaling models.

3. ESMs generally are configured to run more than one component concurrently: we need to measure load balance and

coupler cost.

4. A vast number of variables is often used in the code, which is likely to aggravate the memory-boundness of models.25

While the theoretical minimum of one word (usually double-precision, or 8-byte) per variable per spatial degree of

freedom is unavoidable, it is useful to measure memory bloat, excess copies of data made by the code, the compiler,

or libraries. We do not necessarily consider the word bloat as pejorative: some of the extra copies might be needed for

scientific reasons, such as halos (local caches of portions of neighboring domains in distributed memory), or providing

registers for accumulating time-means of time-step data. But, reasons notwithstanding, these extra copies of data do30

indeed increase the memory requirements. And some data copies remain mostly outside user control (e.g system I/O

buffers).

9
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Figure 3. Scaling behaviour of a GFDL model. It illustrates that the model could be run at 50 SYPD in capability, or speed mode; but in

practice is most often run at the shoulder of the curve, at around 35 SYPD, which gives the best throughput.

5. Models configured for scientific analysis bear a significant I/O load, which can interfere with optimization of computa-

tional kernels. I/O may be synchronous (blocking) or asynchronous (non-blocking). Typical and maximum simulation

data intensities (GB/CH) are useful measures for designing system architecture.

6. Actual SYPD measures the SYPD achieved from a long-running model, as opposed to a single segment, as in (1). A

significant difference here indicates the need to devote resources to system (including management and queuing policies)5

and workflow issues rather than optimizing code.

To cover this list of concerns, we propose the following list of metrics, and indicate how this may be measured. (Recall that

one prime consideration in the choice of metrics is the ease of collection).

3.1 The CPMIP Metrics: Model and Platform

We begin with metrics describing the model and the platform. The model is described by two basic characteristics:10

10
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Resolution measured as the number of gridpoints (or more generally, spatial degrees of freedom) NX×NY×NZ per compo-

nent, denoted by Gc (where the subscript denotes a model component with an independent discretization). The resolution

of the ESM is simply G≡∑
c

Gc.

Gc ≡ NX×NY×NZ (1)

G ≡
∑

c

Gc (2)5

While we nominally count 3 dimensions above, an actual code might only use two array dimensions or even one: for

instance, 2D and 3D unstructured mesh codes. We also additionally require a representative (noting that non-uniform

grids are the norm) horizontal and vertical cell size for broad comparison purposes, ∆xc and ∆zc, reported in km. The

resolution is static information about the model and part of its configuration.

Complexity measured as the number of prognostic variables per component, Vc. This is also static, but if not available directly10

from the model configuration or code, it can be computed by dividing the size Sc of the restart file (containing the

complete state) per component, measured in words (e.g 8 bytes for double precision) divided by Gc. The complexity of

the model is C ≡∑
c

Vc. The total degrees of freedom in the model is F ≡∑
c

GcVc.

Vc ≡ Sc/Gc/8 (3)

V ≡
∑

c

Vc (4)15

Note that the method of computing it from the restart file size assumes that only one copy of the model state is saved

(i.e., no intermediate restarts). It further assumes that only one time-level of any variable is saved in the restart file. For

models that use multiple time-level timestepping schemes, there could be several time levels saved in the restart file. For

proper restarting of a model with leapfrog timestepping, for instance, both the current and prior state of a variable need

to be saved. Thus, using the restart file method to estimate complexity is to be used with caution: it is better to have more20

direct methods of computing Vc, the number of prognostic variables.

Other methods for evaluating complexity (e.g Méndez et al., 2014) are more based on evaluations of the model code

itself, e.g counting lines of source code. Our experience is that models of equal complexity in terms of the range of

physical, chemical and biological process represented, vary considerably in terms of code, which appears to us not to

provide a useful measure of complexity. We further note that most models are coded with a plethora of options, most of25

which are not exercised in any one model instance, thus resulting in a lot of “dead code”.

The platform is a description of the computational hardware:

11

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-197, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 24 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



Platform There is a wide variety of machine descriptors which can be confusing. With the computing hierarchies in place,

terms like processor, processing element or PE, and even computing core, become hard to compare across machines.

