

Spatio-temporal approach to moving window block kriging of satellite data

3 Jovan M. Tadić¹, Xuemei Qiu¹, Scot Miller¹ and Anna M. Michalak¹

4

5 [1]{Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA}

6

7 Abstract. Numerous existing satellites observe physical or environmental properties of the Earth system. 8 Many of these satellites provide global-scale observations, but these observations are often sparse and 9 noisy. By contrast, contiguous, global maps are often most useful to the scientific community (i.e., level 3 10 products). We develop a spatiotemporal moving window block kriging method to create contiguous maps from sparse and/or noisy satellite observations. This approach exhibits several advantages over existing 11 12 methods: 1) it allows for flexibility in setting the spatial resolution of the level 3 map, 2) it is applicable to 13 observations with variable density, 3) it produces a rigorous uncertainty estimate, 4) it exploits both spatial 14 and temporal correlations in the data, and 5) it facilitates estimation in real time. Moreover, this approach 15 only requires a limited number of assumptions - that the observable quantity exhibits spatial and temporal correlations that are inferable from the data. We test this method by creating Level 3 products from satellite 16 17 observations of CO₂ (XCO₂) from GOSAT, CH₄ (XCH₄) from IASI and solar-induced chlorophyll 18 fluorescence (SIF) from GOME-2. We evaluate and analyze the difference in performance of spatio-19 temporal vs. recently developed spatial kriging methods.

20 1. Introduction

21 Satellite observations of the Earth's surface and atmosphere provide a valuable window into the functioning 22 of the Earth system. Satellites often provide global observations, but these observations are rarely uniform 23 or contiguous in space/time. The observations can be non-contiguous due to satellite orbit geometries and 24 periods, geophysical limitations (e.g. cloud cover), and temporary instrument malfunctions. Furthermore, 25 satellites may provide a large quantity of data, but individual observations can have a large noise-to-signal 26 ratio. It is often necessary to spatially interpolate the data in order to organize the data onto a regular grid, 27 query the data at a particular location of interest, estimate data at unsampled times and/or locations, and/or 28 map the underlying signal in a noisy dataset. These gridded, interpolated maps are commonly named "Level 29 3" data (e.g. NASA, 2014) and are often part of the standard suite of satellite data products.

CO₂ column observations (XCO₂) from the Greenhouse Gases Observing Satellite (GOSAT), CH₄ column observations (XCH₄) from the Infrared Atmospheric Sounding Interferometer (IASI) and solar-induced chlorophyll fluorescence (SIF) observations from The Global Ozone Monitoring Experiment–2 (GOME-2) provide prototypical examples of these challenges, and these three satellites are the primary application used throughout this work (see Section 3).

The most commonly-used method for creating Level 3 maps from satellite data is binning. This approach involves taking the mean of all observations within a given grid cell or "bin" (see Kulawik et al., 2010, and

37 Crévoisier et al., 2009 for examples). The binning method, however, has a number of shortfalls that can

38 lead to inconsistent or inaccurate results. First, different bins contain variable numbers of observations. As

39 a result, some bins will be well-constrained by the data while others may be based upon sparse, noisy

40 observations. Second, binning does not produce uncertainty estimates. Third, this method cannot41 extrapolate the unknown quantity to bins without any observations.

42 A broad class of geostatistical methods known as kriging provides an alternative approach to mapping 43 satellite observations. Kriging is a best linear unbiased estimator (for kriging see Chiles and Delfiner, 2012), 44 where covariance functions are used to represent correlations among data. As a result, kriging can account 45 for a variable density of observations and can estimate uncertainties in the resulting maps. Various forms 46 of kriging have recently been used to map satellite Earth observations, particularly for XCO_2 (e.g., 47 Hammerling et al. 2012a,b; Tadić et al., 2015; Zeng et al., 2013; Guo et al., 2013, Zeng et al., 2016). 48 Hammerling et al. (2012a,b) presented an approach to map Orbiting Carbon Observatory-2 (OCO-2) and 49 GOSAT XCO₂ observations, respectively, with non-stationary properties. In our previous study (Tadić et 50 al., 2015) we extended that approach to create XCO_2 maps that can have a different spatial resolution from 51 the resolution or footprint of the original satellite observations. Our previous study and those of 52 Hammerling et al. (2012a,b) accounted for spatial covariances among observations but did not include a 53 temporal component. The present study extends this geostatistical framework from a purely spatial to a 54 spatiotemporal domain.

55 Spatiotemporal approaches to interpolation can provide a number of advantages relative to purely spatial methods (e.g. Zeng et al., 2016; Guo et al., 2013). A purely spatial approach will usually aggregate 56 57 observations into temporal blocks; observations within the same block effectively have the same time stamp 58 whether or not those observations are actually synchronous (e.g., Tadić et al., 2015; Hammerling et al., 59 2012a,b). Any real temporal variability within a block becomes noise. A spatiotemporal approach, by 60 contrast, treats time as an explicit dimension and models covariances among data as a function of time. As 61 a result, the spatiotemporal approach can (1) fill in temporal gaps in the observations, (2) create maps at higher temporal resolutions than purely spatial approach, (3) produce more accurate estimates when 62 observations have variable spatio-temporal coverage, (4) predict future values (i.e. extrapolate temporally). 63

64 A handful of recent studies have considered temporal relationships when mapping satellite observations of 65 XCO₂. These studies have either used various forms of Kalman smoothing (e.g., Katzfuss and Cressie 2011, Katzfuss and Cressie 2012, Nguyen et al. 2014) or geostatistics (e.g., Guo et al. 2013; Zeng et al. 2013; 66 67 Zeng et al. 2016). The former group of studies leverages Kalman smoothing to improve the computational 68 tractability of mapping dense or abundant datasets, like OCO-2 and the Atmospheric Infrared Sounder 69 (AIRS). The latter group of studies, by contrast, has applied geostatistics to sparse datasets like those from 70 the GOSAT satellite. The model developed in this paper also uses geostatistics to map satellite observations 71 of XCO₂, but we present several advances relative to previous efforts. Among other improvements, we 72 develop an efficient method to subsample satellite observations and utilize the product-sum covariance 73 model (e.g., De Iaco et al., 2001) that is easy to parameterize, which makes it applicable to both abundant 74 and sparse datasets.

