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ABSTRACT 25 

 26 

The 2.5 km convection-permitting (CP) ensemble AROME-EPS (Applications of 27 

Research to Operations at Mesoscale – Ensemble Prediction System) is evaluated 28 

by comparison with the regional 11 km ensemble ALADIN-LAEF (Aire Limitée 29 

Adaption dynamique Développement InterNational - Limited Area Ensemble 30 

Forecasting) to show whether a benefit is provided by a CP EPS. The evaluation 31 

focuses on the abilities of the ensembles to quantitatively predict precipitation during 32 

a 3-month convective summer period over areas consisting of mountains and 33 

lowlands. The statistical verification uses surface observations and 1 km x 1 km 34 

precipitation analyses, and the verification scores involve state-of-the-art statistical 35 

measures for deterministic and probabilistic forecasts as well as novel spatial 36 

verification methods. The results show that the convection-permitting ensemble with 37 

higher resolution AROME-EPS outperforms its mesoscale counterpart ALADIN-LAEF 38 

for precipitation forecasts. The positive impact is larger for the mountainous areas 39 

than for the lowlands. In particular, the diurnal precipitation cycle is improved in 40 

AROME-EPS, which leads to a significant improvement of scores at the concerned 41 

times of day (up to approximately one third of the scored verification measure). 42 

Moreover, there are advantages for higher precipitation thresholds at small spatial 43 

scales, which is due to the improved simulation of the spatial structure of 44 

precipitation.    45 
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1. Introduction 48 

The prediction of deep convection in mountainous terrain is known to be one of the 49 

greatest challenges in atmospheric modeling. The initiation and development of deep 50 

convection is dependent on small-scale orographic structures and related processes, 51 

which cannot be easily described by atmospheric models (Wulfmeyer et al. 2011, 52 

Barthlott et al. 2011, Weckwerth et al. 2014). Nevertheless, the estimation of the 53 

location, duration and intensity of precipitation events is important as alpine areas are 54 

more exposed to natural hazards connected with heavy precipitation (landslides and 55 

flooding) than flat land (e.g. Rotach et al. 2009, Haiden et al. 2014). 56 

Models with deep convection-parameterization perform poorly in simulating heavy 57 

and highly localized precipitation, especially those with a grid-spacing larger than 10 58 

km (Weusthoff et al. 2010). One source of errors is that the applied convection 59 

schemes act independently in individual model grid columns. As a consequence, 60 

convectively generated cold-pools that drive convective system propagation cannot 61 

be properly simulated, resulting in simulated system movement that is too slow. In 62 

weak synoptic forcing, for example, organized MCSs are particularly challenging for 63 

convection-parameterizing models (Clark et al. 2007; Liu et al. 2006). Another 64 

drawback is that the inadequate descriptions of buoyancy and updrafts in a 65 

convection-parameterizing model often cause convection to initiate too early. This 66 

premature initiation of convection often results in timing and location errors as well as 67 
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difficulties to simulate the diurnal cycle of rainfall (Clark et al. 2007). Detailed 68 

discussion on the convection initiation in a convection-parameterizing model can be 69 

found in Davis et al. (2003) and Bukovsky et al. (2006).  70 

A solution for this kind of forecasting problem is offered by a new generation of 71 

numerical weather prediction (NWP) models, which have been developed during the 72 

last decade. Convection-permitting models with horizontal grid-spacings of 73 

approximately 2 km – 3 km offer new possibilities for estimating local impacts. The 74 

term convection permitting as used in this article (CP hereafter) means that a deep 75 

convection parameterization is not used in the model. It is assumed that the 76 

horizontal resolution around 2-3 km is sufficient to depict the bulk properties of  77 

precipitating convective cells, but not to truly resolve the processes within 78 

precipitating convective cells such as turbulence and entrainment (Bryan et al. 2003). 79 

This is in accordance with Weisman et al. (1997) who suggested setting the upper 80 

limit for the range of convection allowing resolutions at 4 km. 81 

Despite the higher resolution and explicit simulation of deep convection, the exact 82 

prediction of location, intensity and spatio-temporal extent of deep convection is still 83 

difficult. Recently, probabilistic approaches using convection-permitting ensembles 84 

have proven valuable, since they provide direct information on forecast uncertainty, 85 

which is often quite large for deep convection. An ensemble usually consists of a 86 

number of model runs, which differ in their initial and boundary conditions and/or 87 

model configurations. In order to produce a reliable probabilistic forecast, the 88 

individual ensemble member forecasts should be equally likely to occur and cover 89 

the range of future states. Following Clark et al. (2011), the ideal number of 90 
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ensemble members is dependent on the point of diminishing returns, i.e. the 91 

ensemble size where no new information can be expected by additional members.   92 

In the recent years several CP EPSs have been developed and some experiences 93 

with them have already been made. To name but a few, there are the COSMO-DE-94 

EPS (Consortium for Small-scale Modeling – EPS, Gebhardt et al. 2011; Peralta et 95 

al. 2012; Bouallègue et al. 2013; Kühnlein et al. 2014) at the Deutscher Wetterdienst 96 

(DWD), the CP version of UK Met Office’s MOGREPS (Met Office Global and 97 

Regional Ensemble Prediction System, Bowler et al. 2008; Caron 2013; Hanley et al. 98 

2013; Tennant 2015), a Storm Scale Ensemble Forecast (SSEF) run by the Center of 99 

Analysis and Prediction of Storms (CAPS) at the University of Oklahoma (Xue et al. 100 

2007, 2009; Clark et al. 2011; Schumacher et al. 2013 and Schumacher and Clark 101 

2014), WRF based CP ensemble at NCAR (Schwartz et al. 2014) and AROME-EPS 102 

(e.g. Vié et al. 2012; Bouttier et al. 2012) developed at Météo-France. A common 103 

feature of all of these EPSs is that their horizontal mesh size is equal to or less than 104 

4 km, but mostly between 2 km and 3 km.  105 

The EPSs mentioned above differ regarding their number of ensemble members and 106 

their perturbation strategies and post-processing. Some of them apply an ensemble 107 

data assimilation (EDA) approach for perturbing the initial conditions (ICs) (Vié et al. 108 

2012; Caron 2013; Schumacher and Clark 2014; Schwartz et al. 2014). The applied 109 

model perturbation methods range from a multi-parameter approach (Gebhardt et al. 110 

2011) to a stochastic physics scheme (Bouttier et al. 2012; Romine et al. 2014) and 111 

to using different dynamical cores (Schumacher et al. 2013). In order to increase 112 

ensemble size and to improve the representation of the ensemble distribution some 113 
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systems also apply the neighborhood method and/or lagged ensemble concepts 114 

(Bouallègue et al. 2013). While the neighborhood method is based on ensemble 115 

probabilities derived from grid points of a defined environment (Theis et al. 2005, 116 

Schwartz et al. 2010), the lagged ensemble approach uses forecasts of successive 117 

ensemble runs (Bouallègue et al. 2013). 118 

A number of evaluative studies concerned with these CP-EPSs have been 119 

conducted. They mainly focus on the investigation of the impact of CP ensemble 120 

configurations, for example, the generation of IC perturbation, representation of the 121 

model error, uncertainties from the lateral boundary conditions (LBCs), ensemble 122 

size, and spatial scale (Kong et al. 2006; Clark et al. 2009; Clark et al. 2011; Vié et 123 

al. 2012; Bouttier et al. 2012; Bouallègue et al. 2013; Kühnlein et al. 2014; Schwartz 124 

et al. 2014; Schumacher and Clark 2014; Romine et al. 2014; Tennant 2015). There 125 

are few comprehensive studies on the evaluation of CP EPS, in particular, in 126 

comparison with the mesoscale regional EPS. Clark et al. (2009) compared a 5- 127 

member 4 km grid-spacing convection allowing ensemble with a 15-member 20 km 128 

grid-spacing regional ensemble. Their case studies reveal that the convection 129 

allowing ensemble generally provides more accurate precipitation forecasts than the 130 

coarser resolution regional EPS. These results are consistent with those found by 131 

Taraphdar et al. (2014) who showed the superior forecast quality of deterministic 132 

high-resolution forecasts of tropical cyclone tracks and the accompanying rainfall 133 

intensities. 134 

In this paper, we will evaluate the performance of a 16-member 2.5 km grid-spacing 135 

convection permitting EPS by comparing it with its driving 16- member and 11 km 136 
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grid-spacing mesoscale regional ensemble. Focus will be on the capabilities of the 137 

