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Abstract.  Numerous existing satellites observe physical or environmental properties of the Earth system. 7 

Many of these satellites provide global-scale observations, but these observations are often sparse and 8 

noisy. By contrast, contiguous, global maps are often most useful to the scientific community (i.e., level 3 9 

products). We develop a spatiotemporal moving window block kriging method to create contiguous maps 10 

from sparse and/or noisy satellite observations. This approach exhibits several advantages over existing 11 

methods: 1) it allows for flexibility in setting the spatial resolution of the level 3 map, 2) it is applicable to 12 

observations with variable density, 3) it produces a rigorous uncertainty estimate, 4) it exploits both spatial 13 

and temporal correlations in the data, and 5) it facilitates estimation in real time. Moreover, this approach 14 

only requires the assumption that the observable quantity exhibits spatial and temporal correlations that are 15 

inferable from the data. We test this method by creating Level 3 products from satellite observations of CO2 16 

(XCO2) from the Greenhouse Gases Observing Satellite (GOSAT), CH4 (XCH4) from the Infrared 17 

Atmospheric Sounding Interferometer (IASI) and solar-induced chlorophyll fluorescence (SIF) from the 18 

Global Ozone Monitoring Experiment–2 (GOME-2). We evaluate and analyze the difference in 19 

performance of spatio-temporal vs. recently developed spatial kriging methods. 20 

1. Introduction 21 

Satellite observations of the Earth’s surface and atmosphere provide a valuable window into the functioning 22 

of the Earth system. Satellites often provide global observations, but these observations are rarely uniform 23 

or contiguous in space/time.  The observations can be non-contiguous due to satellite orbit geometries and 24 

periods, geophysical limitations (e.g. cloud cover), and temporary instrument malfunctions. Furthermore, 25 

satellites may provide a large quantity of data, but individual observations can have a large noise-to-signal 26 

ratio. It is often necessary to spatially interpolate the data in order to organize the data onto a regular grid, 27 

query the data at a particular location of interest, estimate data at unsampled times and/or locations, and/or 28 

map the underlying signal in a noisy dataset. These gridded, interpolated maps are commonly named “Level 29 

3” data (e.g. NASA, 2014) and are often part of the standard suite of satellite data products.  30 

CO2 column observations (XCO2) from the Greenhouse Gases Observing Satellite (GOSAT), CH4 column 31 

observations (XCH4) from the Infrared Atmospheric Sounding Interferometer (IASI) and solar-induced 32 

chlorophyll fluorescence (SIF) observations from The Global Ozone Monitoring Experiment–2 (GOME-2) 33 

provide prototypical examples of these challenges, and these three satellites are the primary application 34 

used throughout this work (see Section 3).  35 

The most commonly-used method for creating Level 3 maps from satellite data is binning. This approach 36 

involves taking the mean of all observations within a given grid cell or “bin” (see Kulawik et al., 2010, and 37 

Crévoisier et al., 2009 for examples). The binning method, however, has a number of shortfalls that can 38 

lead to inconsistent or inaccurate results. First, different bins contain variable numbers of observations. As 39 

a result, some bins will be well-constrained by the data while others may be based upon sparse, noisy 40 
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observations. Second, binning does not produce uncertainty estimates. Third, this method cannot 41 

extrapolate the unknown quantity to bins without any observations. 42 

A broad class of geostatistical methods known as kriging provides an alternative approach to mapping 43 

satellite observations. Kriging is a best linear unbiased estimator (for kriging see Chiles and Delfiner, 2012), 44 

where covariance functions are used to represent correlations among data. As a result, kriging can account 45 

for a variable density of observations and can estimate uncertainties in the resulting maps. Various forms 46 

of kriging have recently been used to map satellite Earth observations, particularly for XCO2 (e.g., 47 

Hammerling et al. 2012a,b; Tadić et al., 2015; Zeng et al., 2013; Guo et al., 2013, Zeng et al., 2016). 48 

Hammerling et al. (2012a,b) presented an approach to map Orbiting Carbon Observatory-2 (OCO-2) and 49 

GOSAT XCO2 observations, respectively, with non-stationary properties. In our previous study (Tadić et 50 

al., 2015) we extended that approach to create XCO2 maps that can have a different spatial resolution from 51 

the resolution or footprint of the original satellite observations. Our previous study and those of 52 

Hammerling et al. (2012a,b) accounted for spatial covariances among observations but did not include a 53 

temporal component. The present study extends this geostatistical framework from a purely spatial to a 54 

spatiotemporal domain.  55 

Spatiotemporal approaches to interpolation can provide a number of advantages relative to purely spatial 56 

methods (e.g. Zeng et al., 2016; Guo et al., 2013). A purely spatial approach will usually aggregate 57 

observations into temporal blocks; observations within the same block effectively have the same time stamp 58 

whether or not those observations are actually synchronous (e.g., Tadić et al., 2015; Hammerling et al., 59 

2012a,b). Any real temporal variability within a block becomes noise. A spatiotemporal approach, by 60 

contrast, treats time as an explicit dimension and models covariances among data as a function of time.  61 

A handful of recent studies have considered temporal relationships when mapping satellite observations of 62 

XCO2. These studies have either used various forms of Kalman smoothing (e.g., Katzfuss and Cressie 2011, 63 

Katzfuss and Cressie 2012, Nguyen et al. 2014) or geostatistics (e.g., Guo et al. 2013; Zeng et al. 2013; 64 

