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Abstract.  Numerous existing satellites observe physical or environmental properties of the Earth system. 7 

Many of these satellites provide global-scale observations, but these observations are often sparse and 8 

noisy. By contrast, contiguous, global maps are often most useful to the scientific community (i.e., level 3 9 

products). We develop a spatiotemporal moving window block kriging method to create contiguous maps 10 

from sparse and/or noisy satellite observations. This approach exhibits several advantages over existing 11 

methods: 1) it allows for flexibility in setting the spatial resolution of the level 3 map, 2) it is applicable to 12 

observations with variable density, 3) it produces a rigorous uncertainty estimate, 4) it exploits both spatial 13 

and temporal correlations in the data, and 5) it facilitates estimation in real time. Moreover, this approach 14 

only requires a limited number of assumptions – that the observable quantity exhibits spatial and temporal 15 

correlations that are inferable from the data. We test this method by creating Level 3 products from satellite 16 

observations of CO2 (XCO2) from GOSAT, CH4 (XCH4) from IASI and solar-induced chlorophyll 17 

fluorescence (SIF) from GOME-2. We evaluate and analyze the difference in performance of spatio-18 

temporal vs. recently developed spatial kriging methods. 19 

1. Introduction 20 

Satellite observations of the Earth’s surface and atmosphere provide a valuable window into the functioning 21 

of the Earth system. Satellites often provide global observations, but these observations are rarely uniform 22 

or contiguous in space/time.  The observations can be non-contiguous due to satellite orbit geometries and 23 

periods, geophysical limitations (e.g. cloud cover), and temporary instrument malfunctions. Furthermore, 24 

satellites may provide a large quantity of data, but individual observations can have a large noise-to-signal 25 

ratio. It is often necessary to spatially interpolate the data in order to organize the data onto a regular grid, 26 

query the data at a particular location of interest, estimate data at unsampled times and/or locations, and/or 27 

map the underlying signal in a noisy dataset. These gridded, interpolated maps are commonly named “Level 28 

3” data (e.g. NASA, 2014) and are often part of the standard suite of satellite data products.  29 

CO2 column observations (XCO2) from the Greenhouse Gases Observing Satellite (GOSAT), CH4 column 30 

observations (XCH4) from the Infrared Atmospheric Sounding Interferometer (IASI) and solar-induced 31 

chlorophyll fluorescence (SIF) observations from The Global Ozone Monitoring Experiment–2 (GOME-2) 32 

provide prototypical examples of these challenges, and these three satellites are the primary application 33 

used throughout this work (see Section 3).  34 

The most commonly-used method for creating Level 3 maps from satellite data is binning. This approach 35 

involves taking the mean of all observations within a given grid cell or “bin” (see Kulawik et al., 2010, and 36 

Crévoisier et al., 2009 for examples). The binning method, however, has a number of shortfalls that can 37 

lead to inconsistent or inaccurate results. First, different bins contain variable numbers of observations. As 38 

a result, some bins will be well-constrained by the data while others may be based upon sparse, noisy 39 
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observations. Second, binning does not produce uncertainty estimates. Third, this method cannot 40 

extrapolate the unknown quantity to bins without any observations. 41 

A broad class of geostatistical methods known as kriging provides an alternative approach to mapping 42 

satellite observations. Kriging is a best linear unbiased estimator (for kriging see Chiles and Delfiner, 2012), 43 

where covariance functions are used to represent correlations among data. As a result, kriging can account 44 

for a variable density of observations and can estimate uncertainties in the resulting maps. Various forms 45 

of kriging have recently been used to map satellite Earth observations, particularly for XCO2 (e.g., 46 

Hammerling et al. 2012a,b; Tadić et al., 2015; Zeng et al., 2013; Guo et al., 2013, Zeng et al., 2016). 47 

Hammerling et al. (2012a,b) presented an approach to map Orbiting Carbon Observatory-2 (OCO-2) and 48 

GOSAT XCO2 observations, respectively, with non-stationary properties. In our previous study (Tadić et 49 

al., 2015) we extended that approach to create XCO2 maps that can have a different spatial resolution from 50 

the resolution or footprint of the original satellite observations. Our previous study and those of 51 

Hammerling et al. (2012a,b) accounted for spatial covariances among observations but did not include a 52 

temporal component. The present study extends this geostatistical framework from a purely spatial to a 53 

spatiotemporal domain.  54 

Spatiotemporal approaches to interpolation can provide a number of advantages relative to purely spatial 55 

methods (e.g. Zeng et al., 2016; Guo et al., 2013). A purely spatial approach will usually aggregate 56 

observations into temporal blocks; observations within the same block effectively have the same time stamp 57 

whether or not those observations are actually synchronous (e.g., Tadić et al., 2015; Hammerling et al., 58 

2012a,b). Any real temporal variability within a block becomes noise. A spatiotemporal approach, by 59 

contrast, treats time as an explicit dimension and models covariances among data as a function of time. As 60 

a result, the spatiotemporal approach can (1) fill in temporal gaps in the observations, (2) create maps at 61 

higher temporal resolutions than purely spatial approach, (3) produce more accurate estimates when 62 

observations have variable spatio-temporal coverage, (4) predict future values (i.e. extrapolate temporally).  63 