CP ensemble to quantitatively predict precipitation during a convective summer 138 

period over an area consisting of mountains and lowlands. Of interest here is the 139 

Alpine region, since the impacts of the mountainous terrain, such as windward/lee 140 

effects, the differential heating of valley and mountain slopes can cause large 141 

inaccuracies in forecasting convective precipitation and pose a challenge for 142 

numerical models and their physical parameterizations (Richard et al. 2007; 143 

Wulfmeyer et al. 2008, Bauer et al. 2011, Wulfmeyer et al. 2011). Therefore, an 144 

evaluation study is designed and conducted for a typical convective season (3 145 

months, May – August 2011), i.e. a period, which is long enough to make at least 146 

basic statements about the significance of results. Naturally, this period length is not 147 

sufficient to enable statistically reliable statements on real hazardous events, such as 148 

landslides and flashfloods. However, the investigations can be regarded as a first 149 

step towards this aim. The CP ensemble, which is evaluated in this paper, is a 150 

version of AROME-EPS, developed at the Central Institute for Meteorology and 151 

Geodynamics in Austria (ZAMG). It is compared with its coarser driving regional EPS 152 

ALADIN-LAEF (Wang et al. 2011). The following questions are raised: 153 

 Can a convection permitting EPS provide an advantage over its coarser, 154 

driving regional EPS in complex terrain? 155 

 Is there any difference of the performance for the compared EPSs between 156 

lowlands and mountainous areas? 157 
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 How well can CP EPS and lower resolution regional EPS simulate the diurnal 158 

cycle of precipitation? Is the onset and development of convective 159 

precipitation realistic? 160 

 Does a significant difference in performance for different weather regimes 161 

(i.e. days with weak and strong synoptic forcing) exist? 162 

A verification study is designed and conducted to answer these questions and to 163 

establish whether AROME-EPS can outperform ALADIN-LAEF, a regional 164 

mesoscale ensemble with deep convection parameterization on a coarser grid. Wang 165 

et al. (2012) demonstrated the added value of ALADIN-LAEF as a regional 166 

mesoscale EPS to the global ECMWF-EPS (European Centre for Medium-Range 167 

Weather Forecasts). Hence, the present study extends this research by addressing 168 

the step between regional mesoscale and CP ensembles. 169 

For the present paper, AROME-EPS is coupled to the 16 perturbed ALADIN-LAEF 170 

members.  This is done to take advantage of the simulation of uncertainties used in 171 

ALADIN-LAEF. This uncertainty information is subsequently transferred to finer 172 

scales via the dynamical downscaling of the ALADIN-LAEF forecasts by AROME. 173 

This means that, both IC perturbations and LBC perturbations are provided from the 174 

driving model and are, thus, consistent. No further IC perturbations and model 175 

perturbations are applied. Generally, the set-up is kept as simple as possible to point 176 

out the pure effects of the downscaling: AROME-EPS is directly coupled to a daily 177 

ALADIN-LAEF run initiated at 00 UTC. There is no time lag between the ALADIN-178 

LAEF and the AROME-EPS simulations and the forecasts are evaluated for the first 179 

30h of the model runs, hence for a whole day and the subsequent night each. 180 
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The benefits of AROME-EPS compared to ALADIN-LAEF are revealed in the 181 

framework of a comparative verification study. Although the focus of the verification 182 

study is on the onset and development of precipitation, the performance of other 183 

surface weather parameters are considered. The verification methods are selected in 184 

such a way that the overall performance, in a deterministic and probabilistic manner, 185 

and the abilities of the ensembles to reproduce spatial structures, can be 186 

investigated. Hence, ensemble-related scores are combined with spatial verification 187 

methods.   188 

More detailed characteristics of the compared models are described in Section 2 189 

along with the verification data. The methods chosen for the evaluation of the two 190 

ensembles are described in Section 3. Section 4 comprises the verification results 191 

and Section 5 the summary and concluding remarks.    192 

2. Ensemble systems and data 193 

a. The regional ensemble ALADIN-LAEF 194 

ALADIN-LAEF is the operational regional ensemble system of ZAMG and runs at 195 

ECMWF (Wang et al. 2010, 2011). It is based on the hydrostatic spectral limited area 196 

model ALADIN (Wang et al. 2009). ALADIN-LAEF has 16 members and is coupled to 197 

ECMWF-EPS (Weidle et al. 2013) with a horizontal grid-spacing of 11 km. In 198 

operational mode it and runs two times per day at 0000 and 1200 UTC and provides 199 

probabilistic forecasts on a forecast range up to 3 days ahead, i.e. 72 h. In this study, 200 

however, evaluation is confined to the run at 00 UTC and a forecast range of 30 h 201 
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ahead only. This is done in order to investigate the onset and development of 202 

convection in its diurnal cycle. 203 

 with a horizontal grid-spacing of 11 km. The 16 members of ALADIN-LAEF are not 204 

sufficient to represent the atmospheric state probability density function (PDF). 205 

However, Schwartz et al. (2014) have shown that similar verification scores can be 206 

obtained from a 50-member ensemble and subsets of 20-30 members. Hence, we 207 

can expect, at least, reasonable results from verification based on a 16-member 208 

ensemble.  209 

The goal of ALADIN-LAEF is to provide probabilistic forecasts on a forecast range up 210 

to 3 days ahead, i.e. 72 h, although only 30 h are used in this study for the 211 

comparison with AROME-EPS. The ALADIN-LAEF domain (Figure 1) covers the 212 

whole European continent, Iceland, the whole Mediterranean Sea, Black Sea, 213 

Caspian Sea and adjacent countries. The eastern margins reach the Ural Mountains 214 

and parts of Siberia. To deal with the atmospheric initial condition perturbation 215 

ALADIN-LAEF applies a breeding-blending method for generating the IC 216 

perturbations for the upper levels. It uses large-scale perturbations from the driving 217 

global-ECMWF-EPS combined with small-scale perturbations from the ALADIN-218 

breeding vectors (Toth and Kalnay 1993). The blending method (Wang et al. 2014) 219 

ensures that inconsistencies between small and large-scale perturbations are 220 

avoided. Therefore a digital filter is applied on the low spectral truncations of both the 221 

breeding-vectors and the fields from the global model. Afterwards the filtered 222 

breeding vectors on the full spectral resolution are subtracted from the original ones 223 
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and added by the filtered global fields resulting in initial perturbations that are 224 

consistent with the regional EPS itself as well as with the driving global EPS. 225 

To consider uncertainties arising from the initial surface conditions in ALADIN-LAEF, 226 

a surface data assimilation scheme based on optimum interpolation (CANARI - Code 227 

for the Analysis Necessary for Arpege for its Rejects and its Initialization, Taillefer 228 

2002) is implemented using randomly perturbed observations. To account for 229 

uncertainties in the model itself, a multi-physics approach is implemented in ALADIN-230 

LAEF. The perturbed members use different model configurations with several 231 

combinations and tunings of schemes and parameterizations available in the ALADIN 232 

physics package. The main emphasis is put on the variation and tunings of the 233 

following schemes and parameterizations: The diagnostic convection scheme as 234 

described in Bougeault (1985); the prognostic deep convection scheme 3MT 235 

(modular multi-scale Microphysics and Transport scheme, Gerard et al. 2009), and 236 

the connected microphysics scheme described in Geleyn et al. 2008 and Gerard et 237 

al. (2009); the radiation scheme based on Ritter and Geleyn (1992) or alternatively 238 

the scheme described in Mlawer (1997) and Morcrette (1991); the pseudo prognostic 239 

TKE (Turbulent Kinetic Energy) scheme described in Vana et al. (2008). Further 240 

details can be found in (Wang et al. 2010).  241 

b. The convection permitting ensemble AROME-EPS 242 

The model core of AROME-EPS is the non-hydrostatic spectral limited area model 243 