Zeng et al. 2016). The former group of studies leverages Kalman smoothing to improve the computational 65 

tractability of mapping dense or abundant datasets, like OCO-2 and the Atmospheric Infrared Sounder 66 

(AIRS). The latter group of studies, by contrast, has applied geostatistics to sparse datasets like those from 67 

the GOSAT satellite. A detailed review of spatial and spatio-temporal mapping methods has been published 68 

recently (Li and Heap, 2014). 69 

The goal of this study is to develop a geostatistical spatio-temporal mapping and upscaling method 70 

(applicable, but not limited to, satellite observations of XCO2) that exhibits several advances relative to 71 

previous methods. It can: (1) fill in temporal gaps in the observations, (2) create maps at higher temporal 72 

resolutions than purely spatial approach, (3) produce more accurate estimates when observations have 73 

variable spatio-temporal coverage, (4) predict future values (i.e. extrapolate temporally). Among other 74 

improvements, we develop an efficient method for subsampling satellite observations and utilize the 75 

product-sum covariance model (e.g., De Iaco et al., 2001) that is easy to parameterize, which makes it 76 

applicable to both dense and sparse datasets. The entire work has been conducted in Matlab 2012a. 77 

Section 2 of this study describes the presented model in detail; it describes an efficient subsampling 78 

procedure that can handle very large datasets and a covariance model that can estimate both spatial and 79 

temporal relationships in the data. We then incorporate these components into a spatiotemporal version of 80 

moving window block kriging. In sections 3 and 4, we subsequently apply this model to map GOSAT 81 

XCO2, IASI XCH4 and GOME-2 SIF at multiple time resolutions (including daily). 82 
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2. Methods 83 

The spatio-temporal block kriging approach presented in this study proceeds in three steps for each model 84 

grid cell and estimation time. First, we subsample the observations within a predetermined spatio-temporal 85 

domain (section 2.1). Next, we characterize the local spatio-temporal covariance structure (section 2.2). 86 

Finally, we interpolate the satellite observations at the desired spatial resolution (section 2.3).  87 

2.1 Subsampling of observations 88 

The ultimate goal of the proposed subsampling strategy is to reduce the number of observations in the 89 

spatio-temporal vicinity of an estimation location to a representative, computationally feasible subset of 90 

data. We use a subset of observations (M) to estimate a local set of covariance parameters and use another 91 

subset (N) to estimate the desired quantity and associated uncertainty. Note that, for the method presented 92 

here, M and N can refer to either the same subset of data or different subsets.  93 

The total number of observations used for covariance parameter estimation (M), is selected to be small 94 

enough to make this estimation computationally feasible but large enough to yield a sample representative 95 

of both local and regional variability. The optimal subset of N observations used for mapping depends on 96 

the actually observed covariance structure which is not known prior to covariance parametrization step. In 97 

the example presented in Sect. 3, the optimal observational subset used in a mapping step for each grid cell 98 

comprised N points having the highest covariance with the estimation location. In the example below, we 99 

set both M and N at 500; larger values of M and N did not have a substantial impact on the estimated 100 

parameters and mapped quantity, respectively.  101 

We select subset of observations M for each estimation grid cell by assigning a relative selection probability 102 

to each observation based on that observation’s spatial and temporal ‘separation distances’ from the 103 

centroid of the grid cell. In the absence of a proper metric for distance in space-time, we model the spatial 104 

and temporal components of the overall selection probability separately. 105 

The selection probability (and its components) is described by the following equation:  106 

𝑃 = 𝑃𝑠 × 𝑃𝑡 ∝ 1/(𝐴𝑠ℎ𝑠)2 × 𝑒−(𝐴𝑡ℎ𝑡)2
     (1) 107 

where 𝑃𝑠 is the spatial component of the relative probability of a given observation being selected, 𝑃𝑡 is 108 

temporal component, ℎ𝑠 and ℎ𝑡 are distances between estimation location and observations, in space and 109 

time, respectively, and As and At are unit dependent, user defined weighting factors between separation 110 

distance in space vs. in time (how deep in space vs. time the sampling should occur). The unit dependent 111 

choice of As and At can be initially based on user expectations of the decorrelation distances in space vs. 112 

time and, if necessary, subsequently corrected accounting for actually computed decorrelation lengths in 113 

space and time in an iterative fashion. In this way temporal and spatial sampling depths could even be 114 

locally optimized and become location-specific. In the examples below (Section 3), As and At were set to 1 115 

km-1, and 0.5 day-1, respectively, based on the observed average decorrelation distances in space and time 116 

(see Fig. 1 and Section 4.1).  117 

 118 

[Figure 1] 119 

ℎ𝑠 is calculated as the great circle distance between the centroid xj of the estimation grid cell and the location 120 

xi of an observation: 121 
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ℎ𝑠(𝑥𝑖 , 𝑥𝑗) = 𝑟𝑐𝑜𝑠−1(sin 𝜑𝑖 sin 𝜑𝑗 + cos 𝜑𝑖 cos 𝜑𝑗 cos(𝜆𝑖 − 𝜆𝑗))    (2) 122 

where φi and λi are the latitude and longitude of location xi and 𝑟 is the radius of the Earth.   123 

The temporal and spatial components of the probability function have different functional forms out of 124 

necessity. The measurements often come pre-aggregated in time slices corresponding to hours, days, or 125 

longer aggregation time periods, which multiplies the number of observations with the same time stamp. 126 

