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Reply to reviewer 1: 

We thank the reviewers for their positive assessment of the manuscript and for their helpful comments. 
In the text below, we include the reviewer’s original comments in italics, while our responses are listed 
in regular font. 

Reviewer: The aims of this study are scattered in the introduction and should be clearly presented in the 
end of the introduction 

Authors: We condensed the goals of the study into one paragraph, now Lines 70-77. 
 

Reviewer: As to spatial-temporal approach, it seems some recent developments since 2011 have been 
missed, which should be included. Please see reference 1 for details. 

Authors: Both provided references are included now (Lines 69 and 325)  
 

Reviewer: Samples size is missing for the three datasets. Please provide. 

Authors: The sample was specified in Lines 100. 
 

Reviewer: It is not clear what software was used for this study. Please refer your readers to it so that they 
could apply your method to their study. 

Authors: We specified the software package in Line 77. 
 

Reviewer: The accuracy measures used, MAE and RMSE, are data unit/scale and variation dependent as 
detailed in reference 2. Please see the recommendations in this reference for accuracy measure selection. 

Authors: Per reviewer suggestion, we included two unit-independent error measures, RMAE and RRMSE 
in the revised version of the manuscript., Lines 326-333 and Table 1. 
 

Reviewer: A statistical test of the cross-validation results in Table 1 may provide more convincing evidence 
to show the difference between the methods compared. 

Authors: Please see our response to Review 2, to a similar comment. 
 

Reviewer: The conclusion: it is largely repeating what has been presented in the previous sections. It could 
be condensed by removing the repetitions. 

Authors: We considerably shortened the second paragraph of the Conclusion section, per reviewer 
request. 
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Minor issues: 

Reviewer: Spell out GOSAT, IASI and GOME-2 in the abstract or delete them. 

Authors: Corrected. 
 

Reviewer: Lines 98-99: this sentence suggests that the method is only applicable for a small region. Please 
revise and clarify. 

Authors: The confusing sentence has been deleted. 
 

Reviewer: Lines 144-145: are ‘generalized product-sum model’ and ‘generalized product-sum covariance 
model’ the same? Please keep the name consistent in the paper. 

Authors: Corrected. 
 

Reviewer: Line 173: delete one ‘then’. 

Authors: Corrected. 
 

Reviewer: For XCO2, only 6 day data were used. Is this too short for ST method? Is it a factor for the poor 
performance of ST method? 

Authors: In the study by Hammerling et al., 2012 the authors examined optimal temporal aggregation 
time periods for XCO2 retrievals by analyzing the tradeoff between not having too much temporal 
variability vs. having sufficient observations in the context of spatial-only interpolation approach. They 
reported that 4-days temporal resolution gave the best results which points out to the fact that expected 
decorrelation temporal “length” of CO2 field is at the order of magnitude of synoptic scales.  Based on 
their analysis, 6d should not be too short. 

We believe that the factor affecting “poor” performance of ST (in case of XCO2) compared to what could 
be expected are different. We changed the following paragraph to make it more clear (Lines 391-399): 

” The difference between the performance of ST and S-approaches obtained through cross-validation 
becomes most pronounced in processing datasets with measurement errors that are spatially but not 
temporally correlated. In these cases, an ST approach can use data from adjacent time periods to create 
the estimate, data that do not have the same regional, spatially-correlated biases. Although the resulting 
estimate may appear inferior during cross-validation, this is because that estimate will not reproduce 
regional biases in data from the time slice of interest.” Note that the cross-validation errors and true errors 
are not identical, the former is just an estimate of the latter. 
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The direct conclusion from this statement is that ST could perform worse in cross-validation, while in fact 
it filters regionally correlated measurement errors (not reproduced in time) which brings the focus back 
on whether the leave-one-out cross validation is the best method for validating this and similar 
techniques, although it has been used in a series of recent papers (Guo et al., 2013; Zeng et al., 2013, 
Tadic et al., 2015; Zeng et al., 2016). Please see the response to Reviewer 2.  We also checked (not shown 
in the paper) the timeseries of estimates at selected locations where the difference between S and ST was 
particularly pronounced. We found that S method produced unrealistically high oscillations in estimates 
along the temporal axis, while ST kept estimated signal much smoother, which also supports the 
conclusions.     

A hypothetical alternative approach to improve the apparent cross-validation performance would be to 
explicitly model the retrieval error covariance matrix, instead of assuming the independence of retrieval 
errors, or, in other words, to isolate measurement clusters having regionally correlated errors. However, 
such information is usually not available. Interestingly, the very difference in performance between ST vs. 
S could be used to address this important, but still not fully resolved issue.    

Reference: Hammerling, D. M., A. M. Michalak, and S. R. Kawa (2012), Mapping of CO2 at high 
spatiotemporal resolution using satellite observations: Global distributions from OCO-2, J. Geophys. Res., 
117, D06306, doi:10.1029/2011JD017015. 

 

Reviewer: Lines 345-346: ST method seems not that poor for GOME-2 data. Please revise. 

Authors: Corrected. 

 

References: 

Guo, L., Lei, L. and Zeng, Z.: Spatiotemporal correlation analysis of satellite-observed CO2: Case studies in 
China and USA. Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, 21-26 
July, Melbourne, VIC, 2013. 

Zeng, Z., LiPing, L., L. LiJie, G., Li, Z., Bing, Z.,: Incorporating temporal variability to improve geostatistical 
analysis of satellite-observed CO2 in China, Chinese Science Bulletin, 58(16), 1948-1954, 2013. 

Zeng, Z.; Lei, L.; Hou, S.; Ru, F.; Guan, X.; Zhang, B., A regional gap-filling method based on 
spatiotemporal variogram model of columns, IEEE Transactions on Geoscience and Remote Sensing, 
2014, 52, 3594-3603. 

Guo, L., Lei, L., Zeng, Z.C., Zou, P., Liu, D. and Zhang, B., 2015. Evaluation of spatio-temporal variogram 
models for mapping Xco 2 using satellite observations: A case study in china. IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing, 8(1), pp.376-385. 
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Tadić, J., Qiu, X., Yadav, V. and Michalak, A.: Mapping of satellite Earth observations using moving 
window block kriging, Geosci. Model Dev., 8, 1–9, doi:10.5194/gmd-8-1-2015, 2015. 

Guo, L., Lei, L., Zeng, Z.C., Zou, P., Liu, D. and Zhang, B., 2015. Evaluation of spatio-temporal variogram 
models for mapping Xco 2 using satellite observations: A case study in china. IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing, 8(1), pp.376-385. 

Zeng, Z.,  Lei, L.,  Strong, K., Jones, D. B. A., Guo, L., Liu, ., Deng, F., Deutscher, N. M., Dubey, M. K., 
Griffith, D. W. T., Hase, F.,  Henderson, B., Kivi, R., Lindenmaier, R., Morino, I., Notholt, J., Ohyama,H., 
Petri, C., Sussmann, R., Velazco, V., A.,  Wennberg, P., O., and Lin, H.: Global land mapping of satellite-
observed CO2 total columns using spatio-temporal geostatistics, International Journal of Digital Earth, 
DOI: 10.1080/17538947.2016.1156777, 2016. 

 

 

Reply to reviewer 2: 

Reviewer: I will be upfront and say that as reviewer, I am not well-‐versed in the geostatistical estimation 
literature, and am rather an expert on these carbon cycle variables themselves. So my review will focus 
less on the details of this particular approach, and rather some bigger picture questions. 

My main complaint on this work, which honestly is more a complaint about the entire field who does this, 
and is not particular to this paper, is that it fails to really explain the utility of kriged satellite data beyond 
simply “pretty pictures”. Most data users who attempt to extract scientific results from the data do not 
use  3D maps. The reason is the data assimilation systems typically ingest the sounding (level- ‐2) data 
directly (e.g., Houweling et al., 2016; Massart et al., 2016). Therefore, some commentary (like a   
paragraph in the introduction section) on  the use of level-‐3 maps  vs. direct data assimilation  approaches  
would be worthwhile,  perhaps  pointing to scientific results using this method that would have been 
missed otherwise.  