A handful of recent studies have considered temporal relationships when mapping satellite observations of 64 

XCO2. These studies have either used various forms of Kalman smoothing (e.g., Katzfuss and Cressie 2011, 65 

Katzfuss and Cressie 2012, Nguyen et al. 2014) or geostatistics (e.g., Guo et al. 2013; Zeng et al. 2013; 66 

Zeng et al. 2016). The former group of studies leverages Kalman smoothing to improve the computational 67 

tractability of mapping dense or abundant datasets, like OCO-2 and the Atmospheric Infrared Sounder 68 

(AIRS). The latter group of studies, by contrast, has applied geostatistics to sparse datasets like those from 69 

the GOSAT satellite. The model developed in this paper also uses geostatistics to map satellite observations 70 

of XCO2, but we present several advances relative to previous efforts. Among other improvements, we 71 

develop an efficient method to subsample satellite observations and utilize the product-sum covariance 72 

model (e.g., De Iaco et al., 2001) that is easy to parameterize, which makes it applicable to both abundant 73 

and sparse datasets. 74 

Section 2 of this study describes the presented model in detail; it describes an efficient subsampling 75 

procedure that can handle very large datasets and a covariance model that can estimate both spatial and 76 

temporal relationships in the data. We then incorporate these components into a spatiotemporal version of 77 

moving window block kriging. In sections 3 and 4, we subsequently apply this model to map GOSAT 78 

XCO2, IASI XCH4 and GOME-2 SIF at multiple time resolutions (including daily). 79 

2. Methods 80 

The spatio-temporal block kriging approach presented in this study proceeds in three steps for each model 81 

grid cell and estimation time. First, we subsample the observations within a predetermined spatio-temporal 82 
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domain (section 2.1). Next, we characterize the local spatio-temporal covariance structure (section 2.2). 83 

Finally, we interpolate the satellite observations at the desired spatial resolution (section 2.3).  84 

2.1 Subsampling of observations 85 

The ultimate goal of the proposed subsampling strategy is to reduce the number of observations in the 86 

spatio-temporal vicinity of an estimation location to a representative, computationally feasible subset of 87 

data. We use a subset of observations (M) to estimate a local set of covariance parameters and use another 88 

subset (N) to estimate the desired quantity and associated uncertainty. Note that, for the method presented 89 

here, M and N can refer to either the same subset of data or different subsets.  90 

The total number of observations used for covariance parameter estimation (M), is selected to be small 91 

enough to make this estimation computationally feasible but large enough to yield a sample representative 92 

of both local and regional variability. The optimal subset of N observations used for mapping depends on 93 

the actually observed covariance structure which is not known prior to covariance parametrization step. In 94 

the example presented in Sect. 3, the optimal observational subset used in a mapping step for each grid cell 95 

comprised N points having the highest covariance with the estimation location. In the example below, we 96 

set both M and N at 500; larger values of M and N did not have a substantial impact on the estimated 97 

parameters and mapped quantity, respectively. Furthermore, M should represent local variability, and larger 98 

values of M would encompass more distant, non-local regions.  99 

We select subset of observations M for each estimation grid cell by assigning a relative selection probability 100 

to each observation based on that observation’s spatial and temporal ‘separation distances’ from the 101 

centroid of the grid cell. In the absence of a proper metric for distance in space-time, we model the spatial 102 

and temporal components of the overall selection probability separately. 103 

The selection probability (and its components) is described by the following equation:  104 

𝑃 = 𝑃𝑠 × 𝑃𝑡 ∝ 1/(𝐴𝑠ℎ𝑠)2 × 𝑒−(𝐴𝑡ℎ𝑡)2
     (1) 105 

where 𝑃𝑠 is the spatial component of the relative probability of a given observation being selected, 𝑃𝑡 is 106 

temporal component, ℎ𝑠 and ℎ𝑡 are distances between estimation location and observations, in space and 107 

time, respectively, and As and At are unit dependent, user defined weighting factors between separation 108 

distance in space vs. in time (how deep in space vs. time the sampling should occur). The unit dependent 109 

choice of As and At can be initially based on user expectations of the decorrelation distances in space vs. 110 

time and, if necessary, subsequently corrected accounting for actually computed decorrelation lengths in 111 

space and time in an iterative fashion. In this way temporal and spatial sampling depths could even be 112 

locally optimized and become location-specific. In the examples below (Section 3), As and At were set to 1 113 

km-1, and 0.5 day-1, respectively, based on the observed average decorrelation distances in space and time 114 

(see Fig. 1 and Section 4.1).  115 

 116 

[Figure 1] 117 

ℎ𝑠 is calculated as the great circle distance between the centroid xj of the estimation grid cell and the location 118 

xi of an observation: 119 

ℎ𝑠(𝑥𝑖 , 𝑥𝑗) = 𝑟𝑐𝑜𝑠−1(sin 𝜑𝑖 sin 𝜑𝑗 + cos 𝜑𝑖 cos 𝜑𝑗 cos(𝜆𝑖 − 𝜆𝑗))    (2) 120 

where φi and λi are the latitude and longitude of location xi and 𝑟 is the radius of the Earth.   121 
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The temporal and spatial components of the probability function have different functional forms out of 122 

necessity. The measurements often come pre-aggregated in time slices corresponding to hours, days, or 123 

longer aggregation time periods, which multiplies the number of observations with the same time stamp. 124 