Section 2 of this study describes the presented model in detail; it describes an efficient subsampling procedure that can handle very large datasets and a covariance model that can estimate both spatial and temporal relationships in the data. We then incorporate these components into a spatiotemporal version of moving window block kriging. In sections 3 and 4, we subsequently apply this model to map GOSAT XCO₂, IASI XCH₄ and GOME-2 SIF at multiple time resolutions (including daily).

80 **2. Methods**

81 The spatio-temporal block kriging approach presented in this study proceeds in three steps for each model 82 grid cell and estimation time. First, we subsample the observations within a predetermined spatio-temporal

- 83 domain (section 2.1). Next, we characterize the local spatio-temporal covariance structure (section 2.2).
- Finally, we interpolate the satellite observations at the desired spatial resolution (section 2.3).

85 **2.1 Subsampling of observations**

The ultimate goal of the proposed subsampling strategy is to reduce the number of observations in the spatio-temporal vicinity of an estimation location to a representative, computationally feasible subset of data. We use a subset of observations (M) to estimate a local set of covariance parameters and use another subset (N) to estimate the desired quantity and associated uncertainty. Note that, for the method presented where M and M are used as the subset of data are different whether the subset of data are subset of data are different whether the subset of data are data ar

90 here, *M* and *N* can refer to either the same subset of data or different subsets.

91 The total number of observations used for covariance parameter estimation (M), is selected to be small 92 enough to make this estimation computationally feasible but large enough to yield a sample representative 93 of both local and regional variability. The optimal subset of N observations used for mapping depends on the actually observed covariance structure which is not known prior to covariance parametrization step. In 94 95 the example presented in Sect. 3, the optimal observational subset used in a mapping step for each grid cell 96 comprised N points having the highest covariance with the estimation location. In the example below, we 97 set both M and N at 500; larger values of M and N did not have a substantial impact on the estimated 98 parameters and mapped quantity, respectively. Furthermore, M should represent local variability, and larger 99 values of M would encompass more distant, non-local regions.

100 We select subset of observations M for each estimation grid cell by assigning a relative selection probability 101 to each observation based on that observation's spatial and temporal 'separation distances' from the 102 centroid of the grid cell. In the absence of a proper metric for distance in space-time, we model the spatial 103 and temporal components of the overall selection probability separately.

104 The selection probability (and its components) is described by the following equation:

105
$$P = P_s \times P_t \propto 1/(A_s h_s)^2 \times e^{-(A_t h_t)^2}$$
(1)

106 where P_s is the spatial component of the relative probability of a given observation being selected, P_t is 107 temporal component, h_s and h_t are distances between estimation location and observations, in space and time, respectively, and A_s and A_t are unit dependent, user defined weighting factors between separation 108 109 distance in space vs. in time (how deep in space vs. time the sampling should occur). The unit dependent choice of A_s and A_t can be initially based on user expectations of the decorrelation distances in space vs. 110 111 time and, if necessary, subsequently corrected accounting for actually computed decorrelation lengths in 112 space and time in an iterative fashion. In this way temporal and spatial sampling depths could even be 113 locally optimized and become location-specific. In the examples below (Section 3), A_s and A_t were set to 1 114 km⁻¹, and 0.5 day⁻¹, respectively, based on the observed average decorrelation distances in space and time 115 (see Fig. 1 and Section 4.1).

- 116
- 117 [Figure 1]

118 h_s is calculated as the great circle distance between the centroid x_j of the estimation grid cell and the location 119 x_i of an observation:

120
$$h_s(x_i, x_i) = r\cos^{-1}(\sin\varphi_i \sin\varphi_i + \cos\varphi_i \cos\varphi_i \cos(\lambda_i - \lambda_i))$$
(2)

121 where φ_i and λ_i are the latitude and longitude of location x_i and r is the radius of the Earth.

122 The temporal and spatial components of the probability function have different functional forms out of 123 necessity. The measurements often come pre-aggregated in time slices corresponding to hours, days, or 124 longer aggregation time periods, which multiplies the number of observations with the same time stamp. 125 As a result, it is not possible to assign sampling probability along a temporal axis in a manner equivalent to 126 the spatial approach; doing so would result in infinite probabilities assigned to all observations within the time slice of the actual estimation location $(P_t \sim 1/0^2 = \infty)$. The same holds for spatially co-located 127 observations. However, since each observation comes with unique spatial coordinates (not pre-binned like 128 129 in temporal case), we select a simpler form of the spatial component of the sampling function. The defined 130 form of P (Eq. 1) ensures that pairs of observations close to estimation location define the shape of the 131 variogram at short separation distances (the variogram should reflect variability in the spatio-temporal 132 vicinity of the estimation grid cell. See Section 2.2). Different forms of P can be used if directional 133 anisotropy is expected or if more/fewer observations along a given direction are desired to better represent 134 expected correlations.

Previous approaches required the user to choose spatial and temporal windows that determine which neighboring observations to use (see, for comparison, Alkhaled et al. 2008; Hammerling et al. 2012a,b). The approach proposed in this paper, by contrast, requires fewer subjective choices – only the form of

138 sampling function and unit dependent choice of normalizing coefficients A_s and A_i . In addition, our

approach is computationally feasible even for very large data sets.

140 **2.2 Characterization of Spatio-temporal Covariance**

141 Existing studies have used a number of models to estimate spatio-temporal covariances for a variety of 142 applications. Models used include the metric model (Dimitrakopoulos and Luo, 1994), linear model 143 (Rouhani and Hall, 1989), product model (De Cesare et al., 1996), non-separable model (Cressie and 144 Huang, 1999), and generalized product-sum model (De Iaco et al., 2001). The approach developed in this 145 paper uses a generalized product-sum covariance model (De Iaco et al., 2001). This model affords a number 146 of advantages relative to other covariance models: (1) a product sum covariance model outperformed other 147 models in terms of prediction accuracy in a recent study using GOSAT satellite data (Guo et al., 2013), (2) it is relatively easy to implement (De Iaco et al., 2001), and (3) it is more flexible than a non-separable 148 149 covariance model (De Cesare, 2001a).

150 The product-sum model, as it has been applied in the past, has one important area for improvement. The 151 original procedure (De Iaco et al., 2001) assumed separate modeling of the spatial and temporal covariance 152 (variograms) and their later unification into a spatio-temporal model in the final step. The procedure 153 requires observations approximately in the same location at multiple different times. However, satellite 154 observations are often not perfectly collocated in consequent measurement cycles over the same region. As 155 a result, we would need to assume that each measurement cycle is perfectly co-located with previous/future 156 cycles, or define an arbitrary tolerance, in order to apply the original approach. This assumption becomes 157 more prone to error if the observations are very sparse, as is often the case with satellites.