However, the term core still has some universality as a concept, as a machine is often characterized by its core count,

though what constitutes a core may not be strictly comparable across disparate hardware. With that concept, the two

additional measures universally understood are the clock speed (usually reported in inverse time, so that larger is faster)5

in GHz, and the theoretically possible number of double-precision operations per clock cycle – which we term clock-

cycle concurrency. All three measures can be obtained across the span of today’s architectures, including GPUs, MICs,

BlueGene, and conventional processors.

Note that there are additional numbers of interest, such as memory and filesystem characteristics. These are highly

configuration-specific and quite often heterogeneous. We propose two additional descriptors: chip name (e.g Knights10

Landing) and machine name (e.g titan). These should allow one to find links to configuration-specific information about

the platform.

3.2 The CPMIP Metrics: Computational Cost

SYPD simulated years per day for the ESM in a 24h period on a given platform. This should be collected by timing a segment

of a production run (usually at least a month, often one or more years), not from short test runs. This is because short15

runs can give excessive weight to startup and shutdown costs, and distort the results following Amdahl’s Law. This is

measured separately in throughput and speed mode.

ASYPD the actual SYPD obtained from a typical long-running simulation with the model. This number may be lower than

SYPD because of system interruptions, queue wait time, or issues with the model workflow. This is measured for a long

production run by measuring the time between first submission, and the date of arrival of the last history file on the20

storage filesystem. This is measured separately in throughput and speed mode. For a run of N years in length

ASY PD ≡ N

tN − t0
(5)

where t0 is the time of submission of the first job in the experiment, and tN is the timestamp of the history file for year

N .

CHSY core-hours per simulated year. This is measured as the product of the model runtime for 1 SY, and the numbers of25

cores allocated. (Note that allocations usually are done on a node basis, and all cores on a node are charged against the

allocation, regardless of whether or not they are used.) This is measured separately in throughput and speed mode.

Parallelization measured as the total number of cores NP allocated for the run. (Usually allocation is by node, in which case

this is multiplied by nodes per core, a fixed number for a machine.) Note that NP = CHSY ∗SY PD/24.
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JPSY is the energy cost of a simulation, measured in joules per simulated year. Energy is one of the key drivers of computing

architecture design in the current era. While direct instrumentation of energy consumption on a chip is still something

in development, we generally have access to the energy cost associated with a platform (including cooling, disks, and

so on), measured in kWh (= 3.6× 106 joules) over a month or a year. Given the energy E in joules consumed over a

budgeting interval T (generally 1 month or 1 year, in units of hours), and the aggregate compute-hours A on a system5

(total cores∗T ) over the same interval T , we can measure the cost associated with one year of a simulation as follows:

JPSY ≡ CHSY ∗E/A (6)

Note that this is a very broad measure, and simply proportional to CHSY on a given machine. But it still is a basis of

comparison across machines (as E will vary). In future years as on-chip energy metering matures and is standardized, we

can imagine adding an “actual joules per SY (AJPSY)” measure, which takes into account actual energy used by model10

and its workflow across the simulation lifecycle, including computation, data movement, and storage. These measures

are similar in spirit to some prior measures of “energy to solution” such as those in Cumming et al. (2014) and Charles

et al. (2015).

3.3 The CPMIP Metrics: Coupling, memory and I/O

Coupling cost measures the overhead caused by coupling. This can include the cost of the coupling algorithm itself (which15

may involve grid interpolation and computation of transfer coefficients for conservative coupling) as well as load imbal-

ance, when concurrent components finish at different rates, potentially leaving some PEs idle. It is possible to measure

the two separately, but it involves somewhat subtle instrumentation, and may not be measurable in a uniform way across

the range of ESM architectures used in the community (Alexander and Easterbrook, 2015). This is because load imbal-

ance can manifest itself as time spent in the coupler (which is actually being spent in a spin-wait loop). We instead just20

choose to measure it as the normalized difference between the time-processor integral for the whole model versus the

sum of individual concurrent components, or

C ≡
TMPM −

∑
c

TcPc

TMPM
(7)

