
Author response to the reviews of the paper “Simulating warming climate scenarios with 

intentionally biased bootstrapping and its implications for precipitation” 
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Taesam Lee 

 

Line 53. White space missing 

Reply: The space is added accordingly. 

 

Line 58 Clausis-Clapeyron   -> Clausius Clapeyron 

Reply: The word has been modified accordingly as Clausius-Clapeyron. Note that the author 

do not remove ‘–‘ mark between two name because this relation has been popularly employed 

as is. 

 

Line 152 Sigma2  E(X^2)  (EX )^2  

Shouldn’t it be Sigma2  E(X2 )  E(X )^2 ? Please check 

Reply: The author checked the equation once again and find no error in the equation. It is right 

with E(X^2). 

 

Figure 3 legend caption. What are the red crosses? Please explain how are defined the boxes, 

the whiskers, the line in the boxes. 

Reply: The caption has been modified accordingly with adding the sentence as below. 

“Boxes indicate the interquartile range (IQR), and whiskers extend to +/-1.5IQR. The 

horizontal lines inside the boxes depict the median of the data. Data beyond the fences (+/-

1.5IQR) are indicated by a plus symbol (+), which represent outliers.” 

 

Figure 4 legend caption. Please explain how are defined the boxes, the whiskers, the line in the 

boxes. 

Reply: The caption has been modified accordingly with adding the sentence as below: 

Boxes indicate the interquartile range (IQR), and whiskers extend to +/-1.5IQR. The horizontal 

lines inside the boxes depict the median of the data. Data beyond the fences (+/-1.5IQR) are 

indicated by a plus symbol (+), which represent outliers. 
  



Author response to the reviews of the paper “Simulating warming climate scenarios with 
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(Manuscript # gmd-2016-188)  

Taesam Lee 

Reviewer #1 

D. Defrance (Referee)  

This article presents a statistical method to determine local climate change from global 

observations. With this approach, the Intentionaly Biased Bootstrapping (IBB) and some 

hypothesis, the author estimates the future temperature and precipitation at a local point. The 

article is clearly divided into several parts: a good description of the method, the complete 

procedure to permit to everyone to use easily it and a good application on the South Korea to 

validate the method with a good description of the results. The methodology is precisely 

described but some information will permit to improve the comprehension. I suggest to publish 

this article in GMD with minor revision. The different remarks and suggestions are described 

below. 

Reply: The author appreciates this reviewer’s generous comment. The author tried his best 

efforts to improve the manuscript. Hope this improvement is satisfactory to this reviewer. 

 

 Some questions  

Line 31: To specify that the temperature from GCM is relatively accurate as you mention in 

the conclusion  

Line 54: In some places, such as the Sahel, the increasing in temperature results from global 

warming but also from feedback related to the reduction of precipitations. It is perhaps too 

generalist to assert that everywhere the increasing in temperature will be followed by an 

increasing in precipitation with the self-order of magnitude. Can this depend on the type of 

precipitation or the origin (e.g. monsoon system or stratiform precipitation) ?  

Reply: The proposed IBB method does not postulate that the temperature increase means the 

increase of precipitation. The method employs the empirical relation between temperature and 

precipitation. When an observed temperature increases and an observed precipitation 

decreases, the same reverse relation can be reproduced through the proposed IBB method. The 

author considers that the proposed method is not physical-based method so that the type of 

precipitation cannot be taken into consideration.  

 

Line 78: In the methodology, some hypothesis must be mentioned: - The method is only based 

on the temperature mean. If in the future the extremes of temperature increases (warmest and 

coldest), the method does not take this into consideration. - For the precipitation, the evolution 

is in relation with only the temperature evolution in the methodology and the meso-scale 

change is not supported.  

The author really appreciates this reviewer’s insightful comment. No physical mechanisms can 

be included. This limitation was discussed at the conclusion section.  

 

“The proposed IBB method is not a physical-based method but a statistical simulation 



approach in which a physical mechanism of precipitation cannot be taken into consideration. 

Substantial modification might be required to accommodate this mechanism.” 

 

Line 160: for the block bootstrapping technique to simulate the temperature, I would like a 

better description of the method with one or two sentences because it is easier to read the entire 

method rather than reading into the references.  

Reply: The author totally agrees with this reviewer’s comment. Simple sentences were added 

accordingly as follows: 

 

“Bootstrapping is a random sampling with replacement and block bootstrapping is to resample 

blocks. Each block contains a set of predictor and predictand like a regression. Here, 

temperature and precipitation can be set as a block and they act as predictor and predictand, 

respectively.”  

 

The author hopes that this modification is satisfactory to this reviewer  

 

Line 191: Data description, you describe the available data (74 locations) and you give 1283 

mm a year but you select 54 datasets with a good hypothesis ( > 30 years available data). Is the 

precipitation mean the same with the only 54 datasets? I suggest to insert directly the selected 

datasets in the beginning of the paragraph with the hypothesis and the annual mean.  

Reply: The author appreciate this reviewer’s detailed comment. Official annual mean 

precipitation of South Korea (1283mm) is announced by KMA, not calculated from the current 

study. The sentence was modified accordingly as follows: 

 

“In the current study, weather stations that record temperature and precipitation in South 

Korea (54 locations) and that are managed by the Korea Meteorological Administration (KMA) 

and whose length is more than 30 years were employed. South Korea is located in Far East 

Asia and has a mean annual precipitation of 1283 mm from KMA.”  

 

The author hopes that this modification is satisfactory to this reviewer  

 

Line 250: you very accurately write that the test period is relatively short and not enough of 

high values of annual temperature. Did you tested a longer test period with a short validation 

period e. g. 20 years test period 1976-1997 and validation period 1998-2008 ?  

Reply: The author really appreciates this reviewer’s pinpointing comment. 20 years was also 

tested with no difference from the current test. 15 years (the test period that has been used in 

the current study) and 20 years are not much different in analyzing the long-term change. 

 

Line 335: In the conclusion, the limits of the method in terms of variability of extremes should 

be recreated. This limit associated with IBB can still be disturbing for some applications such 

as extreme floods. Figure 3 and 4, there are many data on it and it is not easy to analyse it for 

the reader. Maybe to classify the stations by order of error could permit to better interpret the 

results. I am not a good example to suggest to you a good representation of the results.  