158 Thus, in this study, we cater to specific properties of satellite data and alter the original procedure by 159 estimating all covariance parameters simultaneously, thereby avoiding the aforementioned problem.

160 We broadly define the covariance as follows:

161
$$C_{s,t}(h_{s,h_t}) = \text{Cov}(Z(s_{t+h_{s,t}+h_{t}}), Z(s,t))$$
 (3)

162 The equation shows that covariance between two points (*Z*) separated in space-time (*s*, *t*) depends on their 163 distance in space (h_s) and distance in time (h_t). The following class of valid product–sum covariance models

164 was introduced in De Cesare et al. (2001b) and further developed in De Iaco et al. (2001):

165
$$C_{s,t}(h_{s},h_{t}) = k_{1}C_{s}(h_{s})C_{t}(h_{t}) + k_{2}C_{s}(h_{s}) + k_{3}C_{t}(h_{t})$$
(4)

where C_t and C_s are valid temporal and spatial covariance models, respectively. De Iaco et al. (2001) proved that for positive definiteness it is sufficient that $k_1 > 0$, $k_2 \ge 0$ and $k_3 \ge 0$. It is interesting to note that from Eq. 4 follows that spatio-temporal covariance models collapses down to purely spatial model in cases where temporal covariance does not exist. Thus, the spatial approach could be viewed as a special case of spatiotemporal modeling.

The model in Eq. 4 corresponds to the spatio-temporal variogram shown in Equation 5. In the original procedure, De Iaco et al., 2001 estimated separate spatial (h_i =0) and temporal (h_s =0) variograms using the data. De Iaco et al., 2001 then then combined these models to obtain the final spatio-temporal variogram model:

175
$$\gamma_{s,t}(h_{s},h_{t}) = \gamma_{s,t}(h_{s},0) + \gamma_{s,t}(0,h_{t}) - k\gamma_{s,t}(h_{s},0)\gamma_{s,t}(0,h_{t})$$
(5)

176 where $\gamma_{s,t}(h_{s,0})$ and $\gamma_{s,t}(0,h_t)$ are spatio-temporal variograms for $h_t=0$ and $h_s=0$, respectively (Figure 2). 177 Parameter *k* is estimated from the data which makes the model easily applicable:

178
$$k = \frac{k_s C_s(0) + k_t C_t(0) - C_{s,t}(0,0)}{k_s C_s(0) k_t C_t(0)}$$
(6)

where $k_s C_s(0)$ and $k_t C_t(0)$ are spatial and temporal sills (variances) obtained in modeling of separate spatial and temporal variograms. The only condition k has to fulfill in order to create an admissible covariance model is

182
$$0 < k \le \frac{1}{\max\{\sigma_s^2(\gamma_{s,t}(h_s,0)); \sigma_t^2(\gamma_{s,t}(0,h_t))\}}$$
(7)

183 Due to the specifics of satellite data, we estimate both the covariance parameters and parameter k184 simultaneously. This approach accounts for constraints that assure a positive definiteness of the model (De 185 Iaco et al., 2001). This simultaneous approach makes the model more applicable to sparse data and data 186 with variable spatial coverage, as is often the case with satellite observations.

187 We use a Gaussian variogram function with a nugget effect to model temporal covariance in the example 188 presented here (for an overview of variogram models see Chiles and Delfiner, 2012). We use an exponential 189 model for the spatial variogram. In both cases, we make this choice based upon visual inspection of local 190 variograms at multiple estimation locations:

191
$$\gamma_t(h_t)(Gaussian) = \begin{cases} 0, \text{ for } h_t = 0\\ \sigma_t^2 (1 - \exp\left(-\frac{h_t^2}{l_t^2}\right) + \sigma_{nug}^2, \text{ for } h_t > 0 \end{cases}$$
(8)

192
$$\gamma_{s}(h_{s})(exponential) = \begin{cases} 0, \text{ for } h_{s} = 0\\ \sigma_{s}^{2}(1 - \exp\left(-\frac{h_{s}}{l_{s}}\right) + \sigma_{nug}^{2}, \text{ for } h_{s} > 0 \end{cases}$$
(9)

5

193 where σ^2 and l are the variance and correlation length of the quantity being mapped, and σ^2_{nug} is the nugget 194 variance, typically representative of measurement and retrieval errors in the case of satellite observations.

Unlike the original procedure in De Iaco et al. (2001), we model the variogram using only two steps. First,
we calculate a raw spatio-temporal variogram based on the subsampled observations for each estimation
grid cell:

199 $\gamma(h_s, h_t) = \frac{1}{2} [y(x_i) - y(x_j)]^2$ (10)

200 where γ is the raw spatio-temporal variogram value for a given pair of observations $y(x_i)$ and $y(\underline{x}_i)$, and h_s 201 and h_t are, respectively, the great circle distance and temporal distance between the spatio-temporal 202 locations (x_i and x_j) of these observations.

Second, we fit the theoretical variogram defined in Eq. 5 to the raw variogram using non-linear least squares. We subsequently calculate the spatiotemporal covariance using the following equation:

205
$$C_{s,t}(h_s, h_t) = C_{s,t}(0,0) - \gamma_{s,t}(h_s, h_t)$$
(11)

Validity on the sphere. Most covariance models were originally designed for Euclidean space, and their 206 207 validity in other coordinate systems cannot be assumed per se. Huang et al. (2011) examined the validity 208 of several theoretical covariance models in spherical coordinate systems. However, this evaluation has not 209 been done for the spatio-temporal product-sum covariance model. Other studies that use a product-sum 210 covariance model typically assume the validity of this covariance model on a sphere (e.g., Zeng et al., 2013; 211 Zeng et al., 2016). Results from Huang et al. (2011) explicitly validate the exponential covariance model 212 on a sphere, as well as sums of the products of exponential covariance models and constants (provided that 213 the constants are positive). The first term of the product-sum covariance model used in this study (Eq. 4) 214 represents a Hadamard product (Million, 2007) of two positive definite matrices. According to Schur 215 product theorem, a Hadamard product of two positive definite matrices necessarily gives a positive definite 216 matrix (Mathias, 1993). It therefore follows that a generalized product-sum model (Equation 4) is valid on 217 a sphere if its spatial component is valid on a sphere.

