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Review of “On the forecast skills of a convection permitting ensemble” by 
SCHELLANDER-GORGAS et al.  
 
 5 

 
Reviewer 1: 

The authors like to thank the reviewer for the careful and thorough review, which is constructive 

and helps a lot to improve our paper. We have answered your comments, questions etc. one by 

one in below. We have either modified the manuscript and figures, or given a detailed explanation. 10 

 

Best regards, 

 

Theresa Schellander-Gorgas and co-authors, Sept. 12. 2016, Vienna 

 15 
 
 
This paper compares the performance of two limited-area ensemble prediction systems over 
central Europe. ALADIN-LAEF is a typical mesoscale regional ensemble at 11km resolution and 
the AROME-EPS a convective permitting model at 2.5km resolution. The focus of the study is on 20 
verifying surface weather variables, particularly precipitation, over the Austrian region during 
summer. The authors have access to dense observation datasets and are able to separate 
periods of weak and strong synoptic forcing. They are also able to compare model performance 
over mountainous regions and adjacent plains.  
The methodology and data analysis is good. The paper is reasonably well-written, with occasional 25 
spelling/grammar errors which are noted below. The suggestions I have are largely cosmetic and 
would not require further data analysis, so I am recommending accept with minor revisions.  
 
 
Major points: 30 
  
1. It took a while to understand how the AROME-EPS is set up. Is the AROME-EPS a direct 
downscaler of ALADIN-LAEF with the same initial time or is there a lag before the start of AROME-
EPS? Maybe a diagram showing the EPS setup could help?  

 35 

 You are right, AROME-EPS is a direct downscaler of ALADIN-LAEF, and it is run with the 
same initial time as ALADIN-LAEF. The set-up is as simple as possible, however, we agree 
that this information is not clearly stated in the text. Despite this, we decided not to add any 



2 

 

additional diagram, as a large number of Figures is included in the paper already. Instead, 
we reworked the paragraphs which contain the relevant information, and explained the set-
up more clearly. (Page 8, Lines 176-180; Page 9 f., Lines 198-203; Page 12, Lines 257-
258). 

 5 

2. Fig 4 is rather poor quality. Some of the axis labels have been cropped (well at least on my PDF 
viewer!) and the lines and legend appear rather faint. The y-axis should also include zero.  

 

 We are sorry for this circumstance. The problem is likely caused by the graphical 
transformation of the underlying diagrams. We now tried to convert the original graphics in 10 
a different way, which brought, at least, a small improvement of the quality. Additionally we 
added 0 to the y-axes where it was missing. If the improvement of quality is not sufficient 
we can also try to rerun the generation of verification diagrams. 

 

3. Section 4.1: Why is the verification of surface variables more significant than upper level 15 
variables? Is this because there are more surface observations? The text should explain this.  

 

 For the evaluation of upper air variables we used the grid values of IFS-ECMWF analyses 
instead of observations as verification data. This was due to the low number of available 
(radiosonde) observations on these levels. Therefore, the lower significance on the upper 20 
levels results rather from the model set-up than from the verification strategy.  

 Near surface an on lower levels AROME-EPS can add more information to the  model 

simulation compared to ALADIN-LAEF than on higher levels. This can  mainly be explained by the 

SURFEX soil scheme and the interaction between a  refined representation of orography and 

the model physics schemes and  dynamics. On the higher levels, however, there is less 25 

influence of the orography  and the simulation resembles more the driving model. 

 We added the information to the text (Page 24, Lines 500-509) 

 

4. I’m not convinced that Table 2 adds much to the paper. Consider deleting it.  
 30 

 Thanks for the suggestion. We agree that Table 2 contains a lot of information, which is not 
really needed to highlight the verification results. Our conclusion concerning model 
performance was drawn upon a broad variety of verification metrics. But only a small 
selection of results could be shown. The primary idea of Table 2 was to inform the reader 
about this circumstance. We now decided to remove Table 2. We think that the notes in the 35 
text should be sufficient to explain that we used more than the three presented point-to-
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point metrics for our verification. (Page 16, Lines 348-357) 
 

 

Minor points:  

 5 

1. Title: May be better to say ―On the forecast skill of a convection...‖. - Done. Thank you for the 

advise. Indeed, it seems better to use the singular word skill as an overall term.  

 

2. Fig 4 caption: Rather say which verification area separately ―...August 15, 2011 of AROME-EPS 

(dotted line) and ALADIN-LAEF (solid line), both verified over the AROME-domain. ...‖ - Done. 10 

 

3. Include ―Strong/weak forcing‖ and ―threshold‖ on axis labels in Figs 5-8. It is hard to follow which 

panel is which from the caption alone. - Done. 

 

4. Typo on p12, line 13: ―... on which rains was...‖ - Done. 15 

 

5. P13, lines 5-6: ―...which is of most interest to users of convection permitting...― - Done. 

 
 

 20 

 

 

 

 

 25 
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Reviewer 2: 

 

The authors like to thank the reviewer for the careful and thorough review, which is constructive 

and helps a lot to improve our paper. We have answered your comments, questions, etc. one by 

one in below. We have either modified the manuscript and figures, or given a detailed explanation. 5 

 

Best regards, 

 

Theresa Schellander-Gorgas and co-authors, Nov. 2nd 2016, Vienna 

 10 

General comments: 

 

This manuscript examines 16-member 11- and 2.5-km ensemble forecasts over a 3-month summer 

period focusing on convection over Austria. Most of the evaluation regards verification of probabilistic 

precipitation forecasts at fairly light precipitation thresholds. A variety of verification metrics are 15 

appropriately used.  

 

Overall, the manuscript is well written. Although similar material has been explored elsewhere, I think 

the topic and novelty is nonetheless sufficient to warrant publication of this work. In my opinion, only 

some minor revisions are needed. 20 

 

Bigger comments: 

 

1. You did not cite or discuss Duc et al. (2013), which is highly relevant to your work, as they examined 

2- and 10-km ensembles. Their conclusions were broadly similar to yours. I suggest briefly discussing 25 

Duc et al. (2013) in page 4 lines 5-9, and throughout, pointing to similarities between your work and 

theirs. Schwartz et al. (2009) might also be worth mentioning at times, but citing Duc et al. (2013) is 

more critical. 

 

 Thank you very much for the information. Indeed, both publications are relevant to our study. 30 
We cited both publications in our paper and draw some parallels concerning the comparable 
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results. 

 Changes: 
o Page 4, lines 9-15 
o Removed citation of Taraphdar et al. (2014) 
o Page 5, lines 19-22 5 
o Page 19, lines 24-29 

 

2. I question the need to show the ensemble mean curves on Fig. 5. The ensemble mean, as you later 

note, is smooth and unrealistic for heavier rainfall rates. Can the curves for the ensemble mean simply 

be removed? Overall, you could be more precise in the text about when you’re showing curves for the 10 

mean (as in Fig. 4) versus the members.  

 

 Thanks for your suggestion. We discussed the topic and we agree that the ensemble mean is 
smooth and unrealistic for heavier rainfall rates. However, despite your suggestion we decided 
that the curves shall not be removed from Figure 5. for the following reasons:  15 

o As stated in the text we use Figure 5 to give a first insight in the quality of precipitation 
forecasts of the ensembles. It is an overview over the days with strong/weak synoptic 
forcing for the whole evaluation period. 

o The differences between ensemble means and between the ensemble mean and a 
reference are very general metrics, which may be misleading if they are presented 20 
without further information. However, in combination with the whole range of ensemble 
members it provides a more complete insight and gives more insight into the overall 
bias of the ensemble system.  

o The smoothness of the ensemble mean is a drawback regarding the spatial structure of 
the precipitation forecast: Peaks are removed and precipitation areas appear larger than 25 
they are in reality. A precipitation field derived from the ensemble mean may resemble a 
stratiform precipitation event even if convective preciptiation is forecast by the individual 
members. However, if we regard areal mean sums over several hours as in Figure 5 the 
ensemble mean is quite useful.  

 Changes:  30 
o No changes in Figure 5. 
o Information about ensemble mean bias in caption of Figure 4 
o Information about ensemble mean bias on page 14, line 25  
 

3. I believe section 4.2.1 about the Brier score (BS) is incomplete and potentially a little misleading. I 35 

think that rather than showing the BS, which depends on the observations (the uncertainty term), that 

showing reliability and resolution explicitly is more beneficial, as some of the behaviors you noted are 

quite likely due to the uncertainty term dominating. Also, I noticed you listed in Table 2 ―reliability‖, 

―resolution‖, and ―uncertainty‖ but never discussed them in the text. 

 40 
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 Thanks for the advice to show the components of BS instead of BS. We reworked the complete 
section and changed Figure 6. We discussed each of the components, reliability, resolution and 
uncertainty. We even found an error in our previous calculation of Brier score and fixed the bug. 
Table 2 was completely removed as it did not add much information to the text and was not 
really needed to highlight the verification results. Instead, we added a few notes in the text 5 
which explain that there was a broad variety of verification metrics used but only a small 
selection shown in the paper. 

 Changes: 
o Complete section 4.2.1, pages 16-17 
o Description of Brier score and components section 3 10 

 page 9, 18-19 
 page 10, lines 1-18 (incl. Equations 3-5) 
 following equations numbers were changed accordingly  

o Figure 6 and caption 
o Table 2 removed 15 

 

Smaller comments: 

 

1. Page 3, lines 1-5: What’s the difference between ―convection permitting‖ and ―convection allowing‖? 

Do you mean them synonymously?  20 

 

 In principle, yes, the description of Weisman et al. 1997 („... be sufficient to reproduce the 
mesoconvective circulations and net momentum and heat transports of midlatitude type 
convective systems.―) is comparable to the definition of Bryan et al. 2003. We now decided to 
change the term „convection allowing― to „convection permitting― to avoid introducing new terms 25 
if not explicitely necessary. 

 Changes: Changed „convection allowing― to „convection permitting―, page 3, line 7. 
 

2. Page 3, line 21: Schwartz et al. (2015) is a better reference for a real-time NCAR convection 

permitting ensemble system than Schwartz et al. (2014). Suggest making this change.  30 

 Thanks for the hint. Done. 

 Changes: 
o page 3, lines 23, 28 
o page 4, line 5 

 35 

3. Page 4, lines 7-9: Not sure how this sentence follows from the previous one or is relevant. Suggest 

omitting and instead discussing Duc et al. (2013). –  

 Done. We removed the citation of Taraphdar et al. (2014) as their findings refer rather to 
deterministic models than to ensembles. 
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 Changes: page 4, lines 9ff. 
 

4. Since ALADIN-LAEF used mixed physics, is it fair to treat the members as being equally likely? Any 

comments on this?  

 Actually, it is not completely fair to treat all members as equally likely. For the set-up of multi-5 
physics we tried to find sets of physics configurations which, on average, provide forecasts of 
comparable quality. However, an evaluation apart from this study showed that a few ensemble 
members (2 or 3) exhibited larger biases and errors than other ones. As a first consequence, 
we changed the physics configurations of these members. For the future development of 
ALADIN-LAEF, however, it is planned to use only a few different physics configurations (4 or 5) 10 
and to combine the multi-physics with a stochastic physics approach. We added a short note in 
the text. 