As a result, it is not possible to assign sampling probability along a temporal axis in a manner equivalent to 125 

the spatial approach; doing so would result in infinite probabilities assigned to all observations within the 126 

time slice of the actual estimation location (𝑃𝑡~1/02=∞). The same holds for spatially co-located 127 

observations. However, since each observation comes with unique spatial coordinates (not pre-binned like 128 

in temporal case), we select a simpler form of the spatial component of the sampling function. The defined 129 

form of P (Eq. 1) ensures that  pairs of observations close to estimation location define the shape of the 130 

variogram at short separation distances (the variogram should reflect variability in the spatio-temporal 131 

vicinity of the estimation grid cell. See Section 2.2). Different forms of P can be used if directional 132 

anisotropy is expected or if more/fewer observations along a given direction are desired to better represent 133 

expected correlations.  134 

Previous approaches required the user to choose spatial and temporal windows that determine which 135 

neighboring observations to use (see, for comparison, Alkhaled et al. 2008; Hammerling et al. 2012a,b). 136 

The approach proposed in this paper, by contrast, requires fewer subjective choices – only the form of 137 

sampling function and unit dependent choice of normalizing coefficients As and At. In addition, our 138 

approach is computationally feasible even for very large data sets. 139 

2.2 Characterization of Spatio-temporal Covariance  140 

Existing studies have used a number of models to estimate spatio-temporal covariances for a variety of 141 

applications. Models used include the metric model (Dimitrakopoulos and Luo, 1994), linear model 142 

(Rouhani and Hall, 1989), product model (De Cesare et al., 1996), non-separable model (Cressie and 143 

Huang, 1999), and generalized product-sum model (De Iaco et al., 2001). The approach developed in this 144 

paper uses a generalized product-sum covariance model (De Iaco et al., 2001). This model affords a number 145 

of advantages relative to other covariance models: (1) a product sum covariance model outperformed other 146 

models in terms of prediction accuracy in a recent study using GOSAT satellite data (Guo et al., 2013), (2) 147 

it is relatively easy to implement (De Iaco et al., 2001), and (3) it is more flexible than a non-separable 148 

covariance model (De Cesare, 2001a).  149 

The product-sum model, as it has been applied in the past, has one important area for improvement. The 150 

original procedure (De Iaco et al., 2001) assumed separate modeling of the spatial and temporal covariance 151 

(variograms) and their later unification into a spatio-temporal model in the final step. The procedure 152 

requires observations approximately in the same location at multiple different times. However, satellite 153 

observations are often not perfectly collocated in consequent measurement cycles over the same region. As 154 

a result, we would need to assume that each measurement cycle is perfectly co-located with previous/future 155 

cycles, or define an arbitrary tolerance, in order to apply the original approach. This assumption becomes 156 

more prone to error if the observations are very sparse, as is often the case with satellites. 157 

Thus, in this study, we cater to specific properties of satellite data and alter the original procedure by 158 

estimating all covariance parameters simultaneously, thereby avoiding the aforementioned problem. 159 

We broadly define the covariance as follows: 160 

 Cs,t(hs,ht) = Cov(Z(s+hs,t+ht), Z(s,t))     (3) 161 
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The equation shows that covariance between two points (Z) separated in space-time (s,t) depends on their 162 

distance in space (hs) and distance in time (ht). The following class of valid product–sum covariance models 163 

was introduced in De Cesare et al. (2001b) and further developed in De Iaco et al. (2001): 164 

Cs,t(hs,ht)= k1Cs(hs)Ct(ht)+ k2Cs(hs)+ k3Ct(ht)    (4) 165 

where Ct and Cs are valid temporal and spatial covariance models, respectively. De Iaco et al. (2001) proved 166 

that for positive definiteness it is sufficient that k1 > 0, k2 ≥ 0 and k3 ≥ 0. It is interesting to note that from 167 

Eq. 4 follows that spatio-temporal covariance models collapses down to purely spatial model in cases where 168 

temporal covariance does not exist. Thus, the spatial approach could be viewed as a special case of spatio-169 

temporal modeling. 170 

The model in Eq. 4 corresponds to the spatio-temporal variogram shown in Equation 5. In the original 171 

procedure, De Iaco et al., 2001 estimated separate spatial (ht=0) and temporal (hs=0) variograms using the 172 

data. De Iaco et al., 2001 then then combined these models to obtain the final spatio-temporal variogram 173 

model: 174 

𝛾𝑠,𝑡(hs,ht) = 𝛾𝑠,𝑡(hs,0) + 𝛾𝑠,𝑡(0,ht) – k𝛾𝑠,𝑡(hs,0)𝛾𝑠,𝑡(0,ht)    (5) 175 

where γs,t(hs,0)  and  γs,t(0,ht) are spatio-temporal variograms for ht=0 and hs=0, respectively (Figure 2). 176 

Parameter k is estimated from the data which makes the model easily applicable: 177 

𝑘 =
𝑘𝑠𝐶𝑠(0)+ 𝑘𝑡𝐶𝑡(0)− 𝐶𝑠,𝑡(0,0)