As a result, it is not possible to assign sampling probability along a temporal axis in a manner equivalent to 127 

the spatial approach; doing so would result in infinite probabilities assigned to all observations within the 128 

time slice of the actual estimation location (𝑃𝑡~1/02=∞). The same holds for spatially co-located 129 

observations. However, since each observation comes with unique spatial coordinates (not pre-binned like 130 

in temporal case), we select a simpler form of the spatial component of the sampling function. The defined 131 

form of P (Eq. 1) ensures that pairs of observations close to estimation location define the shape of the 132 

variogram at short separation distances (the variogram should reflect variability in the spatio-temporal 133 

vicinity of the estimation grid cell. See Section 2.2). Different forms of P can be used if directional 134 

anisotropy is expected or if more/fewer observations along a given direction are desired to better represent 135 

expected correlations.  136 

Previous approaches required the user to choose spatial and temporal windows that determine which 137 

neighboring observations to use (see, for comparison, Alkhaled et al. 2008; Hammerling et al. 2012a,b). 138 

The approach proposed in this paper, by contrast, requires fewer subjective choices – only the form of 139 

sampling function and unit dependent choice of normalizing coefficients As and At. In addition, our 140 

approach is computationally feasible even for very large data sets. 141 

2.2 Characterization of Spatio-temporal Covariance  142 

Existing studies have used a number of models to estimate spatio-temporal covariances for a variety of 143 

applications. Models used include the metric model (Dimitrakopoulos and Luo, 1994), linear model 144 

(Rouhani and Hall, 1989), product model (De Cesare et al., 1996), non-separable model (Cressie and 145 

Huang, 1999), and generalized product-sum covariance model (De Iaco et al., 2001). The approach 146 

developed in this paper uses a generalized product-sum covariance model (De Iaco et al., 2001). This model 147 

affords a number of advantages relative to other covariance models: (1) a product sum covariance model 148 

outperformed other models in terms of prediction accuracy in a recent study using GOSAT satellite data 149 

(Guo et al., 2013), (2) it is relatively easy to implement (De Iaco et al., 2001), and (3) it is more flexible 150 

than a non-separable covariance model (De Cesare, 2001a).  151 

The product-sum model, as it has been applied in the past, has one important area for improvement. The 152 

original procedure (De Iaco et al., 2001) assumed separate modeling of the spatial and temporal covariance 153 

(variograms) and their later unification into a spatio-temporal model in the final step. The procedure 154 

requires observations approximately in the same location at multiple different times. However, satellite 155 

observations are often not perfectly collocated in consequent measurement cycles over the same region. As 156 

a result, we would need to assume that each measurement cycle is perfectly co-located with previous/future 157 

cycles, or define an arbitrary tolerance, in order to apply the original approach. This assumption becomes 158 

more prone to error if the observations are very sparse, as is often the case with satellites. 159 

Thus, in this study, we cater to specific properties of satellite data and alter the original procedure by 160 

estimating all covariance parameters simultaneously, thereby avoiding the aforementioned problem. 161 

We broadly define the covariance as follows: 162 
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 Cs,t(hs,ht) = Cov(Z(s+hs,t+ht), Z(s,t))     (3) 163 

The equation shows that covariance between two points (Z) separated in space-time (s,t) depends on their 164 

distance in space (hs) and distance in time (ht). The following class of valid product–sum covariance models 165 

was introduced in De Cesare et al. (2001b) and further developed in De Iaco et al. (2001): 166 

Cs,t(hs,ht)= k1Cs(hs)Ct(ht)+ k2Cs(hs)+ k3Ct(ht)    (4) 167 

where Ct and Cs are valid temporal and spatial covariance models, respectively. De Iaco et al. (2001) proved 168 

that for positive definiteness it is sufficient that k1 > 0, k2 ≥ 0 and k3 ≥ 0. It is interesting to note that from 169 

Eq. 4 follows that spatio-temporal covariance models collapses down to purely spatial model in cases where 170 

temporal covariance does not exist. Thus, the spatial approach could be viewed as a special case of spatio-171 

temporal modeling. 172 

The model in Eq. 4 corresponds to the spatio-temporal variogram shown in Equation 5. In the original 173 

procedure, De Iaco et al., 2001 estimated separate spatial (ht=0) and temporal (hs=0) variograms using the 174 

data. De Iaco et al., 2001 then combined these models to obtain the final spatio-temporal variogram model: 175 

𝛾𝑠,𝑡(hs,ht) = 𝛾𝑠,𝑡(hs,0) + 𝛾𝑠,𝑡(0,ht) – k𝛾𝑠,𝑡(hs,0)𝛾𝑠,𝑡(0,ht)    (5) 176 

where γs,t(hs,0)  and  γs,t(0,ht) are spatio-temporal variograms for ht=0 and hs=0, respectively (Figure 2). 177 

Parameter k is estimated from the data which makes the model easily applicable: 178 

𝑘 =
𝑘𝑠𝐶𝑠(0)+ 𝑘𝑡𝐶𝑡(0)− 𝐶𝑠,𝑡(0,0)