where TM and PM are the runtime and parallelization for the whole model, and Tc and Pc the same for individual

components. Graphically, it can be seen as the “white area” for any ESM layout diagram like that of Figure 2. It involves25

a minimum of instrumentation to measure time spent in each component. These involve inserting simple timing calipers

such as MPI_WTime() around components, excluding wait. While this may be considered extra “instrumentation”,

these are universally available basic routines, and indeed it would be a wonder if any ESM interested in performance did

not have these embedded already.
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Memory Bloat the ratio B of the actual memory size to the ideal memory size Mi, defined below. The measured runtime

memory usage M on the system (often called “resident set size”, or RSS) is divided between instructions and data,

of which we are interested mainly in the latter. The RSS high-water mark is often published in the job epilog, failing

which, we supply a small code (26 lines of C, see Section 6), which can be called at the end of a model run and will

report the RSS high water mark on any linux-derived operating system. The portion of memory devoted to instructions is5

measured by taking the size of the executable files X produced during compilation, of which one copy is stored on every

processor. (This may be an overestimate on systems where instructions are paged in, or shared between applications, so

the correction for instruction size is to be applied with care.) The ideal memory size is the size of the complete model

state, which in theory is all you need to hold in memory, the rest being in principle computable from the state variables.

Thus:10

Mi ≡
∑

c

Sc (8)

B ≡ M −NP ∗X

Mi
(9)

Note that the “ideal” memory size is truly a utopian measure, and we never expect to get close in practice. Rather, it serves

as a normalization factor allowing us to compare across different model characteristics (Section 3.1) and platforms. As

we shall see, the value of B is found to be O(10-100).15

Unusually large numbers relative to other configurations can alert us to excessive buffering, and other issues. Also, we

generally aspire to have memory scaling codes, where memory usage remains roughly constant across PE counts. It

will generally not stay exactly constant because of the presence of halos. For instance, for a logically rectangular grid

with a halo size of 2 in X and Y , and a 20× 20 domain under decomposition, the 2D array area including halos is 576

instead of 400, for a bloat factor of 1.44. The same model decomposed to a 10× 10 domain, will have array area of20

196 instead of 100, increasing the bloat to 1.96. This number might be somewhat larger for algorithms that use “wide

halos” (Balaji, 2001). However, these factors are still small compared to the bloat caused by global arrays, which will

cause memory to grow on a curve quadratic with the PE count (assuming 2D domain decomposition). Avoiding the

use of global arrays is generally considered a useful approach in an era where memory movement is considerably more

expensive than arithmetic.25

Data output cost is the cost of performing I/O, and is the difference in cost between model runs with and without I/O. This

is measured as the ratio of CHSY with and without I/O. This is measured differently for systems with synchronous and

asynchronous I/O. For synchronous I/O where the computational PEs also perform I/O, it is requires a separate “No I/O”

run, where we measure the fractional difference in cost:

D ≡ CHSY −CHSYnoI/O

CHSY
(10)30
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For models using asynchronous I/O such as XIOS, a separate bank of PEs is allotted for I/O. In this case. it may be

possible to measure it by simply looking at the allocation fraction of the I/O server, without needing a second “no I/O”

run.

D ≡ PM −PI/O

PM
(11)

However, there may be additional computations performed solely for diagnostic purpose; thus the method of Eq. 10 is5

likely more accurate. Note also that if the machine allocates by node, we need to account for the number of nodes, not

PEs, allocated for I/O.

Data intensity the measure of data produced per compute-hour, in GB/CH. This is measured as the quotient of data produced

per SY, easily obtained from examining the output directories, divided by CHSY.

4 Results from several ESMs10

We present a spectrum of results from several ESMs to illustrate the power of the CPMIP approach. These are to be considered

preliminary or suggestive findings.

Some of the metrics we collect are properties of the model which do not change however the model is run, but some are

properties of the exact experiment for which it is used. In particular, the I/O properties (Data Output Cost and Data Intensity)

will depend on the diagnostics required by the experiment.15

Similarly, ASYPD is simulation dependent, depending not only on the model configuration but the background workload on

the machine, which is the reason why we require this to be obtained from a long model run (so the background differences are

averaged out).