𝑘𝑠𝐶𝑠(0)𝑘𝑡𝐶𝑡(0)
            (6) 178 

where 𝑘𝑠𝐶𝑠(0) and 𝑘𝑡𝐶𝑡(0) are spatial and temporal sills (variances) obtained in modeling of separate 179 

spatial and temporal variograms. The only condition k has to fulfill in order to create an admissible 180 

covariance model is 181 

0 < 𝑘 ≤
1

𝑚𝑎𝑥 {𝜎𝑠
2(𝛾𝑠,𝑡(ℎ𝑠,0)); 𝜎𝑡

2(𝛾𝑠,𝑡(0,ℎ𝑡))} 
        (7) 182 

Due to the specifics of satellite data, we estimate both the covariance parameters and parameter k 183 

simultaneously. This approach accounts for constraints that assure a positive definiteness of the model (De 184 

Iaco et al., 2001). This simultaneous approach makes the model more applicable to sparse data and data 185 

with variable spatial coverage, as is often the case with satellite observations. 186 

We use a Gaussian variogram function with a nugget effect to model temporal covariance in the example 187 

presented here (for an overview of variogram models see Chiles and Delfiner, 2012). We use an exponential 188 

model for the spatial variogram. In both cases, we make this choice based upon visual inspection of local 189 

variograms at multiple estimation locations:  190 

 𝛾𝑡(ℎ𝑡)(𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛) = {
0, 𝑓𝑜𝑟 ℎ𝑡 = 0

𝜎𝑡
2(1 − exp (−

ℎ𝑡
2

𝑙𝑡
2 ) + 𝜎𝑛𝑢𝑔

2 , 𝑓𝑜𝑟 ℎ𝑡 > 0
   (8) 191 

𝛾𝑠(ℎ𝑠)(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙) = {
0, 𝑓𝑜𝑟 ℎ𝑆 = 0

𝜎𝑠
2(1 − exp (−

ℎ𝑆

𝑙𝑆
) + 𝜎𝑛𝑢𝑔

2 , 𝑓𝑜𝑟 ℎ𝑆 > 0
  (9) 192 
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where σ2 and 𝑙 are the variance and correlation length of the quantity being mapped, and σ2
nug is the nugget 193 

variance, typically representative of measurement and retrieval errors in the case of satellite observations.  194 

[Figure 2] 195 

Unlike the original procedure in De Iaco et al. (2001), we model the variogram using only two steps.   First, 196 

we calculate a raw spatio-temporal variogram based on the subsampled observations for each estimation 197 

grid cell:  198 

 𝛾(ℎ𝑠, ℎ𝑡) =
1

2
[𝑦(𝑥𝑖) − 𝑦(𝑥𝑗)]2        (10) 199 

where 𝛾 is the raw spatio-temporal variogram value for a given pair of observations y(xi) and y(xj), and ℎ𝑠  200 

and ℎ𝑡 are, respectively, the great circle distance and temporal distance between the spatio-temporal 201 

locations (𝑥𝑖 and 𝑥𝑗) of these observations.  202 

Second, we fit the theoretical variogram defined in Eq. 5 to the raw variogram using non-linear least 203 

squares. We subsequently calculate the spatiotemporal covariance using the following equation: 204 

𝐶𝑠,𝑡(ℎ𝑠, ℎ𝑡) = 𝐶𝑠,𝑡(0,0) − 𝛾𝑠,𝑡(ℎ𝑠, ℎ𝑡))      (11) 205 

Validity on the sphere. Most covariance models were originally designed for Euclidean space, and their 206 

validity in other coordinate systems cannot be assumed per se. Huang et al. (2011) examined the validity 207 

of several theoretical covariance models in spherical coordinate systems. However, this evaluation has not 208 

been done for the spatio-temporal product-sum covariance model. Other studies that use a product-sum 209 

covariance model typically assume the validity of this covariance model on a sphere (e.g., Zeng et al., 2013; 210 

Zeng et al., 2016). Results from Huang et al. (2011) explicitly validate the exponential covariance model 211 

on a sphere, as well as sums of the products of exponential covariance models and constants (provided that 212 

the constants are positive). The first term of the product-sum covariance model used in this study (Eq. 4) 213 

represents a Hadamard product (Million, 2007) of two positive definite matrices. According to Schur 214 

product theorem, a Hadamard product of two positive definite matrices necessarily gives a positive definite 215 

matrix (Mathias, 1993). It therefore follows that a generalized product-sum model (Equation 4) is valid on 216 

a sphere if its spatial component is valid on a sphere. 217 

2.3 Mapping using spatio-temporal moving window block kriging 218 

This section leverages the sampling function (Sect. 2.1) and the product-sum covariance model (Sect. 2.2) 219 

to implement a spatio-temporal version of moving window block kriging. A primary advantage of block 220 

kriging is its ability to estimate contiguous maps at any spatial resolution equal to or coarser than the spatial 221 

support (i.e. footprint size) of observations (refer to Sect. 1 and Tadić et. al. 2015). Unlike ordinary kriging 222 

method, the spatial support in block kriging corresponds to the average value within each chosen grid cell. 223 

Moving window block kriging requires solving a set of linear equations to obtain a set of weights (λ). These 224 

weights must be estimated for each prediction location using N associated observations:  225 

