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Responses to referee report 1 

 

We thank the additional referee for their time spent reviewing the paper and our previous responses to 

review comments. We welcome the referee’s final comment that the work is worth publishing after 

undertaking the further revisions suggested.  10 

 

Our responses to this referee’s comments are given below with their comments reproduced in italics.  

 

The Authors present in this work a thorough evaluation of the EMEP4UK-WRF model system applied 

over the UK for a series of meteorological years. This is a challenging task and the Authors succeeded 15 

to present it in a systematic and organised manner (different time periods, pollutants…).  

 

Response: We are grateful for these supportive comments on our presentation of the large dataset of 

model-measurement comparisons. 

 20 

Having read the two other Reviewer’s comments and the response of the Authors to those comments, I 

would make the following two comments.  

1) I agree with Reviewer one regarding the use of the RMSE. Even though the Authors state that the 

correlation and bias are the two most appropriate statistics given their health oriented purpose, I 

believe it is important to add RMSE to those two statistics. It is particularly important in the discussion 25 

section where the values reported by Thunis et al. (2012) are used to judge the quality of the 

EMEP4UK-WRF results. It is clearly stated in Thunis et al. that the fulfilment of the criteria on bias, 

correlation and standard deviation is a necessary but not sufficient condition to assess the quality of the 

model results, and that the RMSE remains the key indicator to do this. I would therefore encourage the 

Authors to add this statistics to their work. I would also suggest them to use the latest uncertainty 30 

parameter values as reported in the Fairmode documents (available on the web portal).  

 

Response: In our revised paper we now include the model-measurement RMSE statistics alongside the 

model-measurement correlation and bias statistics. Thus all of Figures 2-5 now contain additional 

panels illustrating the distributions of individual-site RMSE statistics. Tables 1 and 3 likewise now 35 

include an additional column that summarises the RMSE data alongside the similar summaries of the 

correlation and bias data. The text has been edited throughout to state that model-measurement RMSE 

statistics are included and to highlight relevant observations from the RMSE statistics alongside 

observations on the other model-measurement statistics.  

 40 

We have also revised again and extended the text in our paper discussing the comparison of our model-

measurement statistics with the values of model performance criteria (MPC) developed from the 

FAIRMODE project from consideration of uncertainty in air pollutant measurements and the AIRBASE 

database of measured European air pollutant concentrations (page 13, line 21 to page 14, line 22). As per 

a previous response to a review comment we accept that some of our initial phrasing was misleading. We 45 

believe we do not now write anything that is incompatible with the above. In particular we now include 

the explicit statement that “satisfying the MPC is a necessary but not sufficient part of model validation” 

(page 13, line 39). We have also examined again the further published papers on this topic from the 

FAIRMODE project (Thunis et al., 2013; Pernigotti et al., 2013), and documents on the FAIRMODE 

website, which collectively include more detailed and updated evaluation of potential measurement 50 

uncertainty as a function of the concentration being measured, rather than assuming a constant relative 

uncertainty at the level specified in the EU Directive at the limit value. We have now included the updated 

values for MPC for O3 and PM10 in our Table 3 and in the discussion. We include the statement that “The 



2 

 

intention here is to provide an overview of how the EMEP4UK-WRF model-measurement statistics 

compare in general with the threshold criteria for comparison of an air quality model against measurement 

in the European air quality context”, i.e. we are not undertaking a forensic examination. We also note that 

the FAIRMODE project has undertaken detailed evaluation of potential levels of measurement 

uncertainty for PM2.5 and NO2 (for hourly average, rather than daily average, in the case of NO2) but that 5 

estimated values of MPC for daily mean PM2.5 and daily mean NO2 using a comparable measurement 

dataset to those for O3 and PM10 are not published.  

 

2) The use of the RMSE indicator would certainly clearly show that the traffic stations should not be 

used in this evaluation. Many published works have shown the inadequacy of a 5x5 km resolution model 10 

to capture street concentrations, especially for O3 or NO2. I believe these stations should be withdrawn 

at start from this work. The Authors refer to the underestimation of local scale emissions but these 

issues are well known and keeping these traffic stations together with the others is confusing for this 

type of model application.  

 15 

Response: As requested by the reviewer we have now entirely removed all model-measurement 

comparison data associated with traffic stations. Thus all of Figures 1-5 and Tables 1-3 have been 

modified to reflect the removal of these evaluations and the text has been edited accordingly 

throughout. Similar modifications have been made to the additional figures and tables in the 

Supplementary Information, which is now uploaded afresh.   20 

 

In conclusion I believe this work is worth publishing but some major revisions would be needed. 