Reply: The author really appreciates this reviewer’s insightful comment. The authors consider 

that long-term variability of hydrological extremes can be derived from the IBB method when 

it is related with other variables such as precipitation. But no physical mechanisms can be 

included as this reviewer pointed in the previous comment. This limitation and possible 

extension were discussed at the conclusion as follows:  

 

“The proposed IBB method is not a physical-based method but a statistical simulation 

approach in which a physical mechanism of precipitation cannot be taken into consideration. 

Substantial modification might be required to accommodate this mechanism. Also, a possible 

extension of the current study must be on analyzing the future variation of hydrological extreme 

events (e.g. extreme floods).  If a long-term variation of hydrological extreme events is related 

with precipitation, one can derive the variation from the IBB method.”  

 

Hope this reviewer satisfactory to this modification.  

 

Technical notes  

Line 58: 1 hour intensity  

Reply: It was modified as ‘the intensity of hourly precipitation’. Hope this modification is 

satisfactory to this reviewer. 

 

Line 64: for this paragraph, a reference could be appreciated  

Reply: A reference is added accordingly. 

 

Line 98: local linear smoothing (Cai, 2001)  

Reply: It was modified as ‘local linear regression’. 

 

Line 208: but employed in comparison ? Can you use validation ? 

Reply: The author appreciates this reviewer’s detailed comment. ‘validation’ was used now 

according to this reviewer’s comment. 
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Taesam Lee 

Reviewer #2 

 

M. A. Ben Alaya (Referee)  

In this paper, the author presents a statistical non parametric resampling approach called 

intentionally biased bootstrapping (IBB) to simultaneously simulate temperature and 

precipitation at a single site taking into account the increase of the temperature according to 

observed global warming data. The manuscript is well organized and the methodology is 

adequate, reasonable and clearly presented. The problematic and the application are of great 

interest for GMD. Hence I suggest to publish this paper. However, there are a few statements 

that don’t entirely ring true, and I’d like the author to address these a bit more carefully. Also, 

drawbacks of the proposed method should be mentioned and discussed. 

Reply: The author appreciates this reviewer’s generous comment. The author tried his best 

efforts to improve the manuscript. Hope this improvement is satisfactory to this reviewer. 

 

Below I list relatively minor points that could be addressed with some small revisions to the 

text and a few more figures:  

1- Line 31: “The temperature variable is the most reliable of the GCM outputs”. I’m not sure 

that this statement is true.  

Reply: The author really appreciates this reviewer’s detailed comment. The sentence was 

modified accordingly as:  

“The temperature variable is more reliable than other variables in GCM outputs.” 

 

2- Line 57: I agree that moisture availability increases at the same rate with warming through 

the Clausius-Clapeyron (C-C) relation. Nevertheless this does not guarantee that precipitation 

intensity should also increase at the same rate, this presumably assumes stationarity of 

precipitation efficiency.  

Reply: The author totally agrees with this reviewer’s comment. The sentence was circumvented 

as follows: 

“ From the Clausius-Clapeyron (C-C) relation, saturation vapor pressure increases by 6-7% 

for each 1oC increase in temperature and rainfall intensity also increase in a similar rate with 

warming (Trenberth and Shea, 2005).” 

3- The proposed approach is based on the assumption that only the mean of observed 

temperature changes in the future, and assumes a static variance in the future. This assumption 

should be mentioned. Indeed the proper reproduction of the temporal variability is a very 

important issue, because a poor representation of the temporal variability could leads to a poor 

representation of extreme events.  



Reply: The author really appreciates this reviewer’s insightful comment. The limitation and its 

possible development is discussed at the conclusion section as the below. Hope this 

modification is satisfactory to this reviewer.  

 

“The proposed IBB method is conditioned and assumed only on the mean temperature change. 

A further scheme can be developed to consider changes of multiple variables with classifying 

the conditions of interested variable.” 

For the relation of the temporal variability and extreme events, the author consider that this 

reviewer’s comment can be true but not always as far as this reviewer’s viewpoint. Further 

study relates on this issue can be studied. 

4- Line 166: “Unlike for the case of temperature, there is no variance reduction in the resampled 

precipitation data because the precipitation data are not conditionally resampled”; I’m not sure 

that this statement is true. The existence of dependence between precipitation and temperature 

which motivates this work implies the existence of a concordance in the ranks of these variables. 

In the case of dependence there will always be some reduction in the variability of precipitation 

using the IBB technique. I ask the author to verify this fact by comparing the observed variance 

and the simulated one in the case of precipitation.  

Reply: The author really appreciates this reviewer’s insightful comment. The author compared 

the observed variance with the simulated one for all the 54 stations. No significant variance 

reduction was observed and even some stations (15 stations) present variance inflation (i.e. 

simulated variance is bigger than the observed variance). Therefore, the author consider that 

the statement can be true but with a little less certainty. The sentence was modified as: 

“not much significant variance reduction is expected in the resampled precipitation data 

because the precipitation data are not conditionally resampled.”  

 

5- The proposed approach is not appropriate to simulate change in extreme events, indeed as it 

is the case for most resampling approach the IBB technique suffers from the inability to 

simulate values that are more extreme than those observed. 

Reply: The author really appreciates this reviewer’s insightful comment. The authors consider 

that long-term variability of extremes can be derived from the IBB method when it is related 

with other variables such as precipitation. But it might be limited since no physical mechanisms 

can be included. This limitation and possible extension were discussed from this reviewer and 

the other reviewer’s comment at the conclusion as follows:  

 

“The proposed IBB method is not a physical-based method but a statistical simulation 

approach in which a physical mechanism of precipitation cannot be taken into consideration. 