[
𝐐 + 𝐑 𝟏

𝟏𝑇 0
] [

𝛌
−𝜈

] = [
𝐪𝐀

1
]     (12) 226 

In this equation, R is a diagonal N×N nugget covariance matrix that describes measurement and retrieval 227 

errors, Q is a N×N covariance matrix among the N observations with individual entries as defined in Eqn. 228 

11, 1 is an N×1 unity vector, is a Lagrange multiplier, and qA is an N×1 vector of the spatio-temporal 229 

covariances between the N observation locations and the estimation grid cell, defined as: 230 
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𝑞𝐴,𝑖 =
1

𝑛
∑ 𝑞 (ℎ𝑠𝑖,𝑗

, ℎ𝑡𝑖,𝑗
)𝑛

𝑗=1      (13) 231 

where 𝑞𝐴,𝑖 is the covariance between the grid cell and observation i. 𝑞(ℎ𝑖,𝑗) is defined as 𝐶𝑠,𝑡  in Eqn. 11 232 

based on the distances ℎ𝑠𝑖,𝑗
 and ℎ𝑡𝑖,𝑗

 between observation i and n regularly-spaced locations within the grid 233 

cell. In the context of satellite measurements, n is a highest number of non-overlapping footprints contained 234 

within a grid cell and was calculated based on the relative size of the satellite footprint compared to  the 235 

size of the estimation grid cells. n varies with latitude, as the size of grid cells decreases with the distance 236 

from the equator. The system in Eqn. 12 is solved for the weights (λ) and the Lagrange multiplier (ν). We 237 

subsequently use these parameters to define the estimate (ẑ) and estimation uncertainty (σ2
ẑ) for the grid 238 

cell:  239 

ẑ= λTy       (14) 240 

σ2
ẑ = σAA - λ

T qA + ν      (15) 241 

where y is the N×1 vector of subsampled observations, and σAA is the variance of the observations at the 242 

resolution of the estimation grid cell, defined as:  243 

𝜎𝐴𝐴 =
1

𝑛2
∑ ∑ 𝑞(ℎ𝑗,𝑘)𝑛

𝑘=1
𝑛
𝑗=1      (16) 244 

In that equation, 𝑞 (ℎ𝑠𝑖,𝑗
, ℎ𝑡𝑖,𝑗

) is defined as 𝐶𝑠,𝑡 in Eqn. 11 based on the distances ℎ𝑠𝑖,𝑗
 and ℎ𝑡𝑖,𝑗

 between 245 

any combination of the n regularly spaced locations within the grid cell defined previously. 246 

3. Example applications 247 

We select three case studies of satellite Level 2 data to demonstrate the properties of the method developed 248 

in this paper: column-integrated dry air model fraction of CO2 (XCO2) from the Japanese Greenhouse Gas 249 

Observing SATellite (GOSAT), CH4 (XCH4) from the Infrared Atmospheric Sounding Interferometer 250 

(IASI), and solar-induced fluorescence (SIF) the Global Ozone Monitoring Experiment–2 (GOME-2). 251 

Level 2 datasets from GOSAT, IASI and GOME-2 have relatively different characteristics. For example, 252 

GOSAT observations are sparse while IASI and GOME-2 are abundant. These diverse datasets are therefore 253 

ideal for testing the method developed here. 254 

The method was demonstrated by producing two different sets of maps. First, it was applied at resolutions 255 

coarser than native (1 × 1°, 2.5 × 2°, and 1 × 1° for GOSAT, IASI and GOME-2, respectively) to 256 

demonstrate block kriging capabilities of the method (Section 3). Second, it was applied at the native 257 

resolution of the satellites for cross-validation (method evaluation) purposes (Section 4). 258 

3.1 Total column CO2 (XCO2) observed by GOSAT 259 

The Japanese Greenhouse Gas Observing SATellite (GOSAT) (e.g., Kuze et al., 2009), the first satellite 260 

dedicated to global greenhouse gas monitoring, was launched in 2009. Basic information about the satellite, 261 

its orbit configuration, and the CO2 column observations are given in our previous study (Tadić et al., 2014). 262 

It flies in a polar, sun-synchronous orbit with a 3-day repeat cycle and an approximate 13:00 LT overpass 263 

time. GOSAT has a nadir footprint of about 10.5 km diameter at sea level (Kuze et al., 2009) and 2×103 264 
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observations per week. The XCO2 observations from GOSAT have large retrieval uncertainties (e.g., 265 

O’Dell et al. 2012) and exhibit large spatial and temporal gaps (e.g., Fig. 3a). Although these XCO2 266 

observations are sparse and noisy, contiguous Level 3 maps are often desirable for environmental and 267 

ecological applications. To this end, we generate global daily estimates for XCO2 (August 2-7, 2009) to 268 

match the timeframe used in Tadić et al., 2014. 269 

[Figure 3] 270 

We obtain bias-corrected and filtered GOSAT Level 2 observations using NASA’s Atmospheric CO2 271 

Observations from Space (ACOS) algorithm v3.4 release 3 (e.g., O’Dell et al., 2012; Crisp et al., 2012). In 272 

this study, we use spatio-temporal moving window block kriging to create a series of contiguous, in-filled 273 

global daily maps and associated uncertainties for 2-7 August 2009 (two repeat cycles) (Fig. 3a-c) at 1×1o 274 

resolution. We select the time period to match the time period from our previous study (Tadić et al., 2014). 275 