AROME (Seity et al. 2011), which is especially designed to run at very high 244 

resolutions with a grid-spacing of 2.5 km or lower. Deep convection is treated 245 

explicitly, while shallow convection is parameterized with a mass flux approach 246 
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(Pergaud et al. 2009). The single moment bulk microphysics scheme ICE3 for mixed-247 

phase cloud parameterization (Pinty and Jabouille 1998) can handle mixing ratios of 248 

five prognostic hydrometeor classes: cloud water, cloud ice, rain, snow and graupel 249 

and also simulates complex interactions between them. AROME by default uses a 250 

three-layer soil model SURFEX (Surface Externalisé) with the effects of sea and 251 

urban areas parameterized using a tile approach (Masson et al. 2000).   252 

At ZAMG a deterministic version of AROME with 2.5 km grid-spacing has been 253 

operational since January 2014 running every 3 hours up to a lead-time of 48 hours. 254 

The domain for the model integration encompasses the Alpine region (Figure 1). 255 

Table 1 summarizes the most important model characteristics of ALADIN-LAEF and 256 

AROME-EPS.   257 

To run AROME-EPS, the same version of AROME with the same resolution is 258 

initialized by a dynamical downscaling of ALADIN-LAEF and coupled to the 16 259 

members of ALADIN-LAEF. The ensemble runs with a forecast range of 30 h are 260 

initiated at 00 UTC each day, i.e. at the same time as ALADIN-LAEF. There is no A 261 

time lag  is not considered, as the pure impact of enhanced resolution and the 262 

convection-permitting configuration shall be investigated. Apart from the 263 

perturbations of initial conditions and lateral boundary conditions, no further 264 

perturbations (such as e.g. multi-physics parameterizations as in ALADIN-LAEF) are 265 

induced in the model integration. This comparatively simple configuration is used for 266 

several reasons: First, AROME-EPS has been set up quite recently at ZAMG and is 267 

still at an early stage of development. Secondly, the development of physics 268 

perturbations in AROME-EPS will rather go towards a stochastic physics scheme or 269 
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a combined stochastic/multi-physics scheme than towards pure multi-physics as 270 

currently used in ALADIN-LAEF. And thirdly, the aim of this study is to test the 271 

possible advantage of a CP EPS compared to the operational system of ALADIN-272 

LAEF.  273 

c. Verification data 274 

Station observations are used for the evaluation of ALADIN-LAEF and AROME-EPS 275 

surface weather variables. Figure 2 shows the 517 surface stations in the AROME 276 

domain, providing observations at 6-hourly intervals for 2 m temperature, 2 m 277 

humidity, 10 m wind speed and mean sea level pressure. The upper level verification 278 

is achieved using ECMWF analyses reference data at four pressure levels: 925 hPa, 279 

850 hPa, 700 hPa, and 500 hPa, which are adapted to the model resolutions of both 280 

AROME-EPS and ALADIN-LAEF. 281 

The evaluation of precipitation forecasts is performed using the very high-resolution 282 

precipitation analyses of the ZAMG nowcasting system INCA (Integrated Nowcasting 283 

through Comprehensive Analyses; Haiden et al. 2011). This is necessary as the 284 

average station distance of precipitation observations is too large to resolve the fine 285 

spatial structures of precipitation events. The advantage of the INCA analyses is that 286 

they use additional observations and are provided on a regular grid. Based on this 287 

gridded data, it is possible to apply enhanced verification methods on precipitation 288 

fields, which cannot be computed on a point-to-point basis. 289 

The INCA system, developed at ZAMG, operates on a horizontal resolution of 1 km x 290 

1 km. INCA blends data from automatic weather stations, remote sensing data 291 



On the forecasting skills of a convection permitting ensemble, SCHELLANDER-GORGAS ET AL. 

 

14 

 

 

(radar, satellite), forecast fields of numerical weather prediction (NWP) models, and 292 

high-resolution topographic data (Haiden et al. 2011). It provides hourly 3-D fields of 293 

temperature, humidity, wind, and 2-D fields of cloudiness, precipitation rate and 294 

precipitation type with an update frequency of 15 minutes to 1 hour. The precipitation 295 

analyses are provided for different accumulation periods. In the present study, the 296 

one-hour accumulated INCA precipitation analyses are used as a reference for the 297 

spatial verification of EPS forecasts. For these analyses, precipitation measurements 298 

from surface stations and radar data are accumulated to one-hour sums and 299 

algorithmically merged. Prior to the analysis procedure, the data are quality 300 

controlled and climatologically scaled (Haiden et al. 2011). In this way the higher 301 

quantitative accuracy of the station data and the better spatial coverage of the radar 302 

data are utilized. The resulting analysis reproduces the observed values at the 303 

station locations while preserving the spatial structure provided by the radar data. 304 

The analysis error, which is computed from classical cross-validation, varies from 305 

case to case and depends on precipitation type, e.g. large-scale or convective, and 306 

on the accumulation period. The magnitude of analysis errors of grid point values can 307 

be quite large, but areal mean values are significantly more reliable (Haiden et al. 308 

2011) 309 

Amending the rain gauge - radar combination, the scheme includes elevation effects 310 

on precipitation using an intensity-dependent parameterization (Haiden and Pistotnik 311 

2009). A NWP model first guess is not required in the precipitation analysis, thus 312 

such analyses are ideally suited as an independent reference to validate NWP 313 

models. 314 
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Forecast verifications are performed at the observation locations for surface variables 315 

as 2 m temperature and humidity, 10 m wind speed and mean sea level pressure,  316 

and on the INCA grid for precipitation. The model forecasts are interpolated bi-317 

linearly to the station locations and INCA analysis grid points, respectively. Further, a 318 

height correction scheme is applied on 2 m temperature values based on 319 

atmospheric standard conditions. In doing so, the same number of 320 

forecast/observations pairs is available for the verification of each of the EPS models. 321 

This supports the comparability of the verification results.   322 

3. Verification strategy 323 

AROME-EPS and ALADIN-LAEF are evaluated over a 3-month summer period from 324 

15 May, 2011 – 15 August, 2011, which represents a typical convective summer 325 

season in Central Europe.  326 

Precipitation is one of the parameters for which the biggest improvement is expected 327 

from the convection-permitting models. Therefore, the evaluation of the ensembles 328 

focuses on the representation of the spatio-temporal structure of precipitation events 329 

in the forecasts. Nevertheless, the preconditions for the development and onset of 330 

precipitation are also considered. For this reason other forecast parameters, such as 331 

temperature, humidity, wind speed, air pressure and geopotential height are also 332 

verified.  333 

Precipitation forecasts are evaluated in both deterministic and probabilistic ways. The 334 

deterministic approach is directed towards predicting the correct precipitation 335 

amounts and the spatial distribution of the data. Probabilistic evaluation tests the 336 
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capability of the ensembles to predict a pre-defined event with the probability, which 337 

corresponds to its relative frequency, i.e. to produce a reliable PDF for the 338 

occurrence of the event. The events can be defined as, e.g., precipitation amounts 339 

exceeding a certain threshold. In this study, thresholds of 0.1 mm (threshold for the 340 

prediction of rain or no rain), 0.5 mm, 1 mm, 2 mm and 5 mm are chosen for 3-hourly 341 

accumulated precipitation amounts. These thresholds appear low, especially when 342 

taking into account convective precipitation events. However, the thresholds are 343 

selected according to the frequency of occurrence of the precipitation values in the 344 

individual grid cells of the 1 km x 1 km verification grid. They ensure that a sufficient 345 

number of observed events are available for evaluation over the 3-month test period. 346 

The two ways of deterministic and probabilistic evaluation reflect the main options for 347 

the efficient use of ensemble forecasts: First, as a conservative prediction of 348 

ensemble mean or median or, second, as a tool to estimate the uncertainty of the 349 

forecast and the probability of extreme values via the ensemble spread and PDF 350 

(e.g. Zhu et al. 2002). 351 

A number of tTraditional point-to-point verification scores (see e.g. Wilks 2006) in 352 

Table 2 are computed for all evaluated parameters. In addition, significance tests for 353 

these scores are performed. Confidence intervals of the verification scores are 354 

estimated by a bootstrapping algorithm (Davison and Hinkley 1997; Joliffe 2007; 355 

Ferro 2007) and confidence intervals of 90%. The bootstrapping method uses 5000 356 

random samples with a block length of eight.  357 

In order to present the results concisely, only three scores have been selected from 358 

Table 2 to describe the differences in forecast performance between AROME-EPS 359 
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and ALADIN-LAEF: Bias (Eq. 1), Brier Score (BS, Brier 1950, Eq. 2) and Continuous 360 

Ranked Probability Score (CRPS, Hersbach 2000; Gneiting and Raftery 2007; Eq. 3).  361 

The Bias simply measures the mean deviation between the analyzed values (a) and 362 

the forecast values, in our case the ensemble means  f , at  n  grid points i. Both, 363 

positive as well as negative signs are possible. A perfect forecast has a bias of zero. 364 

(1)    

 

365 

Like the Bias also BS is a measure for the accuracy of the forecasts, however, in 366 

probability space. It is the mean squared difference between the forecast probability 367 

 ( , e.g. derived from the distribution of ensemble members) for a pre-368 

defined event (e.g. the exceeding of a threshold) and the analyzed truth  (369 

). The minimal value of zero is achieved for a perfect forecast, and the maximum 370 

value is one for the worst possible forecast. 371 

(2)    

 

372 

CRPS is related to BS insofar, as it can be expressed as the integral of BS for all 373 

possible thresholds of the meteorological parameter  (Hersbach 2000). The value 374 

for an ideal forecast of CRPS is zero as for BS. 375 

(3)      376 
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The continuous ranked probability score compares the cumulative distributions  377 

(Eq. 4) and  (Eq. 5) of the forecast and the analyzed values at each grid point  i378 

. 