218 2.3 Mapping using spatio-temporal moving window block kriging

This section leverages the sampling function (Sect. 2.1) and the product-sum covariance model (Sect. 2.2) to implement a spatio-temporal version of moving window block kriging. A primary advantage of block kriging is its ability to estimate contiguous maps at any spatial resolution equal to or coarser than the spatial support (i.e. footprint size) of observations (refer to Sect. 1 and Tadić et. al. 2015). Unlike ordinary kriging method, the spatial support in block kriging corresponds to the average value within each chosen grid cell.

Moving window block kriging requires solving a set of linear equations to obtain a set of weights (λ). These weights must be estimated for each prediction location using N associated observations:

226
$$\begin{bmatrix} \mathbf{Q} + \mathbf{R} & \mathbf{1} \\ \mathbf{1}^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{\lambda} \\ -\boldsymbol{\nu} \end{bmatrix} = \begin{bmatrix} \mathbf{q}_{\mathbf{A}} \\ 1 \end{bmatrix}$$
(12)

227 In this equation, **R** is a diagonal $N \times N$ nugget covariance matrix that describes measurement and retrieval 228 errors, **Q** is a $N \times N$ covariance matrix among the *N* observations with individual entries as defined in Eqn. 229 11, **1** is an $N \times 1$ unity vector, is a Lagrange multiplier, and **q**_A is an $N \times 1$ vector of the spatio-temporal

- 230 covariances between the *N* observation locations and the estimation grid cell, defined as:
 - 6

$$q_{A,i} = \frac{1}{n} \sum_{j=1}^{n} q\left(h_{s_{i,j}}, h_{t_{i,j}}\right)$$
(13)

where $q_{A,i}$ is the covariance between the grid cell and observation *i*. $q(h_{i,j})$ is defined as $C_{s,t}$ in Eqn. 11 232 based on the distances $h_{s_{i,j}}$ and $h_{t_{i,j}}$ between observation *i* and *n* regularly-spaced locations within the grid 233 234 cell. In the context of satellite measurements, n is a highest number of non-overlapping footprints contained 235 within a grid cell and was calculated based on the relative size of the satellite footprint compared to the 236 size of the estimation grid cells. n varies with latitude, as the size of grid cells decreases with the distance 237 from the equator. The system in Eqn. 12 is solved for the weights (λ) and the Lagrange multiplier (ν). We subsequently use these parameters to define the estimate (\hat{z}) and estimation uncertainty $(\sigma_{\hat{z}}^2)$ for the grid 238 239 cell:

$$\hat{z} = \boldsymbol{\lambda}^T \mathbf{y} \tag{14}$$

241
$$\sigma_{\hat{z}}^2 = \sigma_{AA} - \lambda^T \mathbf{q}_A + \nu \tag{15}$$

where **y** is the $N \times 1$ vector of subsampled observations, and σ_{AA} is the variance of the observations at the resolution of the estimation grid cell, defined as:

244
$$\sigma_{AA} = \frac{1}{n^2} \sum_{j=1}^{n} \sum_{k=1}^{n} q(h_{j,k})$$
(16)

In that equation, $q(h_{s_{i,j}}, h_{t_{i,j}})$ is defined as $C_{s,t}$ in Eqn. 11 based on the distances $h_{s_{i,j}}$ and $h_{t_{i,j}}$ between

any combination of the *n* regularly spaced locations within the grid cell defined previously.

247 **3. Example applications**

We select three case studies of satellite Level 2 data to demonstrate the properties of the method developed in this paper: column-integrated dry air model fraction of CO₂ (XCO₂) from the Japanese Greenhouse Gas Observing SATellite (GOSAT), CH₄ (XCH₄) from the Infrared Atmospheric Sounding Interferometer (IASI), and solar-induced fluorescence (SIF) the Global Ozone Monitoring Experiment–2 (GOME-2). Level 2 datasets from GOSAT, IASI and GOME-2 have relatively different characteristics. For example, GOSAT observations are sparse while IASI and GOME-2 are abundant. These diverse datasets are therefore ideal for testing the method developed here.

The method was demonstrated by producing two different sets of maps. First, it was applied at resolutions coarser than native $(1 \times 1^{\circ}, 2.5 \times 2^{\circ}, \text{ and } 1 \times 1^{\circ} \text{ for GOSAT, IASI and GOME-2, respectively})$ to demonstrate block kriging capabilities of the method (Section 3). Second, it was applied at the native resolution of the satellites for cross-validation (method evaluation) purposes (Section 4).

259 3.1 Total column CO₂ (XCO₂) observed by GOSAT

The Japanese Greenhouse Gas Observing SATellite (GOSAT) (e.g., Kuze et al., 2009), the first satellite dedicated to global greenhouse gas monitoring, was launched in 2009. Basic information about the satellite,

its orbit configuration, and the CO₂ column observations are given in our previous study (Tadić et al., 2014).

- 263 It flies in a polar, sun-synchronous orbit with a 3-day repeat cycle and an approximate 13:00 LT overpass
- time. GOSAT has a nadir footprint of about 10.5 km diameter at sea level (Kuze et al., 2009) and 2×10^3
 - 7

265 observations per week. The XCO_2 observations from GOSAT have large retrieval uncertainties (e.g., 266 O'Dell et al. 2012) and exhibit large spatial and temporal gaps (e.g., Fig. 3a). Although these XCO_2

267 observations are sparse and noisy, contiguous Level 3 maps are often desirable for environmental and 268 ecological applications. To this end, we generate global daily estimates for XCO₂ (August 2-7, 2009) to

269 match the timeframe used in Tadić et al., 2014.

270 [Figure 3]

271 We obtain bias-corrected and filtered GOSAT Level 2 observations using NASA's Atmospheric CO₂ Observations from Space (ACOS) algorithm v3.4 release 3 (e.g., O'Dell et al., 2012; Crisp et al., 2012). In 272 273 this study, we use spatio-temporal moving window block kriging to create a series of contiguous, in-filled 274 global daily maps and associated uncertainties for 2-7 August 2009 (two repeat cycles) (Fig. 3a-c) at $1\times1^{\circ}$ 275 resolution. We select the time period to match the time period from our previous study (Tadić et al., 2014). 276 Unlike results from our previous study and other similar studies, which created estimates at 6-day or longer 277 time periods (Hammerling et al., 2012a), we leverage the method developed here to produce maps at the 278 daily scale.