 Changes: page 6, lines 27-31 
 

5. Page 7: It should be section ―2.3‖ not ―3.2‖.  15 

 Done. 

 Find change on page 7, line 23 
 

6. Page 8, line 30: So you were using a block-bootstrapping approach? How did you settle on a block 

length of 8? Also, to what does 8 refer? 8 forecast hours?  20 

 Yes we used a block-bootstrapping approach. The significance tests were done for every 
forecast separately over the whole verification period, e.g. all 12h forecasts in the 3-months 
verification period build up the time series that is tested for significance.  

 The block length of 8 was chosen by mistake. The correct block length for a 3-months period 
should be 4 (calculated from n^1/3, following Hall et al. 1995, where n is the length of the time 25 
series). We recalculated the significance tests with block length 4 and also tested other block 
lengths. We observed only minor differences in the results which had no effects on the 
conclusions drawn in the paper. However, we included the results for block length 4 in Figure 6. 

 Changes:  
o Figure 6 30 
o page 9, line 16 

 

7. Page 9, Eq. (2): Please be more precise about xi, which is 1 if the event occurred, and 0 otherwise.  

 Done. 

 Changes: page 9, lines 27-28 35 
 

8. Page 10, Eq. (7): Why are there overbars on R?  

 We specified the  R as integrated precipitation amounts instead of domain averaged as it was 
denoted in the paper of Wernli et al. (2008). For averaged values the use of overbars is quite 
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common. Therefore we now changed the description of  R  also to domain averaged. This 
change does not have any consequences for the results of Eq. (7). 

 Changes: page 11, line 17 
 

9. Page 13, line 20: Suggest ―…the forecast probabilities and observed values.‖  5 

 Done. 

 Changes: page 14, line 28 
 

10. Page 13, line 22: What do you mean by ―signals of CRPS‖?  

 We intended to say something like „variations of CRPS values― or „development of CRPS 10 
values―. We decided to use „variations― now. 

 Changes: Now page 14, line 29 
 

11. Page 13, lines 30-31: Suggest ―…an improvement for bias and CRPS at a significance…‖ 

 Done. 15 
 Changes: Now page 15, lines 6-7 

 

12. Page 14, lines 13-14: Fig. 5e,f don’t fully support this statement. 

 We agree that the statement was too imprecise. The simulation of AROME-EPS is not perfect 
and there are differences between the performances for strong and weak synoptic forcing. 20 
Moreover, we based our argumentation on the curve of the ensemble mean, which was not 
indicated in the text. We changed the statement accordingly.  

 Changes: page 15, lines 18-22 
 

13. Page 14, line 19: I don’t believe this statement is fully correct—AROME in Fig. 5b reaches its 25 

maximum at 1800 UTC.  

 We corrected the statement. 

 Changes: Page 15, lines 27-28 
 

14. Page 15, lines 8-10: Please rewrite the beginning of this sentence to make it clearer. – We are 30 

sorry for this too German sentence structure!  

 We changed the sentence to: „In the following we will discuss several scores (Brier score, SAL 
scores and FSS) to demonstrate in which ways the differences in the diurnal precipitation cycle 
have an influence on forecast quality.― 

 Changes: page 16, lines 21-22 35 
 

15. Page 15, line 10: Can you perhaps add a brief concluding paragraph summarizing the main points 
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of Fig. 5?  

 Done. We added a short paragraph. 

 Change: page 16, lines 17-21 
 

16. Page 16, line 14: What do you mean by ―on a low level‖? 5 

 „On a low level― is, indeed, misleading here. We wanted to express that, in contrast to region 
West, there is also small variability for the S score in flat areas, but no diurnal cycle. We 
changed the sentence to „Also over flat land, structure scores are variable for AROME-EPS, 
but do not show a perfect daily cycle as for the mountain areas.‖ 

 Change: page 18, lines 13-14 10 
 

17. Page 17, line 16: ―FSSs‖ not ―fractional skill scores‖.  

 Done. Page 19, line 14 
 

18. Page 17, section 4.2.3: Might want to note that your results are quite consistent with Schwartz et al. 15 

(2009) and Duc et al. (2013).  

 Done. See also No. 1 of the bigger comments 
 

19. Page 17, line 23: Don’t think ―reliable‖ is the right word.  

 We changed the word to „useful―. Although AROME-EPS shows some skill for small intense 20 
rain events, we do not recommend relying on the forecasts too much in these situations.  

 Change: page 19, line 23  
 

20. Page 17, line 26: Is ―exemplarily‖ the right word?  

 We changed the phrase to „...to show the forecast behavior of the ensembles in a single 25 
concrete weather situation.‖ 

 Change: page 19, line 31 
 

21. Fig. 4: The line labels for AROME and ALADIN should be enlarged. Also, please note in the 

caption and text that these statistics are for ensemble means. Finally, please note the units either in 30 

the y-axis labels or figure caption.  

 We changed Figure 4 and he caption accordingly 
 

22. Fig. 9: What do the shadings mean? Suggest the first line of the caption reads as ―…between the 

centers of mass of observed precipitation objects…‖  35 

 The shades denote the confindence intervals. We changed the caption according to your 
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suggestion and added the missing information. 

 Changes: caption of Figure 9 
 

23. Fig 10: What do you mean by ―averages‖ in the caption? Were the statistics aggregated or 

averaged? Why sum over all times rather than showing a time-series? Also, please change the 5 

beginning of the caption to ―FSS‖ rather than ―fractional skill scores‖.  

 The FSS values were averaged, i.e. the underlying sample used for the curves shown in Figure 
10 contains FSS of times of day and of all ensemble members. We decided to show this overall 
chart as we intended to show the behaviour of FSS for 5 thresholds and for several spatial 
scales. This would not have been possible when showing a time series. Nevertheless we admit 10 
that the increase of FSS is not very large on the small scales shown in Figure 10. However, at 
least we could show that there is an increase of FSS with larger scales. 

 Changes: caption of Figure 10 
 

24. Fig. 11: The colorbar should be bigger and possibly just in one location.  15 

 Done. 

 Changes: Added colorbar to Figure 11 
 

25. Fig. 12: Does the 3rd line of the caption describing the shadings apply to both (a) and (b)? Also, 

why are you showing the ensemble means in (c) when in Figs. 7 and 8 you showed data from 20 

individual members? 

 This is true. The description of the shadings apply to both, a) and b). We added the missing 
information. 

 The amount of underlying data is completely different in Figs. 7 and 8 compared to Fig. 12c). In 
Figs. 7 and 8 the results of SAL are sampled for the individual members and all days with 25 
strong/weak synoptic forcing in the verification period. Our aim was to show the variety of 
sampled results by creating the boxes (including median, IQR, 10th/90th percentile) instead of 
the smoother average (in fact, we thought about adding the data of the mean, but then we 
would have had too much information in a single figure). Fig. 12c) shows the change of SAL in 
hourly steps during a single day. For this short time, also the ensemble mean allows relating 30 
the SAL-results to the weather development. Creating the boxes based on 16 values each 
would not have been reasonable and, further, not clear enough for the hourly steps.  

 Changes: Caption of Figure 12 
 

 35 
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Abstract. The 2.5 km convection-permitting (CP) ensemble AROME-EPS (Applications of Research to Operations at 

Mesoscale – Ensemble Prediction System) is evaluated by comparison with the regional 11 km ensemble ALADIN-LAEF 

(Aire Limitée Adaption dynamique Développement InterNational - Limited Area Ensemble Forecasting) to show whether a 

benefit is provided by a CP EPS. The evaluation focuses on the abilities of the ensembles to quantitatively predict 

precipitation during a 3-month convective summer period over areas consisting of mountains and lowlands. The statistical 5 

verification uses surface observations and 1 km x 1 km precipitation analyses, and the verification scores involve state -of-

the-art statistical measures for deterministic and probabilistic forecasts as well as novel spatial verification methods. The 

results show that the convection-permitting ensemble with higher resolution AROME-EPS outperforms its mesoscale 

counterpart ALADIN-LAEF for precipitation forecasts. The positive impact is larger for the mountainous areas than for the 

lowlands. In particular, the diurnal precipitation cycle is improved in AROME-EPS, which leads to a significant 10 

improvement of scores at the concerned times of day (up to approximately one third of the scored verification measure).  

Moreover, there are advantages for higher precipitation thresholds at small spatial scales, which is due to the improved 

simulation of the spatial structure of precipitation.    

1. Introduction  

The prediction of deep convection in mountainous terrain is known to be one of the greatest challenges in atmospheric 15 

modeling. The initiation and development of deep convection is dependent on small-scale orographic structures and related 

processes, which cannot be easily described by atmospheric models (Wulfmeyer et al. 2011, Barthlott et al. 2011, 

Weckwerth et al. 2014). Nevertheless, the estimation of the location, duration and intensity of precipitation events is 

important as alpine areas are more exposed to natural hazards connected with heavy precipitation (landslides and flooding) 

than flat land (e.g. Rotach et al. 2009, Haiden et al. 2014). 20 

Models with deep convection-parameterization perform poorly in simulating heavy and highly localized precipitation, 

especially those with a grid-spacing larger than 10 km (Weusthoff et al. 2010). One source of errors is that the applied 

convection schemes act independently in individual model grid columns. As a consequence, convectively generated cold -

pools that drive convective system propagation cannot be properly simulated, resulting in simulated system movement that is 

too slow. In weak synoptic forcing, for example, organized MCSs are particularly challenging for convection -parameterizing 25 

models (Clark et al. 2007; Liu et al. 2006). Another drawback is that the inadequate descriptions of buoyancy and updrafts in 

a convection-parameterizing model often cause convection to initiate too early. This premature initiation of convection often 

results in timing and location errors as well as difficulties to simulate the diurnal cycle of rainfall (Clark et al. 2007). 

Detailed discussion on the convection initiation in a convection-parameterizing model can be found in Davis et al. (2003) 

and Bukovsky et al. (2006).  30 

A solution for this kind of forecasting problem is offered by a new generation of numerical weather prediction (NWP) 

models, which have been developed during the last decade. Convection-permitting models with horizontal grid-spacings of 
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approximately 2 km – 3 km offer new possibilities for estimating local impacts. The term convection permitting as used in 

this article (CP hereafter) means that a deep convection parameterization is not used in the model. It is assumed that the 

horizontal resolution around 2-3 km is sufficient to depict the bulk properties of precipitating convective cells, but not to 

truly resolve the processes within precipitating convective cells such as turbulence and entrainment (Bryan et al. 2003). This 

is in accordance with Weisman et al. (1997) who suggested setting the upper limit for the range of convection permitting 5 

convection allowing resolutions at 4 km. 

Despite the higher resolution and explicit simulation of deep convection, the exact prediction of location, intensity and 

spatio-temporal extent of deep convection is still difficult. Recently, probabilistic approaches using convection -permitting 

ensembles have proven valuable, since they provide direct information on forecast uncertainty, which is often quite large for  

deep convection. An ensemble usually consists of a number of model runs, which differ in their initial and boundary 10 

conditions and/or model configurations. In order to produce a reliable probabilistic forecast, the individual ensemble member 

forecasts should be equally likely to occur and cover the range of future states. Following Clark et al. (2011), the ideal 

number of ensemble members is dependent on the point of diminishing returns, i.e. the ensemble size where no new 

information can be expected by additional members.   