 

Response: We thank for the referee for this support. We have undertaken all the revisions requested. 
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Abstract  

This study was motivated by the use in air pollution epidemiology and health burden assessment of data simulated at 5 km  

5 km horizontal resolution by the EMEP4UK-WRF v4.3 atmospheric chemistry transport model. Thus the focus of the model-

measurement comparison statistics presented here was on the health-relevant metrics of annual and daily means of NO2, O3, 

PM2.5 and PM10 (daily maximum 8-hour running mean for O3). The comparison was temporally and spatially comprehensive 20 

covering a 10-year period (2 years for PM2.5) and all non-roadside measurement data from the UK national reference monitor 

network, which applies consistent operational and QA/QC procedures for each pollutant (44, 47, 24 and 30 sites for NO2, O3, 

PM2.5 and PM10, respectively). Two important statistics highlighted in the literature for evaluation of air quality model output 

against policy (and hence health)-relevant standards – correlation and bias – together with root mean square error, were 

evaluated by site type, year, month and day-of-week. Model-measurement statistics were generally comparable to or better 25 

than values that allow for realistic magnitudes of measurement uncertainties. Temporal correlations of daily concentrations 

were good for O3, NO2 and PM2.5 at both rural and urban background sites (median values of r across sites in the range 0.70-

0.76 for O3 and NO2, and 0.65-0.69 for PM2.5), but poorer for PM10 (0.47-0.50). Bias differed between environments, with 

generally less bias at the background sites and least bias at rural background sites (median normalised mean bias (NMB) values 

for daily O3 and NO2 of 8% and 11%, respectively). At urban background sites there was a negative model bias for NO2 30 

(median NMB = 29%) and PM2.5 (26%) and a positive model bias for O3 (26%). The directions of these biases are consistent 

with expectations of the effects of averaging primary emissions across the 5 km × 5 km model grid in urban areas, compared 

with monitor locations that are more influenced by these emissions (e.g. closer to traffic sources) than the grid average. The 

biases are also indicative of potential underestimations of primary NOx and PM emissions in the model, and, for PM, with 

known omissions in the model of some PM components, e.g. some components of wind-blown dust. There were instances of 35 

monthly and weekday/weekend variations in extent of model-measurement bias. Overall, the greater uniformity in temporal 

correlation than in bias is strongly indicative that the main driver of model-measurement differences (aside from grid vs 

monitor spatial representivity) was inaccuracy of model emissions – both in annual totals and in the monthly and day-of-week 

temporal factors applied in the model to the totals – rather than simulation of atmospheric chemistry and transport processes. 

Since, in general for epidemiology, capturing correlation is more important than bias, the detailed analyses presented here 40 

support the use of data from this model framework in air pollution epidemiology. 
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1 Introduction 

The adverse associations between ambient air pollution – especially particulate matter (PM), ozone (O3) and nitrogen dioxide 

(NO2) – and morbidity and mortality are well documented (WHO, 2006; COMEAP, 2009; WHO, 2013b; WHO, 2013a). Air 

pollution also causes substantial environmental and economic impact to ecosystems and crops (ROTAP, 2009; LRTAP 

Convention, 2010; Harmens et al., 2015).  5 

 

Whilst policies and legislation have been put in place to limit and mitigate the impacts of air pollution (Heal et al., 2012), there 

is increasing recognition that more effective protection of human health may be achieved by not focusing on individual 

pollutants but by taking a multi-pollutant approach (USEPA, 2008; Dominici et al., 2010). Compared with the traditional single 

pollutant focus (WHO, 2006), an approach based on pollution mixtures has the advantage of enabling the complexity of 10 

exposures and health effects to be characterized more fully: it can help identify harmful emission sources, and it has potential 

to provide a more effective framework for air-quality regulation, for example by focusing on sources and pathways that 

influence several pollutants at once. There are analytical complexities in assessing the potential interactions between 

combinations of pollutants (Kim et al., 2007; Mauderly and Samet, 2009), including the paucity of measured exposure data, 

which are typically derived from relatively sparse monitoring sites that may measure different combinations of pollutants at 15 

different locations. Furthermore, monitor networks are usually established for compliance with legislation (e.g. deliberately 

sited close to, or away from, pollution sources), so may lack representativeness for characterising population exposure (Duyzer 

et al., 2015) leading to bias in air pollution epidemiology (Sheppard et al., 2012).  

 

Modelling can increase the availability of air pollution data (Jerrett et al., 2005). The current gold standard for air-quality 20 

modelling are process-based, deterministic atmospheric chemistry models (Colette et al., 2014). These seek to simulate the 

multitude of complex factors that govern the spatial and temporal variability in air pollutant concentrations, including the 

distributions of different emissions sources, local and long-range dispersion processes, in situ photochemistry and dry and wet 

deposition processes. 