279 3.2 Total column CH4 (XCH4) observed by IASI

280 The Infrared Atmospheric Sounding Interferometer (IASI) developed by the Centre National d'Etudes 281 Spatiales (CNES) in collaboration with the European Organisation for the Exploitation of Meteorological 282 Satellites (EUMETSAT) is a Fourier Transform Spectrometer based on a Michelson Interferometer coupled 283 to an integrated imaging system that measures infrared radiation emitted from the Earth. It is carried by 284 MetOp-A, a sun-synchronous polar orbit satellite which flows at an altitude of 817 km. Detailed information 285 about the IASI instrument could be found elsewhere (Crévoisier et al., 2009a,b; Massart et al., 2014). IASI 286 has an instantaneous field of view of 50×50 km, composed of four pixels each 12 km in radius, delivering 287 ~ 56×10^3 XCH₄ observations per week.

288 [Figure 4]

Methane Level 2 IASI (0-4 km) data were retrieved at the NOAA/NESDIS using the NUCAPS (NOAA 289 290 Unique CrIS/ATMS Processing System) algorithm (Gambacorta, 2013; Xiong et al., 2013). For the ice-291 covered ocean the data for the lower troposphere (0-4 km) are unreliable due to insufficient thermal contrast 292 between the surface and the atmosphere. Filtering parameters have been provided by Xiong (2014, private 293 communication). The data are available at http://www.nsof.class.noaa.gov/. Using the new method, we 294 created a series of contiguous global daily maps and associated uncertainties for the Northern Hemisphere, 295 for February 26-March 4, 2013 (i.e. Figure 4a-c) at 1°×1° resolution. We chose this time period to match 296 the occurrence of the methane "anomaly" North of the coast of Scandinavia.

297 3.3 Global land solar-induced fluorescence fields observed by GOME-2

298 The GOME-2 (The Global Ozone Monitoring Experiment–2) instrument on board METOP-A (e.g., Joiner

et al., 2013) observes solar-induced fluorescence (SIF). The GOME-2 spatial footprint (i.e. support) of the

300 observations is 40 km \times 80 km (Joiner et al, 2013), and the volume of available data is approximately 2×10^5

301 SIF observations per week.

302 [Figure 5]

Multiple recent studies have demonstrated the potential use of satellite observations of solar-induced fluorescence (SIF) for understanding the photosynthetic CO₂ uptake at large scales (Joiner et al., 2011; Joiner et al., 2012; Joiner et al., 2013; Frankenberg et al., 2011; Frankenberg et al., 2012; Guanter et al., 2012, Lee et al., 2013; Frankenberg et al., 2014). Satellite SIF measurements can be used with land surface models to understand GPP response to environmental stress (e.g., Lee et al., 2013) and to improve the representation of GPP. GOME-2 provides the highest spatial and temporal density of data, among all available datasets.

In the example presented here we use SIF GOME-2 v.14 data (Joiner et al., 2013) with the approach described in Section 2 to create contiguous maps of SIF at a single spatial resolution $(1^{\circ} \times 1^{\circ})$ and daily

temporal resolutions. Maps of SIF and associated uncertainties are created at daily temporal resolutions

313 covering 5-14 May, 2012, some of which are shown on Figures 5a-c.

4. Method evaluation: accuracy, precision and bias

315 4.1 Accuracy, precision and bias

316 We use a leave-one-out cross validation technique to assess the performance of spatio-temporal versus spatial moving window block kriging. We produce these estimates at the native resolution of GOSAT, IASI 317 318 and GOME-2 satellites/instruments, which allowed a direct comparison to measured values. For IASI and 319 GOME-2, for each day in February 26-March 4, 2013, and May 5-14, 2012, respectively, 10% of available 320 observational data were randomly selected for use in leave-one-out cross-validation and their coordinates 321 extracted. For XCO₂, all GOSAT XCO₂ observations for each day in August 2-7, 2009, were used. We 322 assess the accuracy (the difference between estimates and withheld observations) of both methods using 323 two measures: (1) Mean Absolute Error (MAE), and (2) Root Mean Squared Error (RMSE). We also assess 324 the performance of each method using two additional measures: (3) the accuracy of the uncertainty bounds 325 (the degree to which the reported uncertainties capture the difference between estimates and withheld 326 observations) and (4) bias (the mean difference between estimates and withheld observations).

We parameterize the temporal component of the spatio-temporal sampling function in such a way 327 328 that observations located +/- 3 days from the actual date had 10% probability of being sampled 329 compared to observations from the actual day (see Fig 1a). We compare the results to spatial kriging estimates obtained in two different ways, based on observations only from the actual day 330 331 (1d) and based on observations from +/-3 days from the actual day (7d). This latter case is 332 analogous to the +/-3 day window that we use for the ST approach. In this 7d case, we obtain these spatial kriging results by assuming the entire observational dataset collected within the 333 selected time period (actual day +/- 3 days) is perfectly temporally correlated. In other words, we 334 335 use all observations as though they were collected at the same time. We then produce estimates at locations of observations collected within the selected timeframe and compare the performance of 336 337 the two methods. We repeat procedure described in Section 2 for every observation selected for 338 cross-validation, and we average the statistics, displayed in Table 1.

339 [Table 1]

According to the results, the spatio-temporal approach performs better than the spatial (7d) approach in all three cases and in all performance measures (for example, spatial (7d) MAE was 6-10% larger). The comparison clearly shows that proper characterization of the temporal covariance between two points residing in different time periods (days), embedded into spatio-temporal approach, improves kriging performance. In IASI case, the spatio-temporal method also performed better than spatial (1d). However, in case of GOSAT and GOME-2 data, spatio-temporal approach slightly underperformed the spatial (1d) approach having 12% higher MAE (please see Section 4.2 for discussion).

347 We evaluate the accuracy of the uncertainty bounds by examining how often those bounds encapsulate 348 withheld observations. The percentage of observations that fall outside the uncertainty bounds in spatio-349 temporal approach is comparable to that of the spatial method, confirming the accuracy of the estimated 350 uncertainty bounds (for normally-distributed data the percentage of observations that fall outside of the one, 351 two, and three estimation standard deviation (σ_2) uncertainty bounds should be 32%, 5% and 0.3%, 352 respectively). The fraction of observations that fall outside the uncertainty bound is generally lower than 353 would be expected for normally-distributed data, and our results may indicate non-normal features in the 354 data.