In the recent years several CP EPSs have been developed and some experiences with them have already been made.  To name 15 

but a few, there are the COSMO-DE-EPS (Consortium for Small-scale Modeling – EPS, Gebhardt et al. 2011; Peralta et al. 

2012; Bouallègue et al. 2013; Kühnlein et al. 2014) at the Deutscher Wetterdienst (DWD), the CP version of UK Met 

Office’s MOGREPS (Met Office Global and Regional Ensemble Prediction System, Bowler et al. 2008; Caron 2013; 

Hanley et al. 2013; Tennant 2015), a Storm Scale Ensemble Forecast (SSEF) run by the Center of Analysis and Prediction of 

Storms (CAPS) at the University of Oklahoma (Xue et al. 2007, 2009; Clark et al. 2011; Schumacher et al. 2013 and 20 

Schumacher and Clark 2014), WRF based CP ensemble at NCAR (e.g. Schwartz et al. 20154) and AROME-EPS (e.g. Vié et 

al. 2012; Bouttier et al. 2012) developed at Météo-France. A common feature of all of these EPSs is that their horizontal 

mesh size is equal to or less than 4 km, but mostly between 2 km and 3 km.  

The EPSs mentioned above differ regarding their number of ensemble members and their perturbation strategies and post-

processing. Some of them apply an ensemble data assimilation (EDA) approach for perturbing the initial conditions (ICs) 25 

(Vié et al. 2012; Caron 2013; Schumacher and Clark 2014; Schwartz et al. 20154). The applied model perturbation methods 

range from a multi-parameter approach (Gebhardt et al. 2011) to a stochastic physics scheme (Bouttier et al. 2012; Romine 

et al. 2014) and to using different dynamical cores (Schumacher et al. 2013). In order to increase ensemble size and to 

improve the representation of the ensemble distribution some systems also apply the neighborhood method and/or lagged 

ensemble concepts (Bouallègue et al. 2013). While the neighborhood method is based on ensemble probabilities derived 30 

from grid points of a defined environment (Theis et al. 2005, Schwartz et al. 2010), the lagged ensemble approach uses 

forecasts of successive ensemble runs (Bouallègue et al. 2013). 

A number of evaluative studies concerned with these CP-EPSs have been conducted. They mainly focus on the investigation 

of the impact of CP ensemble configurations, for example, the generation of IC perturbation, representation of the model 
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error, uncertainties from the lateral boundary conditions (LBCs), ensemble size, and spatial scale (Kong et al. 2006; Clark e t 

al. 2009; Clark et al. 2011; Vié et al. 2012; Bouttier et al. 2012; Bouallègue et al. 2013; Kühnlein et al. 2014; Schwartz et a l. 

20154; Schumacher and Clark 2014; Romine et al. 2014; Tennant 2015). There are few comprehensive studies on the 

evaluation of CP EPS, in particular, in comparison with the mesoscale regional EPS. Clark et al. (2009) compared a 5- 

member 4 km grid-spacing convection allowing permitting ensemble with a 15-member 20 km grid-spacing regional 5 

ensemble. Their case studies revealed that the convection allowing permitting ensemble generally provideds more accurate 

precipitation forecasts than the coarser resolution regional EPS. Le Duc et al. (2013) examined the ability to predict 

precipitation of two 11-member ensembles with 10 km and 2 km horizontal resolution, with the fine model using direct 

downscaling of the coarser one. They could show that the 10 km ensemble was more reliable in predicting light rain, 

whereas the 2 km ensemble outperformed the coarser one in cases of heavier rain. Schwartz et al (2009) combined subjective 10 

and objective verification approaches and found that a higher resolution ensemble with 4 km produced better forecasts than a 

12 km regional model. However, additional comparisons of control runs with 2 km and 4 km resolution did not reveal further 

prognostic value for the lower resolution model. These results are consistent with those found by Taraphdar et al. (2014) 

who showed the superior forecast quality of deterministic high-resolution forecasts of tropical cyclone tracks and the 

accompanying rainfall intensities. 15 

In this paper, we will evaluate the performance of a 16-member 2.5 km grid-spacing convection permitting EPS by 

comparing it with its driving 16-member and 11 km grid-spacing mesoscale regional ensemble. Focus will be on the 

capabilities of the CP ensemble to quantitatively predict precipitation during a convective summer period over an area 

consisting of mountains and lowlands. Of interest here is the Alpine region, since the impacts of the mountainous terrain, 

such as windward/lee effects, the differential heating of valley and mountain slopes can cause large inaccuracies in 20 

forecasting convective precipitation and pose a challenge for numerical models and their physical parameterizations (Richard 

et al. 2007; Wulfmeyer et al. 2008, Bauer et al. 2011, Wulfmeyer et al. 2011). Therefore, an evaluation  study is designed and 

conducted for a typical convective season (3 months, May – August 2011), i.e. a period, which is long enough to make at 

least basic statements about the significance of results. Naturally, this period length is not sufficient to enable statistically 

reliable statements on real hazardous events, such as landslides and flashfloods. However, the investigations can be regard ed 25 

as a first step towards this aim. The CP ensemble, which is evaluated in this paper, is a version of AROME -EPS, developed 

at the Central Institute for Meteorology and Geodynamics in Austria (ZAMG). It is compared with its coarser driving 

regional EPS ALADIN-LAEF (Wang et al. 2011). The following questions are raised: 

 Can a convection permitting EPS provide an advantage over its coarser, driving regional EPS in complex terrain?  

 Is there any difference of the performance for the compared EPSs between lowlands and mountainous areas? 30 

 How well can CP EPS and lower resolution regional EPS simulate the diurnal cycle of precipitation? Is the onset 

and development of convective precipitation realistic? 

 Does a significant difference in performance for different weather regimes (i.e. days with weak and strong synoptic 

forcing) exist? 
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A verification study is designed and conducted to answer these questions and to establish whether AROME -EPS can 

outperform ALADIN-LAEF, a regional mesoscale ensemble with deep convection parameterization on a coarser grid. Wang 

et al. (2012) demonstrated the added value of ALADIN-LAEF as a regional mesoscale EPS to the global ECMWF-EPS 

(European Centre for Medium-Range Weather Forecasts). Hence, the present study extends this research by addressing the 

step between regional mesoscale and CP ensembles. 5 

For the present paper, AROME-EPS is coupled to the 16 perturbed ALADIN-LAEF members.  This is done to take 

advantage of the simulation of uncertainties used in ALADIN-LAEF. This uncertainty information is subsequently 

transferred to finer scales via the dynamical downscaling of the ALADIN-LAEF forecasts by AROME. This means that, 

both IC perturbations and LBC perturbations are provided from the driving model and are, thus, consistent. No further IC 

perturbations and model perturbations are applied. Generally, the set-up is kept as simple as possible to point out the pure 10 

effects of the downscaling: AROME-EPS is directly coupled to a daily ALADIN-LAEF run initiated at 00 UTC. There is no 

time lag between the ALADIN-LAEF and the AROME-EPS simulations and the forecasts are evaluated for the first 30h of 

the model runs, hence for a whole day and the subsequent night each.  

The benefits of AROME-EPS compared to ALADIN-LAEF are revealed in the framework of a comparative verification 

study. Although the focus of the verification study is on the onset and development of precipitation, the performance of othe r 15 

surface weather parameters are considered. The verification methods are selected in such a way that the overall performance, 

in a deterministic and probabilistic manner, and the abilities of the ensembles to reproduce spatial structures, can be 

investigated. Hence, ensemble-related scores are combined with spatial verification methods. Unintentionally, the strategy of 

this paper shows parallels to the verification study conducted by Le Duc et al. (2013), especially concerning the two 

ensembles (10 km and 2km resolution) coupled by direct downscaling. Further similarities are the complex terrain in which 20 

the study is conducted (Japan) and the use of traditional and advanced verification metrics. As a consequence, parallels in the 

results are mentioned in the results section. 

DMore detailed characteristics of the compared models are described in Section 2 along with the verification data. The 

methods chosen for the evaluation of the two ensembles are described in Section 3. Section 4 comprises the verification 

results and Section 5 the summary and concluding remarks.    25 

 

2. Ensemble systems and data 

2.1 The regional ensemble ALADIN-LAEF  

ALADIN-LAEF is the operational regional ensemble system of ZAMG and runs at ECMWF (Wang et al. 2010, 2011). It is 

based on the hydrostatic spectral limited area model ALADIN (Wang et al. 2009). ALADIN-LAEF has 16 members and is 30 

coupled to ECMWF-EPS (Weidle et al. 2013) with a horizontal grid-spacing of 11km. In operational mode. Iitand runs two 
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times per day at 0000 and 1200 UTC and provides probabilistic forecasts on a forecast range up to 3 days ahead, i.e. 72 h. In 

this study, however, evaluation is confined to the run at 00 UTC and a forecast range of 30 h ahead only. This is done in 

order to investigate the onset and development of convection in its diurnal cycle.  

with a horizontal grid-spacing of 11 km. The 16 members of ALADIN-LAEF are not sufficient to represent the atmospheric 

state probability density function (PDF). However, Schwartz et al. (2014) have shown that similar verification scores can be 5 

obtained from a 50-member ensemble and subsets of 20-30 members. Hence, we can expect, at least, reasonable results from 

verification based on a 16-member ensemble.  

The goal of ALADIN-LAEF is to provide probabilistic forecasts on a forecast range up to 3 days ahead, i.e. 72 h, although 

only 30 h are used in this study for the comparison with AROME-EPS. The ALADIN-LAEF domain (Figure 1) covers the 

whole European continent, Iceland, the whole Mediterranean Sea, Black Sea, Caspian Sea and adjacent countries. The 10 

eastern margins reach the Ural Mountains and parts of Siberia. To deal with the atmospheric initial condition perturbation 

ALADIN-LAEF applies a breeding-blending method for generating the IC perturbations for the upper levels. It uses large-

scale perturbations from the driving global-ECMWF-EPS combined with small-scale perturbations from the ALADIN-

breeding vectors (Toth and Kalnay 1993). The blending method (Wang et al. 2014) ensures that inconsistencies between 

small and large-scale perturbations are avoided. Therefore a digital filter is applied on the low spectral truncations of both 15 

the breeding-vectors and the fields from the global model. Afterwards the filtered breeding vectors on the full spectral 

resolution are subtracted from the original ones and added by the filtered global fields resulting in initial perturbations that 

are consistent with the regional EPS itself as well as with the driving global EPS. 