Authors: We would like to emphasize that the methodological advances we presented go beyond the 
application space defined by three chosen examples. Also, considering the presented method purely as a 
“mapping” method represents an over-simplification. The method can be, of course, used to produce 
maps, but it is also capable of upscaling the observations providing estimates at support larger than the 
support of observations, with associated uncertainties. Example: Imagine that we intend to compare 
XCO2 derived from OCO-2 and GOSAT retrievals. The direct comparison is not possible because of at least 
three reasons: (a) the measurements are not collocated (and thus mapping is required), (b) the averaging 
kernels are different, and (c) the measurements have considerably different spatial statistical properties 
- support (and thus upscaling of the OCO-2 observations is required). The differences in support can cause 
substantial differences in reported values (see Tadic and Michalak, 2016). The example shows that even 
a simple comparison of the same physical quantity measured by two satellites requires a relatively 
complicated mapping and upscaling methods. The similar conceptual problem remains when model 
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outputs, usually given at regular grids and standardized support, are compared to observational datasets, 
and when satellite products have to be compared to in situ observations (for example Aircore or aircraft 
profiles) which are not collocated. Interpolated products could be useful for providing background 
concentration estimates or initial condition estimates, for example in inverse modeling studies. 

NOAA has recognized the problem stemming out from the inconsistency in spatio-temporal coverage, and 
provided justification for mapping: http://www.esrl.noaa.gov/gmd/ccgg/globalview/index.html.  

The data assimilation systems indeed ingest observations rather than mapped products, but mapping and 
upscaling method presented here is not limited to greenhouse gas measurements. While transitions of 
the type Level 2(obs.) - > Level 4(flux patterns), and later eventually Level 4 - > Level 3(maps) are possible, 
not all the physical quantities have Level 4 data. Actually the solar induced fluorescence (SIF) is a good 
example. 

Level 3 data have been used or generated in a number of recent studies, at the same time providing the 
insight into their value and scope of application: Liu et al., 2012; Basu et al., 2014; Maksyutov et al., 2013, 
etc. 

There are at least few studies we are aware of that currently use mapped and upscaled products: 

1) Shiga at al. (Carnegie institution for science) currently use spatio-temporally (ST) mapped SIF as 
ancillary data in inversion studies, and preliminary results show that ST product is more consistent 
with atmospheric CO2 observations, then purely spatial product. The publication will follow soon 
(private communication). 

2) Zheng et al. (Yale University) currently use mapped SIF product to study the impact of extreme 
drought on photosynthesis. The publication will follow soon, too (private communication). 
 

Reference: Tadić, J. M., & Michalak, A. M. (2016). On the effect of spatial variability and support on 
validation of remote sensing observations of CO2. Atmospheric Environment, 132, 309–316. 

Liu, J., I. Fung, E. Kalnay, J.-S. Kang, E. T. Olsen, and L. Chen (2012), Simultaneous assimilation of AIRS Xco2 
and meteorological observations in a carbon climate model with an ensemble Kalman filter, J. Geophys. 
Res., 117, D05309,doi:10.1029/2011JD016642. 

Basu, S., M. Krol, A. Butz, C. Clerbaux, Y. Sawa, T. Machida, H. Matsueda, C. Frankenberg, O. P. Hasekamp, 
and I. Aben (2014), The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, 
CONTRAIL, and IASI, Geophys. Res. Lett., 41, 1809–1815, doi:10.1002/2013GL059105. 

Maksyutov,  S.,  Takagi,  H.,  Valsala,  V.  K.,  Saito,  M.,  Oda,  T., Saeki, T., Belikov, D. A., Saito, R., Ito, A., 
Yoshida, Y., Morino, I.,  Uchino,  O.,  Andres,  R.  J.,  and  Yokota,  T.:  Regional  CO2 flux  estimates  for  
2009–2010  based  on  GOSAT  and  ground-based CO2 observations, Atmos. Chem. Phys., 13, 9351–9373, 
doi:10.5194/acp-13-9351-2013, 2013. 

 

http://www.esrl.noaa.gov/gmd/ccgg/globalview/index.html
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Reviewer: Beyond that, the few basic statistics on the quality of the spatio-‐temporal (ST) method over 
and above pure spatial methods do not really argue that the ST approach buys you much. The actual 
statistics given in Table 1 are really rather similar between pure spatial vs. the ST method. So the paper 
seems to argue that this is really useful, but the data really don't back it up.  My read is that 1-‐3 day 
spatial approaches are really quite adequate for this purpose. 

Finally, the validation approach is probably not valid for the GOSAT case. This is because there are only 
~14 orbits per day, and huge swaths of the globe are missing even if all the data are used. Therefore, you 
don’t really learn the error statistics unless you perform a simulation-‐based test where you start with a 
“true” map, sample it like the satellite would, along with realistic observation errors, and then run it 
through the kriging algorithm to reconstruct the 1-‐day map.  This paper would be much enhanced if such 
a realistic validation test were performed. I realize the authors can easily say “beyond the scope of this 
paper” because what I am suggesting is not easy, but it is really the only way I can see to get at the true 
errors in the proposed algorithm. 

Authors: Two comments listed above are related to each other and will be handled together. First, the 
statistics differs in three test cases so the general conclusions would be pretentious. We provided 
potential explanations for a poorer performance of the ST approach in GOSAT cross-validation (Lines 384-
399). We would like to point out to our reply to Reviewer 1 about errors that are spatially but not 
temporally correlated, and its effect on the apparent poorer performance of the method, in one satellite 
case and based on the specific metrics used here. The poorer performance could actually result from ST 
method providing more accurate, unbiased estimates, yet this has to be further studied.   

While leave-one-out cross validation might not be the best method for providing the accurate error 
statistics (as we pointed out both in our reply to reviewer 1 and in the manuscript (Lines 394-396: 
“Although the resulting estimate may appear inferior during cross-validation, this is because that estimate 
will not reproduce regional biases in data from the time slice of interest.”) it has a long tradition as tool 
used to assess the performance of similar methods, and we decided to present its results, but pointing 
out to potential problems in using it. The synthetic study suggested by Reviewer only for GOSAT case 
could be usable, but there are at least two entailed problems: (1) we would like to keep consistent error 
statistics tools across all examples and, (2) synthetic experiment like the suggested one would require a 
realistic individual retrieval uncertainty estimate. Making assumption about the individual retrieval 
uncertainty would just mean pushing the problem down the line. There is a long list of studies (see 
Reference in response to reviewer 1) which all relied upon leave-one-out cross validation done in the 
manner similar to the one from this study, and to assure comparability between the results we followed 
the same pattern. 
 

Reviewer: Abstract: Makes that statement that this approach only requires a limited number of 
assumptions – that “the observable quantity exhibits spatial and temporal correlations that are inferable 
from the data.” But this seems like a single assumption?  Are there more assumptions? Please reword as 
necessary. 
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Authors: Corrected. 
 

Reviewer: Section 2.1 I don’t get why subsampling is necessary. The data volumes don’t seem that large. 
Is it really just because using ALL the data to define the correlations is computationally infeasible? Please 
expand on this point a bit in this section. Or it just doesn’t buy you anything? If the latter, then how do you 
determine how much subsampling is justified before you start to introduce errors? 

Authors: The subsampling is always necessary in moving window approach to preferentially focus on 
variability near (in spatio-temporal sense) an estimation location, independently of the available number 
of observations. In addition, in case of GOME-2 and IASI the number of available observations significantly 
grows if multiple time slices are included. For example, the covariance matrix covering two weeks of IASI 
data would have 3 billion entries. It is clear that some kind of subsampling has to be done in order to keep 
the problem at computationally feasible levels. The estimates do not degrade gradually when subsampling 
fewer and fewer data points, they rather stay fairly constant over a certain range of subsampled dataset 
sizes, and then start to degrade at certain level. To determine such a level one has to produce a series of 
estimates for the same location while subsampling fewer and fewer measurements, until estimates start 
to differ above the acceptable threshold. We implemented similar approach (Lines 100-101). 
 