𝑘𝑠𝐶𝑠(0)𝑘𝑡𝐶𝑡(0)
            (6) 179 

where 𝑘𝑠𝐶𝑠(0) and 𝑘𝑡𝐶𝑡(0) are spatial and temporal sills (variances) obtained in modeling of separate 180 

spatial and temporal variograms. The only condition k has to fulfill in order to create an admissible 181 

covariance model is 182 

0 < 𝑘 ≤
1

𝑚𝑎𝑥 {𝜎𝑠
2(𝛾𝑠,𝑡(ℎ𝑠,0)); 𝜎𝑡

2(𝛾𝑠,𝑡(0,ℎ𝑡))} 
        (7) 183 

Due to the specifics of satellite data, we estimate both the covariance parameters and parameter k 184 

simultaneously. This approach accounts for constraints that assure a positive definiteness of the model (De 185 

Iaco et al., 2001). This simultaneous approach makes the model more applicable to sparse data and data 186 

with variable spatial coverage, as is often the case with satellite observations. 187 

We use a Gaussian variogram function with a nugget effect to model temporal covariance in the example 188 

presented here (for an overview of variogram models see Chiles and Delfiner, 2012). We use an exponential 189 

model for the spatial variogram. In both cases, we make this choice based upon visual inspection of local 190 

variograms at multiple estimation locations:  191 

 𝛾𝑡(ℎ𝑡)(𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛) = {
0, 𝑓𝑜𝑟 ℎ𝑡 = 0

𝜎𝑡
2(1 − exp (−

ℎ𝑡
2

𝑙𝑡
2 ) + 𝜎𝑛𝑢𝑔

2 , 𝑓𝑜𝑟 ℎ𝑡 > 0
   (8) 192 

𝛾𝑠(ℎ𝑠)(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙) = {
0, 𝑓𝑜𝑟 ℎ𝑆 = 0

𝜎𝑠
2(1 − exp (−

ℎ𝑆

𝑙𝑆
) + 𝜎𝑛𝑢𝑔

2 , 𝑓𝑜𝑟 ℎ𝑆 > 0
  (9) 193 
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where σ2 and 𝑙 are the variance and correlation length of the quantity being mapped, and σ2
nug is the nugget 194 

variance, typically representative of measurement and retrieval errors in the case of satellite observations.  195 

[Figure 2] 196 

Unlike the original procedure in De Iaco et al. (2001), we model the variogram using only two steps.   First, 197 

we calculate a raw spatio-temporal variogram based on the subsampled observations for each estimation 198 

grid cell:  199 

 𝛾(ℎ𝑠, ℎ𝑡) =
1

2
[𝑦(𝑥𝑖) − 𝑦(𝑥𝑗)]2        (10) 200 

where 𝛾 is the raw spatio-temporal variogram value for a given pair of observations y(xi) and y(xj), and ℎ𝑠  201 

and ℎ𝑡 are, respectively, the great circle distance and temporal distance between the spatio-temporal 202 

locations (𝑥𝑖 and 𝑥𝑗) of these observations.  203 

Second, we fit the theoretical variogram defined in Eq. 5 to the raw variogram using non-linear least 204 

squares. We subsequently calculate the spatiotemporal covariance using the following equation: 205 

𝐶𝑠,𝑡(ℎ𝑠, ℎ𝑡) = 𝐶𝑠,𝑡(0,0) − 𝛾𝑠,𝑡(ℎ𝑠, ℎ𝑡))      (11) 206 

Validity on the sphere. Most covariance models were originally designed for Euclidean space, and their 207 

validity in other coordinate systems cannot be assumed per se. Huang et al. (2011) examined the validity 208 

of several theoretical covariance models in spherical coordinate systems. However, this evaluation has not 209 

been done for the spatio-temporal product-sum covariance model. Other studies that use a product-sum 210 

covariance model typically assume the validity of this covariance model on a sphere (e.g., Zeng et al., 2013; 211 

Zeng et al., 2016). Results from Huang et al. (2011) explicitly validate the exponential covariance model 212 

on a sphere, as well as sums of the products of exponential covariance models and constants (provided that 213 

the constants are positive). The first term of the product-sum covariance model used in this study (Eq. 4) 214 

represents a Hadamard product (Million, 2007) of two positive definite matrices. According to Schur 215 

product theorem, a Hadamard product of two positive definite matrices necessarily gives a positive definite 216 

matrix (Mathias, 1993). It therefore follows that a generalized product-sum model (Equation 4) is valid on 217 

a sphere if its spatial component is valid on a sphere. 218 

2.3 Mapping using spatio-temporal moving window block kriging 219 

This section leverages the sampling function (Sect. 2.1) and the product-sum covariance model (Sect. 2.2) 220 

to implement a spatio-temporal version of moving window block kriging. A primary advantage of block 221 

kriging is its ability to estimate contiguous maps at any spatial resolution equal to or coarser than the spatial 222 

support (i.e. footprint size) of observations (refer to Sect. 1 and Tadić et. al. 2015). Unlike ordinary kriging 223 

method, the spatial support in block kriging corresponds to the average value within each chosen grid cell. 224 

Moving window block kriging requires solving a set of linear equations to obtain a set of weights (λ). These 225 

weights must be estimated for each prediction location using N associated observations:  226 

[
𝐐 + 𝐑 𝟏

𝟏𝑇 0
] [

𝛌
−𝜈

] = [
𝐪𝐀

1
]     (12) 227 

In this equation, R is a diagonal N×N nugget covariance matrix that describes measurement and retrieval 228 

errors, Q is a N×N covariance matrix among the N observations with individual entries as defined in Eqn. 229 

11, 1 is an N×1 unity vector, 𝜈 is a Lagrange multiplier, and qA is an N×1 vector of the spatio-temporal 230 

covariances between the N observation locations and the estimation grid cell, defined as: 231 
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𝑞𝐴,𝑖 =
1