4.2 When is spatio-temporal modeling recommended?

A ST approach can afford advantages over purely spatial methods when temporal data correlations and data coverage are strong. Indeed, in many cases, the ST approach is more accurate than a purely spatial method (Table 1). This result is consistent with existing literature which uniformly reports that ST approaches are

more accurate than spatial approaches (Zeng et al., 2013; Guo et al., 2013; Zeng et al., 2016).

360 However, although considering information from days preceding and following the target estimation day should in principle always provide a further constraint on the estimate, this does not guarantee that an ST 361 362 method will always outperform a spatial-only method in practice. The prime reasons for this are two-fold. 363 First, because computational limitations cap the number of observations that can be considered, considering 364 observations across multiple days necessarily leads to a reduction in the spatial density of observations 365 being considered. This first factor can be partially alleviated by carefully designing the selection probability 366 function (Eqn. 1). The second reason is that implementing a ST approach involves the estimation of a larger 367 number of covariance parameters (Eqn. 4-9) relative to a spatial-only approach, which can introduce additional uncertainty. Indeed, we observe that the purely spatial approach performs better than the ST 368 369 method in some cases (e.g., the GOSAT and GOME-2 1d cases).

370 Overall, a ST approach is likely to outperform a spatial-only approach when the data exhibit one (or more) 371 of three characteristics. First, a ST approach is likely better when the data are sparse or unequally distributed. In these cases, a ST approach can intelligently leverage data in adjacent time periods to 372 373 compensate for the sparsity of data in the time period of interest. Second, an ST approach works well for 374 datasets with temporal gaps (e.g., due to cloud cover or instrument malfunction). An ST approach can fill 375 these gaps while a spatial-only approach cannot be used for temporal gap-filling. Third, an ST-approach is 376 well-suited to datasets with regional biases that manifest in one time slice but that do not repeat in adjacent 377 time slices. Phrased differently, an ST-approach is well-suited to datasets with errors that are spatially but 378 not temporally correlated. In these cases, an ST approach can use data from adjacent time periods to create 379 the estimate, data that do not have the same regional, spatially-correlated biases. Although the resulting 380 estimate may appear inferior during cross-validation, this is because that estimate will not reproduce 381 regional biases in data from the time slice of interest. A spatial-only approach, by contrast, will reproduce 382 these regional biases because it does not use data from adjacent times when creating the estimate. As a

383 result, a spatial-only approach will appear to perform better in cross validation, but the ST approach will 384 more accurately reflect the true, underlying process.

385 **5. Conclusions**

In this study, we develop a method to create high spatio-temporal resolution maps from satellite data using spatio-temporal moving window block kriging based on product-sum covariance model. The method relies on a limited number of assumptions: that the observed physical quantity is spatio-temporally autocorrelated, and that its nature can be inferred from the observations.

390 The method has several advantages over previously applied methods, as alluded to in Sect. 1: 1) it allows 391 for the creation of contiguous maps at varying spatio-temporal resolution, 2) it can create maps at temporal 392 resolutions shorter than achievable by other binning or kriging methods, 3) it can be applied for creating 393 contiguous maps for physical quantities with varying spatio-temporal coverage (i.e., density of 394 measurements), 4) it provides assessments of the uncertainty of interpolated values, 5) it utilizes all spatio-395 temporally available information to generate estimates, 6) it improves covariance parameters estimation 396 procedure because it does not model spatial and temporal covariance separately, 7) it allows for great 397 flexibility in the choice of sampling function and 8) it provides estimates even for the time periods when 398 measurements are not available. It can exploit correlations with both past and future periods of the observed 399 time spot to provide the most accurate estimates.

400 We demonstrate the applicability of this method by creating Level 3 products from the GOSAT XCO_2 , IASI 401 CH₄ and GOME-2 SIF data. Sparse XCO_2 observations from GOSAT and dense XCH_4 and SIF 402 observations from IASI and GOME-2 make a perfect test ground for the method. We show that the proposed 403 method can even map XCO_2 on daily time scales. The method generally yields more precise and accurate 404 (and unbiased) estimates compared to spatial method which used the same observations but assumed perfect 405 temporal correlation between data. The factors which could affect the performance of the ST method are 406 discussed in Section 4.2.

407 This approach could be used in the future to produce real-time estimates not only of XCO₂, XCH₄ or SIF, 408 but of other environmental data observed by satellites which exhibit spatio-temporal autocorrelations. 409 Especially important could be satellite datasets that have spatially, but not temporally, correlated errors. In 410 such cases, sampling across several time periods could perhaps help isolate and remove them, which should 411 be a subject of further studies.

The method could be applied in a standalone mode or as part of a broader satellite data processing package.
Maps produced by the spatio-temporal approach could then be incorporated into physical and
biogeochemical models of the Earth system.

415 Acknowledgement

This work was supported by the National Aeronautics and Space Administration (NASA) through grant no.
NNX12AB90G and NNX13AC48G, and the National Science Foundation (NSF) through grant no.
1342076. Satellite CH₄ IASI v5 data are supplied by the NOAA National Environmental Satellite, Data,
and Information Service (NESDIS): <u>http://www.nsof.class.noaa.gov/</u>. We would also like to thank Leonid
Yurganov (JCET) and Nathaniel Lebedda (University of Maryland) for helpful information and discussions.

References 421

- 422 Chiles, J.-P. and Delfiner, P.: Geostatistics, second edition, Wiley, 2012.
- 423 Cressie, N. and Huang, H. C.: Classes of nonseperable, spatio-temporal stationary covariance functions, 424
- Journal of the American Statistical Association, 94, 1 53, 1999.

425 Crévoisier, C., Nobileau, D., Fiore, A. M., Armante, R., Chédin, A., and Scott, N. A.: Tropospheric 426 methane in the tropics - first year from IASI hyperspectral infrared observations, Atmos. Chem. Phys., 9,

6337-6350, doi:10.5194/acp-9-6337-2009, 2009a. 427

428 Crévoisier, C., Chédin, A., Matsueda, H., Machida, T., Armante, R., and Scott, N. A.: First year of upper 429 tropospheric integrated content of CO₂ from IASI hyperspectral infrared observations, Atmos. Chem. Phys., 430 9, 4797-4810, doi:10.5194/acp-9-4797-2009, 2009b.