Reviewer: Equation 1: I just don’t get the difference between the Ps and Pt terms. Pt I get. Ps I don’t. For 
instance, in this method, soundings that are 0.5 km from the center of the grid box are 4 times more likely 
to be selected than soundings 1 km from the center. Even when the spatial resolution of the soundings 
themselves is 10 km!, and typically decorrelation lengths of CO2 and CH4 in the atmosphere are more like 
100+ km!  It seems like an exponential structure for Ps makes a lot more sense.  Or at least something like 
hs’ = max(hs, hmin) where hmin is some minimum resolution distance. (And for Co2 and CH4 I would argue 
making this at least 10-‐20 km).  There is no physical justification actually cited for these functional forms. 
If the functional form for Ps is changed to exponential, then obviously the entire discussion from likes 122-
‐134 could be shortened or eliminated. 

Authors: The choice of the form of the subsampling function is one of the subjective choices the modeler 
has to make. Instead of arguing why we did select Ps and Pt forms as in the paper, we would like to explain 
why the 1/ht2 was not used. The satellite data (Level 2) come with continuous spatial and discretized 
temporal coordinates. Phrased differently, data are temporally pre-aggregated (day 1, day 2, etc.). Any 
form of the temporal component of the sampling function from 1/ht

n family would lead to sampling only 
from the time slice of the estimation location because 1/0 would result in an infinite sampling probability 
for such observations, unlike observations in other time slices. So the selection of exponential form for 
the temporal component partially came out of necessity. We do not quite understand the argument about 
0.5/1km distance from the center given the spatial resolution 10km (GOSAT). While sampling probability 
is indeed 4 times higher for 0.5km distant observations, the number of available observations in 
combination with selected number of points to be subsampled leads to sampling of all of those points 
regardless a relative sampling probability difference between them. It is more important that the sampling 
probability between points 10 and 100 km away differs by factor of 100. We absolutely accept the idea 
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that sampling probability function form can take different shapes, and that it actually can account for 
anisotropy, and the choice presented in the paper represents just one example. There is indeed no 
physical justification for the forms selected, like reviewer commented, and in principle it could be replaced 
with exponential form. However, we do not see that it makes the conceptual presentation of the approach 
stronger. 
 

Reviewer: Line 268: …ecological applications. Please provide some references here. 

Authors: We included two references in the Line 269 per reviewer suggestion. 
 
 

Reviewer: Line 229: “is a Lagrange multiplier” is missing the actual variable. 

Authors: Corrected. 

Reviewer: Line 316 (and later): ST is never defined. Suggestion you modify the sentence here to say 
…performance of spatio-‐temporal (ST) versus… 

Authors: Corrected. Thank you for the suggestion. 
 

Reviewer: Page 10, top: I disagree with the conclusions stated here. The MAE and RMSE even for the 7d 
results seem really only marginally better for ST. And 1d pure spatial, which seems like a more fair 
comparison as the ST is also done at the daily scale, seems to do as well or better than ST! Also the % lying 
outside the different uncertainy bounds doesn’t seem useful, especially considering that the numbers are 
significantly less than that expected from pure Gaussian errors. Could the authors explain why they are so 
much less? 

Authors: It is questionable if a comparison between 1d spatial and ST is more fair. In the case of a 
comparison between ST and 7d spatial we actually produce estimates using the same data, it is just that 
in the ST approach the temporal covariance between them is properly characterized, and in the 7d spatial 
it is not the case. But one might argue that it is more fair, given that we use the same observational data 
to produce estimates. The 1d spatial case can produce apparently better statistics because of the biases 
that are spatially correlated but do not reproduce in time, like we mentioned before, and thus it comes 
back to the question of the selection of the best error metrics, because leave-one-out cross validation 
yields the numbers which show the degree of regional consistency between the data, not its true accuracy. 
This discussion is provided in the paper at Lines 391-399. Yet unpublished results show that, based on BIC 
score, ST method yields SIF estimates that are more consistent with atmospheric observations of CO2 
(private communication, Shiga et al., Carnegie Institution for Science). 

Reviewer:  Conclusions near line 404: Again I just don't the ST approach being better. It is only marginally 
better than 7d, and is slightly worse than 1d.  At best this is a wash. Please reword. 
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Authors: We cite the commented sentence: “The method generally yields more precise and accurate (and 
unbiased) estimates compared to spatial method which used the same observations but assumed perfect 
temporal correlation between data.” 

We believe it is clear that this sentence was meant to express that ST yield better results than 7d 
(“…compared to spatial method which used the same observations but assumed perfect temporal 
correlation between data…”). It did not mean to address 1d spatial vs ST comparison. In case of GOSAT, 
IASI and GOME-2 ST yielded 6, 9 and 4% lower MAE. Those values are consistent with other studies that 
evaluated ST vs spatial (Guo et al., 2013, Zeng et al., 2013 and 2016).  

At the end, the reported statistics for GOME-2 is now slightly changed in the Table 1, as we found a small 
glitch in the code we used to process GOME-2 dataset. Now, the S method was found to produce better 
estimates than ST approach only in GOSAT 1d case, for the reason we discussed above. In all other cases, 
ST method was found to yield best error statistics.  
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Abstract.  Numerous existing satellites observe physical or environmental properties of the Earth system. 7 

Many of these satellites provide global-scale observations, but these observations are often sparse and 8 

noisy. By contrast, contiguous, global maps are often most useful to the scientific community (i.e., level 3 9 

products). We develop a spatiotemporal moving window block kriging method to create contiguous maps 10 

from sparse and/or noisy satellite observations. This approach exhibits several advantages over existing 11 

methods: 1) it allows for flexibility in setting the spatial resolution of the level 3 map, 2) it is applicable to 12 

observations with variable density, 3) it produces a rigorous uncertainty estimate, 4) it exploits both 13 

spatial and temporal correlations in the data, and 5) it facilitates estimation in real time. Moreover, this 14 

approach only requires a limited number of assumptions –the assumption that the observable quantity 15 

exhibits spatial and temporal correlations that are inferable from the data. We test this method by creating 16 

Level 3 products from satellite observations of CO2 (XCO2) from the Greenhouse Gases Observing 17 

Satellite (GOSAT,), CH4 (XCH4) from the Infrared Atmospheric Sounding Interferometer (IASI) and 18 

solar-induced chlorophyll fluorescence (SIF) from the Global Ozone Monitoring Experiment–2 (GOME-19 

2.). We evaluate and analyze the difference in performance of spatio-temporal vs. recently developed 20 

spatial kriging methods. 21 

1. Introduction 22 

Satellite observations of the Earth’s surface and atmosphere provide a valuable window into the 23 

functioning of the Earth system. Satellites often provide global observations, but these observations are 24 

rarely uniform or contiguous in space/time.  The observations can be non-contiguous due to satellite orbit 25 

geometries and periods, geophysical limitations (e.g. cloud cover), and temporary instrument 26 

malfunctions. Furthermore, satellites may provide a large quantity of data, but individual observations can 27 

have a large noise-to-signal ratio. It is often necessary to spatially interpolate the data in order to organize 28 

the data onto a regular grid, query the data at a particular location of interest, estimate data at unsampled 29 

times and/or locations, and/or map the underlying signal in a noisy dataset. These gridded, interpolated 30 

maps are commonly named “Level 3” data (e.g. NASA, 2014) and are often part of the standard suite of 31 

satellite data products.  32 

CO2 column observations (XCO2) from the Greenhouse Gases Observing Satellite (GOSAT), CH4 33 

column observations (XCH4) from the Infrared Atmospheric Sounding Interferometer (IASI) and solar-34 

induced chlorophyll fluorescence (SIF) observations from The Global Ozone Monitoring Experiment–2 35 