 

379 

(4)     380 

(5)     381 

is the so-called Heaviside-function (Eq. 6), which only takes the values 0 and 1.

 

382 

(6)     383 

In addition to those traditional statistical scores in Table 2, precipitation forecasts are 384 

verified by spatial verification methods, which not only consider the exact match of 385 

forecast and verification values at individual points, but take into account the 386 

matching of forecasts and observations in terms of objects or spatial scales (Casati 387 

et al. 2008, Ahijevych et al. 2009, Gilleland et al. 2010). This is necessary as 388 

precipitation fields exhibit high spatial variability and discontinuity. Small deviations in 389 

space and time between forecast and verification data can lead to large errors in 390 

traditional point to point verification scores, which is also known as the double 391 

penalty problem (Nurmi 2003).  392 

a. Spatial verification methods 393 
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The selected spatial verification methods are the so-called SAL method (Structure-394 

Amplitude-Location method, Wernli et al. 2008) and the Fractions Skill Score 395 

(Roberts and Lean 2008). 396 

SAL determines the forecast performance in terms of structure (S), amplitude (A) and 397 

location (L). The method is object based. Precipitation objects in forecast and 398 

verification fields are contiguous areas of grid-points exceeding a certain precipitation 399 

threshold.  400 

(7)     401 

The amplitude score (Eq. 7) defines whether the integrated precipitation amount  of 402 

the field is underestimated (A < 0) or overestimated (A > 0). Subscripts, f and a, 403 

denote forecast and analyzed fields, respectively. 404 

The location score measures the agreement of the centers of mass in the analyzed 405 

and predicted precipitation fields together with the averaged distance between the 406 

center of mass and the individual objects. It is actually the sum of two components L= 407 

L1+ L2 where both values are in the range [0, 1]. The first part L1  408 

(8)    

,

 409 

is a measure of the distance between the mass centers x of the analyzed (Ra) and 410 

the predicted precipitation fields (Rf).  
is the longest possible distance in the 411 

domain. 412 
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As an identical mass center position does not necessarily mean that the forecast is 413 

perfect, the second component L2 (Eq. 9) is introduced:  414 

(9)    

. 

415 

L2 takes into account the distance r (Eq. 10) between the mass center of each 416 

individual object Rn and the overall mass center and compared between the 417 

observed and simulated precipitation field: 418 

(10)    

.

 419 

The L component has a range [0, 2] with L=0 indicating a perfect forecast.  420 

The structure score S  421 

(11)    

 

422 

compares the weighted sums of the precipitation volumes V(R)  423 

(12)     424 

of the precipitation objects, where the
 

 describe precipitation sums 425 

scaled by their maxima. If S < 0, forecast objects are too small and too peaked. In 426 

contrast, S > 0 indicates that the objects are too large and too flat. 427 
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The fractions skill score (FSS)  428 

(13)    

  

FSS(n) 1
MSE(n)

MSE(n)
ref

 429 

evaluates the forecasts on different spatial scales. The scales are defined via 430 

neighborhoods, i.e. square boxes of length n grid spaces surrounding a selected grid 431 

point. The score compares the fractions of rain coverage of forecast and analysis in 432 

the neighborhoods. Depending on the precipitation event, small disparities of the 433 

coverage may lead to large forecast errors on fine scales, but to a better rating on a 434 

coarser scale. The aim of FSS is to identify scales for which the evaluated model can 435 

provide useful forecasts. 436 

FSS is computed by assigning the grid points binary values 0 and 1 in each of the 437 

neighborhoods with subscripts (i,j), according to a selected precipitation threshold. 438 

From these binary fields, the fraction of the points with value 1 are computed for 439 

analyses and forecasts as and , respectively.   440 

At each such defined scale n, the mean squared error (MSE):  441 

(14)    

 

442 

is computed for the whole field of fractions and related to a reference (MSEref)  443 
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(15)    

.

 445 

MSEref is the largest possible MSE, which can be obtained from the underlying field. 446 

The skill score summarizes the performance in the whole field and ranges from 0 447 

(complete mismatch) to 1 (perfect match). 448 

b. Subdomains for precipitation verification 449 

Verification is done for the whole domain Austria. To account for the different 450 

topographic characteristics in the verification domain, two sub-domains are chosen 451 

(Figure 3). They comprise mountainous area (region West) as well as region with flat 452 

terrain (region Northeast). Due to the location of the Alps in Austria and the prevailing 453 

flow directions around the Alps, each of the subdomains has its own climatological 454 

properties, which is also visible in the precipitation characteristics.   455 

c. Temporal stratification 456 

In order to investigate the influence of different weather regimes, the 92 days of the 457 

test period are classified into three bins according to the synoptic situation, strong 458 

synoptic forcing, weak synoptic forcing, and dry. Days are classified as dry (5 days) if 459 

the areal mean of the daily precipitation sum is below 0.05 mm. All other days, i.e. 87 460 

days on which rains was reported, are assigned to the bins of weak (23 days) or 461 

strong synoptic forcing (64 days). For the classification, a method described by Done 462 

et al. (2006) and successfully applied by Kühnlein et al. (2014) is used which is 463 

based on the temporal variability of CAPE (Convective Available Potential Energy) as 464 

a measure of atmospheric instability. According to Done et al. (2006), the approach 465 
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helps to distinguish between days on which convection is predominantly at 466 

equilibrium or at non-equilibrium. This means that the destabilization of the 467 

atmosphere by large-scale synoptic forcing is balanced or un-balanced, respectively, 468 

by the stabilization through convection. The idea is that this balance or imbalance is 469 

related to the timescale in which CAPE is built up by large-scale processes and 470 

consumed by convection. On days with weak synoptic forcing the consumption of 471 

CAPE is related to the diurnal cycle or to local triggering rather than to prevalent 472 

large-scale processes. In these cases the convective timescale is long and CAPE is 473 

often not fully consumed by convection. In situations where CAPE is realized much 474 

faster by large-scale processes, i.e. in situations of strong synoptic forcing, 475 

convection is in equilibrium. In our study the convective adjustment time-scale tc  476 

(16)      477 

is calculated hourly from AROME-EPS CAPE forecasts using ht 1 . Following the 478 

suggestion of Done et al. (2006) a specific day is assigned to weak synoptic forcing if 479 

the areal mean of tc exceeds a threshold of 6 h at least once a day by at least three 480 

ensemble members. In order to test the method of Done et al. (2006) we compared 481 

the classification with alternative approaches, such as the temporal change of mid-482 

tropospheric vorticity and convection related to patterns in 500 hPa geopotential 483 

using archived ECMWF forecast and ERA-Interim re-analyses. The results were 484 

comparable to those of the equilibrium method.  485 

4. Results 486 
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In the following we present the evaluation of AROME-EPS and ALADIN-LAEF over a 487 

three-month summer period. The focus is on the performance of near surface 488 

parameters, in particular the precipitation forecast, which is of most interest to the 489 

users of convection permitting and regional EPSs. 490 

a. Evaluation of forecasts of temperature, wind and humidity  491 

The forecast performance of surface parameters (2 m temperature and humidity, 10 492 

m wind speed and mean sea level pressure MSLP) and upper level parameters 493 

(temperature, humidity, wind speed and geopotential height) of AROME-EPS and 494 

ALADIN-LAEF are verified in this study, which form the background of the evaluation 495 

of precipitation.  496 

A large number of verification metrics (Table 2) have been calculated for those near 497 

surface and upper air parameters. In general there is no clear advantage either for 498 