- 431 Crisp, D., Fisher, B. M., O'Dell, C., Frankenberg, C., Basilio, R., Bösch, H., Brown, L. R., Castano, R., 432 Connor, B., Deutscher, N. M., Eldering, A., Griffith, D., Gunson, M., Kuze, A., Man10 drake, L., McDuffie, J., Messerschmidt, J., Miller, C. E., Morino, I., Natraj, V., Notholt, J., O'Brien, D. M., Oyafuso, F., 433 Polonsky, I., Robinson, J., Salawitch, R., Sherlock, V., Smyth, M., Suto, H., Taylor, T. E., Thompson, D. 434 435 R., Wennberg, P. O., Wunch, D., and Yung, Y. L.: The ACOS CO₂ retrieval algorithm – Part II: Global XCO2 data characterization, Atmos. Meas. Tech., 5, 687-707, doi:10.5194/amt-5-687-2012, 2012. 436
- 437 De Cesare, L., Myers, D. E., and Posa, D.: Spatio-temporal modelling of SO₂ in Milan district. In: Baafi,
- 438 E. Y., Schofield, N. A. (Eds.), Geostatistics Wollongong. Kluwer Academic Publishing, Dordrecht, pp. 439 1031 - 1042, 1996.
- 440 De Cesare, L., Myers, D. E., and Posa, D.: Product-sum covariance for space-time modeling: an environmental application. Environmetrics 12, 11 - 23, 2001a. 441
- 442 De Cesare, L., Myers, D., and Posa, D.: Estimating and modeling space-time correlation structures: Stat. 443 Prob. Lett., v. 51, no. 1, 9–14, 2001b.
- 444 Dimitrakopoulos, R., and Luo, X.: Spatiotemporal Modeling: Covariances and Ordinary Kriging Systems, 445 Geostatistics for the Next Century, Kluwer Academic Publishers, Dordrecht, 88-93, 1994.
- 446 Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E., Toon, G. C., Butz, A.,
- 447 Jung, M., Kuze, A., and Yokota, T.: New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity, Geophys. Res. Lett., 38, L17706, 448
- 449 doi:10.1029/2011GL048738, 2011.

450 Frankenberg C, O'Dell C, Guanter L, McDue J.: Remote sensing of near-infrared chlorophyll fluorescence 451 from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 452 retrievals. Meas. Tech. 5, 2081–2094., doi:10.5194/amt-5-2081-2012, 2012.

453 Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., et al.: Prospects for chlorophyll 454 fluorescence remote sensing from the Orbiting Carbon Observatory-2, Remote Sensing of Environment, 455 147, 1-12, doi: 10.1016/j.rse.2014.02.007, 2014.

- 456 Gambacorta A.: The NOAA Unique CrIS/ATMS Processing System (NUCAPS): Algorithm Theoretical
- 457 Basis Documentation, NOAA Center for Weather and Climate Prediction (NCWCP), Version 1.0, August
- 21, 2013, http://www.star.nesdis.noaa.gov/jpss/documents/ATBD/NUCAPS_ATBD_20130821.pdf 458
 - 12

- Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gomez-Dans, J., Kuze, A., Suto, H., and Grainger,
 R. G.: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space
- 461 measurements, Remote Sens. Environ., 121, 236–251, doi:10.1016/j.rse.2012.02.006, 2012.
- 462 Guo, L., Lei, L. and Zeng, Z.: Spatiotemporal correlation analysis of satellite-observed CO₂: Case studies
- in China and USA. Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, 21 26 July, Melbourne, VIC, 2013.
- Hammerling, D. M., Michalak, A. M., and Kawa, S. R.: Mapping of CO₂ at high spatiotemporal resolution
 using satellite observations: Global distributions from OCO-2, J. Geophys. Res., 117, D06306,
 doi:10.1029/2011JD017015, 2012a.
- Hammerling, D. M., Michalak, A. M. O'Dell, C., and Kawa, S. R.: Global CO₂ distributions over land from
 the Greenhouse Gases Observing Satellite (GOSAT), Geophysical Research Letters, 39, L08804,
 doi:10.1029/2012GL051203, 2012b.
- Huang, C., Zhang, H., and Robeson, S. M.: On the validity of commonly used covariance and variogram
 functions on the sphere, Math. Geosci., 43, MR2824128, 721–733, doi: 10.1007/s11004-011-9344-7, 2011.
- 473 De Iaco, S., Myers, D., and Posa, D.: Space-time analysis using a general product–sum model: Stat. Probab.
 474 Lett., v. 52, no. 1, 21–28, 2001.
- Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A., and Middleton, E. M.: First observations
 of global and seasonal terrestrial chlorophyll fluorescence from space, Biogeosciences, 8, 637-651,
 doi:10.5194/bg-8-637-2011, 2011.
- Joiner, J., Yoshida, Y., Vasilkov, A. P., Middleton, E. M., Campbell, P. K. E., Yoshida, Y., Kuze, A., and
 Corp, L. A.: Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects:
 simulations and space-based observations from SCIAMACHY and GOSAT, Atmos. Meas. Tech., 5, 809–
 829, doi:10.5194/amt-5-809-2012, 2012.
- Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F.,
 Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate
 spectral resolution near-infrared satellite measurements: methodology, simulations, and application to
 GOME-2, Atmos. Meas. Tech., 6, 2803-2823, doi:10.5194/amt-6-2803-2013, 2013.
- Matthias, K., and Cressie, N.: Spatio-temporal smoothing and EM estimation for massive remote-sensing
 data sets, Journal of Time Series Analysis 32.4, 430-446, doi: 10.1111/j.1467-9892.2011.00732.x, 2011.
- Katzfuss, M. and Cressie, N.: Bayesian hierarchical spatio-temporal smoothing for very large datasets.
 Environmetrics, 23: 94–107. doi: 10.1002/env.1147, 2012.
- Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and near infrared sensor for carbon
 observation Fourier-transform spectrometer on the Greenhouse Gases 5 Observing Satellite for greenhouse
 gases monitoring, Appl. Optics, 48, 6716–6733, doi:10.1364/AO.48.006716, 2009.
- Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L., Boyce, C. K., Fisher, J. B., Morrow,
 E., Worden, J. R., Asefi, S., Badgley, G., and Saatchi S.: Forest productivity and water stress in Amazonia:
 observations from GOSAT chlorophyll fluorescence Proc. R. Soc. B, 280(1762), doi:
 10.1098/rspb.2013.0171, 2013.