(GOME-2) provide prototypical examples of these challenges, and these three satellites are the primary 36 

application used throughout this work (see Section 3).  37 

The most commonly-used method for creating Level 3 maps from satellite data is binning. This approach 38 

involves taking the mean of all observations within a given grid cell or “bin” (see Kulawik et al., 2010, 39 

and Crévoisier et al., 2009 for examples). The binning method, however, has a number of shortfalls that 40 
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can lead to inconsistent or inaccurate results. First, different bins contain variable numbers of 41 

observations. As a result, some bins will be well-constrained by the data while others may be based upon 42 

sparse, noisy observations. Second, binning does not produce uncertainty estimates. Third, this method 43 

cannot extrapolate the unknown quantity to bins without any observations. 44 

A broad class of geostatistical methods known as kriging provides an alternative approach to mapping 45 

satellite observations. Kriging is a best linear unbiased estimator (for kriging see Chiles and Delfiner, 46 

2012), where covariance functions are used to represent correlations among data. As a result, kriging can 47 

account for a variable density of observations and can estimate uncertainties in the resulting maps. 48 

Various forms of kriging have recently been used to map satellite Earth observations, particularly for 49 

XCO2 (e.g., Hammerling et al. 2012a,b; Tadić et al., 2015; Zeng et al., 2013; Guo et al., 2013, Zeng et al., 50 

2016). Hammerling et al. (2012a,b) presented an approach to map Orbiting Carbon Observatory-2 (OCO-51 

2) and GOSAT XCO2 observations, respectively, with non-stationary properties. In our previous study 52 

(Tadić et al., 2015) we extended that approach to create XCO2 maps that can have a different spatial 53 

resolution from the resolution or footprint of the original satellite observations. Our previous study and 54 

those of Hammerling et al. (2012a,b) accounted for spatial covariances among observations but did not 55 

include a temporal component. The present study extends this geostatistical framework from a purely 56 

spatial to a spatiotemporal domain.  57 

Spatiotemporal approaches to interpolation can provide a number of advantages relative to purely spatial 58 

methods (e.g. Zeng et al., 2016; Guo et al., 2013). A purely spatial approach will usually aggregate 59 

observations into temporal blocks; observations within the same block effectively have the same time 60 

stamp whether or not those observations are actually synchronous (e.g., Tadić et al., 2015; Hammerling et 61 

al., 2012a,b). Any real temporal variability within a block becomes noise. A spatiotemporal approach, by 62 

contrast, treats time as an explicit dimension and models covariances among data as a function of time. 63 

As a result, the spatiotemporal approach can (1) fill in temporal gaps in the observations, (2) create maps 64 

at higher temporal resolutions than purely spatial approach, (3) produce more accurate estimates when 65 

observations have variable spatio-temporal coverage, (4) predict future values (i.e. extrapolate 66 

temporally).  67 

A handful of recent studies have considered temporal relationships when mapping satellite observations 68 

of XCO2. These studies have either used various forms of Kalman smoothing (e.g., Katzfuss and Cressie 69 

2011, Katzfuss and Cressie 2012, Nguyen et al. 2014) or geostatistics (e.g., Guo et al. 2013; Zeng et al. 70 

2013; Zeng et al. 2016). The former group of studies leverages Kalman smoothing to improve the 71 

computational tractability of mapping dense or abundant datasets, like OCO-2 and the Atmospheric 72 

Infrared Sounder (AIRS). The latter group of studies, by contrast, has applied geostatistics to sparse 73 

datasets like those from the GOSAT satellite. A detailed review of spatial and spatio-temporal mapping 74 

methods has been published recently (Li and Heap, 2014). 75 

The model developed in goal of this paper also uses geostatisticsstudy is to mapdevelop a geostatistical 76 

spatio-temporal mapping and upscaling method (applicable, but not limited to, satellite observations of 77 

XCO2, but we present) that exhibits several advances relative to previous efforts.methods. It can: (1) fill 78 

in temporal gaps in the observations, (2) create maps at higher temporal resolutions than purely spatial 79 

approach, (3) produce more accurate estimates when observations have variable spatio-temporal 80 

coverage, (4) predict future values (i.e. extrapolate temporally). Among other improvements, we develop 81 

an efficient method to subsamplefor subsampling satellite observations and utilize the product-sum 82 

covariance model (e.g., De Iaco et al., 2001) that is easy to parameterize, which makes it applicable to 83 

both abundantdense and sparse datasets. The entire work has been conducted in Matlab 2012a. 84 

Section 2 of this study describes the presented model in detail; it describes an efficient subsampling 85 

procedure that can handle very large datasets and a covariance model that can estimate both spatial and 86 
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temporal relationships in the data. We then incorporate these components into a spatiotemporal version of 87 

moving window block kriging. In sections 3 and 4, we subsequently apply this model to map GOSAT 88 

XCO2, IASI XCH4 and GOME-2 SIF at multiple time resolutions (including daily). 89 

2. Methods 90 

The spatio-temporal block kriging approach presented in this study proceeds in three steps for each model 91 

grid cell and estimation time. First, we subsample the observations within a predetermined spatio-92 

temporal domain (section 2.1). Next, we characterize the local spatio-temporal covariance structure 93 

(section 2.2). Finally, we interpolate the satellite observations at the desired spatial resolution (section 94 

2.3).  95 

2.1 Subsampling of observations 96 

The ultimate goal of the proposed subsampling strategy is to reduce the number of observations in the 97 

spatio-temporal vicinity of an estimation location to a representative, computationally feasible subset of 98 

data. We use a subset of observations (M) to estimate a local set of covariance parameters and use another 99 

subset (N) to estimate the desired quantity and associated uncertainty. Note that, for the method presented 100 

here, M and N can refer to either the same subset of data or different subsets.  101 

The total number of observations used for covariance parameter estimation (M), is selected to be small 102 

enough to make this estimation computationally feasible but large enough to yield a sample representative 103 

of both local and regional variability. The optimal subset of N observations used for mapping depends on 104 

the actually observed covariance structure which is not known prior to covariance parametrization step. In 105 

the example presented in Sect. 3, the optimal observational subset used in a mapping step for each grid 106 

cell comprised N points having the highest covariance with the estimation location. In the example below, 107 

we set both M and N at 500; larger values of M and N did not have a substantial impact on the estimated 108 

parameters and mapped quantity, respectively. Furthermore, M should represent local variability, and 109 

larger values of M would encompass more distant, non-local regions.  110 

We select subset of observations M for each estimation grid cell by assigning a relative selection 111 

probability to each observation based on that observation’s spatial and temporal ‘separation distances’ 112 

from the centroid of the grid cell. In the absence of a proper metric for distance in space-time, we model 113 

the spatial and temporal components of the overall selection probability separately. 114 

The selection probability (and its components) is described by the following equation:  115 

� = �� × �� ∝ 1/(
�ℎ�)
 × ��(����)�
     (1) 116 

where �� is the spatial component of the relative probability of a given observation being selected, �� is 117 

temporal component, ℎ� and ℎ� are distances between estimation location and observations, in space and 118 

time, respectively, and As and At are unit dependent, user defined weighting factors between separation 119 

distance in space vs. in time (how deep in space vs. time the sampling should occur). The unit dependent 120 

choice of As and At can be initially based on user expectations of the decorrelation distances in space vs. 121 

time and, if necessary, subsequently corrected accounting for actually computed decorrelation lengths in 122 

space and time in an iterative fashion. In this way temporal and spatial sampling depths could even be 123 

locally optimized and become location-specific. In the examples below (Section 3), As and At were set to 124 
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1 km
-1

, and 0.5 day
-1

, respectively, based on the observed average decorrelation distances in space and 125 

time (see Fig. 1 and Section 4.1).  126 

 127 

[Figure 1] 128 

ℎ� is calculated as the great circle distance between the centroid xj of the estimation grid cell and the 129 

location xi of an observation: 130 

ℎ���� , ��� = ������(sin "� sin "� + cos "� cos "� cos(&� − &�))    (2) 131 

where φi and λi are the latitude and longitude of location xi and � is the radius of the Earth.   132 