To consider uncertainties arising from the initial surface conditions in ALADIN-LAEF, a surface data assimilation scheme 

based on optimum interpolation (CANARI - Code for the Analysis Necessary for Arpèege for its Rejects and its 20 

Initialization, Taillefer 2002) is implemented using randomly perturbed observations. To account for uncertainties in the 

model itself, a multi-physics approach is implemented in ALADIN-LAEF. The perturbed members use different model 

configurations with several combinations and tunings of schemes and parameterizations available in the ALADIN physics 

package. The main emphasis is put on the variation and tunings of the following schemes and parameterizations: The 

diagnostic convection scheme as described in Bougeault (1985); the prognostic deep convection scheme 3MT (mo dular 25 

multi-scale Microphysics and Transport scheme, Gerard et al. 2009), and the connected microphysics scheme described in 

Geleyn et al. 2008 and Gerard et al. (2009); the radiation scheme based on Ritter and Geleyn (1992) or alternatively the 

scheme described in Mlawer (1997) and Morcrette (1991); the pseudo prognostic TKE (Turbulent Kinetic Energy) scheme 

described in Vana et al. (2008). Further details can be found in (Wang et al. 2010). Authors are aware that the forecasts of 

the individual members produced by the multi-physics approach cannot be regarded as equally likely. However, a previous 30 

evaluation apart from this study of the multi-physics in ALADIN-LAEF revealed that some of the members showed larger 

biases and errors than the other members. The configurations of these worse members were changed accordingly. Hence, we 

can assume that the members now produce forecast of comparable quality. 



18 

 

2.2 The convection permitting ensemble AROME-EPS  

The model core of AROME-EPS is the non-hydrostatic spectral limited area model AROME (Seity et al. 2011), which is 

especially designed to run at very high resolutions with a grid-spacing of 2.5 km or lower. Deep convection is treated 

explicitly, while shallow convection is parameterized with a mass flux approach (Pergaud et al. 2009). The single moment 

bulk microphysics scheme ICE3 for mixed-phase cloud parameterization (Pinty and Jabouille 1998) can handle mixing ratios 5 

of five prognostic hydrometeor classes: cloud water, cloud ice, rain, snow and graupel and also simulates complex 

interactions between them. AROME by default uses a three-layer soil model SURFEX (Surface Externalisé) with the effects 

of sea and urban areas parameterized using a tile approach (Masson et al. 2000).   

At ZAMG a deterministic version of AROME with 2.5 km grid-spacing has been operational since January 2014 running 

every 3 hours up to a lead-time of 48 hours. The domain for the model integration encompasses the Alpine region (Figure 1). 10 

Table 1 summarizes the most important model characteristics of ALADIN-LAEF and AROME-EPS.   

To run AROME-EPS, the same version of AROME with the same resolution is initialized by a dynamical downscaling of 

ALADIN-LAEF and coupled to the 16 members of ALADIN-LAEF. The ensemble runs with a forecast range of 30 h are 

initiated at 00 UTC each day, i.e. at the same time as ALADIN-LAEF. There is no A time lag  is not considered, as the pure 

impact of enhanced resolution and the convection-permitting configuration shall be investigated. Apart from the 15 

perturbations of initial conditions and lateral boundary conditions, no further perturbations (such as e.g. multi -physics 

parameterizations as in ALADIN-LAEF) are induced in the model integration. This comparatively simple configuration is 

used for several reasons: First, AROME-EPS has been set up quite recently at ZAMG and is still at an early stage of 

development. Secondly, the development of physics perturbations in AROME-EPS will rather go towards a stochastic 

physics scheme or a combined stochastic/multi-physics scheme than towards pure multi-physics as currently used in 20 

ALADIN-LAEF. And thirdly, the aim of this study is to test the possible advantage of a CP EPS compared to the operational 

system of ALADIN-LAEF.  

 

23.32 Verification data 

Station observations are used for the evaluation of ALADIN-LAEF and AROME-EPS surface weather variables. Figure 2 25 

shows the 517 surface stations in the AROME domain, providing observations at 6 -hourly intervals for 2 m temperature, 2 m 

humidity, 10 m wind speed and mean sea level pressure. The upper level verification is achieved using ECMWF analyses 

reference data at four pressure levels: 925 hPa, 850 hPa, 700 hPa, and 500 hPa, which are adapted to the model resolutions of  

both AROME-EPS and ALADIN-LAEF. 

The evaluation of precipitation forecasts is performed using the very high-resolution precipitation analyses of the ZAMG 30 

nowcasting system INCA (Integrated Nowcasting through Comprehensive Analyses; Haiden et al. 2011). This is necessary 

as the average station distance of precipitation observations is too large to resolve the fine spatial structures of precipit ation 
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events. The advantage of the INCA analyses is that they use additional observations and are provided on a regular grid.  

Based on this gridded data, it is possible to apply enhanced verification methods on precipitation fields, which cannot be 

computed on a point-to-point basis. 

The INCA system, developed at ZAMG, operates on a horizontal resolution of 1 km x 1 km. INCA blends data from 

automatic weather stations, remote sensing data (radar, satellite), forecast fields of numerical weather prediction (NWP) 5 

models, and high-resolution topographic data (Haiden et al. 2011). It provides hourly 3-D fields of temperature, humidity, 

wind, and 2-D fields of cloudiness, precipitation rate and precipitation type with an update frequency of 15 minutes to 1 

hour. The precipitation analyses are provided for different accumulation periods. In the present study, the one-hour 

accumulated INCA precipitation analyses are used as a reference for the spatial verification of EPS forecasts. For these 

analyses, precipitation measurements from surface stations and radar data are accumulated to one-hour sums and 10 

algorithmically merged. Prior to the analysis procedure, the data are quality controlled and climatologically scaled (Haiden et 

al. 2011). In this way the higher quantitative accuracy of the station data and the better spatial coverage of the radar data are 

utilized. The resulting analysis reproduces the observed values at the station locations while preserving the spatial structure 

provided by the radar data. The analysis error, which is computed from classical cross-validation, varies from case to case 

and depends on precipitation type, e.g. large-scale or convective, and on the accumulation period. The magnitude of analysis 15 

errors of grid point values can be quite large, but areal mean values are significantly more reliable (Haiden et al. 2011) 

Amending the rain gauge - radar combination, the scheme includes elevation effects on precipitation using an intensity-

dependent parameterization (Haiden and Pistotnik 2009). A NWP model first guess is not required in the precipitation 

analysis, thus such analyses are ideally suited as an independent reference to validate NWP models.  

Forecast verifications are performed at the observation locations for surface variables as 2 m temperature and humidity, 10 m 20 

wind speed and mean sea level pressure,  and on the INCA grid for precipitation. The model forecasts are interpolated bi-

linearly to the station locations and INCA analysis grid points, respectively. Further, a height correction scheme is applied  on 

2 m temperature values based on atmospheric standard conditions. In doing so, the same number of forecast/observations 

pairs is available for the verification of each of the EPS models. This supports the comparability of the verification result s.   

 25 

3. Verification strategy 

AROME-EPS and ALADIN-LAEF are evaluated over a 3-month summer period from 15 May, 2011 – 15 August, 2011, 

which represents a typical convective summer season in Central Europe.  

Precipitation is one of the parameters for which the biggest improvement is expected from the convection-permitting models. 

Therefore, the evaluation of the ensembles focuses on the representation of the spatio-temporal structure of precipitation 30 

events in the forecasts. Nevertheless, the preconditions for the development and onset of precipitation are also considered. 
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For this reason other forecast parameters, such as temperature, humidity, wind speed, air pressure and geopotential height ar e 

also verified.  

Precipitation forecasts are evaluated in both deterministic and probabilistic ways. The deterministic approach is directed 

towards predicting the correct precipitation amounts and the spatial distribution of the data. Probabilistic evaluation tests  the 

capability of the ensembles to predict a pre-defined event with the probability, which corresponds to its relative frequency, 5 

i.e. to produce a reliable PDF for the occurrence of the event. The events can be defined as, e.g., precipitation amounts 

exceeding a certain threshold. In this study, thresholds of 0.1 mm (threshold for the prediction of rain or no rain), 0.5 mm, 1 

mm, 2 mm and 5 mm are chosen for 3-hourly accumulated precipitation amounts. These thresholds appear low, especially 

when taking into account convective precipitation events. However, the thresholds are selected according to the frequency of 

occurrence of the precipitation values in the individual grid cells of the 1 km x 1 km verification grid. They ensure that a 10 

sufficient number of observed events are available for evaluation over the 3-month test period. The two ways of 

deterministic and probabilistic evaluation reflect the main options for the efficient use of ensemble forecasts: First, as a 

conservative prediction of ensemble mean or median or, second, as a tool to estimate the uncertainty of the forecast and the 

probability of extreme values via the ensemble spread and PDF (e.g. Zhu et al. 2002).  

A number of tTraditional point-to-point verification scores (see e.g. Wilks 2006) in Table 2 are computed for all evaluated 15 

parameters. In addition, significance tests for these scores are performed. Confidence intervals of the verification scores a re 

estimated by a bootstrapping algorithm (Davison and Hinkley 1997; Joliffe 2007; Ferro 2007) and confidence intervals of 

90%. The bootstrapping method uses 5000 random samples with a block length of four (Hall et al. 1995)eight.  

In order to present the results concisely, only three scores have been selected from Table 2 to describe the differences in 

forecast performance between AROME-EPS and ALADIN-LAEF: The ensemble mean Bias (Eq. 1), the Brier Score (BS) 20 

and components derived from its decomposition, reliability, resolution and uncertainty (BS, Brier 1950 and Murphy 1973, 

respectively, Eqs. 2-5) and the Continuous Ranked Probability Score (CRPS, Hersbach 2000; Gneiting and Raftery 2007; 

Eq. 63).  

The Bias simply measures the mean deviation between the analyzed values (a) and the forecast values, in our case the 

ensemble means 
 
( f ) , at n grid points i. Both, positive as well as negative signs are possible. A perfect forecast has a bias of 25 

zero. 
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Like the Bias also BS is a measure for the accuracy of the forecasts, however, in probability space. It is the mean squared 

difference between the forecast probability 
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) , e.g. derived from the distribution of ensemble members) for a 

pre-defined event (e.g. the exceeding of a threshold) and the analyzed truth x 
 
(x  0 ,1 ) . The binary variable x is 1 if the 30 
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event occurred, and 0, if the event did not occur. The minimal value of BS is zero. It is achieved for a perfect forecast, and 

the maximum value is one for the worst possible forecast. 
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According to Murphy (1973) the BS can be decomposed to three quantities which refer to the reliability, resolution and 5 

uncertainty of the forecast (Eq. 3). 
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The 
 
N

k in Equ. 3 denote the sample sizes in  K conditional subsamples pertaining to forecast probabilities 
 
p

k . The 
 
x

k (Eq. 10 

4) are the conditional average observations and  x  is overall average observation (Eq. 5).  
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Reliability (first term of Eq. 3) measures how well a forecast system is calibrated, i.e. it is a measure of accuracy conditional 

to a range of forecast values. Resolution (second term), on the other hand, describes the ability of the forecast to react 

differently to different weather situations, or in other words to resolve them. While the value for a perfect forecast of the 

reliability term is zero, the resolution term is preferably large. The third term of Eq. 3, uncertainty, is not dependent on the 

forecast, but only on the variance of observations (here: the relative frequencies of the occurrence/non-occurrence of events). 20 

For a very comprehensible discussion of these quantities of forecast quality see also Wilks (1995).  