Substantial modification might be required to accommodate this mechanism. Also, a possible 

extension of the current study must be on analyzing the future variation of hydrological extreme 

events (e.g. extreme floods).  If a long-term variation of hydrological extreme events is related 

with precipitation, one can derive the variation from the IBB method.” 
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Abstract 29 

The outputs from GCMs provide useful information about the rate and magnitude of future climate 30 

change. The temperature variable is morethe most reliable of the GCM outputsthan other variables 31 

in GCM outputs. However, hydrological variables (e.g., precipitation) from GCM outputs for 32 

future climate change possess an uncertainty that is too high for practical use. Therefore, a method, 33 

called intentionally biased bootstrapping (IBB), that simulates the increase of the temperature 34 

variable by a certain level as ascertained from observed global warming data is proposed. In 35 

addition, precipitation data was resampled by employing a block-wise sampling technique 36 

associated with the temperature simulation. In summary, a warming temperature scenario is 37 

simulated and the corresponding precipitation values whose time indices are the same as the one 38 

of the simulated warming temperature scenario. The proposed method was validated with annual 39 

precipitation data by truncating the recent years of the record. The proposed model was also 40 

employed to assess the future changes in seasonal precipitation in South Korea within a global 41 

warming scenario as well as in weekly time scale. The results illustrate that the proposed method 42 

is a good alternative for assessing the variation of hydrological variables such as precipitation 43 

under the warming condition. 44 

 45 

46 
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1. Introduction 47 

The complex influence of human actions on the climate system is well represented through global 48 

climate models (GCMs). A number of GCMs demonstrate variations in the large-scale atmospheric 49 

circulation and related changes in hydrometeorological variables (Allen and Ingram, 2002; Held 50 

and Soden, 2006; Lenderink and Van Meijgaard, 2008). It has been generally accepted that to 51 

quantify the range of possible changes in the hydrological cycle (such as precipitation and 52 

evaporation) is harder than in temperature (Allen and Ingram, 2002). Furthermore, hydrological 53 

variables vary much more in space and time than temperature and difficult to correctly simulate. 54 

The relationship between temperature and precipitation has been studied in literature in order 55 

to predict the future variations of precipitation under the global warming condition. From the 56 

Clausius-Clapeyron (C-C) relation, saturation vapor pressure increases by 6-7% for each 1oC 57 

increase in temperature and rainfall intensity should also increases at the same ratein a similar rate 58 

with warming (Trenberth and Shea, 2005). Lenderink and Van Meijgaard (2008) presented that 59 

the intensity of hourly precipitation exhibit a C-C relation for summer while showing super C-C 60 

scaling for winter.  61 

These relations are only focused on very short time scale (not more than daily) or generally 62 

retrieved from GCM outputs. The behavior of mean precipitation over long-term period such as 63 

months and seasons is difficult to predict as temperature increases. It might be beneficial if one 64 

could derive the behavior of long-term mean precipitation under warming condition or the range 65 

of possible changes (IPCC, 2013).  66 

Therefore, a simple method that simulates temperature from observed data is proposed in the 67 

current study while increasing temperature up to a certain level as a warming scenario. In addition, 68 
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precipitation is simulated by employing a block-wise resampling technique (Srinivas and 69 

Srinivasan, 2000) associated with the temperature simulation. The resampled covariate, 70 

precipitation, forcing the warming condition in a certain level is obtained from the simulation. The 71 

proposed approach allows assessing the impact of precipitation as temperature increases with a 72 

current climate horizon.  73 

The paper is organized as follows. In the next section, the fundamental mathematical 74 

background related to bias bootstrapping modeling is presented. The employed data and 75 

application methodology are described in section 3. The validation study of the proposed IBB 76 

approach is shown in section 4. The results assessing the long-term evolution of seasonal 77 

precipitation with simulating weekly temperature and precipitation data are illustrated in section 78 

5. Finally, the summary and conclusions are presented in section 6.  79 

2. Methodology 80 

In order to simulate warming scenario, i.e. increasing mean temperature, up to a certain level, the 81 

observed data must be sampled with different combination.  Intuitively, warmer temperature 82 

values are more likely to be resampled among the observations if the mean is increased. Therefore, 83 

the proposed method in the current study is to resample the observed data by fixing the mean 84 

temperature increment in the resampled dataset by weighting the probability of selection according 85 

to its magnitude (see Figure 1Figure 1).  In addition, the block bootstrapping with precipitation 86 

was employed to assess the changes in these variables as temperature increases.  87 

2.1. Intentionally Biased Bootstrapping (IBB) 88 

Bootstrapping (also known as resampling from observed data with replacement) is a statistical 89 

method for creating replica datasets from the original data to assess the variability of the quantities 90 
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of interest without analytical calculation (Davison and Hinkley, 1997; Davison et al., 2003; Ouarda 91 

and Ashkar, 1995). This bootstrapping technique has been extended to simulate time series of 92 

hydrometeorological variables (Beersma and Buishand, 2003; Lall et al., 1996; Lall and Sharma, 93 

1996; Lee and Ouarda, 2011, 2010; Mehrotra and Sharma, 2005). In the current study, the 94 

intentionally bias bootstrapping (IBB) technique is employed so that the mean of the resampled 95 

datasets are varied as needed to simulate a global warming scenario.  96 

IBB was proposed by Hall and Presnell (1999) as a class of weighted bootstrapping 97 

techniques in order to reduce bias or variance as well as to render some characteristic equal to a 98 

predetermined quantity. A good example of IBB is the adjustment of Nadaraya-Watson kernel 99 

estimators to make them competitive with local linear smoothingregression (Cai, 2001). In the 100 

current study, IBB was employed to simulate the temperature data from observation by 101 

bootstrapping under the constraint of increasing mean value, which indicates warming. The 102 

conceptual background of IBB has been employed to simulate future climates of weather analogs 103 