For model intercomparison the most understanding of model differences will be obtained when the differing models are being

used for the same experiment. Hence, the full power of the method will only be apparent when we have systematically collected20

these metrics in conjunction with a major multi-centre modeling project. A plan to do so is outlined below in Section 5.

4.1 Speed and throughput modes

Performance results from HPC codes are often presented in the form of scaling curves, with time to solution plotted at various

processor counts. A typical inference from such a plot is to identify models that scale well, i.e close to an ideal scaling curve

that points to the “strong scaling” limit. (Recall that under strong scaling, the time to solution decreases inversely with the25

number of processors, i.e half the time to solution for twice the assigned processing).

Most models scale less than perfectly, so in general scientific projects make compromises. There are two potential optima:

one is to optimize time to solution by applying the maximum resource possible (the point at which the scaling curve saturates,

so that adding more PEs does not improve time to solution); or alternately, pick a spot lower down the scaling curve for the
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Model Resol Cmplx SYPD CHSY Coupling I/O DI MBloat ASYPD Platform

CM2.6 S 4.9×108 18 2.2 2.12×105 26% 0.005 1.6 gaea/c2

CM2.6 T 4.9×108 18 1.1 1.81×105 62% 24% 0.005 0.4 gaea/c2

CM2.5 T 8.3×107 18 10.9 14327 17% 6.1 gaea/c2

FLOR T 9.8×106 18 17.9 5844 57% 5% 0.015 12.8 gaea/c2

CM3 T 4.2×107 124 7.7 2974 42% 15% 4.9 gaea/c2

ESM2G S 3.9×106 63 36.5 279 10% 6.5% 0.028 42 25.2 gaea/c1

ESM2G T 3.9×106 63 26.4 235 25% 6.5% 0.028 42 11.4 gaea/c1

CM4H T 1.2×108 57 6.9 7729 10% 11% 0.011 16 4.0 gaea/c3

CM4L T 3.3×107 57 16.8 3277 20% 0.009 66 4.6 gaea/c3

ESM4L T 3.3×107 104 10.1 5340 30% 0.013 40 7.7 gaea/c3

ARPEGE5-NEMO T 1.2×108 18 5. 5190 1% 1% 0.021 8.0 1.5 curie

EC-Earth3.2 T 1.4×108 34 1.3 12126 6.4% 4% 0.012 18 1.28 beskow

EC-Earth3.2 S 1.4×108 34 4.0 21481 11.0% 1% 0.007 2.65 beskow

CESM1.2.2-NEMO T 1.2×108 103 .86 59100 8.1% 1% 1.4×10−3 9.1 0.04 athena

MPI-ESM1 T 2.×107 73 18.5 3363 10% 6% 0.07 105 10 mistral

NorESM1 S 5.×106 17.2 1369 vilje

IPSL-CM6-LR S 1.×107 144 6 2166 5% 10% 0.01 9 5.5 curie

HadGEM3-GC2 T 1.8×108 66 1 6504 15% 0.57 archer
Table 1. Results from several ESMs. Not all the cells are currently filled, but we propose to collect these systematically in the full-scale

CPMIP project. See text for explanation and discussion of terms.

maximum aggregate simulated years for an ensemble of model runs within a given allocation. In terms of the metrics defined

in Section 3, we refer to these modes as the speed (S) or capability mode which maximizes SYPD, and the throughput (T) or

capacity mode, which minimizes CHSY. Table 1 gives examples of the GFDL high resolution model CM2.6 (Griffies et al.,

2015), for instance, which can be run at 2 SYPD, but in practice is most often run at 1 SYPD, which is the CHSY optimum.

An ESM example is also shown (ESM2G, Dunne et al., 2012), where the 26 SYPD T configuration is usually run, but during5

model spinup (which is a single instance running, not an ensemble) the S configuration is used. ESM spinup often requires

O(1000) years (Dunne et al., 2013), where raw speed is of the essence: we see that even at 40 SYPD a time on the order of

months is needed simply to generate an equilibrated initial condition for a set of experiments.