CRPS is related to BS insofar, as it can be expressed as the integral of BS for all possible thresholds of the meteorological 

parameter   (Hersbach 2000). The value for an ideal forecast of CRPS is zero as for BS. 
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The continuous ranked probability score compares the cumulative distributions 
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H ( )  is the so-called Heaviside-function (Eq. 96), which only takes the values 0 and 1.
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 5 

In addition to the hose traditional statistical scores in Table 2, precipitation forecasts are verified by spatial verification 

methods, which not only consider the exact match of forecast and verification values at individual points, but take into 

account the matching of forecasts and observations in terms of objects or spatial scales (Casati et al. 2008, Ahijevych et al. 

2009, Gilleland et al. 2010). This is necessary as precipitation fields exhibit high spatial variability and discontinuity. S mall 

deviations in space and time between forecast and verification data can lead to large errors in traditional point to point 10 

verification scores, which is also known as the double penalty problem (Nurmi 2003).  

 

3.1 Spatial verification methods 

The selected spatial verification methods are the so-called SAL method (Structure-Amplitude-Location method, Wernli et al. 

2008) and the Fractions Skill Score (FSS, Roberts and Lean 2008). 15 

SAL determines the forecast performance of precipitation in terms of structure (S), amplitude (A) and location (L). The 

method is object based. Precipitation objects in forecast and verification fields are contiguous areas of grid -points exceeding 

a certain precipitation threshold.  
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The amplitude score (Eq. 107) defines whether the domain-averagedintegrated precipitation amount  R  of the precipitation 20 

field  R  is underestimated (A < 0) or overestimated (A > 0). Subscripts, f and a, denote forecast and analyzed fields, 

respectively. 

The location score measures the agreement of the centers of mass in the analyzed and predicted precipitation fields together 

with the averaged distance between the center of mass and the individual objects. It is actually the sum of two components 

L= L1+ L2 where both values are in the range [0, 1]. The first part L1  25 
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is a measure of the distance between the mass centers x of the analyzed (Ra) and the predicted precipitation fields (Rf). 
  
d

m a x  

is the longest possible distance in the domain. 

As an identical mass center position does not necessarily mean that the forecast is perfect, the second component L2 (Eq. 

129) is introduced:  
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5 

L2 takes into account the distance r (Eq. 130) between the mass center of each individual object Rn and the overall mass 

center and compared between the observed and simulated precipitation field: 
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The L component has a range [0, 2] with L=0 indicating a perfect forecast.  

The structure score S  10 
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compares the weighted sums of the precipitation volumes V(R)  
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of the precipitation objects, where the 
  
V

n
 R

n
/ R

m a x  
 describe precipitation sums scaled by their maxima. If S < 0, forecast 

objects are too small and too peaked. In contrast, S > 0 indicates that the objects are too large and too flat. 15 

The fractions skill score (FSS)  

(163)   

  

F S S ( n )  1 
M S E ( n )
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r e f

  

evaluates the forecasts on different spatial scales. The scales are defined via neighborhoods, i.e. square boxes of length n grid 

spaces surrounding a selected grid point. The score compares the fractions of rain coverage of forecast and analysis in the 

neighborhoods. Depending on the precipitation event, small disparities of the coverage may lead to large forecast errors on 20 

fine scales, but to a better rating on a coarser scale. The aim of FSS is to identify scales for which the evaluated model can 

provide useful forecasts. 

Feldfunktion geändert

Feldfunktion geändert

Feldfunktion geändert

Feldfunktion geändert

Feldfunktion geändert



24 

 

FSS is computed by assigning the grid points binary values 0 and 1 in each of the neighborhoods with subscripts  
  
( i , j ) , 

according to a selected precipitation threshold. From these binary fields, the fraction of the points with value 1 are comput ed 

for analyses and forecasts as 
  
A

( n ) i , j
 and 

  
F

( n ) i , j
, respectively.   

At each such defined scale n, the mean squared error (MSE):  
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is computed for the whole field of fractions and related to a reference (MSEref)  

 

(185)   

  

M S E
( n ) r e f


1

N
x

N
y

A
( n ) i , j

2

j  1

N
y


i  1

N
x

  F
( n ) i , j

2

j  1

N
y


i  1

N
x


















  

MSEref is the largest possible MSE, which can be obtained from the underlying field. The skill score summarizes the  

performance in the whole field and ranges from 0 (complete mismatch) to 1 (perfect match). 10 

3.2 Subdomains for precipitation verification 

Verification is done for the whole domain Austria. To account for the different topographic characteristics in the verification 

domain, two sub-domains are chosen (Figure 3). They comprise mountainous area (region West) as well as region with flat 

terrain (region Northeast). Due to the location of the Alps in Austria and the prevailing flow directions around the Alps, each 

of the subdomains has its own climatological properties, which is also visible in the precipitation characteristics.   15 

3.3 Temporal stratification 

In order to investigate the influence of different weather regimes, the 92 days of the test period are classified into three bins 

according to the synoptic situation, strong synoptic forcing, weak synoptic forcing, and dry. Days are classified as dry (5 

days) if the areal mean of the daily precipitation sum is below 0.05 mm. All other days, i.e. 87 days on which rains was 

reported, are assigned to the bins of weak (23 days) or strong synoptic forcing (64 days). For the classification, a method 20 

described by Done et al. (2006) and successfully applied by Kühnlein et al. (2014) is used which is based on the temporal 

variability of CAPE (Convective Available Potential Energy) as a measure of atmospheric instability. According to Done et 

al. (2006), the approach helps to distinguish between days on which convection is predominantly at  equilibrium or at non-

equilibrium. This means that the destabilization of the atmosphere by large-scale synoptic forcing is balanced or un-

balanced, respectively, by the stabilization through convection. The idea is that this balance or imbalance is related to the 25 

timescale in which CAPE is built up by large-scale processes and consumed by convection. On days with weak synoptic 

forcing the consumption of CAPE is related to the diurnal cycle or to local triggering rather than to prevalent large-scale 

processes. In these cases the convective timescale is long and CAPE is often not fully consumed by convection. In situations 
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where CAPE is realized much faster by large-scale processes, i.e. in situations of strong synoptic forcing, convection is in 

equilibrium. In our study the convective adjustment time-scale tc  

(196)    
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c
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d t
  

is calculated hourly from AROME-EPS CAPE forecasts using    t  1 h . Following the suggestion of Done et al. (2006) a 

specific day is assigned to weak synoptic forcing if the areal mean of tc exceeds a threshold of 6 h at least once a day by at 5 

least three ensemble members. In order to test the method of Done et al. (2006) we compared the classification with 

alternative approaches, such as the temporal change of mid-tropospheric vorticity and convection related to patterns in 500 

hPa geopotential using archived ECMWF forecast and ERA-Interim re-analyses. The results were comparable to those of the 

equilibrium method.  

4. Results 10 

In the following we present the evaluation of AROME-EPS and ALADIN-LAEF over a three-month summer period. The 

focus is on the performance of near surface parameters, in particular the precipitation forecast, which is of most interest to 

the users of convection permitting and regional EPSs. 

4.1 Evaluation of forecasts of temperature, wind and humidity 

The forecast performance of surface parameters (2 m temperature and humidity, 10 m wind speed and mean sea level 15 

pressure MSLP) and upper level parameters (temperature, humidity, wind speed and geopotential height) of AROME-EPS 

and ALADIN-LAEF are verified in this study, which form the background of the evaluation of precipitation.  

A large number of verification metrics (Table 2) have been calculated for those near surface and upper air parameters. In 

general there is no clear advantage either for ALADIN-LAEF or for AROME-EPS. Exceptions from this statement are solely 

constituted by biases in the forecasts, which are particularly found on the surface level. They form the most eminent 20 

differences in the performances of the EPSs: If the bias is low, the models provide good performance also for other scores.  

For the surface level, we also found more results on a high level of significance (i.e. 90%). The verification results of the 

upper levels are less significant than for the surface and performance is more ambivalent. We used a large number of 

observations for both surface (station observations) and upper levels (ECMWF grid values). Hence, the lower significance o f 

the results for the upper levels can be explained by the model set-up rather than by the verification data. Near surface and on 25 

lower levels AROME-EPS can add more information to the model simulation compared to ALADIN-LAEF than on higher 

levels. This is due to the SURFEX soil scheme and the interaction between a refined representation of orography and the 

model physics schemes and dynamics. On the higher levels, however, there is less influence of the orography and the 

simulation resembles more the driving model. For this reason, Therefore, surface results have been selected to highlight the 

main findings in the following. 30 

Feldfunktion geändert

Feldfunktion geändert
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Figure 4 compares the ensemble mean bias and the Continuous Ranked Probability Score (CRPS, see Wilks 2006 for details) 

for 2 m relative humidity, 2 m temperature and 10 m wind speed. CRPS compares the forecast PDF based on all ensemble 

members to the observed values of occurrence and non-occurrence, respectively. CRPS is sensitive to the difference between 

the forecast probabilities andto observed values. The lower the difference, the better the forecast is rated. Hence, the value of 

CRPS of a perfect forecast is zero. Due to theits formulation of CRPS, variationssignals of CRPS values are also reflected by 5 

many other scores, in particular those which are sensitive to deviations between the distributions of forecasts and 

observations. Thus, CRPS is useful for representing the results of this study exemplarily. It also shows the impact of biased 

forecasts.  

Biases of 2 m relative humidity in Fig. 4a show noticeable diurnal variations. During the night and early morning, AROME -

EPS is too dry, whereas ALADIN-LAEF is too moist during the day (1200 UTC and 1800 UTC). The diurnal variations of 10 

the differences between AROME-EPS and ALADIN-LAEF are also reflected in CRPS in Figure 4b. During the night, 

AROME-EPS and ALADIN-LAEF are at the same level, but for the day hours AROME-EPS shows better results. For 2 m 

relative humidity, most verification results are significant at a level of 90%. This is also true for the differences in forecast 

performance during the day hours. Results for 2 m temperature in Figures 4c and 4d show an improvement for bias and 

CRPS most of the used scores at a significance level of 90% for AROME-EPS. This result is partially due to a large bias of 15 

ALADIN-LAEF temperatures. In contrast, there exist fewer deviations between the ensembles for wind speed (Figures 4e 

and 4f) and MSLP (not shown). However, these results have only a low level of significance. 

 

4.2 Evaluation of precipitation forecasts 

Precipitation is evaluated by 3-hourly INCA analyses on a regular 1 km x 1 km grid. A first insight of the strengths and 20 

weaknesses of the ensembles in forecasting precipitation is offered by a comparison of the daily variability of precipitation 

intensities. Figure 5 compares the 3-hourly precipitation sums of INCA and both EPS models for different regional domains 

and for days with strong (left panels) and weak (right panels) synoptic forcing. 