(Orlowsky et al., 2010; Orlowsky et al., 2008). In the current study, a IBB method with easy 104 

manipulation to simulate increased temperature data is proposed. The mathematical description of 105 

the proposed IBB method is the following. 106 

Among an n number of observations ix , where i=1,…,n, assume resampling the 107 

observations with replacement (i.e. bootstrapping) by increasing the mean of the simulated data 108 

by as much as 
 ; this implies that higher values have a higher probability of being resampled 109 

and lower values have lower selection probability. This IBB can be achieved by assigning different 110 

weights niS , according to the magnitudes of the observations as 111 

niS ni /,        (1) 112 
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Note that this assigned weight niS , plays a role in the selection probability for the observed data in 113 

the IBB procedure after scaling and adjusting it.  114 

The mean of the resampled data is 115 
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To obtain different values of 
 ,the weights can be generalized with the weight order (r) as 120 
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Once the magnitude of the mean increase is given (e.g., temperature increase) as 
 , the weight 124 

order ‘r’ is estimated accordingly.  For example, when the temperature change is obtained from 125 

the GCM outputs and this change is supposed to be propagated into a specific location and a finer 126 
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time scale, the selection of the weight order can be performed using a meta-heuristic optimization 127 

technique with the objective function as 128 

Minimize 
2)]([ r       (6) 129 

In the current study, the harmony search (HS) was used for the meta-heuristic optimization. The 130 

performance of the HS in hydrological applications is well reviewed in the literature (Geem et al., 131 

2001; Lee and Geem, 2005, 2004; Lee and Jeong, 2014a; Mahdavi et al., 2007; Yoon et al., 2013a).  132 

Note that if 0r , then 0)( r , which implies a global warming scenario; if 0r , then 133 

0)( r , which implies a global cooling scenario. When 0r , lower values are resampled more 134 

frequently than are higher values. causing the mean of the resampled data to decrease. Furthermore, 135 

if r goes to infinity then the maximum of the observations is always selected, and if r goes to 136 

negative infinity, only the minimum is chosen.  137 

In the IBB procedure, the adjusted scaled weight r

r

nii S  /,  is the probability that each ith 138 

data point is subject to be selected. In the case of n=30, the weights for i=1,…,n are shown in 139 

Figure 2Figure 2 with the weight order of r=0.5. The figure presents that the probability of being 140 

selected (i.e., 
i ) is between approximately 0.01 for the lowest values and 0.05 for the highest 141 

order values of approximately 0.05 to lead positive bias in the resampled data (e.g., 1.0°C increase). 142 

For example, if the number of the simulation is 100 and 
i =0.05, then the data point will be 143 

selected 5 times. A different probability implies a different number of selection for each data point. 144 

Subsequently, a different number of selections may lead to variation changes, called variance 145 

reduction or inflation. This issue is dealt with in the following section.  146 
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2.2. Variance reduction and inflation 147 

Because of the biased selection of higher values, the variance of the resampled data results is 148 

reduced (Lee and Jeong, 2014a; Lee and Ouarda, 2010; Lee et al., 2010a; Salas and Lee, 2010; 149 

Sharif and Burn, 2006). The estimated variance of the simulated data with IBB is  150 

22

)(

1

,2 ~)(~  





j

n

j r

r

nj
x

S
r      (7) 151 

Note that the variance in Eq. (7) is based on 
222 )()( EXXE  . The difference of the variance 152 

is  153 

)(~ˆ)( 22
2 rr 


       (8) 154 

where 
2̂ is the sample variance of the observed data. To overcome the reduction of the variance 155 

in IBB, a random perturbation can be applied to the resampled data RX  as 156 




)(* 2 rXX RR       (9) 157 

where  is a random variable with a normal distribution N(0,1). Subsequently, the mean and 158 

variance of the perturbed data are 159 

 ~ˆ
* R         (10) 160 

222222

*
ˆ)(~ˆ~)(~ˆ 2 


 rrR    (11) 161 

2.3. Block bootstrapping  162 

Bootstrapping is a random sampling with replacement and block bootstrapping is to resample 163 

blocks. Each block contains a set of predictor and predictand like a regression. Here, temperature 164 
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and precipitation can be set as a block and they act as predictor and predictand, 165 

respectively.resample random samples  166 

When the temperature presumably increases by a certain degree, it is interesting to note how 167 

the other weather variables vary. For example, if the temperature is increased by 1°C, the greatest 168 

concern in climate research will be how the precipitation will change.  169 

To address this question, the block bootstrapping technique for the precipitation variable is 170 

adapted (Carlstein et al., 1998; Lee et al., 2010b). Once the temperature is resampled from the 171 

observed data at certain times using IBB, the observed precipitation data from the same time are 172 

considered (see Figure 2). Unlike for the case of temperature, there is no variance reduction in not 173 

much significant variance reduction is expected in the resampled precipitation data because the 174 

precipitation data are not conditionally resampled. This block bootstrapping technique is popularly 175 

employed in multivariate weather simulations (Lee and Jeong, 2014b; Lee et al., 2012).. 176 

2.4. Overall Simulation Procedure  177 

The overall simulation procedure of temperature and precipitation data is described in this section. 178 

Simple schematic presentation of the procedure is shown in Figure 1Figure 1.  179 

Let ix , iy  (i=1,…,n) be the observed temperature and precipitation data, respectively. Suppose that 180 

the simulation length is the same as the record length (i.e. n) and100 series need to be simulated. 181 

(a) Assume that the increased overall temperature mean is known as 
 . 182 

(b) Estimate the weight order (r) from meta-heuristic algorithm (here, Harmony Search) with 183 

the objective function of Eq.(6) from the observed temperature data.  184 

Formatted: Indent: First line:  1 cm
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(c) Resample the temperature data from the observations with the probability of 
r

niS , for ith 185 

largest data (i=1,…, n). 186 

(d)  Assume that kth largest temperature data 
)(kx is resampled from step (3) and its 187 

corresponding time index of (k) is ‘j’. Note that (k) indicates the kth largest value and j 188 

indicates the jth time-index value. Then, jth precipitation data, yj, is resampled 189 

simultaneously.  190 

(e) Apply Eq.(9) to the resampled temperature data from step(3) (say, 


)(2)( rx k  ), if the 191 

variance inflation is chosen. 192 

Note that the current procedure is explained for the case of no seasonal variability due to 193 

simplicity. In other words, the explained procedure above must be applied at each week or each 194 

month for weekly or monthly data. The detailed description of the proposed method for the case 195 

of monthly precipitation data with the full record is provided in the supplementary material 196 

(Supplement A).  197 

3. Data description and application methodology 198 

In the current study, 54 weather stations that record temperature and precipitation in South 199 

Korea (74 54 locations) with more than 30 years of record length and that are managed by the 200 