4.2 Complexity, resolution and performance

We assume in the rest of the discussion that the runs being analyzed are in T mode, as they would be run in production. In10

this section we show a comparison across several ESMs. The comparisons here necessarily have considerable scatter as they

represent codes with differing levels of performance, and different hardware as well. Nonetheless, the inverse relationship
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Figure 4. Performance, resolution and complexity for a subset of ESMs from Table 1, in throughput mode.

between resolution and time to solution is seen in the scatter plot of Figure 4. Complexity, a second major determinant of

performance, is shown as the size of the square on the scatter plot. Broadly, on similar performing hardware, we expect to

see one group of models of limited complexity in one cluster on the resolution-SYPD slope, and another similar cluster for

high complexity models. Models lying considerably below the cluster representing their complexity class may indicate a need

for performance improvement, either in the code or in hardware. In general, we can identify the low-complexity models as5

AOGCMs, and the high-complexity models as ESMs, which add chemistry and carbon to the mix. These results will of course

be significantly clearer when we have a substantial database of results, allowing us to subselect based on platform, for example.

4.3 Energy consumption

We present here the JPSY metric for select models, with the caveats mentioned above in Section 3.2, namely that the energy

costs are based on representative machine averages.10

Table 2 shows the energy costs of the various model simulations in Table 1. The current results show that they are drawn

from platforms with rather similar energetic profiles, and most of the variance in energetic costs come from variations in CHSY.
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Model CHSY E A JPSY Platform

CM2.6 S 2.12×105 3.14×1012 5.64×107 1.17×1010 gaea/c2

CM2.6 T 1.81×105 3.14×1012 5.64×107 1.00×1010 gaea/c2

CM2.5 T 14327 3.14×1012 5.64×107 7.99×108 gaea/c2

FLOR T 5844 3.14×1012 5.64×107 3.26×108 gaea/c2

CM3 T 2974 3.14×1012 5.64×107 1.66×108 gaea/c2

ESM2G S 279 1.97×1012 3.02×107 1.82×107 gaea/c1

ESM2G T 235 1.97×1012 3.02×107 1.53×107 gaea/c1

CM4H T 7729 1.68×1012 3.47×107 3.75×108 gaea/c3

CM4L T 3277 1.68×1012 3.47×107 1.59×108 gaea/c3

ESM4L T 5340 1.68×1012 3.47×107 2.59×108 gaea/c3

ARPEGE5-NEMO T 5190 5.92×1012 5.88×107 5.22×108 curie

EC-Earth3.2 T 12126 1.62×1012 3.86×107 5.08×108 beskow

EC-Earth3.2 S 21481 1.62×1012 3.86×107 8.99×108 beskow

CESM1.2.2-NEMO T 59100 9.00×1012 6.76×107 7.87×109 athena

MPI-ESM1 T 3363 1.30×1012 2.65×107 1.64×108 mistral

NorESM1 S 1369 1.41×1012 1.64×107 1.18×108 vilje

IPSL-CM6-LR S 2166 5.92×1012 5.88×107 2.18×108 curie

HadGEM3-GC2 T 6504 4.27×1012 8.5×107 3.27×108 archer
Table 2. Energy cost per simulated year (joules) in several of the configurations listed in Table 1. See Section 4.3 for explanation of terms.

Energy and Aggregate core-hours are reported for 1 month.

Below in Section 4.7 we show a comparison of the same model on different platforms, with a substantial difference in energy

profile. This will be seen to have significance in machine evaluation.

4.4 Coupler overhead and load imbalance

One area of concern in coupled modeling is the cost of the coupling itself. There are two aspects to this:

– When components are running concurrently there are synchronization costs which arise when the components must5

exchange data, i.e a component that finishes early must wait for its boundary condition received from another component.