𝑛
∑ 𝑞 (ℎ𝑠𝑖,𝑗

, ℎ𝑡𝑖,𝑗
)𝑛

𝑗=1      (13) 232 

where 𝑞𝐴,𝑖 is the covariance between the grid cell and observation i. 𝑞(ℎ𝑖,𝑗) is defined as 𝐶𝑠,𝑡  in Eqn. 11 233 

based on the distances ℎ𝑠𝑖,𝑗
 and ℎ𝑡𝑖,𝑗

 between observation i and n regularly-spaced locations within the grid 234 

cell. In the context of satellite measurements, n is a highest number of non-overlapping footprints contained 235 

within a grid cell and was calculated based on the relative size of the satellite footprint compared to  the 236 

size of the estimation grid cells. n varies with latitude, as the size of grid cells decreases with the distance 237 

from the equator. The system in Eqn. 12 is solved for the weights (λ) and the Lagrange multiplier (ν). We 238 

subsequently use these parameters to define the estimate (ẑ) and estimation uncertainty (σ2
ẑ) for the grid 239 

cell:  240 

ẑ= λTy       (14) 241 

σ2
ẑ = σAA - λ

T qA + ν      (15) 242 

where y is the N×1 vector of subsampled observations, and σAA is the variance of the observations at the 243 

resolution of the estimation grid cell, defined as:  244 

𝜎𝐴𝐴 =
1

𝑛2
∑ ∑ 𝑞(ℎ𝑗,𝑘)𝑛

𝑘=1
𝑛
𝑗=1      (16) 245 

In that equation, 𝑞 (ℎ𝑠𝑖,𝑗
, ℎ𝑡𝑖,𝑗

) is defined as 𝐶𝑠,𝑡 in Eqn. 11 based on the distances ℎ𝑠𝑖,𝑗
 and ℎ𝑡𝑖,𝑗

 between 246 

any combination of the n regularly spaced locations within the grid cell defined previously. 247 

3. Example applications 248 

We select three case studies of satellite Level 2 data to demonstrate the properties of the method developed 249 

in this paper: column-integrated dry air model fraction of CO2 (XCO2) from the Japanese Greenhouse Gas 250 

Observing SATellite (GOSAT), CH4 (XCH4) from the Infrared Atmospheric Sounding Interferometer 251 

(IASI), and solar-induced fluorescence (SIF) the Global Ozone Monitoring Experiment–2 (GOME-2). 252 

Level 2 datasets from GOSAT, IASI and GOME-2 have relatively different characteristics. For example, 253 

GOSAT observations are sparse while IASI and GOME-2 are abundant. These diverse datasets are therefore 254 

ideal for testing the method developed here. 255 

The method was demonstrated by producing two different sets of maps. First, it was applied at resolutions 256 

coarser than native (1 × 1°, 2.5 × 2°, and 1 × 1° for GOSAT, IASI and GOME-2, respectively) to 257 

demonstrate block kriging capabilities of the method (Section 3). Second, it was applied at the native 258 

resolution of the satellites for cross-validation (method evaluation) purposes (Section 4). 259 

3.1 Total column CO2 (XCO2) observed by GOSAT 260 

The Japanese Greenhouse Gas Observing SATellite (GOSAT) (e.g., Kuze et al., 2009), the first satellite 261 

dedicated to global greenhouse gas monitoring, was launched in 2009. Basic information about the satellite, 262 

its orbit configuration, and the CO2 column observations are given in our previous study (Tadić et al., 2014). 263 

It flies in a polar, sun-synchronous orbit with a 3-day repeat cycle and an approximate 13:00 LT overpass 264 

time. GOSAT has a nadir footprint of about 10.5 km diameter at sea level (Kuze et al., 2009) and 2×103 265 
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observations per week. The XCO2 observations from GOSAT have large retrieval uncertainties (e.g., 266 

O’Dell et al. 2012) and exhibit large spatial and temporal gaps (e.g., Fig. 3a). Although these XCO2 267 

observations are sparse and noisy, contiguous Level 3 maps are often desirable for environmental and 268 

ecological applications (Maksyutov et al., 2013; Liu et al., 2012). To this end, we generate global daily 269 

estimates for XCO2 (August 2-7, 2009) to match the timeframe used in Tadić et al., 2014. 270 

[Figure 3] 271 

We obtain bias-corrected and filtered GOSAT Level 2 observations using NASA’s Atmospheric CO2 272 

Observations from Space (ACOS) algorithm v3.4 release 3 (e.g., O’Dell et al., 2012; Crisp et al., 2012). In 273 

this study, we use spatio-temporal moving window block kriging to create a series of contiguous, in-filled 274 

global daily maps and associated uncertainties for 2-7 August 2009 (two repeat cycles) (Fig. 3a-c) at 1×1o 275 

resolution. We select the time period to match the time period from our previous study (Tadić et al., 2014). 276 

Unlike results from our previous study and other similar studies, which created estimates at 6-day or longer 277 

time periods (Hammerling et al., 2012a), we leverage the method developed here to produce maps at the 278 

daily scale.  279 

3.2 Total column CH4 (XCH4) observed by IASI 280 

The Infrared Atmospheric Sounding Interferometer (IASI) developed by the Centre National d’Etudes 281 

Spatiales (CNES) in collaboration with the European Organisation for the Exploitation of Meteorological 282 