ALADIN-LAEF or for AROME-EPS. Exceptions from this statement are solely   499 

constituted by biases in the forecasts, which are particularly found on the surface 500 

level. They form the most eminent differences in the performances of the EPSs: If the 501 

bias is low, the models provide good performance also for other scores. 502 

For the surface level, we also found more results on a high level of significance (i.e. 503 

90%). The verification results of the upper levels are less significant than for the 504 

surface and performance is more ambivalent. We used a large number of 505 

observations for both surface (station observations) and upper levels (ECMWF grid 506 

values). Hence, the lower significance of the results for the upper levels can be 507 

explained by the model set-up rather than by the verification data. Near surface and 508 Formatiert: Schriftart: 12 Pt.
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on lower levels AROME-EPS can add more information to the model simulation 509 

compared to ALADIN-LAEF than on higher levels. This is due to the SURFEX soil 510 

scheme and the interaction between a refined representation of orography and the 511 

model physics schemes and dynamics. On the higher levels, however, there is less 512 

influence of the orography and the simulation resembles more the driving model. For 513 

this reasonTherefore, surface results have been selected to highlight the main 514 

findings in the following. 515 

Figure 4 compares the bias and Continuous Ranked Probability Score (CRPS, see 516 

Wilks 2006 for details) for 2 m relative humidity, 2 m temperature and 10 m wind 517 

speed. CRPS compares the forecast PDF to the observed values of occurrence and 518 

non-occurrence, respectively. CRPS is sensitive to the difference between the 519 

forecast probabilities to observed values. The lower the difference, the better the 520 

forecast is rated. Hence, the value of CRPS of a perfect forecast is zero. Due to its 521 

formulation, signals of CRPS are also reflected by many other scores, in particular 522 

those which are sensitive to deviations between the distributions of forecasts and 523 

observations. Thus, CRPS is useful for representing the results of this study 524 

exemplarily. It also shows the impact of biased forecasts.  525 

Biases of 2 m relative humidity in Fig. 4a show noticeable diurnal variations. During 526 

the night and early morning, AROME-EPS is too dry, whereas ALADIN-LAEF is too 527 

moist during the day (1200 UTC and 1800 UTC). The diurnal variations of the 528 

differences between AROME-EPS and ALADIN-LAEF are also reflected in CRPS in 529 

Figure 4b. During the night, AROME-EPS and ALADIN-LAEF are at the same level, 530 

but for the day hours AROME-EPS shows better results. For 2 m relative humidity, 531 
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most verification results are significant at a level of 90%. This is also true for the 532 

differences in forecast performance during the day hours. Results for 2 m 533 

temperature in Figures 4c and 4d show an improvement for most of the used scores 534 

at a significance level of 90% for AROME-EPS. This result is partially due to a large 535 

bias of ALADIN-LAEF temperatures. In contrast, there exist fewer deviations 536 

between the ensembles for wind speed (Figures 4e and 4f) and MSLP (not shown). 537 

However, these results have only a low level of significance. 538 

b. Evaluation of precipitation forecasts 539 

Precipitation is evaluated by 3-hourly INCA analyses on a regular 1 km x 1 km grid. A 540 

first insight of the strengths and weaknesses of the ensembles in forecasting 541 

precipitation is offered by a comparison of the daily variability of precipitation 542 

intensities. Figure 5 compares the 3-hourly precipitation sums of INCA and both EPS 543 

models for different regional domains and for days with strong (left panels) and weak 544 

(right panels) synoptic forcing. 545 

Errors occur in terms of over- and underestimation of the maximum intensity and in 546 

terms of time shifts. The daily maximum of 3 h-precipitation is overestimated by 547 

AROME-EPS for regions West and Austria and both types of synoptic forcing by 548 

20%-50%. In ALADIN-LAEF, the maximum in these regions is approximately at the 549 

same level as analyzed by INCA. Hence, the too moist conditions of ALADIN-LAEF 550 

near the surface in Fig. 4a are not reflected in the precipitation sums. For region 551 

Northeast, AROME-EPS correctly simulates the maximum amount of precipitation, 552 

whereas ALADIN-LAEF is too low. 553 
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Considering the days with strong synoptic forcing in Figure 5 (left panels), the highest 554 

precipitation sums are detected around 1800 UTC. AROME-EPS describes the 555 

temporal maximum quite well, whereas the maximum in ALADIN-LAEF occurs too 556 

early (-3 h time shift).  In the case of weak synoptic forcing shown in Figure 5 (right 557 

panels), the precipitation maxima are observed later than for the other cases in 558 

region West (e.g. 2100 UTC instead of 1800 UTC). This is not reflected by the EPS 559 

models, which both reach the maximum intensity of precipitation at 1500 UTC. Only 560 

for region Northeast and weak synoptic forcing does the maximum of precipitation 561 

occur too late in AROME-EPS. The characteristic that ALADIN-LAEF and AROME-562 

EPS tend to trigger moist and deep convection over complex orography too early is 563 

well known (Wittmann et al. 2010). However, according to Figure 5, running a model 564 

or an EPS on CP scales is beneficial for predicting the daily maximum of the 565 

convective diurnal cycle, at least over mountainous terrain. With respect to the timing 566 

of the maxima, AROME-EPS shows a time shift of -3 h, with ALADIN-LAEF -6 h for 567 

weak synoptic forcing in regions Austria and West (panels b) and d), respectively). 568 

Because of the limited framework of this study we can only speculate that this 569 

behavior might be due to differences caused by the deep convection scheme in 570 

ALADIN-LAEF, which is one of the reasons to cause an early onset of precipitation 571 

(Bechtold et al. 2013), and respectively, the explicit simulation of deep convection in 572 

AROME. Another reason, which we cannot exclude, could be that ALADIN-LAEF and 573 

AROME apply different physical parameterizations. The different dynamical cores, 574 

hydrostatic and non-hydrostatic, might also contribute to the differences to some 575 

extent, but remain statistically less significant in respect of precipitation as shown in 576 

an earlier study (Wittmann et al. 2010). Experiences concerning the pure impact of 577 
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different vertical resolutions on the forecast quality are few. However, it is known that 578 

an increase of vertical resolution and, hence, enhanced possibilities to simulate 579 

convection-related, micro-physical and boundary-layer processes, does not 580 

necessarily result in an improvement of precipitation forecasts. It is rather related to 581 

increased overprediction of precipitation amounts (Aligo et al. 2009). 582 

A further characteristic evident in Figure 5, is that the precipitation amounts in 583 

AROME-EPS develop independently of those in the driving ALADIN-LAEF members, 584 

which is indicated by the ensemble spread. In ALADIN-LAEF the ensemble spread is 585 

quite large for certain lead times, ranging from a larger overestimation of the 586 

observed precipitation amounts to a large underestimation. This contrasts with 587 

AROME-EPS, which shows a much smaller range of precipitation amounts. This 588 

difference in the spread is very likely due to the large influence of the multi-physics 589 

configuration in ALADIN-LAEF, compared with the single physics configuration of 590 

AROME-EPS. The scores, which are discussed in the following, Brier score, SAL 591 

scores and fractions skill score, demonstrate in which ways the differences in the 592 

diurnal precipitation cycle have an influence on forecast quality.  593 

i. Brier score 594 

Figure 6 shows the differences of the Brier Score (BS; Brier 1950), for strong and 595 

weak synoptic forcing with different precipitation thresholds. BS measures the 596 

accuracy of probability forecasts, which is equivalent to the MSE for deterministic 597 

forecasts. The value for perfect forecasts is zero. BS has largest values for the 598 

lowest precipitation threshold (0.1 mm, upper panels), and decreases for larger 599 

thresholds (2 mm, lower panels).  600 
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During the morning hours (+6 h, +30 h lead time), BS is low for days with weak 601 

synoptic forcing. This is due to the fact, that on these days, generally stable 602 

conditions prevail in the morning and precipitation probability is very low. For the 603 

lower precipitation threshold, AROME-EPS shows significantly better values than 604 