Also components may have restrictions on the layout (i.e the PE count can only be discretely altered). Second, the load

is often a function of the actual narrative of events taking place in the model (e.g convective activity). Thus it may not be

possible to maintain an exact load match between components. This is usually done by trial and error and left fixed for

the duration of an experiment.10

– A second cost is that of the coupler itself: this includes the cost of conservative interpolation between independent model

grids, as well as any other computations performed during the transfer. This can include computing fluxes, transforming
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quantities (for instance different components may have differing units or sign conventions for certain variables). In some

cases transfer coefficients are computed on an intermediate “exchange grid” (e.g Balaji et al., 2006).

These are both unavoidable costs of coupling, therefore as outlined in Section 3 we have chosen to measure them as one: the

coupling cost is the processor-time integral of the difference between the total cost of the coupled system, and the integrated

cost of individual components, depicted graphically as the white area outside any component in Figure 2.5

One area of concern is whether the coupler costs rise with resolution. A comparison of two models built from the same

modeling system (the low-resolution ESM2G vs high-resolution CM2.6) in Table 1 show that the coupler cost including load

imbalance, increases from 10% to 25% with the increase in resolution. This comparison is made in the S mode. At lower

PE counts (T mode) it is more difficult to establish load balance because of layout restrictions as described above. Here the

cost comparison across low and high resolution rises from 25% to 62%. Further examination indicates that this is an example10

of a model configuration that was insufficiently tuned for performance before starting a production run, and indeed a much

better load balance could have been achieved. This inference is given a boost when we compare CM4H and CM4L, which are

differentiated by high and low ocean resolution. Here in fact the coupling cost is lower in the high-resolution configuration.

We therefore conclude that there is no evidence of a loss in coupling performance with resolution, and the anomalous result

for CM2.6 is probably due to an imperfect configuration. We present this as evidence that systematic collection of the CPMIP15

metrics would help identify such cases during setup for production, rather than post facto, as in this table.

4.5 I/O issues

As noted in Section 3, I/O load is measured here by comparing a production run with no diagnostic output against a regular

production run. We see a generally modest cost ranging from 6.5% for low resolution models up to 24% at high resolution. (The

CM2.6 run shown here contains an eddy-resolving ocean, and the high cost of I/O in that run is associated with high-frequency20

output for analyzing eddy statistics Griffies et al., 2015).

In other modeling systems with asynchronous I/O (such as the XIOS6 system developed in France, see Joussaume et al.,

2012), the same cost is measured by seeing how many PEs are assigned to I/O relative to the rest of the model.

Another useful metric here is the data intensity defined in Section 3. It shows the rate of data production per hour of pro-

cessing, in units of GB/CH. We see the data intensity decreasing as resolution increases, but staying proportional to increases25

in complexity.

4.6 Workflow costs

We see examples in Table 1 where there is a substantial discrepancy between ASYPD and SYPD, for instance the ESM2G T

mode only achieves 11 SYPD in practice against an expected 26 SYPD. This indicates a need for closer examination. There

could be several reasons for this:30
6http://forge.ipsl.jussieu.fr/ioserver
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Model Machine Resol SYPD CHSY JPSY

CM4 S gaea/c2 1.2×108 4.5 16000 8.92×108

CM4 S gaea/c3 1.2×108 10 7000 3.40×108

CM4 T gaea/c2 1.2×108 3.5 15000 8.36×108

CM4 T gaea/c3 1.2×108 7.5 7000 3.40×108

Table 3. Results comparing the same model in both speed (S) and throughput (T) mode on different hardware.

– the workflow system could be introducing inefficiencies. This would be identified by a detailed examination of the run

logs, to whether the delays are induced during data transfer or post processing, for instance.

– the queuing system could be introducing delays. Scheduler logs would identify whether there is excessive queue wait

time, in which users may seek to change the queuing policies at their compute site, or else find a “sweet spot” for the T

mode that best aligns with those policies.5

– the run might have been interrupted by the scientist for various reasons, for example they might choose to “pause” the

run to perform some preliminary analysis. In this case, we indeed discovered that there were significant gaps between

output file timestamps at several points in the run, indicating that these were deliberate pauses.