Satellites (EUMETSAT) is a Fourier Transform Spectrometer based on a Michelson Interferometer coupled 283 

to an integrated imaging system that measures infrared radiation emitted from the Earth. It is carried by 284 

MetOp-A, a sun-synchronous polar orbit satellite which flows at an altitude of 817 km. Detailed information 285 

about the IASI instrument could be found elsewhere (Crévoisier et al., 2009a,b;  Massart et al., 2014). IASI 286 

has an instantaneous field of view of 50×50 km, composed of four pixels each 12 km in radius, delivering 287 

~56×103 XCH4 observations per week.  288 

[Figure 4] 289 

Methane Level 2 IASI (0-4 km) data were retrieved at the NOAA/NESDIS using the NUCAPS (NOAA 290 

Unique CrIS/ATMS Processing System) algorithm (Gambacorta, 2013; Xiong et al., 2013). For the ice-291 

covered ocean the data for the lower troposphere (0-4 km) are unreliable due to insufficient thermal contrast 292 

between the surface and the atmosphere. Filtering parameters have been provided by Xiong (2014, private 293 

communication). The data are available at http://www.nsof.class.noaa.gov/. Using the new method, we 294 

created a series of contiguous global daily maps and associated uncertainties for the Northern Hemisphere, 295 

for February 26-March 4, 2013 (i.e. Figure 4a-c) at 1o×1o resolution. We chose this time period to match 296 

the occurrence of the methane “anomaly” North of the coast of Scandinavia.  297 

3.3 Global land solar-induced fluorescence fields observed by GOME-2 298 

The GOME-2 (The Global Ozone Monitoring Experiment–2) instrument on board METOP-A (e.g., Joiner 299 

et al., 2013) observes solar-induced fluorescence (SIF). The GOME-2 spatial footprint (i.e. support) of the 300 

observations is 40 km × 80 km (Joiner et al, 2013), and the volume of available data is approximately 2×105 301 

SIF observations per week. 302 
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[Figure 5] 303 

Multiple recent studies have demonstrated the potential use of satellite observations of solar-induced 304 

fluorescence (SIF) for understanding the photosynthetic CO2 uptake at large scales (Joiner et al., 2011; 305 

Joiner et al., 2012; Joiner et al., 2013; Frankenberg et al., 2011; Frankenberg et al., 2012; Guanter et al., 306 

2012, Lee et al., 2013; Frankenberg et al., 2014). Satellite SIF measurements can be used with land surface 307 

models to understand GPP response to environmental stress (e.g., Lee et al., 2013) and to improve the 308 

representation of GPP. GOME-2 provides the highest spatial and temporal density of data, among all 309 

available datasets. 310 

In the example presented here we use SIF GOME-2 v.14 data (Joiner et al., 2013) with the approach 311 

described in Section 2 to create contiguous maps of SIF at a single spatial resolution (1o × 1o) and daily 312 

temporal resolutions. Maps of SIF and associated uncertainties are created at daily temporal resolutions 313 

covering 5-14 May, 2012, some of which are shown on Figures 5a-c.  314 

4. Method evaluation: accuracy, precision and bias 315 

4.1 Accuracy, precision and bias 316 

We use a leave-one-out cross validation technique to assess the performance of spatio-temporal (ST) versus 317 

spatial moving window block kriging. We produce these estimates at the native resolution of GOSAT, IASI 318 

and GOME-2 satellites/instruments, which allowed a direct comparison to measured values. For IASI and 319 

GOME-2, for each day in February 26-March 4, 2013, and May 5-14, 2012, respectively, 10% of available 320 

observational data were randomly selected for use in leave-one-out cross-validation and their coordinates 321 

extracted. For XCO2, all GOSAT XCO2 observations for each day in August 2-7, 2009, were used. We 322 

assess the accuracy (the difference between estimates and withheld observations) of both methods using 323 

two common measures: (1) Mean Absolute Error (MAE), and (2) Root Mean Squared Error (RMSE). We 324 

also use two more recently proposed measures (Li and Heap, 2011; Li, 2016) that remove the effect of 325 

unit/scal. The first is relative mean absolute error (RMAE) that is given as: 326 

 327 

RMAE =
1

𝑛
∑ |(ẑ𝑖 − 𝑦𝑖)/𝑜𝑖| × 100𝑛

𝑖=1       (17) 328 

 329 

and the second is relative root mean square error (RRMSE), as follows: 330 

 331 

RRMSE = [
1

𝑛
∑ (|𝑦𝑖 − ẑ𝑖|/𝑦𝑖)

2𝑛
𝑖=1 ]

1/2

× 100    (18) 332 

where n is the number of observations or samples, o is observed value, and p is predicted or estimated value. 333 

We assess the performance of each method using two additional measures: (3) the accuracy of the 334 

uncertainty bounds (the degree to which the reported uncertainties capture the difference between estimates 335 

and withheld observations) and (4) bias (the mean difference between estimates and withheld observations). 336 

We parameterize the temporal component of the spatio-temporal sampling function in such a way 337 

that observations located +/- 3 days from the actual date had 10% probability of being sampled 338 
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compared to observations from the actual day (see Fig 1a). We compare the results to spatial 339 

kriging estimates obtained in two different ways, based on observations only from the actual day 340 