Korea Meteorological Administration (KMA) and whose length is more than 30 years were 201 

employed. South Korea is located in Far East Asia and has a mean annual precipitation of 1283 202 

mm from KMA. This country is climatologically influenced by the Siberian air mass during winter 203 

and the Maritime Pacific High during summer. Most of the annual precipitation in South Korea 204 

falls during the rainy season from June to September due to the occurrence of tropical cyclones, 205 
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extratropical cyclones, fronts and other weather systems. Because the orographic area in South 206 

Korea is heterogeneous and large, the rainfall in South Korea has large spatial and temporal 207 

variability (Park et al., 2007; Yoon et al., 2013b). The water resource control system, including 208 

climate change, is an important aspect of this study due to the seasonal and spatial variability of 209 

rainfall in this country. 210 

Datasets shorter than 30 years of data were excluded, after which a total of 54 datasets were 211 

employed. The data were extracted from the KMA website (http://www.kma.go.kr/). Most of the 212 

time spans are approximately 33 years, from 1976 to 2008.  213 

The validation study was performed with annual dataset to present the performance of the 214 

proposed model with truncating recent years as 1994-2008. The truncated data was not used in 215 

simulation but employed in comparisonvalidation. Also, a case study was applied with the weekly 216 

dataset of the 54 stations in South Korea. In the application study of the proposed IBB procedure 217 

in section 5, (1) 0.5°C and 1.0°C increases in the mean weekly temperature were assumed; (2) 218 

weekly temperature datasets were simulated using the assumed temperature increase; (3) weekly 219 

precipitation datasets were also simulated along with the weekly temperature dataset as a block. 220 

Note that the simulation does include not a gradual change, such as a trend, but the overall mean 221 

change. We simulated the weekly time scale so that the data spanned a long enough period to 222 

provide a summary of weather statistics and a short enough period to reflect the temporal 223 

variability. Furthermore, the observed weekly datasets of temperature and precipitation were 224 

aggregated into seasonal time scale data, and the aggregated seasonal data were used to present 225 

the seasonal variations in precipitation as temperature increases. 226 

http://www.kma.go.kr/
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Note that although we simulated the temperature with a specific condition of increase (e.g. 227 

+0.5 oC or +1.0oC), no such restriction was placed on the precipitation, allowing one to determine 228 

whether there is any change in precipitation with the condition of increasing temperature. One 229 

hundred series were simulated with the same time span as the observations.  230 

4. Validating IBB model with annual data  231 

To further obtain the credibility of the proposed IBB model, we validated the model with truncating 232 

the last 15 years (1994-2008) of the annual mean temperature and precipitation data over South 233 

Korea. The last truncated 15 years were set as the validation period while the rest of the preceding 234 

years as the test period. The dataset of the test period was employed in simulation while the dataset 235 

of the validation period is only used in comparison to check how much the proposed model 236 

performs. Among others, annual scale data is employed to easily illustrate the performance of the 237 

proposed IBB model. At first, some mathematical terms need to be defined to explain the 238 

validation procedure as follows.  239 

TV

obs

p ppD         (12) 240 

TIBB

IBB

p ppD         (13) 241 

where Vp and Tp are the mean annual precipitation over the validation years and over the test 242 

period, respectively, while  IBBp is the annual mean precipitation of the IBB simulated data with 243 

the record length of the validation years. The same denotation as the precipitation variable is taken 244 

for the temperature variable as VTμ , TTμ , IBBTμ , 
obs

TμD , and 
IBB

TμD . 245 
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The validation procedure is (1) to truncate the 15 years (1994-2008) of annual temperature 246 

and precipitation for each station; (2) to estimate the mean differences of the annual temperature 247 

and precipitation between the validation period (1994-2008) and the test period (1976-1993), 248 

obs

TμD and 
obs

pμD , respectively; (3) to perform the IBB simulation with the annual precipitation and 249 

temperature of the test period conditioned on the estimated mean differences of the temperature 250 

between two periods (i.e. 
obs

TμD ) for each station; and (4)  to compare the estimated mean 251 

differences of the observed precipitation (i.e. 
obs

pμD ) with the mean differences between the IBB 252 

simulated precipitation and the precipitation for the test period (i.e. 
IBB

pμD ).  253 

The annual mean temperature differences between the validation period and the test period 254 

at each station is presented in Figure 3Figure 3 for the IBB simulated data (
IBB

TμD , boxplot) and 255 

the observed data (
obs

TμD , circle). The figure indicates that the IBB model fairly well simulates the 256 

temperature data as much as it was intended, except few stations that shows high increase 257 

especially with more than one-degree increase (e.g. stations 6 and 7). Note that the employed test 258 

period is relatively short and not enough number of high values of annual temperature is included 259 

during the test period and this might result the underestimation of the intended temperature 260 

increase.  261 

In Figure 4Figure 4, the annual mean precipitation of the observation over the validation 262 

period ( Vp , filled blue circle) and the test period ( Tp , filled red triangle) as well as the IBB 263 

simulation ( IBBp , boxplot) is illustrated. The result indicates that the observed mean precipitation 264 

over the validation period ( Vp ) presents higher than the mean for the test period ( Tp ) in most 265 
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of the stations. The IBB simulated data reflects this tendency showing higher mean precipitation 266 

than the mean precipitation of the test period though its magnitude shows some difference. 267 

The mean of the observed annual precipitation for the validation period at each station and 268 

the mean of one hundred IBB simulated data is presented in Figure 5Figure 5. The top panel 269 

presents that the simulated data fairly well reproduce the observed mean of annual precipitation 270 

for the validation period (1994-2008). The observed mean difference (
obs

pμD ) of the annual 271 

precipitation between the test period (1976-1993) and the validation period shown at the bottom 272 

panel of  Figure 5Figure 5 fairly matches with the one of the IBB simulated data (
IBB

pμD ). Rather 273 

high variability at the difference is inevitable due to relatively small record length for both the test 274 

period and the validation period. Overall, the validation study implicates that the proposed IBB 275 

approach can simulate the future evolution of annual precipitation over South Korea.  276 