These results indicate the utility of the CPMIP metrics for diagnosing problems associated with model workflow, that have

as much impact on realized performance as algorithms and computational hardware.10

4.7 Hardware comparison

One of the most impactful uses of the CPMIP metrics is in getting comparisons of actual performance improvements from new

hardware. As we have emphasized in this paper, nominal measures of performance provided by vendors such as clock speed in

GHz, or maximum theoretical Flops, do not provide clear indications of what actual increase in performance will be realized

in practice on the actual applications run on the machine. In Table 3, we provide a direct comparison of the same codes on the15

current machine and on a new acquisition. NOAA has recently upgraded the technology on its flagship climate computer Gaea.

The results of Table 1 were acquired on Gaea’s c1 and c2 partitions in 2014, when it was a Cray XE6 (120,320 AMD Interlagos

cores rated at 3.6 GHz, on a Cray Gemini fabric). In early 2016, a c3 partition was added, a Cray XC40 consisting of 48,128

Intel Haswell cores rated at 2.3 GHz but with higher clock-cycle concurrency, and the next-generation Aries interconnect

fabric (see Table 4). Given the higher rated processors and smaller number of cores, what is the true comparison across these20

machines?

Table 3 provides some answers. The CM4 model currently in development at GFDL shows a modest increase in cost as

we increase the PE count, beginning to saturate in performance as we get to 4.5 SYPD (indicated by the increase in CHSY

between rows 1 and 3). Over the same range, we are able to demonstrate an increase on the new hardware c3 from 7.5 to 10

SYPD, at no increase in CHSY. We can infer three things:25
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Machine Chip Cores Clock speed (GHz) Clock-cycle concurrency URL

gaea/c1 Interlagos 41984 3.6 4 https://goo.gl/MYMPqD

gaea/c2 Interlagos 78336 3.6 4 https://goo.gl/MYMPqD

gaea/c3 Haswell 48128 2.3 16 https://goo.gl/o0xzIz

curie Sandy Bridge 80640 2.7 8 http://goo.gl/RR5kfc

mistral Haswell 36840 2.5 16 https://goo.gl/RKjC2g

vilje Sandy Bridge 22464 2.6 8 https://goo.gl/ntxBPw

athena Sandy Bridge 7712 2.6 8 https://goo.gl/Z2CSvB

beskow Haswell 53632 2.3 16 https://goo.gl/ufDBBy

archer Ivy Bridge 118080 2.7 8 http://goo.gl/dCU2uJ

Table 4. Details of platforms used in this study. The product of Cores, Clock Speed, and Clock-cycle concurrency should yield Theoretical

Peak Speed, but as we see in the results of, and discussion around, tables Table 1 and Table 3, actual performance is rather different.

– core for core, the new machine shows a speedup of 2.2X, which one could not have inferred from the clock ratings.

However the total number of cores has dropped 2.5X. Thus in aggregate, c3 provides about 87% (2.2/2.5) of the capacity

of the older c1 and c2 partitions combined, for the GFDL workload. Note, however, that the PF rating of c3 (product

of columns 3, 4, 5 in Table 4) is considerably higher than c1 and c2 combined (1.77 PF vs 1.12 PF). This shows the

pitfalls of using petaflops ratings to infer aggregate performance of a machine.5

– A second inference is that the next-generation network (Cray Aries over Gemini) is showing a manifest increase in

performance, with the same CHSY in both configurations (i.e with different numbers of PEs) whereas there was a drop

in performance on the older hardware. Additional data on very high resolution models, not shown here, shows that

the scaling increase results in vastly increased performance at very high PE counts, pushing the per-core performance

difference to nearly 3X.10

– A third and equally intriguing result is apparent from the energy analysis in the JPSY column. We see substantial

decreases in the energy cost of simulation, with JPSY dropping by 60% in migrating from c2 to c3, partly due to the

lower CHSY, but also partly attributable to energy efficiency of the hardware. This translates into a very concrete and

substantial fall in the total cost of simulation science over the lifetime of the machine.

Comparisons of this nature based on CPMIP metrics can yield extremely useful material for comparing hardware and for15

interpreting benchmark results. A broad database of results across models and machines will also allow centers to gain useful

insights about their own workload from acquisitions at other centers.