ALADIN-LAEF from 0900 UTC to 1500 UTC. This applies for both, days with weak 605 

synoptic forcing and days with strong synoptic forcing.  606 

The differences in BS between ALADIN-LAEF and AROME-EPS can, for the most 607 

part, be explained by the fact that the precipitation generally starts too early in 608 

ALADIN-LAEF forecasts. Additionally, the tendency of ALADIN-LAEF to forecast 609 

smoother precipitation fields than AROME-EPS can be assumed as a second source 610 

of errors. The smoothness leads to rather medium precipitation probabilities in large 611 

areas. BS, however, accounts for sharp forecasts near zero and one (i.e. very low 612 

and very high probabilities for rainfall). 613 

ii. SAL scores 614 

The variability of SAL scores with lead-time gives insight in the performance of 615 

AROME-EPS and ALADIN-LAEF in terms of the structure, amplitude, and location of 616 

the predicted precipitation events. Figures 7 and 8 show the SAL scores for the 617 

mountainous region West and the lowland region Northeast, respectively. The 618 

distributions of SAL values are sampled for the individual ensemble members and 619 

classified into days with strong (panels a and b) and weak synoptic forcing (panels c 620 

and d). These values differ from those based on the ensemble mean and median 621 

forecasts as the averaging produces more smoothed precipitation events and, hence, 622 

has an influence on the properties described by the SAL method. 623 
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In both geographic regions and for both types of synoptic forcing, the structure score 624 

is lower for AROME-EPS than for ALADIN-LAEF, which is, inter alia, a consequence 625 

of the model resolution (Wittmann et al. 2010). AROME-EPS produces precipitation 626 

events, which are mostly too small and/or too peaked, whereas precipitation objects 627 

in ALADIN-LAEF are too large and flat. This is particularly true for days with strong 628 

synoptic forcing and for flat terrain. The structure score for ALADIN-LAEF further 629 

shows a pronounced diurnal variation for region West, where precipitation events are 630 

too large during the day (0900 – 1500 UTC), but more realistic during evening and 631 

nighttime. In region Northeast and weak synoptic forcing, on the contrary, there is a 632 

rather damped diurnal variation. This is a sign that precipitation events emerge too 633 

early and grow too large over the mountains, whereas over flat land, they are too flat 634 

and too widespread during the whole day. AROME-EPS generally shows better 635 

agreement with the observed precipitation structures than ALADIN-LAEF during noon 636 

(1200 - 1500 UTC) while objects are much too small during the rest of the day. Only 637 

on days with strong synoptic forcing and over mountainous terrain does AROME-638 

EPS mostly underestimate the dimension of precipitation events. Over flat land, 639 

structure scores are variable on a low level for AROME-EPS, but do not show a 640 

perfect daily cycle.  641 

In most instances, the amplitude component reflects the findings shown in Figure 5, 642 

being more apparent for days with weak than for days with strong synoptic forcing. 643 

For both EPS models, an overestimation occurs during noon over mountainous 644 

terrain (region West, Figure 7), which is associated with the early onset of convection 645 

for ALADIN-LAEF and with the overestimation of precipitation amounts in AROME-646 
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EPS. In region Northeast (Figure 8), the agreement seems to be much better for 647 

days with strong synoptic forcing than for weak synoptic forcing. However, amplitude 648 

score measures the agreement in terms of the percentage share of precipitation 649 

amounts. Hence, if the amounts are on a much lower level as in the case of weak 650 

synoptic forcing, amplitude scores appear worse. The large amplitude errors in 651 

Figures 8c and 8d are, therefore, more dependent on the time shift between 652 

simulated and observed peaks of precipitation intensities than on the absolute 653 

amount of maximum precipitation intensities, which are fairly well captured. 654 

The location score in both regions provided by the SAL shows not as much variability 655 

as the other two components. Nevertheless, an investigation of the distances of 656 

observed and forecast centers of mass for the precipitation events can provide useful 657 

information. Figures 9a and 9b show the mean distances for objects pertaining to 658 

precipitation thresholds of 0.1 mm / 3 h and of 2 mm / 3 h for days with strong 659 

synoptic forcing, respectively. In general, it can be stated that the distances get 660 

shorter with increasing thresholds. This indicates that both ALADIN-LAEF and 661 

AROME-EPS are more successful for more intense precipitation events. On the other 662 

hand, precipitation objects with very low intensities can be either very small and 663 

randomly distributed, which is difficult to predict, or very large, which is easier to 664 

predict or detect. 665 

For higher thresholds, Figure 9b shows that the distances have more variability with 666 

time. Although distances are short for earlier hours of the forecast (and the first half 667 

of the day), they increase for later forecast hours and reach a maximum at +21 h 668 

(2100 UTC). This effect is much greater in ALADIN-LAEF than in AROME-EPS and it 669 
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is remarkable that it happens very late in the day, much later than the main peak of 670 

precipitation shown in Figure 5. The reason could be that the precipitation cells are 671 

captured well when they are in a mature and well developed state. Their further 672 

development or collapse seems to be better simulated in AROME-EPS. This should 673 

be connected to the prognostic (and explicit) treatment of the atmospheric variables 674 

describing the evolution of convective activity in AROME. A convection 675 

parameterization, in particular, a diagnostic convection scheme (as it is used for 676 

some members of ALADIN-LAEF) has more deficiencies in simulating the life cycle of 677 

convective objects properly than is the case for AROME. In addition, the non-678 

hydrostatic dynamics, higher resolution and better representation of turbulence and 679 

microphysical interactions in the model physics might lead to a more realistic decay 680 

of convection in AROME-EPS.  681 

 682 

iii.) Fractions Skill Score 683 

The fractions skill score (FSS) indicates how well the ensemble systems predict 684 

precipitation at different spatial scales. The grid box widths (1 km – 21 km, 685 

corresponding to areas of 1 km2 – 441 km2) have been selected to investigate the 686 

performance of models at very fine scales, near the resolution of the analyzed 687 

observations of INCA. At these scales models have difficulties to reach the level of 688 

usefulness (i.e. the target skill as defined in Roberts and Lean 2008), which can be 689 

expected at larger scales. Nevertheless, it is interesting to examine how FSS values 690 

change with increasing precipitation thresholds. 691 
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Figures 10a and 10b compare the fractional skill scores for days with strong synoptic 692 

forcing and days with weak forcing. FSS values are greater (~factor 2) for strong 693 

synoptic forcing than for weak synoptic forcing, since for the latter, precipitation 694 

events are generally less structured which lead to the lower level of skill.  695 

For all weather situations, ALADIN-LAEF shows better values for the lowest 696 

thresholds of 0.1 mm and 0.5 mm. The converse result is observed for higher 697 

thresholds above 2 mm. For 5 mm / 3 h ALADIN-LAEF has hardly any skill on the 698 

very fine scales for days with weak synoptic forcing. This means that small, scattered 699 

showers and thunderstorms, which typically occur on these days, cannot be 700 

simulated well by the model with coarser model resolution. In AROME-EPS there is 701 

at least a certain skill for small intense precipitation events, although it is not at a 702 

level considered as reliable.  703 

In the previous sections, the discussion provided an overview on the whole 3 months 704 

period. In the following section, evaluations focus on a single selected day. This is 705 

done in order to show the forecast behavior of the ensembles in a concrete weather 706 

situation exemplarily.  707 

c. Case study 708 

A typical convective day with weak synoptic forcing is selected to show the evolution 709 

of precipitation in AROME-EPS and ALADIN-LAEF in more detail. Here more 710 

emphasis is put on the observation of the numbers, volumes, and distribution of the 711 

precipitation objects.  712 
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Figure 11 illustrates the precipitation at different times of 29 April 2014 of INCA 713 

analyses and the ensemble means of AROME-EPS and ALADIN-LAEF. On this day, 714 

continuous light rain was reported in Austria’s mountainous terrain, near the main 715 

Alpine ridge during the morning hours as shown in the first row of Figure 11. At the 716 

same time the lowlands in the east and north were dry. In the lowlands, precipitation 717 

activities in terms of small showers started from approximately 1100 UTC in second 718 

row of Figure 11. Over the course of the day the focus of precipitation was 719 

increasingly shifted to the flat lands in the North, East, and Southeast of Austria as 720 

well as to Slovenia and Northern Italy. The peak rain intensity was around 1500 UTC, 721 

shown at 1400 UTC in third row of Figure 11. Rain in the inner alpine areas had 722 

diminished. In contrast, the showers in the flat regions continued until the time of 723 

sunset. Then their activity also weakened, which is visible in the bottom row of Figure 724 