(1d) and based on observations from +/-3 days from the actual day (7d). This latter case is 341 

analogous to the +/- 3-day window that we use for the ST approach. In this 7d case, we obtain 342 

these spatial kriging results by assuming the entire observational dataset collected within the 343 

selected time period (actual day +/- 3 days) is perfectly temporally correlated. In other words, we 344 

use all observations as though they were collected at the same time. We then produce estimates at 345 

locations of observations collected within the selected timeframe and compare the performance of 346 

the two methods. We repeat procedure described in Section 2 for every observation selected for 347 

cross-validation, and we average the statistics, displayed in Table 1.  348 

[Table 1] 349 

According to the results, the spatio-temporal approach performs better than the spatial (7d) approach in all 350 

three cases and in all performance measures (for example, spatial (7d) MAE was 6-10% larger). The 351 

comparison clearly shows that proper characterization of the temporal covariance between two points 352 

residing in different time periods (days), embedded into spatio-temporal approach, improves kriging 353 

performance. In IASI and GOME-2 cases, the spatio-temporal method also performed better than spatial 354 

(1d). However, in case of GOSAT data, spatio-temporal approach slightly underperformed the spatial (1d) 355 

approach having 12% higher MAE (please see Section 4.2 for discussion).  356 

We observed that RMAE and RRMSE error measures should be used with caution in cases when 357 

observations can take real zero values, like in the GOME-2 case. In such cases the division by close-to-zero 358 

values result in extremely high RMAE and RRMSE values, which overall limits the applicability of these 359 

error measures. 360 

We evaluate the accuracy of the uncertainty bounds by examining how often those bounds encapsulate 361 

withheld observations. The percentage of observations that fall outside the uncertainty bounds in spatio-362 

temporal approach is comparable to that of the spatial method, confirming the accuracy of the estimated 363 

uncertainty bounds (for normally-distributed data the percentage of observations that fall outside of the one, 364 

two, and three estimations standard deviation (σẑ) uncertainty bounds should be 32%, 5% and 0.3%, 365 

respectively). The fraction of observations that fall outside the uncertainty bound is generally lower than 366 

would be expected for normally-distributed data, and our results may indicate non-normal features in the 367 

data.  368 

4.2 When is spatio-temporal modeling recommended? 369 

A ST approach can afford advantages over purely spatial methods when temporal data correlations and data 370 

coverage are strong.  Indeed, in many cases, the ST approach is more accurate than a purely spatial method 371 

(Table 1). This result is consistent with existing literature which uniformly reports that ST approaches are 372 

more accurate than spatial approaches (Zeng et al., 2013; Guo et al., 2013; Zeng et al., 2016).  373 

However, although considering information from days preceding and following the target estimation day 374 

should in principle always provide a further constraint on the estimate, this does not guarantee that an ST 375 

method will always outperform a spatial-only method in practice.  The prime reasons for this are two-fold.  376 

First, because computational limitations cap the number of observations that can be considered, considering 377 

observations across multiple days necessarily leads to a reduction in the spatial density of observations 378 
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being considered.  This first factor can be partially alleviated by carefully designing the selection probability 379 

function (Eqn. 1).  The second reason is that implementing a ST approach involves the estimation of a larger 380 

number of covariance parameters (Eqn. 4-9) relative to a spatial-only approach, which can introduce 381 

additional uncertainty.  Indeed, we observe that the purely spatial approach performs better than the ST 382 

method in some cases (e.g., the GOSAT case).  383 

Overall, a ST approach is likely to outperform a spatial-only approach when the data exhibit one (or more) 384 

of three characteristics. First, a ST approach is likely better when the data are sparse or unequally 385 

distributed. In these cases, a ST approach can intelligently leverage data in adjacent time periods to 386 

compensate for the sparsity of data in the time period of interest. Second, an ST approach works well for 387 

datasets with temporal gaps (e.g., due to cloud cover or instrument malfunction). An ST approach can fill 388 

these gaps while a spatial-only approach cannot be used for temporal gap-filling. Third, an ST-approach is 389 

well-suited to datasets with regional biases that manifest in one time slice but that do not repeat in adjacent 390 

time slices. The difference between the performance of ST and S-approaches obtained through cross-391 

validation becomes most pronounced in processing datasets with measurement errors that are spatially but 392 

not temporally correlated. In these cases, an ST approach can use data from adjacent time periods to obtain 393 

an estimate, data that do not have the same regional, spatially-correlated biases. Although the resulting 394 

estimate may appear inferior during cross-validation, this is because that estimate will not reproduce 395 

regional biases in data from the time slice of interest. A spatial-only approach, by contrast, will reproduce 396 

these regional biases because it does not use data from adjacent times when creating the estimate. As a 397 

result, a spatial-only approach will appear to perform better in cross validation, but the ST approach will 398 

more accurately reflect the true, underlying process.  399 

5. Conclusions 400 

In this study, we develop a method to create high spatio-temporal resolution maps from satellite data using 401 

spatio-temporal moving window block kriging based on product-sum covariance model. The method relies 402 

on a limited number of assumptions: that the observed physical quantity is spatio-temporally auto-403 

correlated, and that its nature can be inferred from the observations.  404 

The method has several advantages over previously applied methods. Apart from the advances alluded to 405 

in Sect. 1: 1) it improves covariance parameters estimation procedure because it does not model spatial and 406 

temporal covariance separately, 2) it allows for great flexibility in the choice of sampling function and 3) it 407 

provides estimates even for the time periods when measurements are not available. It can exploit 408 

correlations with both past and future periods of the observed time spot to provide the most accurate 409 

estimates. 410 

We demonstrate the applicability of this method by creating Level 3 products from the GOSAT XCO2, IASI 411 