Unlike results from our previous study and other similar studies, which created estimates at 6-day or longer 276 

time periods (Hammerling et al., 2012a), we leverage the method developed here to produce maps at the 277 

daily scale.  278 

3.2 Total column CH4 (XCH4) observed by IASI 279 

The Infrared Atmospheric Sounding Interferometer (IASI) developed by the Centre National d’Etudes 280 

Spatiales (CNES) in collaboration with the European Organisation for the Exploitation of Meteorological 281 

Satellites (EUMETSAT) is a Fourier Transform Spectrometer based on a Michelson Interferometer coupled 282 

to an integrated imaging system that measures infrared radiation emitted from the Earth. It is carried by 283 

MetOp-A, a sun-synchronous polar orbit satellite which flows at an altitude of 817 km. Detailed information 284 

about the IASI instrument could be found elsewhere (Crévoisier et al., 2009a,b;  Massart et al., 2014). IASI 285 

has an instantaneous field of view of 50×50 km, composed of four pixels each 12 km in radius, delivering 286 

~56×103 XCH4 observations per week.  287 

[Figure 4] 288 

Methane Level 2 IASI (0-4 km) data were retrieved at the NOAA/NESDIS using the NUCAPS (NOAA 289 

Unique CrIS/ATMS Processing System) algorithm (Gambacorta, 2013; Xiong et al., 2013). For the ice-290 

covered ocean the data for the lower troposphere (0-4 km) are unreliable due to insufficient thermal contrast 291 

between the surface and the atmosphere. Filtering parameters have been provided by Xiong (2014, private 292 

communication). The data are available at http://www.nsof.class.noaa.gov/. Using the new method, we 293 

created a series of contiguous global daily maps and associated uncertainties for the Northern Hemisphere, 294 

for February 26-March 4, 2013 (i.e. Figure 4a-c) at 1o×1o resolution. We chose this time period to match 295 

the occurrence of the methane “anomaly” North of the coast of Scandinavia.  296 

3.3 Global land solar-induced fluorescence fields observed by GOME-2 297 

The GOME-2 (The Global Ozone Monitoring Experiment–2) instrument on board METOP-A (e.g., Joiner 298 

et al., 2013) observes solar-induced fluorescence (SIF). The GOME-2 spatial footprint (i.e. support) of the 299 

observations is 40 km × 80 km (Joiner et al, 2013), and the volume of available data is approximately 2×105 300 

SIF observations per week. 301 
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[Figure 5] 302 

Multiple recent studies have demonstrated the potential use of satellite observations of solar-induced 303 

fluorescence (SIF) for understanding the photosynthetic CO2 uptake at large scales (Joiner et al., 2011; 304 

Joiner et al., 2012; Joiner et al., 2013; Frankenberg et al., 2011; Frankenberg et al., 2012; Guanter et al., 305 

2012, Lee et al., 2013; Frankenberg et al., 2014). Satellite SIF measurements can be used with land surface 306 

models to understand GPP response to environmental stress (e.g., Lee et al., 2013) and to improve the 307 

representation of GPP. GOME-2 provides the highest spatial and temporal density of data, among all 308 

available datasets. 309 

In the example presented here we use SIF GOME-2 v.14 data (Joiner et al., 2013) with the approach 310 

described in Section 2 to create contiguous maps of SIF at a single spatial resolution (1o × 1o) and daily 311 

temporal resolutions. Maps of SIF and associated uncertainties are created at daily temporal resolutions 312 

covering 5-14 May, 2012, some of which are shown on Figures 5a-c.  313 

4. Method evaluation: accuracy, precision and bias 314 

4.1 Accuracy, precision and bias 315 

We use a leave-one-out cross validation technique to assess the performance of spatio-temporal versus 316 

spatial moving window block kriging. We produce these estimates at the native resolution of GOSAT, IASI 317 

and GOME-2 satellites/instruments, which allowed a direct comparison to measured values. For IASI and 318 

GOME-2, for each day in February 26-March 4, 2013, and May 5-14, 2012, respectively, 10% of available 319 

observational data were randomly selected for use in leave-one-out cross-validation and their coordinates 320 

extracted. For XCO2, all GOSAT XCO2 observations for each day in August 2-7, 2009, were used. We 321 

assess the accuracy (the difference between estimates and withheld observations) of both methods using 322 

two measures: (1) Mean Absolute Error (MAE), and (2) Root Mean Squared Error (RMSE). We also assess 323 

the performance of each method using two additional measures: (3) the accuracy of the uncertainty bounds 324 

(the degree to which the reported uncertainties capture the difference between estimates and withheld 325 

observations) and (4) bias (the mean difference between estimates and withheld observations). 326 

We parameterize the temporal component of the spatio-temporal sampling function in such a way 327 

that observations located +/- 3 days from the actual date had 10% probability of being sampled 328 

compared to observations from the actual day (see Fig 1a). We compare the results to spatial 329 

kriging estimates obtained in two different ways, based on observations only from the actual day 330 