11. 725 

Figure 12 gives the characteristics of the precipitation forecasts of ALADIN-LAEF and 726 

AROME-EPS, such as the temporal evolution of the mean areal precipitation in 727 

Figure 12a, the number of precipitation objects in Figure 12b, and the temporal 728 

evolution of the SAL scores in Figure 12c. For the selected day, precipitation 729 

amounts for the region Austria are slightly underestimated by the both ensemble 730 

systems. Further, only a minor fraction of ensemble members reach the observed 731 

precipitation intensities at noon. By investigating the structures of the precipitation 732 

forecasts, further insight into the behavior of the ensemble systems is provided. The 733 

number and volume of precipitation objects describe how models perform in a spatial 734 

context. In this respect, AROME-EPS clearly shows more ability to replicate the real 735 
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spatial structure of precipitation. Although the number of objects in the region Austria 736 

is too low during the first forecast hours, the further development as observed by the 737 

INCA analysis in Figure 12b is described well. In the ALADIN-LAEF forecast the 738 

number of precipitation objects is very low, mostly a product of the lower resolution. 739 

The volumes of the precipitation events are in direct connection with their number 740 

(not shown). ALADIN-LAEF overestimates the volumes to the same degree as it 741 

underestimates their numbers. However, it shows a clear diurnal variation of the 742 

volumes with a maximum around noon, which is not indicated by AROME. 743 

The fact that ALADIN-LAEF tends to produce fewer but larger precipitation objects 744 

does not lead to worse verification statistics for ALADIN-LAEF. On the contrary, in 745 

most regions the hit rate is higher for ALADIN-LAEF than for AROME-EPS and the 746 

number of missed events is lower. AROME-EPS, on the other hand outperforms 747 

ALADIN-LAEF in terms of correct negatives and false alarms (not shown).  748 

These results are also reflected in the temporal evolution of SAL-scores in Figure 749 

12c. As expected, the structure score S is too high for ALADIN-LAEF, due to the 750 

overestimation of the volumes of precipitation objects. At the same time, however, 751 

AROME-EPS produces a low S score which means that it still produces too small 752 

and peaked precipitation objects compared to INCA.  753 

Interestingly, there is a late peak in the S score between 26-28 hours lead time in 754 

both models, which follows a short minimum at 25 hours lead time. This is also 755 

slightly reflected in the A score. The sequence of minimum and peak is related to a 756 

nightly shower, which was also simulated by the ensembles, but with a delay of 757 

approximately 2 hours. The location or L-score is rather constant in time for both 758 
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ensemble models. This means that they were able to reproduce the changing spatial 759 

focus and distribution of precipitation during the day.  760 

5. Summary and conclusions 761 

In this paper we investigate the forecast performance of the 2.5 km convection-762 

permitting ensemble AROME-EPS by comparison with the regional 11 km ensemble 763 

ALADIN-LAEF to reveal the benefit provided by a CP EPS. The regional EPS, 764 

ALADIN-LAEF, involves several sources of forecast perturbations, such as initial 765 

condition perturbations by blending ECMWF-EPS with ALADIN-LAEF breeding 766 

vectors and assimilation of perturbed surface observations, and a multi-physics 767 

scheme. The high-resolution, convection-permitting AROME-EPS solely performs 768 

downscaling of the ALADIN-LAEF forecasts. The performance of the ensembles is 769 

evaluated for a 3-month period during the convective season of 2011 and for a 770 

typical convective day in April 2014 with a special focus on precipitation events in 771 

mountainous terrain and lowland regions. The aim is to show whether the 772 

convection-permitting ensemble provides benefits to the regional ensemble with deep 773 

convection parameterization. The evaluation is conducted using a combination of 774 

standard deterministic and probabilistic verification scores and selected spatial 775 

verification measures. The former are applied on several main forecast parameters 776 

for surface and upper levels, the latter – according to their definition – only for 777 

precipitation. 778 

The forecast quality for the main meteorological parameters (except precipitation) for 779 

the surface and selected upper levels is strongly dependent on the model bias and is 780 

rather balanced, except for diurnal variations near the surface. However, 781 
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characteristic differences are revealed by the investigation of the precipitation 782 

forecasts. A known drawback of models using deep convection schemes proves true, 783 

which is the premature onset of precipitation in the daily cycle by ALADIN-LAEF (see 784 

e.g. Wittmann et al., 2010; Weusthoff et al., 2010). On the other hand, an 785 

overestimation of precipitation intensities at the peak of convection activities by 786 

AROME-EPS is also confirmed, which has been assumed in previous validations. 787 

Both of these properties are found to be more pronounced in mountainous than in flat 788 

regions.  789 

ALADIN-LAEF shows skill in the prediction of probabilities for low precipitation 790 

thresholds, i.e. to distinguish between rain and no rain. This is also true for small 791 

scales, but it is again dependent on the time of day, as the early onset of precipitation 792 

has a negative influence on the verification scores. AROME-EPS, on the other hand, 793 

has a better ability to capture the diurnal cycle of convective precipitation, especially 794 

over mountainous terrain. At small spatial scales, it further demonstrates better 795 

performance for higher precipitation thresholds. The results of the evaluations in this 796 

study lead to the conclusion, that the convection permitting ensemble is more skillful 797 

on the precipitation forecast than its mesoscale counterpart, the regional ensemble. 798 

The positive impact is larger for the mountainous areas than for the lowlands. 799 

Nevertheless, the knowledge of which precipitation situations can be better modeled 800 

by the convection-permitting ensemble is important to have. For many applications, 801 

e.g. for large-scale extreme events, such as the Central Europe flooding event of 802 

2013, the best solution will be a combination of both systems: the coarser ensembles 803 

with longer forecast range for (pre)-warnings, and the convection-permitting 804 
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ensemble for the detailed specification of the expected event. Regarding different 805 

time and length-scales in that way could lead to the generation of seamless forecast 806 

products (e.g. Drobinski et al. 2014, Vitart et al. 2008).  807 

This study is considered as initial point for further investigations and improvement of 808 

the convection-permitting ensemble AROME-EPS. The low spread of the prevailing 809 

AROME-EPS version is a clear drawback compared to ALADIN-LAEF. Therefore, 810 

future enhancements of AROME-EPS will involve components, which will 811 

presumably increase ensemble spread. Among those upgrades will be ensemble 812 

data assimilation and physics perturbations (multi-model and stochastic). The 813 

expectation with these components is that forecast errors will be reduced, and that a 814 

more realistic simulation of forecast uncertainties will be achieved.  815 

6. Code and/or data availability 816 

The ALADIN-LAEF and AROME codes including all related intellectual property 817 

rights, are owned by the members of the LACE consortium and ALADIN consortium. 818 

Access to the ALADIN-LAEF and AROME systems, or elements thereof, can be 819 

granted upon request and for research purposes only. INCA and INCA data are only 820 

available subject to a licence agreement with ZAMG.  821 
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 1070 

 ALADIN-LAEF AROME-EPS 

Ensemble size 16+1 members 16 members 

Horizontal resolution 11 km 2.5 km 

Vertical resolution 45 layers 60 layers 

Model time step 450 s 60 s 

Coupling-Model ECMWF-EPS 

(first 16 members) 

ALADIN-LAEF 

Coupling-Update 6 h 3 h 

No. of grid points 206 x 164 432 x 320 

Forecast range 72 h 30 h 

Runs/Day 2 (0000, 1200 UTC) 1 (0000 UTC) 