CH4 and GOME-2 SIF data. Sparse XCO2 observations from GOSAT and dense XCH4 and SIF 412 

observations from IASI and GOME-2 make a perfect test ground for the method. We show that the proposed 413 

method can even map XCO2 on daily time scales. The method generally yields more precise and accurate 414 

(and unbiased) estimates compared to spatial method which used the same observations but assumed perfect 415 

temporal correlation between data. The factors which could affect the performance of the ST method are 416 

discussed in Section 4.2. 417 

This approach could be used in the future to produce real-time estimates not only of XCO2, XCH4 or SIF, 418 

but of other environmental data observed by satellites which exhibit spatio-temporal autocorrelations. 419 

Especially important could be satellite datasets that have spatially, but not temporally, correlated errors. In 420 
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such cases, sampling across several time periods could perhaps help isolate and remove them, which should 421 

be a subject of further studies.  422 

The method could be applied in a standalone mode or as part of a broader satellite data processing package. 423 

Maps produced by the spatio-temporal approach could then be incorporated into physical and 424 

biogeochemical models of the Earth system.   425 

6. Code availability 426 

The documented Matlab source code is available at the Researchgate website 427 

(https://www.researchgate.net/publication/311595272_Spatio-428 

temporal_approach_to_moving_window_block_kriging_of_satellite_data_v10_code; DOI: 429 

10.13140/RG.2.2.21411.04643). 430 
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Table 1. Cross-validation results of GOSAT XCO2, IASI XCH4 and GOME-2 SIF datasets using spatio-558 

temporal and spatial methods, including mean absolute error (MAE), root mean squared error (RMSE), 559 

relative mean absolute error (RMAE), relative root mean square error (RRMSE), percent of observations 560 

lying outside of one, two, and three standard deviations (σẑ) of the mapping uncertainty, and mean 561 

difference. MAE, RMSE and bias units for GOSAT, IASI and GOME-2 are ppm, ppb and mW/m2/sr/nm, 562 

respectively. RMAE and RRMSE are unitless, and due to the reasons explained in Section 4.1 given only 563 

for GOSAT and IASI. Shaded fields represent best estimate in each category for every satellite.  564 
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ST 1d 7d ST 1d 7d ST 1d 7d 

Estimates 

Mean absolute error 
(MAE) 

0.83 0.74 0.89 19.19 20.23 21.04 0.52 0.54 0.54 

Root mean squared 
error (RMSE) 1.12 0.98 1.21 25.25 27.10 27.77 0.68 0.69 0.69 

Relative mean 
absolute error 
(RMAE) 

0.22 0.19 0.23 1.04 1.09 1.14 - - - 

Relative root mean 
square error (RRMSE) 0.29 0.25 0.31 1.37 1.46 1.50 - - - 

Uncertainties 

% observations falling 
outside 1σẑ 

uncertainty 
9.13 15.03 10.70 11.02 9.06 13.84 14.60 12.14 24.80 

% observations falling 
outside 2σẑ 

uncertainty 
1.12 3.01 1.39 0.48 0.51 0.86 1.20 0.64 4.33 

% observations falling 
outside 3σẑ 

uncertainty 
0.067 0.52 0.13 0.04 0.046 0.022 0.11 0.05 0.83 

Bias Mean difference -0.012 0.0066 -0.034 0.28 -0.14 0.58 0.016 0.0013 0.032 
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Figure 1. (a) Sampling probability as a decreasing function of spatial and temporal distance as used in this 569 

study, (b) The typical example of subsampled IASI Level 2 XCH4 (altitude below 4 km) data for a selected 570 

estimation location (yellow circle). Color of observations shows semivariance between observation and 571 

estimation location (blue-lowest, red-highest). Due to stronger temporal covariance, the relative decrease 572 

of the sampling probability along temporal axis is smaller than with spatial distance. 573 

 574 

 575 

 576 

 Figure 2. Illustration of experimental and fitted theoretical spatio-temporal variogram for GOSAT XCO2 577 

data.  578 

 579 

 580 

Figure 3. (a) GOSAT/ACOS v3.4 XCO2 retrievals (Level 2 data) (ppm) for August 3, 2009 (b) Contiguous 581 

global GOSAT/ACOS v3.4 maps (Level 3 data) (ppm) for the same day obtained using Spatio-temporal 582 

Moving Window Block Kriging at 1 × 1° spatial resolution, (c) associated uncertainties, given as 1-sigma 583 

(σẑ) (ppm). 584 

 585 

 586 
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 587 

Figure 4. (a) IASI XCH4 (0-4 km) retrievals (ppb) for March 2, 2013 (sea only), (b) Contiguous IASI maps 588 

for Northern Hemisphere for the same day obtained using Spatio-temporal Moving Window Block Kriging 589 

at 2.5 × 2° spatial resolution and (c) associated uncertainties, given as 1-sigma (σẑ) (ppb).  590 

 591 

 592 

 593 

Figure 5. (a) GOME-2 SIF v14 retrievals (Level 2 data) (mW/m2/sr/nm) for May 5, 2012, (b) Contiguous 594 

global GOME-2/SIF v14 maps (Level 3 data) (mW/m2/sr/nm) for the same day obtained using Spatio-595 

temporal Moving Window Block Kriging at 1 × 1° spatial resolution, (c) associated uncertainties, given as 596 

1-sigma (σẑ) (mW/m2/sr/nm).  597 