(1d) and based on observations from +/-3 days from the actual day (7d). This latter case is 331 

analogous to the +/- 3 day window that we use for the ST approach. In this 7d case, we obtain 332 

these spatial kriging results by assuming the entire observational dataset collected within the 333 

selected time period (actual day +/- 3 days) is perfectly temporally correlated. In other words, we 334 

use all observations as though they were collected at the same time. We then produce estimates at 335 

locations of observations collected within the selected timeframe and compare the performance of 336 

the two methods. We repeat procedure described in Section 2 for every observation selected for 337 

cross-validation, and we average the statistics, displayed in Table 1.  338 

[Table 1] 339 
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According to the results, the spatio-temporal approach performs better than the spatial (7d) approach in all 340 

three cases and in all performance measures (for example, spatial (7d) MAE was 6-10% larger). The 341 

comparison clearly shows that proper characterization of the temporal covariance between two points 342 

residing in different time periods (days), embedded into spatio-temporal approach, improves kriging 343 

performance. In IASI case, the spatio-temporal method also performed better than spatial (1d). However, 344 

in case of GOSAT and GOME-2 data, spatio-temporal approach slightly underperformed the spatial (1d) 345 

approach having 12% higher MAE (please see Section 4.2 for discussion).  346 

We evaluate the accuracy of the uncertainty bounds by examining how often those bounds encapsulate 347 

withheld observations. The percentage of observations that fall outside the uncertainty bounds in spatio-348 

temporal approach is comparable to that of the spatial method, confirming the accuracy of the estimated 349 

uncertainty bounds (for normally-distributed data the percentage of observations that fall outside of the one, 350 

two, and three estimation standard deviation (σẑ) uncertainty bounds should be 32%, 5% and 0.3%, 351 

respectively). The fraction of observations that fall outside the uncertainty bound is generally lower than 352 

would be expected for normally-distributed data, and our results may indicate non-normal features in the 353 

data.  354 

4.2 When is spatio-temporal modeling recommended? 355 

A ST approach can afford advantages over purely spatial methods when temporal data correlations and data 356 

coverage are strong.  Indeed, in many cases, the ST approach is more accurate than a purely spatial method 357 

(Table 1). This result is consistent with existing literature which uniformly reports that ST approaches are 358 

more accurate than spatial approaches (Zeng et al., 2013; Guo et al., 2013; Zeng et al., 2016).  359 

However, although considering information from days preceding and following the target estimation day 360 

should in principle always provide a further constraint on the estimate, this does not guarantee that an ST 361 

method will always outperform a spatial-only method in practice.  The prime reasons for this are two-fold.  362 

First, because computational limitations cap the number of observations that can be considered, considering 363 

observations across multiple days necessarily leads to a reduction in the spatial density of observations 364 

being considered.  This first factor can be partially alleviated by carefully designing the selection probability 365 

function (Eqn. 1).  The second reason is that implementing a ST approach involves the estimation of a larger 366 

number of covariance parameters (Eqn. 4-9) relative to a spatial-only approach, which can introduce 367 

additional uncertainty.  Indeed, we observe that the purely spatial approach performs better than the ST 368 

method in some cases (e.g., the GOSAT and GOME-2 1d cases).  369 

Overall, a ST approach is likely to outperform a spatial-only approach when the data exhibit one (or more) 370 

of three characteristics. First, a ST approach is likely better when the data are sparse or unequally 371 

distributed. In these cases, a ST approach can intelligently leverage data in adjacent time periods to 372 

compensate for the sparsity of data in the time period of interest. Second, an ST approach works well for 373 

datasets with temporal gaps (e.g., due to cloud cover or instrument malfunction). An ST approach can fill 374 

these gaps while a spatial-only approach cannot be used for temporal gap-filling. Third, an ST-approach is 375 

well-suited to datasets with regional biases that manifest in one time slice but that do not repeat in adjacent 376 

time slices. Phrased differently, an ST-approach is well-suited to datasets with errors that are spatially but 377 

not temporally correlated. In these cases, an ST approach can use data from adjacent time periods to create 378 

the estimate, data that do not have the same regional, spatially-correlated biases. Although the resulting 379 

estimate may appear inferior during cross-validation, this is because that estimate will not reproduce 380 

regional biases in data from the time slice of interest. A spatial-only approach, by contrast, will reproduce 381 

these regional biases because it does not use data from adjacent times when creating the estimate. As a 382 
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result, a spatial-only approach will appear to perform better in cross validation, but the ST approach will 383 

more accurately reflect the true, underlying process.  384 

5. Conclusions 385 

In this study, we develop a method to create high spatio-temporal resolution maps from satellite data using 386 

spatio-temporal moving window block kriging based on product-sum covariance model. The method relies 387 

on a limited number of assumptions: that the observed physical quantity is spatio-temporally auto-388 

correlated, and that its nature can be inferred from the observations.  389 

The method has several advantages over previously applied methods, as alluded to in Sect. 1: 1) it allows 390 

for the creation of contiguous maps at varying spatio-temporal resolution, 2) it can create maps at temporal 391 

resolutions shorter than achievable by other binning or kriging methods, 3) it can be applied for creating 392 

contiguous maps for physical quantities with varying spatio-temporal coverage (i.e., density of 393 

measurements), 4) it provides assessments of the uncertainty of interpolated values, 5) it utilizes all spatio-394 

temporally available information to generate estimates, 6) it improves covariance parameters estimation 395 

procedure because it does not model spatial and temporal covariance separately, 7) it allows for great 396 

flexibility in the choice of sampling function and 8) it provides estimates even for the time periods when 397 

measurements are not available. It can exploit correlations with both past and future periods of the observed 398 

time spot to provide the most accurate estimates. 399 

We demonstrate the applicability of this method by creating Level 3 products from the GOSAT XCO2, IASI 400 