 1071 

Table 1: Main characteristics of the ALADIN-LAEF and AROME-EPS.  1072 

 1073 

 1074 

 1075 

 1076 

 1077 
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Figure 1: Geographic domains and topographies of a) ALADIN-LAEF, where the red 1079 

frame is the output domain used for the present study, and b) AROME-EPS, which is 1080 

shown by the blue frame in (a).  1081 

 1082 

Figure 2: Locations of meteorological surface observation stations within the 1083 

evaluation domain. 1084 

 1085 

Figure 3: INCA domain and topography with the sub-domains, which are used for the 1086 

evaluation. 1087 

 1088 

Figure 4: Bias (left panel) and CRPS (right panel) for 2m relative humidity (top), 2m 1089 

temperature (middle) and 10m wind speed (bottom) for the period of May 15 – 1090 

August 15, 2011 of AROME-EPS (dotted line) and ALADIN-LAEF (solid line), both 1091 

verified over the AROME-domain. Lead times, which are marked with asterisks (*) 1092 

indicate results with significant differences between the ensembles. 1093 

Figure 4: Bias (left panel) and CRPS (right panel) for 2m relative humidity (top), 2m 1094 

temperature (middle) and 10m wind speed (bottom) for the period of May 15 – 1095 

August 15, 2011 in the AROME-domain of AROME-EPS (dotted line) and ALADIN-1096 

LAEF (solid line). Lead times, which are marked with asterisks (*) indicate results 1097 

with significant differences between the ensembles. 1098 

 1099 
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Figure 5: Time evolution of 3-hourly accumulated precipitation forecast for INCA 1100 

(solid line), ALADIN-LAEF ensemble mean (dashed line) and AROME-EPS 1101 

ensemble mean (dotted line) for  regions Austria (top), West (middle) and Northeast 1102 

(bottom). Left panels show results for the days with strong synoptic forcing, right 1103 

panels for weak synoptic forcing. The shaded areas denote the range of individual 1104 

ensemble member forecasts for ALADIN-LAEF (dark grey) and AROME-EPS (light 1105 

grey) respectively.  1106 

 1107 

Figure 6: Time evolution of the Brier Score with confidence intervals (shades) for 1108 

region Austria, AROME-EPS (dotted line) and ALADIN-LAEF (dashed line). a) strong 1109 

synoptic forcing and precipitation threshold 0.1 mm / 3 h, b) weak synoptic forcing 1110 

and 0.1 mm / 3 h, c) strong synoptic forcing and 2 mm / 3 h, and d) weak synoptic 1111 

forcing and 2 mm / 3 h.  1112 

 1113 

Figure 7: Time evolution of SAL scores for AROME-EPS (left) and ALADIN-LAEF 1114 

(right) for different forecast ranges in region West. Upper panels a) and b) show 1115 

results for days with strong synoptic forcing; lower panels c) and d) for weak synoptic 1116 

forcing. The boxes are created based on the scores of all individual ensemble 1117 

members. 1118 

 1119 

Figure 8: Same as in Figure 7, but for region Northeast. 1120 

 1121 
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Figure 9: Distances [km] between the centers of mass of the precipitation objects in 1122 

the forecast and analysis fields for AROME-EPS (dotted) and ALADIN-LAEF 1123 

(dashed) for thresholds of a) 0.1 mm / 3 h, and b) 2 mm / 3 h. 1124 

 1125 

Figure 10: Fractional skill scores for a) strong synoptic forcing, and b) weak synoptic 1126 

forcing of AROME-EPS (dashed) and ALADIN-LAEF (solid line) for the region 1127 

Austria. Numbers denote the precipitation thresholds [mm]. The values represent 1128 

averages for all hours of lead-time. 1129 

 1130 

Figure 11: Observed (INCA, first column) and forecast (AROME-EPS and ALADIN-1131 

LAEF, second and third column, respectively) development of precipitation on 29 1132 

April 2014 shown for selected times (rows). The panels show 1-hourly accumulated 1133 

precipitation sums [mm]. 1134 

 1135 

Figure 12: Characteristics of the precipitation forecasts of ALADIN-LAEF and 1136 

AROME-EPS on 29 April 2014. a) Temporal evolution of the mean areal precipitation 1137 

compared with INCA, and b) temporal evolution of the number of precipitation 1138 

objects. Dashed and dotted lines represent the ensemble mean and grey shades the 1139 

ensemble spread. c) Temporal evolution of S (structure), A (amplitude) and L 1140 

(location) scores of the ensemble means of ALADIN-LAEF (black) and AROME-EPS 1141 

(grey). 1142 

 1143 

 1144 
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 1145 

 1146 

 1147 

 1148 

 1149 

 1150 

                                                             1151 

Figure 1: Geographic domains and topographies of a) ALADIN-LAEF, where the red 1152 

frame is the output domain used for the present study, and b) AROME-EPS, which is 1153 

shown by the blue frame in (a).  1154 

 1155 

 1156 

 1157 

 1158 
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 1159 

 1160 

Figure 2: Locations of meteorological surface observation stations within the 1161 

evaluation domain. 1162 

 1163 

 1164 

 1165 

 1166 

 1167 
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 1168 

 1169 

 1170 

Figure 3: INCA domain and topography with the sub-domains, which are used for the 1171 

evaluation. 1172 

 1173 

 1174 

 1175 

 1176 

 1177 
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 1178 

 1179 

 1180 

Figure 4: Bias (left panel) and CRPS (right panel) for 2m relative humidity (top), 2m 1181 

temperature (middle) and 10m wind speed (bottom) for the period of May 15 – 1182 

August 15, 2011 in the AROME-domain of AROME-EPS (dotted line) and ALADIN-1183 

LAEF (solid line), both verified over the AROME-domain.. Lead times, which are 1184 

marked with asterisks (*) indicate results with significant differences between the 1185 

ensembles. 1186 
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Figure 5: Time evolution of 3-hourly accumulated precipitation forecast for INCA 1191 

(solid line), ALADIN-LAEF ensemble mean (dashed line) and AROME-EPS 1192 
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ensemble mean (dotted line) for  regions Austria (top), West (middle) and Northeast 1193 

(bottom). Left panels show results for the days with strong synoptic forcing, right 1194 

panels for weak synoptic forcing. The shaded areas denote the range of individual 1195 

ensemble member forecasts for ALADIN-LAEF (dark grey) and AROME-EPS (light 1196 

grey) respectively.  1197 

 1198 

 1199 

 1200 

 1201 
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 1203 

 1204 

 1205 

Figure 6: Time evolution of the Brier Score with confidence intervals (shades) for 1206 

region Austria, AROME-EPS (dotted line) and ALADIN-LAEF (dashed line). a) strong 1207 

synoptic forcing and precipitation threshold 0.1 mm / 3 h, b) weak synoptic forcing 1208 

and 0.1 mm / 3 h, c) strong synoptic forcing and 2 mm / 3 h, and d) weak synoptic 1209 

forcing and 2 mm / 3 h.  1210 
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 1213 

 1214 

Figure 7: Time evolution of SAL scores for AROME-EPS (left) and ALADIN-LAEF 1215 

(right) for different forecast ranges in region West. Upper panels a) and b) show 1216 

results for days with strong synoptic forcing; lower panels c) and d) for weak synoptic 1217 

forcing. The boxes are created based on the scores of all individual ensemble 1218 

members. 1219 
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 1222 

Figure 8: Same as in Figure 7, but for region Northeast. 1223 

 1224 
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 1226 

 1227 

Figure 9: Distances [km] between the centers of mass of the precipitation objects in 1228 

the forecast and analysis fields for AROME-EPS (dotted) and ALADIN-LAEF 1229 

(dashed) for thresholds of a) 0.1 mm / 3 h, and b) 2 mm / 3 h. 1230 

 1231 

 1232 

 1233 

 1234 

 1235 
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 1239 

 1240 

Figure 10: Fractional skill scores for a) strong synoptic forcing, and b) weak synoptic 1241 

forcing of AROME-EPS (dashed) and ALADIN-LAEF (solid line) for the region 1242 

Austria. Numbers denote the precipitation thresholds [mm]. The values represent 1243 

averages for all hours of lead-time. 1244 
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 1253 

 1254 

 1255 

Figure 11: Observed (INCA, first column) and forecast (AROME-EPS and ALADIN-1256 

LAEF, second and third column, respectively) development of precipitation on 29 1257 

April 2014 shown for selected times (rows). The panels show 1-hourly accumulated 1258 

precipitation sums [mm]. 1259 
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 1260 

 1261 

 1262 

Figure 12: Characteristics of the precipitation forecasts of ALADIN-LAEF and 1263 

AROME-EPS on 29 April 2014. a) Temporal evolution of the mean areal precipitation 1264 

compared with INCA, and b) temporal evolution of the number of precipitation 1265 

objects. Dashed and dotted lines represent the ensemble mean and grey shades the 1266 

ensemble spread. c) Temporal evolution of S (structure), A (amplitude) and L 1267 

(location) scores of the ensemble means of ALADIN-LAEF (black) and AROME-EPS 1268 

(grey). 1269 