The temporal and spatial components of the probability function have different functional forms out of 133 

necessity. The measurements often come pre-aggregated in time slices corresponding to hours, days, or 134 

longer aggregation time periods, which multiplies the number of observations with the same time stamp. 135 

As a result, it is not possible to assign sampling probability along a temporal axis in a manner equivalent 136 

to the spatial approach; doing so would result in infinite probabilities assigned to all observations within 137 

the time slice of the actual estimation location (��~1/0
2
=∞). The same holds for spatially co-located 138 

observations. However, since each observation comes with unique spatial coordinates (not pre-binned like 139 

in temporal case), we select a simpler form of the spatial component of the sampling function. The 140 

defined form of P (Eq. 1) ensures that  pairs of observations close to estimation location define the shape 141 

of the variogram at short separation distances (the variogram should reflect variability in the spatio-142 

temporal vicinity of the estimation grid cell. See Section 2.2). Different forms of P can be used if 143 

directional anisotropy is expected or if more/fewer observations along a given direction are desired to 144 

better represent expected correlations.  145 

Previous approaches required the user to choose spatial and temporal windows that determine which 146 

neighboring observations to use (see, for comparison, Alkhaled et al. 2008; Hammerling et al. 2012a,b). 147 

The approach proposed in this paper, by contrast, requires fewer subjective choices – only the form of 148 

sampling function and unit dependent choice of normalizing coefficients As and At. In addition, our 149 

approach is computationally feasible even for very large data sets. 150 

2.2 Characterization of Spatio-temporal Covariance  151 

Existing studies have used a number of models to estimate spatio-temporal covariances for a variety of 152 

applications. Models used include the metric model (Dimitrakopoulos and Luo, 1994), linear model 153 

(Rouhani and Hall, 1989), product model (De Cesare et al., 1996), non-separable model (Cressie and 154 

Huang, 1999), and generalized product-sum covariance model (De Iaco et al., 2001). The approach 155 

developed in this paper uses a generalized product-sum covariance model (De Iaco et al., 2001). This 156 

model affords a number of advantages relative to other covariance models: (1) a product sum covariance 157 

model outperformed other models in terms of prediction accuracy in a recent study using GOSAT satellite 158 

data (Guo et al., 2013), (2) it is relatively easy to implement (De Iaco et al., 2001), and (3) it is more 159 

flexible than a non-separable covariance model (De Cesare, 2001a).  160 

The product-sum model, as it has been applied in the past, has one important area for improvement. The 161 

original procedure (De Iaco et al., 2001) assumed separate modeling of the spatial and temporal 162 

covariance (variograms) and their later unification into a spatio-temporal model in the final step. The 163 

procedure requires observations approximately in the same location at multiple different times. However, 164 

satellite observations are often not perfectly collocated in consequent measurement cycles over the same 165 

region. As a result, we would need to assume that each measurement cycle is perfectly co-located with 166 
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previous/future cycles, or define an arbitrary tolerance, in order to apply the original approach. This 167 

assumption becomes more prone to error if the observations are very sparse, as is often the case with 168 

satellites. 169 

Thus, in this study, we cater to specific properties of satellite data and alter the original procedure by 170 

estimating all covariance parameters simultaneously, thereby avoiding the aforementioned problem. 171 

We broadly define the covariance as follows: 172 

 Cs,t(hs,ht) = Cov(Z(s+hs,t+ht), Z(s,t))     (3) 173 

The equation shows that covariance between two points (Z) separated in space-time (s,t) depends on their 174 

distance in space (hs) and distance in time (ht). The following class of valid product–sum covariance 175 

models was introduced in De Cesare et al. (2001b) and further developed in De Iaco et al. (2001): 176 

Cs,t(hs,ht)= k1Cs(hs)Ct(ht)+ k2Cs(hs)+ k3Ct(ht)    (4) 177 

where Ct and Cs are valid temporal and spatial covariance models, respectively. De Iaco et al. (2001) 178 

proved that for positive definiteness it is sufficient that k1 > 0, k2 ≥ 0 and k3 ≥ 0. It is interesting to note 179 

that from Eq. 4 follows that spatio-temporal covariance models collapses down to purely spatial model in 180 

cases where temporal covariance does not exist. Thus, the spatial approach could be viewed as a special 181 

case of spatio-temporal modeling. 182 

The model in Eq. 4 corresponds to the spatio-temporal variogram shown in Equation 5. In the original 183 

procedure, De Iaco et al., 2001 estimated separate spatial (ht=0) and temporal (hs=0) variograms using the 184 

data. De Iaco et al., 2001 then then combined these models to obtain the final spatio-temporal variogram 185 

model: 186 

)�,�(hs,ht) = )�,�(hs,0) + )�,�(0,ht) – k)�,�(hs,0))�,�(0,ht)    (5) 187 

where γs,t(hs,0)  and  γs,t(0,ht) are spatio-temporal variograms for ht=0 and hs=0, respectively (Figure 2). 188 

Parameter k is estimated from the data which makes the model easily applicable: 189 

* = +,-,(.)/ +�-�(.)� -,,�(.,.)
+,-,(.)+�-�(.)             (6) 190 

where *�1�(0) and *�1�(0) are spatial and temporal sills (variances) obtained in modeling of separate 191 

spatial and temporal variograms. The only condition k has to fulfill in order to create an admissible 192 

covariance model is 193 

0 < * ≤ �
567 {9,�:;,,�(�,,.)<; 9��:;,,�(.,��)<}         (7) 194 

Due to the specifics of satellite data, we estimate both the covariance parameters and parameter k 195 

simultaneously. This approach accounts for constraints that assure a positive definiteness of the model 196 

(De Iaco et al., 2001). This simultaneous approach makes the model more applicable to sparse data and 197 

data with variable spatial coverage, as is often the case with satellite observations. 198 

We use a Gaussian variogram function with a nugget effect to model temporal covariance in the example 199 

presented here (for an overview of variogram models see Chiles and Delfiner, 2012). We use an 200 
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exponential model for the spatial variogram. In both cases, we make this choice based upon visual 201 

inspection of local variograms at multiple estimation locations:  202 

 )�(ℎ�)(?@A��B@C) = D 0, E�� ℎ� = 0
F�
(1 − exp :− ���

J�� < + FKLM
 , E�� ℎ� > 0   (8) 203 

)�(ℎ�)(��O�C�CPB@Q) = D 0, E�� ℎR = 0
F�
(1 − exp :− �SJS < + FKLM
 , E�� ℎR > 0  (9) 204 

where σ
2
 and Q are the variance and correlation length of the quantity being mapped, and σ

2
nug is the 205 

nugget variance, typically representative of measurement and retrieval errors in the case of satellite 206 

observations.  207 

[Figure 2] 208 

Unlike the original procedure in De Iaco et al. (2001), we model the variogram using only two steps.   209 

First, we calculate a raw spatio-temporal variogram based on the subsampled observations for each 210 

estimation grid cell:  211 

 )(ℎ�, ℎ�) = �

 [U(��) − U(��)]
        (10) 212 

where ) is the raw spatio-temporal variogram value for a given pair of observations y(xi) and y(xj), and ℎ�  213 

and ℎ� are, respectively, the great circle distance and temporal distance between the spatio-temporal 214 

locations (�� and ��) of these observations.  215 

Second, we fit the theoretical variogram defined in Eq. 5 to the raw variogram using non-linear least 216 

squares. We subsequently calculate the spatiotemporal covariance using the following equation: 217 

1�,�(ℎ�, ℎ�) = 1�,�(0,0) − )�,�(ℎ�, ℎ�))      (11) 218 

Validity on the sphere. Most covariance models were originally designed for Euclidean space, and their 219 

validity in other coordinate systems cannot be assumed per se. Huang et al. (2011) examined the validity 220 

of several theoretical covariance models in spherical coordinate systems. However, this evaluation has not 221 

been done for the spatio-temporal product-sum covariance model. Other studies that use a product-sum 222 

covariance model typically assume the validity of this covariance model on a sphere (e.g., Zeng et al., 223 