Errors occur in terms of over- and underestimation of the maximum intensity and in terms of time shifts. The daily 

maximum of 3 h-precipitation is overestimated by AROME-EPS for regions West and Austria and both types of synoptic 25 

forcing by 20%-50%. In ALADIN-LAEF, the maximum of the ensemble mean in these regions is approximately at the same 

level as analyzed by INCA. Hence, the too moist conditions of ALADIN-LAEF near the surface in Fig. 4a are not directly 

reflected in the precipitation sums. For region Northeast, the ensemble mean of AROME-EPS correctly simulates the 

maximum amount of precipitation quite well for strong synoptic forcing and only slightly overestimates it for weak synoptic 

forcing, whereas ALADIN-LAEF is too low for both types of forcing. 30 

Considering the days with strong synoptic forcing in Figure 5 (left panels), the highest precipitation sums are detected 

around 1800 UTC. AROME-EPS describes the temporal maximum quite well, whereas the maximum in ALADIN-LAEF 

occurs too early (-3 h time shift).  In the case of weak synoptic forcing shown in Figure 5 (right panels), the precipitation 
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maxima are observed later than for the other cases in region West (e.g. 2100 UTC instead of 1800 UTC). This is not reflected 

by the EPS models, which both reach the maximum intensity of precipitation at 1500 UTC (ALADIN-LAEF) and 1800 UTC 

(AROME-EPS). Only for region Northeast and weak synoptic forcing does the maximum of precipitation occur too late in 

AROME-EPS. The characteristic that ALADIN-LAEF and AROME-EPS tend to trigger moist and deep convection over 

complex orography too early is well known (Wittmann et al. 2010). However, according to Figure 5, running a model or an 5 

EPS on CP scales is beneficial for predicting the daily maximum of the convective diurnal cycle, at least over mountainous 

terrain. With respect to the timing of the maxima, AROME-EPS shows a time shift of -3 h, with ALADIN-LAEF -6 h for 

weak synoptic forcing in regions Austria and West (panels b) and d), respectively). Because of the limited framework of this 

study we can only speculate that this behavior might be due to differences caused by the deep convection scheme in 

ALADIN-LAEF, which is one of the reasons to cause an early onset of precipitation (Bechtold et al. 2013), and respectively , 10 

the explicit simulation of deep convection in AROME. Another reason, which we cannot exclude, could be that ALADIN-

LAEF and AROME apply different physical parameterizations. The different dynamical cores, hydrostatic and non-

hydrostatic, might also contribute to the differences to some extent, but remain statistically less significant in respect of 

precipitation as shown in an earlier study (Wittmann et al. 2010). Experiences concerning the pure impact of different 

vertical resolutions on the forecast quality are few. However, it is known that an increase of vertical resolution and, hence, 15 

enhanced possibilities to simulate convection-related, micro-physical and boundary-layer processes, does not necessarily 

result in an improvement of precipitation forecasts. It is rather related to increased overprediction of precipitation amounts 

(Aligo et al. 2009). 

A further characteristic evident in Figure 5, is that the precipitation amounts in AROME-EPS develop independently of those 

in the driving ALADIN-LAEF members, which is indicated by the ensemble spread. In ALADIN-LAEF the ensemble 20 

spread is quite large for certain lead times, ranging from a larger overestimation of the observed precipitation amounts to a 

large underestimation. This contrasts with AROME-EPS, which shows a much smaller range of precipitation amounts. This 

difference in the spread is very likely due to the large influence of the multi-physics configuration in ALADIN-LAEF, 

compared with the single physics configuration of AROME-EPS.  

In order to summarize the findings of Figure 5 we can state that the ability of the models to forecast the daily precipitation 25 

cycle is influenced by both, the topography and the type of synoptic forcing.  Additionally, there is a general tendency of the 

finer model, AROME-EPS, to forecast higher precipitation amounts with a temporal maximum later in the day than 

ALADIN-LAEF. The latter, on the other hand, exhibits a larger variety of simulations, visible through the larger spread, 

especially over mountainous terrain. In the following we will discuss several scores (Brier score, SAL scores and FSS) to 

The scores, which are discussed in the following, Brier score, SAL scores and fractions skill score, demonstrate in which 30 

ways the differences in the diurnal precipitation cycle have an influence on forecast quality.  
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4.2.1 Brier score components 

Figure 6 shows the differences of the components of BS, reliability, resolution and uncertaintyBrier Score (BS; Brier 1950), 

for strong and weak synoptic forcing with different precipitation thresholds for region Austria. BS measures the accuracy of 

probability forecasts, which is equivalent to the MSE for deterministic forecasts. The value for perfect forecasts is zero. BS 

has largest values for the lowest precipitation threshold of 0.1 mm/ 3 h (0.1 mm, upper panels), and decreases for larger 5 

thresholds (2 mm, lower panels). This is also true for the differences of BS between AROME-EPS and ALADIN-LAEF. 

However, BS is dominated by the uncertainty component, which is independent of the forecast system but only dependent of 

the observations. Therefore the components are shown in Figure 6 as they provide a more detailed insight into forecast 

performance than the overall quantity BS.     

The unequal diurnal variations of uncertainty for days with strong synoptic forcing and days with weak synoptic forcing are 10 

clearly visible in panels e) and f), respectively, in Figure 6. The relatively constant values of uncertainty for strong synoptic 

forcing and the differences between afternoon (+12h to +24h forecast range) and early nighttime and morning hours (+3h to 

+9h and +27h to +30h forecast range) for weak synoptic forcing reflect the mean precipitation intensities in Figure 5 a) and 

b). They state that the uncertainty is high whenever there is some possibility of rainfall. In cases of strong synoptic forcing 

this circumstance persists for the whole day, while there is a period with relatively stable conditions and low probability of 15 

rainfall during the morning hours for days with weak synoptic forcing.  

The results of the resolution component depicted in panels c) and d) show very similar daily variations compared to 

uncertainty. Generally, larger resolution values are preferable for any forecast system. However, this does not necessarily 

mean that the forecasts are generally wrong as during the morning hours of days with weak synoptic forcing (panel d) in 

Figure 6). It reveals, moreover, that the models keep forecasting low values of precipitation probability regardless if there is 20 

no rain or a little rain reported. However, if the observation sample itself contains values of no rain results of resolution are 

less meaningful than for situations with a more balanced distribution of observations. This is the case between noon and 

early night hours for days with weak synoptic forcing and for the whole day for days with strong synoptic forcing. For these 

periods we can observe mostly higher resolution for the forecasts of AROME-EPS than for ALADIN-LAEF, at which the 

differences are not significant, though. The lower resolution values for ALADIN-LAEF are presumably due to the smoother 25 

precipitation fields compared to AROME-EPS. The smoothness leads to rather medium precipitation probabilities in large 

areas, which is a disadvantage with regard to resolution compared to sharper forecasts near zero and one (i.e. very low and 

very high probabilities for rainfall). 

The most obvious differences between ALADIN-LAEF and AROME-EPS can be observed for the reliability component 

(Figure 6, panels a) and b)). They can, for the most part, be explained by the time shift between forecast and observation, i.e. 30 

by the fact that the precipitation generally starts too early in ALADIN-LAEF forecasts (see again Figure 5 a) and b)). Both 

models show good (i.e. low values of reliability) during the nighttime and the morning hours (+3h to +6h and +21h to +30h 

forecast range). However, during daytime (starting at +9h forecast range) ALADIN-LAEF shows significantly higher values 
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of reliability than AROME-EPS with a peak at +12h forecast range. It’s the same point of time at which the largest 

differences between ALADIN-LAEF and INCA are reported in Figure 5, panels a) and b). The fact that there are also large 

differences between ALADIN-LAEF and INCA at a longer forecast range (e.g. +21h) is however no reflected in the score. 

An explanation for this fact is that both, the forecasts and INCA reported larger amounts of rain. In this situation it is easier 

for the models to differ between no rain and rain. For this reason the bias in the precipitation intensities of AROME-EPS is 5 

also not reflected in the reliability.   

  

During the morning hours (+6 h, +30 h lead time), BS is low for days with weak synoptic forcing. This is due to the fact, tha t 

on these days, generally stable conditions prevail in the morning and precipitation probability is very low. For the lower 

precipitation threshold, AROME-EPS shows significantly better values than ALADIN-LAEF from 0900 UTC to 1500 UTC. 10 

This applies for both, days with weak synoptic forcing and days with strong synoptic forcing.  

The differences in BS between ALADIN-LAEF and AROME-EPS can, for the most part, be explained by the fact that the 

precipitation generally starts too early in ALADIN-LAEF forecasts. Additionally, the tendency of ALADIN-LAEF to 

forecast smoother precipitation fields than AROME-EPS can be assumed as a second source of errors. The smoothness leads 

to rather medium precipitation probabilities in large areas. BS, however, accounts for sharp forecasts near zero and one (i.e . 15 

very low and very high probabilities for rainfall). 

 

4.2.2 SAL scores 

The variability of SAL scores with lead-time gives insight in the performance of AROME-EPS and ALADIN-LAEF in 

terms of the structure, amplitude, and location of the predicted precipitation events. Figures 7 and 8 show the SAL scores fo r 20 

the mountainous region West and the lowland region Northeast, respectively. The distributions of SAL values are sampled 

for the individual ensemble members and classified into days with strong (panels a and b) and weak synoptic forcing (panels 

c and d). These values differ from those based on the ensemble mean and median forecasts as the averaging produces more 

smoothed precipitation events and, hence, has an influence on the properties described by the SAL method.  

In both geographic regions and for both types of synoptic forcing, the structure score is lower for AROME-EPS than for 25 

ALADIN-LAEF, which is, inter alia, a consequence of the model resolution (Wittmann et al. 2010). AROME -EPS produces 

precipitation events, which are mostly too small and/or too peaked, whereas precipitation objects in ALADIN-LAEF are too 

large and flat. This is particularly true for days with strong synoptic forcing and for flat terrain. The structure score for  

ALADIN-LAEF further shows a pronounced diurnal variation for region West, where precipitation events are too large 

during the day (0900 – 1500 UTC), but more realistic during evening and nighttime.  In region Northeast and weak synoptic 30 

forcing, on the contrary, there is a rather damped diurnal variation. This is a sign that precipitation events emerge too early 

and grow too large over the mountains, whereas over flat land, they are too flat and too widespread during the whole day. 

AROME-EPS generally shows better agreement with the observed precipitation structures than ALADIN-LAEF during noon 
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(1200 - 1500 UTC) while objects are much too small during the rest of the day. Only on days with strong synoptic forcing 

and over mountainous terrain does AROME-EPS mostly underestimate the dimension of precipitation events. Also oOver 

flat land, structure scores are variable on a low level for AROME-EPS, but do not show a perfect daily cycle as for the 

mountainous areas. 

In most instances, the amplitude component reflects the findings shown in Figure 5, being more apparent for days with weak 5 

than for days with strong synoptic forcing. For both EPS models, an overestimation occurs during noon over mountainous 

terrain (region West, Figure 7), which is associated with the early onset of convection for ALADIN-LAEF and with the 

overestimation of precipitation amounts in AROME-EPS. In region Northeast (Figure 8), the agreement seems to be much 

better for days with strong synoptic forcing than for weak synoptic forcing. However, amplitude score measures the 

agreement in terms of the percentage share of precipitation amounts. Hence, if the amounts are on a much lower level as in 10 

the case of weak synoptic forcing, amplitude scores appear worse. The large amplitude errors in Figures 8c and 8d are, 

therefore, more dependent on the time shift between simulated and observed peaks of precipitation intensities than on the 

absolute amount of maximum precipitation intensities, which are fairly well captured.  