CH4 and GOME-2 SIF data. Sparse XCO2 observations from GOSAT and dense XCH4 and SIF 401 

observations from IASI and GOME-2 make a perfect test ground for the method. We show that the proposed 402 

method can even map XCO2 on daily time scales. The method generally yields more precise and accurate 403 

(and unbiased) estimates compared to spatial method which used the same observations but assumed perfect 404 

temporal correlation between data. The factors which could affect the performance of the ST method are 405 

discussed in Section 4.2. 406 

This approach could be used in the future to produce real-time estimates not only of XCO2, XCH4 or SIF, 407 

but of other environmental data observed by satellites which exhibit spatio-temporal autocorrelations. 408 

Especially important could be satellite datasets that have spatially, but not temporally, correlated errors. In 409 

such cases, sampling across several time periods could perhaps help isolate and remove them, which should 410 

be a subject of further studies.  411 

The method could be applied in a standalone mode or as part of a broader satellite data processing package. 412 

Maps produced by the spatio-temporal approach could then be incorporated into physical and 413 

biogeochemical models of the Earth system.   414 
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Table 1. Cross-validation results of GOSAT XCO2, IASI XCH4 and GOME-2 SIF datasets using spatio-532 

temporal and spatial methods, including mean absolute error (MAE), root mean squared error (RMSE), 533 

percent of observations lying outside of one, two, and three standard deviations (σẑ) of the mapping 534 

uncertainty, and mean difference. MAE, RMSE and bias units for GOSAT, IASI and GOME-2 are ppm, 535 

ppb and mW/m2/sr/nm, respectively. 536 

  

GOSAT XCO2 IASI XCH4 GOME-2 SIF 

ST 1d 7d ST 1d 7d ST 1d 7d 

Estimates 

Mean absolute error 
(MAE) 

0.83 0.74 0.88 19.19 20.23 21.03 0.52 0.51 0.66 

Root mean squared 
error (RMSE) 1.12 0.98 1.21 25.25 27.10 27.77 0.67 0.65 0.87 

Uncertainties 

% observations falling 
outside 1σẑ 

uncertainty 
9.13 15.03 10.70 11.02 9.06 13.84 14.60 12.14 24.80 

% observations falling 
outside 2σẑ 

uncertainty 
1.12 3.01 1.39 0.48 0.51 0.86 1.20 0.64 4.33 

% observations falling 
outside 3σẑ 

uncertainty 
0.067 0.52 0.13 0.04 0.046 0.022 0.11 0.05 0.83 

Bias Mean difference -0.012 0.0066 -0.034 0.28 -0.14 0.58 0.016 0.0013 0.032 

  537 

 538 

 539 
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Figure 1. (a) Sampling probability as a decreasing function of spatial and temporal distance as used in this 541 

study, (b) The typical example of subsampled IASI Level 2 XCH4 (altitude below 4 km) data for a selected 542 

estimation location (yellow circle). Color of observations shows semivariance between observation and 543 

estimation location (blue-lowest, red-highest). Due to stronger temporal covariance, the relative decrease 544 

of the sampling probability along temporal axis is smaller than with spatial distance. 545 

 546 

 547 

 548 

 Figure 2. Illustration of experimental and fitted theoretical spatio-temporal variogram for GOSAT XCO2 549 

data.  550 

 551 
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 552 

Figure 3. (a) GOSAT/ACOS v3.4 XCO2 retrievals (Level 2 data) (ppm) for August 3, 2009 (b) Contiguous 553 

global GOSAT/ACOS v3.4 maps (Level 3 data) (ppm) for the same day obtained using Spatio-temporal 554 

Moving Window Block Kriging at 1 × 1° spatial resolution, (c) associated uncertainties, given as 1-sigma 555 

(σẑ) (ppm). 556 

 557 

 558 

 559 

Figure 4. (a) IASI XCH4 (0-4 km) retrievals (ppb) for March 2, 2013 (sea only), (b) Contiguous IASI maps 560 

for Northern Hemisphere for the same day obtained using Spatio-temporal Moving Window Block Kriging 561 

at 2.5 × 2° spatial resolution and (c) associated uncertainties, given as 1-sigma (σẑ) (ppb).  562 

 563 

 564 

 565 

Figure 5. (a) GOME-2 SIF v14 retrievals (Level 2 data) (mW/m2/sr/nm) for May 5, 2012, (b) Contiguous 566 

global GOME-2/SIF v14 maps (Level 3 data) (mW/m2/sr/nm) for the same day obtained using Spatio-567 

temporal Moving Window Block Kriging at 1 × 1° spatial resolution, (c) associated uncertainties, given as 568 

1-sigma (σẑ) (mW/m2/sr/nm).  569 
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