- 497 Mathias, R.: Matrix completions, norms and Hadamard products, Proc. Amer. Math. Soc. 117 (4), 905–
 498 918, 1993.
- Million, E.: The Hadamard Product. http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf,
 2007. Accessed on 15 January 2015.
- 501 NASA Earth Science: http://science.nasa.gov/earth-science/earth-science-data/data-processing-levels-for-502 eosdis-data-products/, last access: 23 July, 2014.
- Nguyen, H., Katzfuss, M., Cressie, N. and Braverman, A.: Spatio-Temporal Data Fusion for Very Large
 Remote Sensing Datasets, Technometrics, Vol. 56, Iss. 2, doi: 10.1080/00401706.2013.831774, 2014.
- 505 O'Dell, C. W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D.,
- 506 Fisher, B., Gunson, M., McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F., Polon15 sky, I., Smyth, M., 507 Taylor, T., Toon, G. C., Wennberg, P. O., and Wunch, D.: The ACOS CO₂ retrieval algorithm – Part 1:
- 507 Taylor, 1., 1001, O. C., weinberg, P. O., and which, D.: The ACOS CO₂ retrieval algorithm Part 1. 508 Description and validation against synthetic observations, Atmos. Meas. Tech., 5, 99–121, 509 doi:10.5194/amt-5-99-2012, 2012.
- 510 Rouhani, S., and Hall, T.J.: Space-Time Kriging of Groundwater Data. In: Armstrong, M. (Ed.), 511 Geostatistics. Kluwer Academic Publishers, Dordrecht, Vol. 2, 639-651, 1989.
- Tadić, J., Qiu, X., Yadav, V. and Michalak, A.: Mapping of satellite Earth observations using moving
 window block kriging, Geosci. Model Dev., 8, 1–9, doi:10.5194/gmd-8-1-2015, 2015.
- Xiong X., Barnet C., Maddy E., Gambacorta A., King T., and Wofsy S.: Mid-upper tropospheric methane
 retrieval from IASI and its validation. Atmos Meas Tech. 6: 2255-2265, 2013.
- 516 Zeng, Z., LiPing, L., L. LiJie, G., Li, Z., Bing, Z.,: Incorporating temporal variability to improve
 517 geostatistical analysis of satellite-observed CO₂ in China, Chinese Science Bulletin, 58(16), 1948-1954,
 518 2013.
- Zeng, Z., Lei, L., Strong, K., Jones, D. B. A., Guo, L., Liu, ., Deng, F., Deutscher, N. M., Dubey, M. K.,
 Griffith, D. W. T., Hase, F., Henderson, B., Kivi, R., Lindenmaier, R., Morino, I., Notholt, J., Ohyama, H.,
 Petri, C., Sussmann, R., Velazco, V., A., Wennberg, P., O., and Lin, H.: Global land mapping of satelliteobserved CO₂ total columns using spatio-temporal geostatistics, International Journal of Digital Earth, DOI:
- 522 observed CO₂ total columns using spatio-temporal geostatistics, international journal of Digital Earth, DOI: 523 10.1080/17538947.2016.1156777, 2016.
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531

532 Table 1. Cross-validation results of GOSAT XCO₂, IASI XCH₄ and GOME-2 SIF datasets using spatio-

temporal and spatial methods, including mean absolute error (MAE), root mean squared error (RMSE), percent of observations lying outside of one, two, and three standard deviations ($\sigma_{\hat{z}}$) of the mapping

 C_{z} bit in the mapping outside of one, two, and three standard deviations (σ_z) of the mapping uncertainty, and mean difference. MAE, RMSE and bias units for GOSAT, IASI and GOME-2 are ppm,

536 ppb and $mW/m^2/sr/nm$, respectively.

		GOSAT XCO ₂			IASI XCH ₄			GOME-2 SIF		
		ST	1d	7d	ST	1d	7d	ST	1d	7d
Estimates	Mean absolute error (MAE)	0.83	0.74	0.88	19.19	20.23	21.03	0.52	0.51	0.66
	Root mean squared error (RMSE)	1.12	0.98	1.21	25.25	27.10	27.77	0.67	0.65	0.87
Uncertainties	% observations falling outside 1 σ_2 uncertainty	9.13	15.03	10.70	11.02	9.06	13.84	14.60	12.14	24.80
	% observations falling outside 2 σ_2 uncertainty	1.12	3.01	1.39	0.48	0.51	0.86	1.20	0.64	4.33
	% observations falling outside 3o ₂ uncertainty	0.067	0.52	0.13	0.04	0.046	0.022	0.11	0.05	0.83
Bias	Mean difference	-0.012	0.0066	-0.034	0.28	-0.14	0.58	0.016	0.0013	0.032

537

538

539

541 Figure 1. (a) Sampling probability as a decreasing function of spatial and temporal distance as used in this 542 study, (b) The typical example of subsampled IASI Level 2 XCH₄ (altitude below 4 km) data for a selected 543 estimation location (yellow circle). Color of observations shows semivariance between observation and 544 estimation location (blue-lowest, red-highest). Due to stronger temporal covariance, the relative decrease 545 of the sampling probability along temporal axis is smaller than with spatial distance.

547

548

549 Figure 2. Illustration of experimental and fitted theoretical spatio-temporal variogram for GOSAT XCO₂

550 551 data.

Figure 3. (a) GOSAT/ACOS v3.4 XCO₂ retrievals (Level 2 data) (ppm) for August 3, 2009 (b) Contiguous global GOSAT/ACOS v3.4 maps (Level 3 data) (ppm) for the same day obtained using Spatio-temporal Moving Window Block Kriging at $1 \times 1^{\circ}$ spatial resolution, (c) associated uncertainties, given as 1-sigma (σ_2) (ppm).

557

552

558

Figure 4. (a) IASI XCH₄ (0-4 km) retrievals (ppb) for March 2, 2013 (sea only), (b) Contiguous IASI maps for Northern Hemisphere for the same day obtained using Spatio-temporal Moving Window Block Kriging at $2.5 \times 2^{\circ}$ spatial resolution and (c) associated uncertainties, given as 1-sigma (σ_2) (ppb).

559

564

565

Figure 5. (a) GOME-2 SIF v14 retrievals (Level 2 data) (mW/m²/sr/nm) for May 5, 2012, (b) Contiguous global GOME-2/SIF v14 maps (Level 3 data) (mW/m²/sr/nm) for the same day obtained using Spatiotemporal Moving Window Block Kriging at $1 \times 1^{\circ}$ spatial resolution, (c) associated uncertainties, given as 1-sigma (σ_2) (mW/m²/sr/nm).