The location score in both regions provided by the SAL shows not as much variability as the other two components. 

Nevertheless, an investigation of the distances of observed and forecast centers of mass for the precipitation events can 15 

provide useful information. Figures 9a and 9b show the mean distances for objects pertaining to precipitation thresholds of 

0.1 mm / 3 h and of 2 mm / 3 h for days with strong synoptic forcing, respectively. In general, it can be stated that the 

distances get shorter with increasing thresholds. This indicates that both ALADIN-LAEF and AROME-EPS are more 

successful for more intense precipitation events. On the other hand, precipitation objects with very low intensities can be 

either very small and randomly distributed, which is difficult to predict, or very large, which is easier to predict or detect. 20 

For higher thresholds, Figure 9b shows that the distances have more variability with time. Although distances are short for 

earlier hours of the forecast (and the first half of the day), they increase for later forecast hours and reach a maximum at +21 

h (2100 UTC). This effect is much greater in ALADIN-LAEF than in AROME-EPS and it is remarkable that it happens very 

late in the day, much later than the main peak of precipitation shown in Figure 5. The reason could be that the precipitation  

cells are captured well when they are in a mature and well-developed state. Their further development or collapse seems to 25 

be better simulated in AROME-EPS. This should be connected to the prognostic (and explicit) treatment of the atmospheric 

variables describing the evolution of convective activity in AROME. A convection parameterization, in particular, a 

diagnostic convection scheme (as it is used for some members of ALADIN-LAEF) has more deficiencies in simulating the 

life cycle of convective objects properly than is the case for AROME. In addition, the non-hydrostatic dynamics, higher 

resolution and better representation of turbulence and microphysical interactions in the model physics might lead to a more 30 

realistic decay of convection in AROME-EPS.  
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4.2.3 Fractions Skill Score 

The fractions skill score (FSS) indicates how well the ensemble systems predict precipitation at different spatial scales. The 

grid box widths (1 km – 21 km, corresponding to areas of 1 km
2
 – 441 km

2
) have been selected to investigate the 

performance of models at very fine scales, near the resolution of the analyzed observations of INCA. At these scales models 

have difficulties to reach the level of usefulness (i.e. the target skill as defined in Roberts and Lean 2008), which can be 5 

expected at larger scales. Nevertheless, it is interesting to examine how FSS values change with increasing precipitation 

thresholds. 

Figures 10a and 10b compare the FSSsfractional skill scores for days with strong synoptic forcing and days with weak 

forcing. FSS values are greater (~factor 2) for strong synoptic forcing than for weak synoptic forcing, since for the latter,  

precipitation events are generally less structured which lead to the lower level of skill.  10 

For all weather situations, ALADIN-LAEF shows better values for the lowest thresholds of 0.1 mm and 0.5 mm. The 

converse result is observed for higher thresholds above 2 mm. For 5 mm / 3 h ALADIN-LAEF has hardly any skill on the 

very fine scales for days with weak synoptic forcing. This means that small, scattered showers and thunderstorms, which 

typically occur on these days, cannot be simulated well by the model with coarser model resolution. In AROME-EPS there is 

at least a certain skill for small intense precipitation events, although it is not onat a level considered as usefulreliable. 15 

These results are comparable to the main outcomes of Le Duc et al. (2013) and Schwartz et al. (2009). Le Duc et al. (2013) 

also found that the coarser 10 km ensemble showed slightly better results for light rains than the finer 2 km one.  Both 

models had lower skill in predicting heavy rain, however, in for the higher precipitation thresholds the 2 km ensemble 

performed better than the 10 km one. Schwartz et al. (2009) partially found the same behavior of FSS for coarse 12 km and 

fine models (2 km and 4 km resolution). The coarser model clearly outperformed the finer ones for light rain, whereas the 4 20 

km model showed better skill at a high threshold of 5 mm/h.   

In the previous sections, the discussion provided an overview on the whole 3 months period. In the following section, 

evaluations focus on a single selected day. This is done in order to show the forecast behavior of the ensembles in a single 

concrete weather situation exemplarily.  

4.3 Case study 25 

A typical convective day with weak synoptic forcing is selected to show the evolution of precipitation in AROME -EPS and 

ALADIN-LAEF in more detail. Here more emphasis is put on the observation of the numbers, volumes, and distribution of 

the precipitation objects.  

Figure 11 illustrates the precipitation at different times of 29 April 2014 of INCA analyses and the ensemble means of 

AROME-EPS and ALADIN-LAEF. On this day, continuous light rain was reported in Austria’s mountainous terrain, near 30 

the main Alpine ridge during the morning hours as shown in the first row of Figure 11. At the same time the lowlands in the 

east and north were dry. In the lowlands, precipitation activities in terms of small showers started from approximately 1100 
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UTC in second row of Figure 11. Over the course of the day the focus of precipitation was increasingly shifted to the flat 

lands in the North, East, and Southeast of Austria as well as to Slovenia and Northern Italy. The peak rain intensity was 

around 1500 UTC, shown at 1400 UTC in third row of Figure 11. Rain in the inner alpine areas had diminished. In contrast, 

the showers in the flat regions continued until the time of sunset. Then their activity also weakened, which is visible in the 

bottom row of Figure 11. 5 

Figure 12 gives the characteristics of the precipitation forecasts of ALADIN-LAEF and AROME-EPS, such as the temporal 

evolution of the mean areal precipitation in Figure 12a, the number of precipitation objects in Figure 12b, and the temporal 

evolution of the SAL scores in Figure 12c. For the selected day, precipitation amounts for the region Austria are slightly 

underestimated by the both ensemble systems. Further, only a minor fraction of ensemble members reach the observed 

precipitation intensities at noon. By investigating the structures of the precipitation forecasts, further insight into the behavior 10 

of the ensemble systems is provided. The number and volume of precipitation objects describe how models perform in a 

spatial context. In this respect, AROME-EPS clearly shows more ability to replicate the real spatial structure of precipitation. 

Although the number of objects in the region Austria is too low during the first forecast hours, the further development as 

observed by the INCA analysis in Figure 12b is described well. In the ALADIN-LAEF forecast the number of precipitation 

objects is very low, mostly a product of the lower resolution. The volumes of the precipitation events are in direct connecti on 15 

with their number (not shown). ALADIN-LAEF overestimates the volumes to the same degree as it underestimates their 

numbers. However, it shows a clear diurnal variation of the volumes with a maximum around noon, which is not indicated 

by AROME. 

The fact that ALADIN-LAEF tends to produce fewer but larger precipitation objects does not lead to worse verification 

statistics for ALADIN-LAEF. On the contrary, in most regions the hit rate is higher for ALADIN-LAEF than for AROME-20 

EPS and the number of missed events is lower. AROME-EPS, on the other hand outperforms ALADIN-LAEF in terms of 

correct negatives and false alarms (not shown).  

These results are also reflected in the temporal evolution of SAL-scores in Figure 12c. As expected, the structure score S is 

too high for ALADIN-LAEF, due to the overestimation of the volumes of precipitation objects. At the same time, however, 

AROME-EPS produces a low S score which means that it still produces too small and peaked precipitation objects compared 25 

to INCA.  

Interestingly, there is a late peak in the S score between 26-28 hours lead time in both models, which follows a short 

minimum at 25 hours lead time. This is also slightly reflected in the A score. The sequence of minimum and peak is related 

to a nightly shower, which was also simulated by the ensembles, but with a delay of app roximately 2 hours. The location or 

L-score is rather constant in time for both ensemble models. This means that they were able to reproduce the changing 30 

spatial focus and distribution of precipitation during the day.  
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5. Summary and conclusions 

In this paper we investigate the forecast performance of the 2.5 km convection-permitting ensemble AROME-EPS by 

comparison with the regional 11 km ensemble ALADIN-LAEF to reveal the benefit provided by a CP EPS. The regional 

EPS, ALADIN-LAEF, involves several sources of forecast perturbations, such as initial condition perturbations by blending 

ECMWF-EPS with ALADIN-LAEF breeding vectors and assimilation of perturbed surface observations, and a multi -5 

physics scheme. The high-resolution, convection-permitting AROME-EPS solely performs downscaling of the ALADIN-

LAEF forecasts. The performance of the ensembles is evaluated for a 3-month period during the convective season of 2011 

and for a typical convective day in April 2014 with a special focus on precipitation events  in mountainous terrain and 

lowland regions. The aim is to show whether the convection-permitting ensemble provides benefits to the regional ensemble 

with deep convection parameterization. The evaluation is conducted using a combination of standard determi nistic and 10 

probabilistic verification scores and selected spatial verification measures. The former are applied on several main forecast  

parameters for surface and upper levels, the latter – according to their definition – only for precipitation. 

The forecast quality for the main meteorological parameters (except precipitation) for the surface and selected upper levels is 

strongly dependent on the model bias and is rather balanced, except for diurnal variations near the surface. However, 

characteristic differences are revealed by the investigation of the precipitation forecasts. A known drawback of models using 15 

deep convection schemes proves true, which is the premature onset of precipitation in the daily cycle by ALADIN-LAEF 

(see e.g. Wittmann et al., 2010; Weusthoff et al., 2010). On the other hand, an overestimation of precipitation intensities at 

the peak of convection activities by AROME-EPS is also confirmed, which has been assumed in previous validations. Both 

of these properties are found to be more pronounced in mountainous than in flat regions.  

ALADIN-LAEF shows skill in the prediction of probabilities for low precipitation thresholds, i.e. to distinguish between 20 

rain and no rain. This is also true for small scales, but it is again dependent on the time of day, as the early onset of 

precipitation has a negative influence on the verification scores. AROME-EPS, on the other hand, has a better ability to 

capture the diurnal cycle of convective precipitation, especially over mountainous terrain. At small spatial scales, it further 

demonstrates better performance for higher precipitation thresholds. The results of the evaluations in this study lead to the 

conclusion, that the convection permitting ensemble is more skillful on the precipitation forecast than its mesoscale 25 

counterpart, the regional ensemble. The positive impact is larger for the mountainous areas than for the lowlands. 

Nevertheless, the knowledge of which precipitation situations can be better modeled by the convection-permitting ensemble 

is important to have. For many applications, e.g. for large-scale extreme events, such as the Central Europe flooding event of 

2013, the best solution will be a combination of both systems: the coarser ensembles with longer forecast range for (pre)-

warnings, and the convection-permitting ensemble for the detailed specification of the expected event. Regarding different 30 

time and length-scales in that way could lead to the generation of seamless forecast products (e.g. Drobinski et al. 2014, 

Vitart et al. 2008).  



34 

 

This study is considered as initial point for further investigations and improvement of the convection-permitting ensemble 

AROME-EPS. The low spread of the prevailing AROME-EPS version is a clear drawback compared to ALADIN-LAEF. 