2013; Zeng et al., 2016). Results from Huang et al. (2011) explicitly validate the exponential covariance 224 

model on a sphere, as well as sums of the products of exponential covariance models and constants 225 

(provided that the constants are positive). The first term of the product-sum covariance model used in this 226 

study (Eq. 4) represents a Hadamard product (Million, 2007) of two positive definite matrices. According 227 

to Schur product theorem, a Hadamard product of two positive definite matrices necessarily gives a 228 

positive definite matrix (Mathias, 1993). It therefore follows that a generalized product-sum model 229 

(Equation 4) is valid on a sphere if its spatial component is valid on a sphere. 230 

2.3 Mapping using spatio-temporal moving window block kriging 231 

This section leverages the sampling function (Sect. 2.1) and the product-sum covariance model (Sect. 2.2) 232 

to implement a spatio-temporal version of moving window block kriging. A primary advantage of block 233 

kriging is its ability to estimate contiguous maps at any spatial resolution equal to or coarser than the 234 
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spatial support (i.e. footprint size) of observations (refer to Sect. 1 and Tadić et. al. 2015). Unlike ordinary 235 

kriging method, the spatial support in block kriging corresponds to the average value within each chosen 236 

grid cell. 237 

Moving window block kriging requires solving a set of linear equations to obtain a set of weights (λ). 238 

These weights must be estimated for each prediction location using N associated observations:  239 

WX + Y ZZ[ 0\ ]−̂_` = ]ab1 `     (12) 240 

In this equation, R is a diagonal N×N nugget covariance matrix that describes measurement and retrieval 241 

errors, Q is a N×N covariance matrix among the N observations with individual entries as defined in Eqn. 242 

11, 1 is an N×1 unity vector, _ is a Lagrange multiplier, and qA is an N×1 vector of the spatio-temporal 243 

covariances between the N observation locations and the estimation grid cell, defined as: 244 

c�,� = �
K ∑ c :ℎ��,� , ℎ��,�<K�e�      (13) 245 

where c�,� is the covariance between the grid cell and observation i. c�ℎ�,�� is defined as 1�,�  in Eqn. 11 246 

based on the distances ℎ��,� and ℎ��,� between observation i and n regularly-spaced locations within the 247 

grid cell. In the context of satellite measurements, n is a highest number of non-overlapping footprints 248 

contained within a grid cell and was calculated based on the relative size of the satellite footprint 249 

compared to  the size of the estimation grid cells. n varies with latitude, as the size of grid cells decreases 250 

with the distance from the equator. The system in Eqn. 12 is solved for the weights (λ) and the Lagrange 251 

multiplier (ν). We subsequently use these parameters to define the estimate (ẑ) and estimation uncertainty 252 

(σ
2
ẑ) for the grid cell:  253 

ẑ= λ
T
y       (14) 254 

σ
2
ẑ = σAA - λ

T
 qA + ν      (15) 255 

where y is the N×1 vector of subsampled observations, and σAA is the variance of the observations at the 256 

resolution of the estimation grid cell, defined as:  257 

 F�� = �
K� ∑ ∑ c�ℎ�,+�K+e�K�e�      (16) 258 

In that equation, c :ℎ��,� , ℎ��,�< is defined as 1�,� in Eqn. 11 based on the distances ℎ��,� and ℎ� �,� between 259 

any combination of the n regularly spaced locations within the grid cell defined previously. 260 

3. Example applications 261 

We select three case studies of satellite Level 2 data to demonstrate the properties of the method 262 

developed in this paper: column-integrated dry air model fraction of CO2 (XCO2) from the Japanese 263 

Greenhouse Gas Observing SATellite (GOSAT), CH4 (XCH4) from the Infrared Atmospheric Sounding 264 

Interferometer (IASI), and solar-induced fluorescence (SIF) the Global Ozone Monitoring Experiment–2 265 

(GOME-2). Level 2 datasets from GOSAT, IASI and GOME-2 have relatively different characteristics. 266 



 

8 

 

For example, GOSAT observations are sparse while IASI and GOME-2 are abundant. These diverse 267 

datasets are therefore ideal for testing the method developed here. 268 

The method was demonstrated by producing two different sets of maps. First, it was applied at resolutions 269 

coarser than native (1 × 1°, 2.5 × 2°, and 1 × 1° for GOSAT, IASI and GOME-2, respectively) to 270 

demonstrate block kriging capabilities of the method (Section 3). Second, it was applied at the native 271 

resolution of the satellites for cross-validation (method evaluation) purposes (Section 4). 272 

3.1 Total column CO2 (XCO2) observed by GOSAT 273 

The Japanese Greenhouse Gas Observing SATellite (GOSAT) (e.g., Kuze et al., 2009), the first satellite 274 

dedicated to global greenhouse gas monitoring, was launched in 2009. Basic information about the 275 

satellite, its orbit configuration, and the CO2 column observations are given in our previous study (Tadić 276 

et al., 2014). It flies in a polar, sun-synchronous orbit with a 3-day repeat cycle and an approximate 13:00 277 

LT overpass time. GOSAT has a nadir footprint of about 10.5 km diameter at sea level (Kuze et al., 2009) 278 

and 2×10
3
 observations per week. The XCO2 observations from GOSAT have large retrieval uncertainties 279 

(e.g., O’Dell et al. 2012) and exhibit large spatial and temporal gaps (e.g., Fig. 3a). Although these XCO2 280 

observations are sparse and noisy, contiguous Level 3 maps are often desirable for environmental and 281 

ecological applications. (Maksyutov et al., 2013; Liu et al., 2012). To this end, we generate global daily 282 

estimates for XCO2 (August 2-7, 2009) to match the timeframe used in Tadić et al., 2014. 283 

[Figure 3] 284 

We obtain bias-corrected and filtered GOSAT Level 2 observations using NASA’s Atmospheric CO2 285 

Observations from Space (ACOS) algorithm v3.4 release 3 (e.g., O’Dell et al., 2012; Crisp et al., 2012). 286 

In this study, we use spatio-temporal moving window block kriging to create a series of contiguous, in-287 

filled global daily maps and associated uncertainties for 2-7 August 2009 (two repeat cycles) (Fig. 3a-c) 288 

at 1×1o resolution. We select the time period to match the time period from our previous study (Tadić et 289 

al., 2014). Unlike results from our previous study and other similar studies, which created estimates at 6-290 

day or longer time periods (Hammerling et al., 2012a), we leverage the method developed here to produce 291 

maps at the daily scale.  292 

3.2 Total column CH4 (XCH4) observed by IASI 293 

The Infrared Atmospheric Sounding Interferometer (IASI) developed by the Centre National d’Etudes 294 

Spatiales (CNES) in collaboration with the European Organisation for the Exploitation of Meteorological 295 

Satellites (EUMETSAT) is a Fourier Transform Spectrometer based on a Michelson Interferometer 296 

coupled to an integrated imaging system that measures infrared radiation emitted from the Earth. It is 297 

carried by MetOp-A, a sun-synchronous polar orbit satellite which flows at an altitude of 817 km. 298 

Detailed information about the IASI instrument could be found elsewhere (Crévoisier et al., 2009a,b;  299 

Massart et al., 2014). IASI has an instantaneous field of view of 50×50 km, composed of four pixels each 300 

12 km in radius, delivering ~56×103 XCH4 observations per week.  301 

[Figure 4] 302 
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Methane Level 2 IASI (0-4 km) data were retrieved at the NOAA/NESDIS using the NUCAPS (NOAA 303 

Unique CrIS/ATMS Processing System) algorithm (Gambacorta, 2013; Xiong et al., 2013). For the ice-304 

covered ocean the data for the lower troposphere (0-4 km) are unreliable due to insufficient thermal 305 

contrast between the surface and the atmosphere. Filtering parameters have been provided by Xiong 306 