In Figure 6Figure 6, the spatial distribution of the differences for the annual mean 277 

precipitation is presented with the observed data (i.e. 
obs

pμD ) and with the IBB simulated data 278 

(
IBB

pμD ). High increase of annual mean precipitation in the north and south part of the country and 279 

small increase and slight decrease in the south part shown in the observed data (left panel) is well 280 

reflected in the IBB simulated data (right panel) except that the increase is shown from the IBB 281 

simulated data (right panel) in the left south part of the country is not shown in the observed data. 282 

Overall, the figure indicates that the spatial pattern of the annual mean precipitation difference 283 

from the observed data (see the left panel) is similar to the one from the IBB simulated data (see 284 

the right panel). 285 
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5. Precipitation changes according to assumed temperature increase   286 

Figure 7Figure 7 shows the results of the fitted IBB model for the Buan station, located at 35o 44’ 287 

N and 126o 43’ E. The top panel (Figure 7Figure 7(a)) shows the estimated weight order of each 288 

week for the mean temperature data employing the HS meta-heuristic algorithm with the objective 289 

function of Eq. (6) while assuming a 0.5°C increase. The estimated values range from 0.2 to 1.3. 290 

The mean and standard deviation of the observed and theoretical results (see Eqs. (2) and (7)) with 291 

a 0.5°C mean increase are shown in Figure 7Figure 7(b) and (c), respectively. The predominant 292 

annual cycle of the mean weekly temperature is seen in the mean statistics, as shown in Figure 293 

7Figure 7(b), while the annual cycle of the standard deviation (equivalent to the square root of 294 

variance) is not as prominent as the annual cycle of the mean (see Figure 7Figure 7(c)). Note that 295 

the weight order and the standard deviation (see Figure 7Figure 7(a) and (c)) are highly negatively 296 

correlated. In other words, when the standard deviation is small (e.g., at approximately the 23rd 297 

week), the weight order is high and vice versa. This result is intuitive in that if the variance is great, 298 

the corresponding temperature values differ greatly from each other. Subsequently, the weights of 299 

the large values to be selected are not necessarily much different from the weights of the low values 300 

in such a case, which induces a low weight order. In Figure 7Figure 7(c), the variance difference 301 

between the observed and theoretical data, as defined in Eq. (8), is shown with a dotted line. This 302 

variance difference is inflated to the resampled data, as in Eq. (9). This inflation procedure is 303 

optional in assessing the overall trend of annual mean precipitation data regarding climate warming 304 

scenarios. However, it might be helpful when the purpose of the study is to evaluate an overall 305 

variation of extreme precipitation statistics.  306 
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The statistics of the simulated data from IBB with the condition of a 0.5°C degree mean 307 

temperature increase are shown as a boxplot in Figure 8Figure 8; the statistics of the observed data 308 

are shown in the same figure with dotted lines and cross marks. The mean increases by exactly 309 

0.5°C, as intended, and the standard deviation (square root of variance) is well preserved through 310 

the variance inflation process (see Eq. (8)). The minima and maxima of the mean weekly 311 

temperatures are increased.  312 

Shown in Figure 9Figure 9(a) are the mean differences between the simulated and observed 313 

weekly precipitation with the conditions of 0.5°C and 1.0°C increases at the Buan station. The 314 

differences are not significant at the 5% level. However, the mean differences are continuously 315 

positive from the 30th to 40th week, which is during the summer season. This result indicates that 316 

a seasonal effect on the precipitation change must exist. Therefore, we also extended our study to 317 

a seasonal time scale. The mean precipitation differences of all 54 stations are shown for 0.5°C 318 

and 1.0°C increases in Figure 9Figure 9(b) and (c), respectively. Both plots show a decrease in 319 

autumn and increases in the other seasons. 320 

For a 1.0°C temperature increase, 61%, 24%, and 45% of the employed stations show a 321 

significant increase in mean precipitation for the winter, spring, and summer seasons, respectively. 322 

In contrast, the mean temperature decreases during the autumn season. Approximately 30% of the 323 

stations experience a significant change in the mean precipitation at the 5% level given a 1.0°C 324 

temperature increase.  The detailed information is provided in Table 1. 325 
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The spatial distribution of seasonal mean precipitation differences is presented in Figure 326 

10Figure 10 given the condition of a 1°C temperature increase. An increasing pattern of 327 

precipitation during winter (see Figure 10Figure 10(a)) can be seen over the South Korea peninsula. 328 

Notably, the eastern and southern coastal areas undergo a significant increase with a 95% 329 

confidence interval (±5.38). Note that the significance interval at each station is different because 330 

the variances between stations are different. The detailed significance interval for each station is 331 

provided in Table 2.  During spring (see Figure 10Figure 10(b)), the northern part of the country 332 

shows an increasing pattern while the southwestern and southeastern parts show decreasing 333 

patterns, but their magnitudes are not significant (±15.04). The summer precipitation (see Figure 334 

10Figure 10(c)) undergoes a significant increase in the southwest area of the country (±29.94). In 335 

contrast to the other seasons, a significant decrease in mean precipitation occurs during autumn 336 

(see Figure 10Figure 10(d)) throughout the country, especially over the eastern coastal area. The 337 

same spatial pattern of seasonal mean precipitation can be observed given the condition of a 0.5°C 338 

temperature increase, as in the case of a 1.0°C temperature increase, with little significant change 339 

(see Figure 11Figure 11).  340 

The spatial distributions of seasonal precipitation changes seem to be related to the flow 341 

direction of the seasonal air mass. In South Korea, winter is influenced primarily by the Siberian 342 

air mass with prevailing northwesterly winds, while summer is hot and humid with southeasterly 343 

winds.   344 
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6. Summary and Conclusions 345 

A simple method is proposed (1) to simulate precipitation given the condition of a mean 346 

temperature increase derived from the observations and (2) to address the problem of how the 347 

precipitation vary while the temperature is increased through global warming. The results 348 

illustrated that a simple IBB technique for the temperature variable incorporating block sampling 349 

of precipitation can achieve this objective.  350 

The presented technique is valuable because hydrometeorological variables such as 351 

precipitation and discharge are difficult to model with current GCMs, while the temperature 352 

prediction is relatively accurate. The proposed method can be extended to other 353 

hydrometeorological variables as well as other applications, including studies at the global scale. 354 