Therefore, future enhancements of AROME-EPS will involve components, which will presumably increase ensemble 

spread. Among those upgrades will be ensemble data assimilation and physics perturbations (multi-model and stochastic). 

The expectation with these components is that forecast errors will be reduced, and that a more realistic simulation of foreca st 5 

uncertainties will be achieved.  

6. Code and/or data availability 

The ALADIN-LAEF and AROME codes including all related intellectual property rights, are owned by the members of the 

LACE consortium and ALADIN consortium. Access to the ALADIN-LAEF and AROME systems, or elements thereof, can 

be granted upon request and for research purposes only. INCA and INCA data are only available subject to a licence 10 

agreement with ZAMG.  
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 ALADIN-LAEF AROME-EPS 

Ensemble size 16+1 members 16 members 

Horizontal resolution 11 km 2.5 km 

Vertical resolution 45 layers 60 layers 

Model time step 450 s 60 s 

Coupling-Model ECMWF-EPS 

(first 16 members) 

ALADIN-LAEF 

Coupling-Update 6 h 3 h 

No. of grid points 206 x 164 432 x 320 

Forecast range 72 h 30 h 

Runs/Day 2 (0000, 1200 UTC) 1 (0000 UTC) 

 

Table 1: Main characteristics of the ALADIN-LAEF and AROME-EPS.  
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Measure Probabilistic 
For certain 

thresholds 

Contingency 

based 

Perfect 

value 

BIAS No No No 0 

RMSE No No No 0 

Spread Yes No No -- 

Spread-RMSE-relation Yes No No 1 

Percentage of Outliers Yes No No 0 

CRPS (+ Skill Score) Yes No No 0 

Brier Score (+ Skill Score) Yes Yes No 0 

Reliability  Yes Yes No 0 

Resolution Yes Yes No >0 

Uncertainty Yes Yes No -- 

Hit Rate Yes Yes Yes 1 

False Alarm Rate Yes Yes Yes 0 

ROC Yes Yes Yes 1 

Frequency Bias Yes Yes Yes 1 

Threat Score Yes Yes Yes 1 

Equitable Threat Score Yes Yes Yes 1 

Success Ratio Yes Yes Yes 1 

 

Table 2: Verification Scores computed for the validation of the EPS systems. CRPS: Continuous Rank Probability Score, ROC: 

Relative Operating Characteristic.  

 5 

 

Figure 1: Geographic domains and topographies of a) ALADIN-LAEF, where the red frame is the output domain used for 

the present study, and b) AROME-EPS, which is shown by the blue frame in (a).  

 

Figure 2: Locations of meteorological surface observation stations within the evaluation domain.  10 

 

Figure 3: INCA domain and topography with the sub-domains, which are used for the evaluation. 
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Figure 4: Bias of the ensemble means (left panel) and CRPS (right panel) for 2m relative humidity (top), 2m temperature 

(middle) and 10m wind speed (bottom) for the period of May 15 – August 15, 2011 of AROME-EPS (dotted line) and 

ALADIN-LAEF (solid line), both verified over the AROME-domain. Lead times, which are marked with asterisks (*) 

indicate results with significant differences between the ensembles. 5 

Figure 4: Bias (left panel) and CRPS (right panel) for 2m relative humidity (top), 2m temperature 

(middle) and 10m wind speed (bottom) for the period of May 15 – August 15, 2011 in the AROME-

domain of AROME-EPS (dotted line) and ALADIN-LAEF (solid line). Lead times, which are marked 

with asterisks (*) indicate results with significant differences between the ensembles. 

 10 

Figure 5: Time evolution of 3-hourly accumulated precipitation forecast for INCA (solid line), ALADIN-LAEF ensemble 

mean (dashed line) and AROME-EPS ensemble mean (dotted line) for  regions Austria (top), West (middle) and Northeast 

(bottom). Left panels show results for the days with strong synoptic forcing, right panels for weak synoptic forcing . The 

shaded areas denote the range of individual ensemble member forecasts for ALADIN-LAEF (dark grey) and AROME-EPS 

(light grey) respectively.  15 

 

Figure 6: Time evolution of the Brier Score with confidence intervals (shades) for region Austria, AROME-EPS (dotted line) 

and ALADIN-LAEF (dashed line). a) strong synoptic forcing and precipitation threshold 0.1 mm / 3 h, b) weak synoptic 

forcing and 0.1 mm / 3 h, c) strong forcing and 2 mm / 3 h, and d) weak synoptic forcing and 2 mm / 3 h.  

Figure 6: Time evolution of the Brier Score components, reliability (top), resolution (centre) and uncertainty (bottom), with 20 

confidence intervals (shades) for region Austria, AROME-EPS (dotted line) and ALADIN-LAEF (dashed line). The results 

are shown for a precipitation threshold of 0.1 mm / 3 h. Left panels depict results for days with strong synoptic forcing, right 

panels results for days with weak synoptic forcing.. 

 

Figure 7: Time evolution of SAL scores for AROME-EPS (left) and ALADIN-LAEF (right) for different forecast ranges in 25 

region West. Upper panels a) and b) show results for days with strong synoptic forcing; lower panels c) and d) for weak 

synoptic forcing. The boxes are created based on the scores of all individual ensemble members.  

 

Figure 8: Same as in Figure 7, but for region Northeast. 

 30 
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Figure 9: Distances [km] between the centers of mass of the precipitation objects in the forecast and 

analysis fields for AROME-EPS (dotted) and ALADIN-LAEF (dashed) for thresholds of a) 0.1 mm / 3 

h, and b) 2 mm / 3 h. 

Figure 9: Distances [km] between the centers of mass of observed and forecast precipitation objects for AROME-EPS 

(dotted) and ALADIN-LAEF (dashed) for thresholds of a) 0.1 mm / 3 h, and b) 2 mm / 3 h. The shades indicate the 5 

confidence intervals for AROME-EPS (light-grey) and ALADIN-LAEF (dark grey). 

 

Figure 10: FSSsractional skill scores for a) strong synoptic forcing, and b) weak synoptic forcing of AROME-EPS (dashed) 

and ALADIN-LAEF (solid line) for the region Austria. Numbers denote the precipitation thresholds [mm]. The values 

represent averages for all hours of lead-time. 10 

 

Figure 11: Observed (INCA, first column) and forecast (AROME-EPS and ALADIN-LAEF, second and third column, 

respectively) development of precipitation on 29 April 2014 shown for selected times (rows). The panels show 1 -hourly 

accumulated precipitation sums [mm]. 

 15 

Figure 12: Characteristics of the precipitation forecasts of ALADIN-LAEF and AROME-EPS on 29 April 2014. a) Temporal 

evolution of the mean areal precipitation compared with INCA, and b) temporal evolution of the number  of precipitation 

objects. Dashed and dotted lines in a) and b) represent the ensemble mean and grey shades the ensemble spread. c) Temporal 

evolution of S (structure), A (amplitude) and L (location) scores of the ensemble means of ALADIN-LAEF (black) and 

AROME-EPS (grey). 20 
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Figure 1: Geographic domains and topographies of a) ALADIN-LAEF, where the red frame is the output domain used for the 

present study, and b) AROME-EPS, which is shown by the blue frame in (a).  
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Figure 2: Locations of meteorological surface observation stations within the evaluation domain. 
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Figure 3: INCA domain and topography with the sub-domains, which are used for the evaluation. 
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Figure 4: Bias of the ensemble means (left panel) and CRPS (right panel) for 2m relative humidity (top), 2m temperature (middle) 

and 10m wind speed (bottom) for the period of May 15 – August 15, 2011 of AROME-EPS (dotted line) and ALADIN-LAEF (solid 

line), both verified over the AROME-domain. Lead times, which are marked with asterisks (*) indicate results with significant 

differences between the ensembles.Figure 4: Bias (left panel) and CRPS (right panel) for 2m relative humidity (top), 2m 5 

temperature (middle) and 10m wind speed (bottom) for the period of May 15 – August 15, 2011 in the AROME-domain of 

AROME-EPS (dotted line) and ALADIN-LAEF (solid line). Lead times, which are marked with asterisks (*) indicate results with 

significant differences between the ensembles. 
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Figure 5: Time evolution of 3-hourly accumulated precipitation forecast for INCA (solid line), ALADIN-LAEF ensemble mean 

(dashed line) and AROME-EPS ensemble mean (dotted line) for  regions Austria (top), West (middle) and Northeast (bottom). Left 

panels show results for the days with strong synoptic forcing, right panels for weak synoptic forcing . The shaded areas denote the 

range of individual ensemble member forecasts for ALADIN-LAEF (dark grey) and AROME-EPS (light grey) respectively.  5 
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Figure 6: Time evolution of the Brier Score components, reliability (top), resolution (centre) and uncertainty (bottom), with 

confidence intervals (shades) for region Austria, AROME-EPS (dotted line) and ALADIN-LAEF (dashed line). The results are 

shown for a precipitation threshold of a) strong synoptic forcing and precipitation threshold 0.1 mm / 3 h. Left panels depict 

results for days with strong synoptic forcing, right panels results for days with weak synoptic forcing. ., b) weak synoptic forcing 5 

and 0.1 mm / 3 h, c) strong forcing and 2 mm / 3 h, and d) weak synoptic forcing and 2 mm / 3 h.  
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Figure 7: Time evolution of SAL scores for AROME-EPS (left) and ALADIN-LAEF (right) for different forecast ranges in region 

West. Upper panels a) and b) show results for days with strong synoptic forcing; lower panels c) and d) for weak synoptic forcing . 

The boxes are created based on the scores of all individual ensemble members. 
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Figure 8: Same as in Figure 7, but for region Northeast. 
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Figure 9: Distances [km] between the centers of mass of observed and forecastthe precipitation objects in the forecast and analysis 

fields for AROME-EPS (dotted) and ALADIN-LAEF (dashed) for thresholds of a) 0.1 mm / 3 h, and b) 2 mm / 3 h.  The shades 

indicate the confidence intervals for AROME-EPS (light-grey) and ALADIN-LAEF (dark grey). 5 
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Figure 10: FSSractional skill scores for a) strong synoptic forcing, and b) weak synoptic forcing of AROME-EPS (dashed) and 

ALADIN-LAEF (solid line) for the region Austria. Numbers denote the precipitation thresholds [mm]. The values represent 

averages for all hours of lead-time. 5 
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Figure 11: Observed (INCA, first column) and forecast (AROME-EPS and ALADIN-LAEF, second and third column, 

respectively) development of precipitation on 29 April 2014 shown for selected times (rows). The panels show 1-hourly 

accumulated precipitation sums [mm]. 
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Figure 12: Characteristics of the precipitation forecasts of ALADIN-LAEF and AROME-EPS on 29 April 2014. a) Temporal 

evolution of the mean areal precipitation compared with INCA, and b) temporal evolution of the number of precipitation object s. 

Dashed and dotted lines in a) and b) represent the ensemble mean and grey shades the ensemble spread. c) Temporal evolution of 

S (structure), A (amplitude) and L (location) scores of the ensemble means of ALADIN-LAEF (black) and AROME-EPS (grey). 5 

 

 