(2014, private communication). The data are available at http://www.nsof.class.noaa.gov/. Using the new 307 

method, we created a series of contiguous global daily maps and associated uncertainties for the Northern 308 

Hemisphere, for February 26-March 4, 2013 (i.e. Figure 4a-c) at 1
o
×1

o
 resolution. We chose this time 309 

period to match the occurrence of the methane “anomaly” North of the coast of Scandinavia.  310 

3.3 Global land solar-induced fluorescence fields observed by GOME-2 311 

The GOME-2 (The Global Ozone Monitoring Experiment–2) instrument on board METOP-A (e.g., 312 

Joiner et al., 2013) observes solar-induced fluorescence (SIF). The GOME-2 spatial footprint (i.e. 313 

support) of the observations is 40 km × 80 km (Joiner et al, 2013), and the volume of available data is 314 

approximately 2×10
5
 SIF observations per week. 315 

[Figure 5] 316 

Multiple recent studies have demonstrated the potential use of satellite observations of solar-induced 317 

fluorescence (SIF) for understanding the photosynthetic CO2 uptake at large scales (Joiner et al., 2011; 318 

Joiner et al., 2012; Joiner et al., 2013; Frankenberg et al., 2011; Frankenberg et al., 2012; Guanter et al., 319 

2012, Lee et al., 2013; Frankenberg et al., 2014). Satellite SIF measurements can be used with land 320 

surface models to understand GPP response to environmental stress (e.g., Lee et al., 2013) and to improve 321 

the representation of GPP. GOME-2 provides the highest spatial and temporal density of data, among all 322 

available datasets. 323 

In the example presented here we use SIF GOME-2 v.14 data (Joiner et al., 2013) with the approach 324 

described in Section 2 to create contiguous maps of SIF at a single spatial resolution (1o × 1o) and daily 325 

temporal resolutions. Maps of SIF and associated uncertainties are created at daily temporal resolutions 326 

covering 5-14 May, 2012, some of which are shown on Figures 5a-c.  327 

4. Method evaluation: accuracy, precision and bias 328 

4.1 Accuracy, precision and bias 329 

We use a leave-one-out cross validation technique to assess the performance of spatio-temporal (ST) 330 

versus spatial moving window block kriging. We produce these estimates at the native resolution of 331 

GOSAT, IASI and GOME-2 satellites/instruments, which allowed a direct comparison to measured 332 

values. For IASI and GOME-2, for each day in February 26-March 4, 2013, and May 5-14, 2012, 333 

respectively, 10% of available observational data were randomly selected for use in leave-one-out cross-334 

validation and their coordinates extracted. For XCO2, all GOSAT XCO2 observations for each day in 335 

August 2-7, 2009, were used. We assess the accuracy (the difference between estimates and withheld 336 

observations) of both methods using two common measures: (1) Mean Absolute Error (MAE), and (2) 337 

Root Mean Squared Error (RMSE). We alsoWe also use two more recently proposed measures (Li and 338 
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Heap, 2011; Li, 2016) that remove the effect of unit/scal. The first is relative mean absolute error 339 

(RMAE) that is given as: 340 

 341 

RMAE = �
K ∑ |(ẑ� − U�)/��| × 100K�e�       (17) 342 

 343 

and the second is relative root mean square error (RRMSE), as follows: 344 

 345 

RRMSE = ]�
K ∑ (|U� − ẑ�|/U�)
K�e� `�/
 × 100    (18) 346 

where n is the number of observations or samples, o is observed value, and p is predicted or estimated 347 

value. 348 

We assess the performance of each method using two additional measures: (3) the accuracy of the 349 

uncertainty bounds (the degree to which the reported uncertainties capture the difference between 350 

estimates and withheld observations) and (4) bias (the mean difference between estimates and withheld 351 

observations). 352 

We parameterize the temporal component of the spatio-temporal sampling function in such a 353 

way that observations located +/- 3 days from the actual date had 10% probability of being 354 

sampled compared to observations from the actual day (see Fig 1a). We compare the results to 355 

spatial kriging estimates obtained in two different ways, based on observations only from the 356 

actual day (1d) and based on observations from +/-3 days from the actual day (7d). This latter 357 

case is analogous to the +/- 3 -day window that we use for the ST approach. In this 7d case, we 358 

obtain these spatial kriging results by assuming the entire observational dataset collected within 359 

the selected time period (actual day +/- 3 days) is perfectly temporally correlated. In other words, 360 

we use all observations as though they were collected at the same time. We then produce 361 

estimates at locations of observations collected within the selected timeframe and compare the 362 

performance of the two methods. We repeat procedure described in Section 2 for every 363 

observation selected for cross-validation, and we average the statistics, displayed in Table 1.  364 

[Table 1] 365 

According to the results, the spatio-temporal approach performs better than the spatial (7d) approach in all 366 

three cases and in all performance measures (for example, spatial (7d) MAE was 6-10% larger). The 367 

comparison clearly shows that proper characterization of the temporal covariance between two points 368 

residing in different time periods (days), embedded into spatio-temporal approach, improves kriging 369 

performance. In IASI caseand GOME-2 cases, the spatio-temporal method also performed better than 370 

spatial (1d). However, in case of GOSAT and GOME-2 data, spatio-temporal approach slightly 371 

underperformed the spatial (1d) approach having 12% higher MAE (please see Section 4.2 for 372 

discussion).  373 

We observed that RMAE and RRMSE error measures should be used with caution in cases when 374 

observations can take real zero values, like in the GOME-2 case. In such cases the division by close-to-375 
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zero values result in extremely high RMAE and RRMSE values, which overall limits the applicability of 376 

these error measures. 377 

We evaluate the accuracy of the uncertainty bounds by examining how often those bounds encapsulate 378 

withheld observations. The percentage of observations that fall outside the uncertainty bounds in spatio-379 

temporal approach is comparable to that of the spatial method, confirming the accuracy of the estimated 380 

uncertainty bounds (for normally-distributed data the percentage of observations that fall outside of the 381 

one, two, and three estimationestimations standard deviation (σẑ) uncertainty bounds should be 32%, 5% 382 

and 0.3%, respectively). The fraction of observations that fall outside the uncertainty bound is generally 383 

lower than would be expected for normally-distributed data, and our results may indicate non-normal 384 

features in the data.  385 

4.2 When is spatio-temporal modeling recommended? 386 

A ST approach can afford advantages over purely spatial methods when temporal data correlations and 387 

data coverage are strong.  Indeed, in many cases, the ST approach is more accurate than a purely spatial 388 

method (Table 1). This result is consistent with existing literature which uniformly reports that ST 389 

approaches are more accurate than spatial approaches (Zeng et al., 2013; Guo et al., 2013; Zeng et al., 390 

2016).  391 

However, although considering information from days preceding and following the target estimation day 392 

should in principle always provide a further constraint on the estimate, this does not guarantee that an ST 393 

method will always outperform a spatial-only method in practice.  The prime reasons for this are two-394 

fold.  First, because computational limitations cap the number of observations that can be considered, 395 

considering observations across multiple days necessarily leads to a reduction in the spatial density of 396 

observations being considered.  This first factor can be partially alleviated by carefully designing the 397 

selection probability function (Eqn. 1).  The second reason is that implementing a ST approach involves 398 

the estimation of a larger number of covariance parameters (Eqn. 4-9) relative to a spatial-only approach, 399 

which can introduce additional uncertainty.  Indeed, we observe that the purely spatial approach performs 400 

better than the ST method in some cases (e.g., the GOSAT and GOME-2 1d cases).case).  401 