The limit of the proposed method is that the temperature increase is limited since employed data 355 

is observational. One possibility for allowing a greater temperature increase than that from the 356 

observations is to include neighboring, similar stations or seasons. The author believes that the 357 

proposed model can be a good surrogate or competitor in GCM-based climate change impact 358 

assessments of hydrometeorological variables. 359 

The proposed IBB method is not a physical-based method but a statistical simulation 360 

approach in which a physical mechanism of precipitation cannot be taken into consideration. 361 

Substantial modification might be required to accommodate this mechanism. The proposed IBB 362 

method is conditioned and assumed only on the mean temperature change. A further scheme can 363 

be developed to consider the changes of multiple variables with classifying the conditions of 364 

interested variable. Also, aAnother possible extension of the current study must be on analyzing 365 

the future variation of hydrological extreme events (e.g. extreme floods).  IfWhen a long-term 366 
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variation of hydrological extreme events is related with precipitation, the proposed IBB method 367 

one can can be used to derive the variation from the IBB method.    368 

7. Code and Data Availability 369 

All the employed code can be provided upon the request to the author of the current study. The 370 

employed precipitation and temperature data over South Korea can be downloaded from the KMA 371 

website http://www.kma.go.kr/weather/climate/past_cal.jsp .  372 
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Table 1. Mean precipitation difference of the observed and simulated data for seasonal data over 462 

all the employed stations in South Korea in case of +1.0 oC mean temperature increase. 463 

 Mean Diff  Mean Diff 

Station Winter Spring Summer Autumn Station Winter Spring Summer Autumn 

1 11.2 14.3 20.2 -12.0 28 2.6 12.1 9.6 -4.1 

2 3.2 22.4 4.5 0.0 29 4.4 20.6 50.4 -3.8 

3 11.0 5.0 21.5 -17.2 30 5.5 11.7 30.0 -4.2 

4 1.6 15.7 38.1 -2.3 31 4.4 19.2 15.8 -4.7 

5 1.5 11.9 3.9 -6.2 32 4.2 15.9 18.0 -2.0 

6 1.7 10.1 28.5 -2.0 33 6.6 16.4 46.1 -4.2 

7 1.7 8.2 16.8 -2.3 34 9.5 9.5 32.6 -7.1 

8 3.2 22.3 33.6 -3.1 35 6.4 1.7 44.1 -6.8 

9 2.3 19.1 15.0 -4.9 36 5.1 -4.2 52.1 -9.4 

10 9.8 6.7 21.4 -16.3 37 5.6 7.4 39.9 -9.4 

11 2.8 18.8 30.3 -3.3 38 9.2 -4.3 53.8 -3.1 

12 5.3 10.8 32.9 -7.2 39 9.6 -3.2 65.0 -5.6 

13 5.1 3.5 21.5 -9.3 40 11.5 -9.9 82.2 -6.5 

14 9.8 1.2 28.8 -4.5 41 9.1 4.2 33.3 -7.4 

15 6.6 -0.9 11.5 -5.1 42 9.6 -11.5 61.2 -8.1 

16 5.9 -1.0 32.6 -7.5 43 4.2 12.9 42.7 -3.0 

17 10.2 -9.3 26.7 0.6 44 6.3 20.2 33.8 -2.6 

18 8.2 -1.7 50.2 -4.5 45 12.9 8.8 10.5 -7.9 

19 13.2 -2.7 23.4 0.8 46 5.8 11.2 19.4 -3.8 

20 9.8 -4.3 33.1 -0.7 47 3.1 14.3 56.3 -7.0 

21 8.1 -15.4 12.4 -4.5 48 7.1 -2.4 14.8 -4.7 

22 7.8 -6.0 52.3 -2.3 49 9.0 3.4 68.4 -5.9 

23 11.4 -17.5 19.7 -12.6 50 4.2 2.1 31.6 -2.3 

24 1.9 11.2 21.1 0.1 51 8.9 5.5 39.5 -3.2 

25 2.3 8.6 21.8 -2.4 52 8.6 8.0 78.2 -1.5 

26 2.3 8.8 13.4 0.8 53 16.4 6.0 28.8 -4.1 

27 2.5 9.3 26.0 -2.9 54 10.5 20.9 23.2 1.7 

Mean confidence interval 

# of Significant Stations  

(percent) 

±5.38 

33 

(61%) 

±15.04 

13 

(24%) 

±29.94 

25 

(46%) 

±7.01 

16 

(30%) 

 464 

 465 

 466 

467 
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Table 2. Confidence interval for mean precipitation difference of the observed and simulated data 468 