In future, modeling centres are likely to be distributing work across heterogeneous systems: this information could addition-

ally aid in matching model configurations (e.g resolution and complexity) to hardware.

The platforms used in this study are listed in Table 4.20

21

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-197, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 24 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



5 Summary and future work

Computational performance is one of the most important constraints in the design of Earth system modeling experiments.

These constraints force compromises between resolution, complexity and ensemble size, all of which have serious scientific

implications. This paper proposes several metrics for assessing real computational performance of ESMs, and as an aid in

experimental design and strategic planning, including future computer acquisitions consistent with a modeling centre’s mission.5

It is our contention that traditional measures of computational performance do not provide the necessary input for experi-

mental design and planning. The kinds of questions scientists face include:

– For a given experimental design, what can I afford to run?

– If I add complexity (such as adding a biogeochemistry component to an AOGCM), what will I have to sacrifice in

resolution?10

– How much computing capacity do I need to participate in a campaign like CMIP6 (Meehl et al., 2014)? How much data

capacity?

– Do the queuing policies on the machine hinder the sustained run of a long-running model?

– During the spinup phase, how long (in wallclock time) before I have an equilibrium state?

The metrics we propose are designed to address questions such as these, not easily answered from flop rates and scaling15

curves. They are specifically designed to be universal (i.e not based on a specific component hierarchy), very easy to collect

(no specialized software or instrumentation), and reflective of actual performance in production.

As the energy cost of computing (Cumming et al., 2014; Charles et al., 2015) is increasingly becoming the limiting factor

in large-scale computing, we expect that our machine-average measure of model energy consumption JPSY will need to be

replaced by a more accurate measures of energy consumption AJPSY, using fine-grained hardware energy metering. In doing20

so, we will need to track energy consumption across the entire modeling lifecycle, including computation, data movement,

and storage. Regardless of how energy per simulation unit is measured, we believe these metrics will play a substantial role

in selecting technologies, as we will be able to demonstrate direct benefits in operating costs per “unit of science”, such

as a simulated year. Technologies that appear weaker in “core-for-core” comparisons may show up as stronger in energy

comparisons. Across machines and models, we can imagine debates about certain choices of hardware being “slower but25

greener”, or algorithms that are “less accurate but more eco-friendly”. We believe these considerations will enrich the landscape

of design of both hardware and simulation software and workflow.

Other questions may be asked as well, which are more project-specific. For instance, the CMIP experimental protocol

is fundamentally dependent on an extensive process of data standardization, using tools such as the Climate Model Output

Rewriter (CMOR)7. While the standardization is a tremendous boon to data consumers, the data producers often chafe at the30

7http://www2-pcmdi.llnl.gov/cmor
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somewhat onerous process of standardization. We could imagine project-specific metrics such as measuring the time spent

making the CMIP runs, the total computational load of CMIP, and the time spent in post-model data standardization. The set

of metrics may thus evolve in the future, with project-specific addenda.

We propose a systematic campaign to collect the basic metric set in this paper routinely for CMIP6 before considering its

growth and evolution. This will be done using currently planned systems of model documentation such as ES-DOC8 (Lawrence5

et al., 2012). This comparative study of computational performance across models and machines, a CPMIP, will be an invalu-

able resource to the climate modeling community. Each centre will individually be able to identify inefficiencies in their

modeling lifecycle, and seek to address them. The comparative data will allow one centre to predict the performance it will

achieve on a machine available at another centre. (We propose to build such an emulator tool backed by the CPMIP database

for this purpose.) It will allow centres to define the optimal compute/data balance on future acquisitions. Finally, it will allow10

the Earth system modeling community as a whole to identify machine configurations and policies most apt to the kinds of

science we hope to undertake in the future.

6 Data and code availability

The code for computing memory usage within the model (see Section 3.3) is provided in memuse.c9. It is to be run on each PE

and will provide the resident set size for that PE on any linux-based operating system.15

All the data used in the tables and figures of this study are available in raw form upon request. As stated in the paper, the

ESDOC project will be collecting and publishing the data systematically during CMIP6 from all participating models.
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