Overall, a ST approach is likely to outperform a spatial-only approach when the data exhibit one (or 402 

more) of three characteristics. First, a ST approach is likely better when the data are sparse or unequally 403 

distributed. In these cases, a ST approach can intelligently leverage data in adjacent time periods to 404 

compensate for the sparsity of data in the time period of interest. Second, an ST approach works well for 405 

datasets with temporal gaps (e.g., due to cloud cover or instrument malfunction). An ST approach can fill 406 

these gaps while a spatial-only approach cannot be used for temporal gap-filling. Third, an ST-approach 407 

is well-suited to datasets with regional biases that manifest in one time slice but that do not repeat in 408 

adjacent time slices. Phrased differently, an ST-approach is well-suited to datasets withThe difference 409 

between the performance of ST and S-approaches obtained through cross-validation becomes most 410 

pronounced in processing datasets with measurement errors that are spatially but not temporally 411 

correlated. In these cases, an ST approach can use data from adjacent time periods to create theobtain an 412 

estimate, data that do not have the same regional, spatially-correlated biases. Although the resulting 413 

estimate may appear inferior during cross-validation, this is because that estimate will not reproduce 414 

regional biases in data from the time slice of interest. A spatial-only approach, by contrast, will reproduce 415 

these regional biases because it does not use data from adjacent times when creating the estimate. As a 416 

result, a spatial-only approach will appear to perform better in cross validation, but the ST approach will 417 

more accurately reflect the true, underlying process.  418 



 

12 

 

5. Conclusions 419 

In this study, we develop a method to create high spatio-temporal resolution maps from satellite data 420 

using spatio-temporal moving window block kriging based on product-sum covariance model. The 421 

method relies on a limited number of assumptions: that the observed physical quantity is spatio-422 

temporally auto-correlated, and that its nature can be inferred from the observations.  423 

The method has several advantages over previously applied methods, as alluded to in Sect. 1: 1) it allows 424 

for the creation of contiguous maps at varying spatio-temporal resolution, 2) it can create maps at 425 

temporal resolutions shorter than achievable by other binning or kriging methods, 3) it can be applied for 426 

creating contiguous maps for physical quantities with varying spatio-temporal coverage (i.e., density of 427 

measurements), 4) it provides assessments of the uncertainty of interpolated values, 5) it utilizes all 428 

spatio-temporally available information to generate estimates, 6. Apart from the advances alluded to in 429 

Sect. 1: 1) it improves covariance parameters estimation procedure because it does not model spatial and 430 

temporal covariance separately, 72) it allows for great flexibility in the choice of sampling function and 431 

83) it provides estimates even for the time periods when measurements are not available. It can exploit 432 

correlations with both past and future periods of the observed time spot to provide the most accurate 433 

estimates. 434 

We demonstrate the applicability of this method by creating Level 3 products from the GOSAT XCO2, 435 

IASI CH4 and GOME-2 SIF data. Sparse XCO2 observations from GOSAT and dense XCH4 and SIF 436 

observations from IASI and GOME-2 make a perfect test ground for the method. We show that the 437 

proposed method can even map XCO2 on daily time scales. The method generally yields more precise and 438 

accurate (and unbiased) estimates compared to spatial method which used the same observations but 439 

assumed perfect temporal correlation between data. The factors which could affect the performance of the 440 

ST method are discussed in Section 4.2. 441 

This approach could be used in the future to produce real-time estimates not only of XCO2, XCH4 or SIF, 442 

but of other environmental data observed by satellites which exhibit spatio-temporal autocorrelations. 443 

Especially important could be satellite datasets that have spatially, but not temporally, correlated errors. 444 

In such cases, sampling across several time periods could perhaps help isolate and remove them, which 445 

should be a subject of further studies.  446 

The method could be applied in a standalone mode or as part of a broader satellite data processing 447 

package. Maps produced by the spatio-temporal approach could then be incorporated into physical and 448 

biogeochemical models of the Earth system.   449 

6. Code availability 450 

The documented Matlab source code is available at the Researchgate website 451 

(https://www.researchgate.net/publication/311595272_Spatio-452 

temporal_approach_to_moving_window_block_kriging_of_satellite_data_v10_code; DOI: 453 

10.13140/RG.2.2.21411.04643). 454 
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 587 

 588 

Table 1. Cross-validation results of GOSAT XCO2, IASI XCH4 and GOME-2 SIF datasets using spatio-589 

temporal and spatial methods, including mean absolute error (MAE), root mean squared error (RMSE), 590 

relative mean absolute error (RMAE), relative root mean square error (RRMSE), percent of observations 591 

lying outside of one, two, and three standard deviations (σẑ) of the mapping uncertainty, and mean 592 

difference. MAE, RMSE and bias units for GOSAT, IASI and GOME-2 are ppm, ppb and mW/m
2
/sr/nm, 593 

respectively. RMAE and RRMSE are unitless, and due to the reasons explained in Section 4.1 given only 594 

for GOSAT and IASI. Shaded fields represent best estimate in each category for every satellite.  595 

  

GOSAT XCO2 IASI XCH4 GOME-2 SIF 

ST 1d 7d ST 1d 7d ST 1d 7d 

Estimates 

Mean absolute 

error (MAE) 
0.83 0.74 0.8889 19.19 20.23 21.0304 0.52 0.5154 0.6654 

Root mean 

squared error 

(RMSE) 

1.12 0.98 1.21 25.25 27.10 27.77 0.6768 0.6569 0.8769 

Relative mean 

absolute error 

(RMAE) 

0.22 0.19 0.23 1.04 1.09 1.14 - - - 
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Relative root mean 

square error 

(RRMSE) 

0.29 0.25 0.31 1.37 1.46 1.50 - - - 

Uncertainties 

% observations 

falling outside 1σẑ 

uncertainty 

9.13 15.03 10.70 11.02 9.06 13.84 14.60 12.14 24.80 

% observations 

falling outside 2σẑ 

uncertainty 

1.12 3.01 1.39 0.48 0.51 0.86 1.20 0.64 4.33 

% observations 

falling outside 3σẑ 

uncertainty 

0.067 0.52 0.13 0.04 0.046 0.022 0.11 0.05 0.83 

Bias Mean difference -0.012 0.0066 -0.034 0.28 -0.14 0.58 0.016 0.0013 0.032 

  596 
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 599 

Figure 1. (a) Sampling probability as a decreasing function of spatial and temporal distance as used in 600 

this study, (b) The typical example of subsampled IASI Level 2 XCH4 (altitude below 4 km) data for a 601 

selected estimation location (yellow circle). Color of observations shows semivariance between 602 

observation and estimation location (blue-lowest, red-highest). Due to stronger temporal covariance, the 603 

relative decrease of the sampling probability along temporal axis is smaller than with spatial distance. 604 

 605 

 606 
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 607 

 Figure 2. Illustration of experimental and fitted theoretical spatio-temporal variogram for GOSAT XCO2 608 

data.  609 

 610 

611 

 612 

Figure 3. (a) GOSAT/ACOS v3.4 XCO2 retrievals (Level 2 data) (ppm) for August 3, 2009 (b) 613 

Contiguous global GOSAT/ACOS v3.4 maps (Level 3 data) (ppm) for the same day obtained using 614 

Spatio-temporal Moving Window Block Kriging at 1 × 1° spatial resolution, (c) associated uncertainties, 615 

given as 1-sigma (σẑ) (ppm). 616 

 617 

 618 
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 619 

Figure 4. (a) IASI XCH4 (0-4 km) retrievals (ppb) for March 2, 2013 (sea only), (b) Contiguous IASI 620 

maps for Northern Hemisphere for the same day obtained using Spatio-temporal Moving Window Block 621 

Kriging at 2.5 × 2° spatial resolution and (c) associated uncertainties, given as 1-sigma (σẑ) (ppb).  622 

 623 

 624 

 625 

Figure 5. (a) GOME-2 SIF v14 retrievals (Level 2 data) (mW/m2/sr/nm) for May 5, 2012, (b) Contiguous 626 

global GOME-2/SIF v14 maps (Level 3 data) (mW/m
2
/sr/nm) for the same day obtained using Spatio-627 

temporal Moving Window Block Kriging at 1 × 1° spatial resolution, (c) associated uncertainties, given 628 

as 1-sigma (σẑ) (mW/m
2
/sr/nm).  629 
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