for seasonal data. 469 

Station Winter Spring Summer Autumn Station Winter Spring Summer Autumn 

1 10.7  12.4  28.4  13.6  28 3.89  14.15  32.45  6.08  

2 3.7  13.2  29.0  5.1  29 4.71  14.76  31.49  6.34  

3 12.7  10.3  29.6  14.2  30 5.24  14.79  30.39  5.55  

4 3.7  14.6  34.7  7.6  31 4.08  14.26  27.61  7.45  

5 3.6  12.0  25.9  7.8  32 4.25  14.31  28.31  7.09  

6 4.0  12.0  25.3  5.6  33 5.00  15.87  31.29  8.08  

7 3.6  14.0  25.9  7.7  34 5.62  13.73  25.75  6.06  

8 4.1  13.7  26.4  6.4  35 4.86  12.44  30.64  6.93  

9 4.1  14.8  27.1  8.6  36 5.61  12.53  27.52  7.52  

10 8.9  10.5  26.7  11.4  37 5.32  12.89  26.21  7.28  

11 4.8  14.5  23.0  7.0  38 5.12  13.53  32.37  5.46  

12 5.5  15.2  30.7  6.4  39 5.15  15.64  34.46  6.45  

13 4.6  13.1  24.6  5.2  40 5.27  20.28  37.15  6.87  

14 8.2  12.9  30.9  6.7  41 4.80  20.76  29.50  5.57  

15 4.8  12.1  23.6  4.5  42 5.20  21.00  35.75  7.88  

16 5.6  12.5  26.9  6.3  43 4.45  15.73  26.47  6.16  

17 7.2  15.7  30.1  6.9  44 5.23  14.63  26.25  5.11  

18 5.2  15.4  31.9  5.7  45 8.23  11.25  24.05  7.16  

19 6.9  20.1  35.1  8.7  46 4.30  10.81  24.10  4.29  

20 6.0  19.3  34.3  7.5  47 4.60  11.30  25.36  4.91  

21 4.6  15.7  26.5  6.1  48 4.80  11.24  23.40  4.32  

22 5.0  19.5  30.1  6.9  49 5.81  12.41  34.88  5.73  

23 5.4  22.6  39.4  8.4  50 5.38  14.71  33.37  5.54  

24 3.6  17.3  27.5  8.3  51 4.73  15.29  30.09  6.00  

25 3.6  13.1  30.8  6.6  52 6.32  17.35  41.62  7.15  

26 4.0  13.5  28.2  6.9  53 7.70  29.41  44.00  11.16  

27 3.3  13.5  27.7  4.6  54 7.56  23.95  42.12  9.89  

 470 

471 
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  472 

  473 

Figure 1. Procedure for the proposed simulation IBB method of temperature and precipitation data. 474 

 475 
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 476 

Figure 2. Example of the adjusted scaled weights (ηi) vs. order numbers in the case of n=30 and 477 

order weight r=0.5. Note that ηi is the probability of being selected and increases as the order is 478 

increased, so that higher values are subject to being selected more often than are lower values, 479 

leading to a positive bias. 480 

  481 
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 482 
Figure 3. Annual mean temperature difference between the validation period (1994-2008) and 483 

the test period (1976-1993) for each station for the IBB simulated data (boxplot) and the 484 

observed data (circle). Boxes indicate the interquartile range (IQR), and whiskers extend to +/-485 

1.5IQR. The horizontal lines inside the boxes depict the median of the data. Data beyond the 486 

fences (+/-1.5IQR) are indicated by a plus symbol (+), which represent outliers. 487 
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 488 

Figure 4. Annual mean precipitation of the IBB simulation (boxplot) and the observation over the 489 

validation period (filled blue circle) as well as the test period (filled red triangle) conditioned with 490 

the temperature change (see Figure 3Figure 3). Note that the observed mean precipitation over the 491 

validation period (1994-2008) (see the red triangles) shows mostly higher than the mean over the 492 

test period (1976-1993) (see the blue circles). Also, the IBB simulated precipitation (boxplot) 493 

reflects this tendency showing higher than the mean precipitation of the test period (blue circles). 494 

Boxes indicate the interquartile range (IQR), and whiskers extend to +/-1.5IQR. The horizontal 495 

lines inside the boxes depict the median of the data. Data beyond the fences (+/-1.5IQR) are 496 

indicated by a plus symbol (+), which represent outliers. 497 

  498 
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 499 

 500 
Figure 5. Annual mean precipitation (top panel) during the validation period (1994-2008) and its 501 

difference (bottom panel) with the test period (1976-1993) for the observed data (abscissa) and 502 

the IBB simulated data (ordinate) over all the employed stations in South Korea. For more details 503 

about the difference at the bottom panel, see Eqs. (12) and (13). 504 
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 505 

 506 

Figure 6. Spatial distributions of annual mean precipitation difference between the validation 507 

period (1994-2008) and the test period (1976-1993) for the observed data (left panel) and the 508 

IBB simulated data (right panel).  509 

 510 

511 
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 512 

Figure 7. (a) Estimated weight order from HS and weekly statistics of (b) mean and (c) variance 513 

for the observed temperature data (solid line) and the theoretical statistics (dashed line with cross) 514 

using Eqs. (2) and (7) for Buan station. The weekly difference in variance between observation 515 

and theoretical (see Eq. (8)) is shown in panel (c) by a dotted line.  516 

 517 
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 518 

Figure 8. The statistics of the observed (dotted line with cross) and generated (boxplot) data for 519 

the weekly mean temperature using IBB with a 0.5°C temperature increase in Buan, South Korea. 520 

Boxes display the interquartile range (IQR), and whiskers extend to the extrema (i.e., maximum 521 

and minimum). The horizontal lines inside the boxes depict the median of the data. Note that the 522 

mean and maximum of the simulated data are increased significantly compared with the 523 

corresponding observed data, while the minimum of the simulated data is slightly increased and 524 

the standard deviation of the simulated data agrees with that of the observed data due to the 525 

variance inflation, as in Eq. (9). 526 

527 
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 528 

Figure 9. The mean precipitation differences of the observed and simulated data (a) for the weekly 529 

precipitation in Buan with a 0.5°C mean temperature increase, (b) for the seasonal precipitation of 530 

all 54 stations with a 0.5°C mean temperature increase and (c) for a 1.0°C mean temperature 531 

increase. Note that indicates the mean of the simulated precipitation data for weekly (a) or seasonal 532 

(b and c).   533 

  534 
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 535 

(a) Winter    (b) Spring 536 

 537 

(c) Summer    (d) Autumn 538 

Figure 10. Spatial distributions in South Korea of the mean difference in seasonal precipitation 539 

(mm) with a 1.0°C increase in mean temperature. Note that the scale for the summer distribution 540 

is different from the other seasons, the 95% significance intervals are different at each station and 541 

the mean values of the significance intervals are ±5.38, ±15.04, ±29.94, and ±4.84 for Winter 542 

(December, January, February), Spring (March, April, May), Summer (June, July, August), and 543 

Autumn (September, October, November), respectively. 544 
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 545 

(a)Winter    (b)Spring 546 

 547 

(c)Summer   (d)Autumn 548 

Figure 11. Spatial distribution of mean difference of seasonal precipitation (mm) with 0.5oC 549 

increasing mean temperature in South Korea. Note that the scale of summer is different from the 550 

other seasons and the 95% significance intervals are different at each station and the mean values 551 

of the significance intervals are ±5.38, ±15.04, ±29.94, and ±4.84 for Winter (December, January, 552 

February), Spring (March, April, May), Summer (June, July, August), and Autumn (September, 553 

October, November) respectively.  554 
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