 25 

As part of a multi-institution project on the health impacts of exposure to multiple pollutants, we have derived UK-wide 

distributions of surface air pollution at hourly temporal resolution over multiple years (2001-2010), at 5 km × 5 km horizontal 

resolution, using the EMEP4UK-WRF atmospheric chemistry transport model (ACTM) (Butland et al., 2016). This represents 

a unique dataset of ACTM simulations at this spatial and temporal resolution over this geographical coverage and time 

duration. The EMEP4UK-WRF model (Vieno et al., 2010; 2014; 2016) is a regional application of the European Monitoring 30 

and Evaluation Programme (EMEP) MSC-W model (Simpson et al., 2012). The EMEP model framework has been evaluated 

and used for many years in scientific support (Fagerli et al., 2015), in, for example, evaluation of emissions regulations within 

the UNECE framework (e.g. the Gothenburg Protocol) and the European Commission’s Clean Air for Europe (CAFE) 

programme (www.emep.int).  

 35 

The high temporal and spatial resolution output from the EMEP4UK-WRF model has many advantages for air pollution studies 

including: (i) provision of data at times and locations where monitoring data are not available; this has the dual benefit of 

increasing effective sample size in multi-pollutant health epidemiology and of reducing reliance on the assumption that a single 

monitor is representative of species concentrations over a large area; (ii) provision of data on individual particle chemical 

components in addition to the aggregated mass concentration of PM that is measured; (iii) the facility to explore many related 40 

aspects such as geographical or demographic differences in exposures to air pollutant mixtures (and related issues of 

environmental justice), and (iv) the impacts of potential future emissions scenarios.  
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It is important to have an understanding of the performance capabilities of any model, relevant to the use to which the model  

output is to be put. Much has been written on air quality model evaluation (see, for example, Vautard et al., 2007; Dennis et 

al., 2010; Derwent et al., 2010; Rao et al., 2011; Thunis et al., 2012; Thunis et al., 2013; Pernigotti et al., 2013), including 

publications arising out of international collaborative programmes such as AQMEII (Air quality modelling evaluation 

international initiative, http://aqmeii-eu.wikidot.com) and FAIRMODE (Forum for air quality modelling in Europe, 5 

http://fairmode.jrc.ec.europa.eu). The literature ranges from discussion of epistemological categories of evaluation to 

development of specific metrics and criteria for comparison between modelled and measured concentrations. Detail is not 

repeated here, other than to note that there are fundamental limitations to agreement between model and measurements, which 

include: uncertainties intrinsic to the measurements; limitations in model input data (e.g. emissions) and in other aspects of 

model descriptions of physical processes; and that models simulate a volume-average concentration whilst monitors measure 10 

at a specific location.  

 

The objective of this paper is to record detailed assessment of the modelled surface concentrations of O3, NO2 and PM2.5 and 

PM10 using metrics of these pollutants relevant to air pollution epidemiology and health burden assessment, namely the daily 

(i.e. 24-h) mean for PM and NO2 and the maximum daily 8-h running mean for O3. The measurements are taken from the UK’s 15 

Automatic Urban and Rural Network (AURN) of ‘real-time’ reference monitors. The key emphasis in this work is 

comprehensiveness and consistency: the model-measurement evaluation is UK wide, over an extended time period (10 years), 

and based on measurements subject to a single set of operational and QA/QC procedures for each pollutant. Two important 

statistics for evaluation of air quality for health studies – correlation and bias (see Discussion) – together with root mean square 

error, were evaluated by type of monitor location, year, month and day-of-week. 20 

 

2. Methodology 

2.1. Model data  

The EMEP MSC-W regional Eulerian ACTM is described in Simpson et al. (2012) and at www.emep.int. The EMEP4UK 

model providing data in this work (Vieno et al., 2014; 2016) was based on version vn4.3, driven by meteorology from the 25 

Weather Research and Forecast model (www.wrf-model.org) version 3.1.1. The WRF model was constrained by boundary 

conditions from the US National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research 

(NCAR) Global Forecast System (GFS) at 1 resolution, every 6 hours. Nesting within the EMEP4UK model reduces 

horizontal resolution from 50 km × 50 km over a greater European model domain to 5 km × 5 km over an inner domain 

covering the British Isles plus adjacent parts of France, Belgium, Holland and Denmark, as illustrated in Vieno et al. (2014). 30 

Both WRF and EMEP4UK models use 20 vertical layers, with terrain following coordinates, and resolution increasing towards 

the surface (centre of the surface layer ~45 m). The vertical column extends up to 100 hPa (~16 km). The boundary conditions 

for the inner domain were taken from 3-hourly output from the European domain in a one-way nested setup, whilst for the 

European domain they were measurement derived and adjusted monthly (Vieno et al., 2010). Ground-level modelled species 

concentrations were calculated hourly at 3 m above the surface vegetation or other canopy by making use of the constant-flux 35 

assumption and definition of aerodynamic resistance (Simpson et al., 2012).  

 

Anthropogenic emissions of NOx, NH3, SO2, primary PM2.5, primary PMcoarse (where PMcoarse is the difference between PM10 

and PM2.5), CO and non-methane VOC for the UK for each modelled year were taken from the National Atmospheric Emission 

Inventory (NAEI, http://naei.defra.gov.uk) at 1 km2 resolution and aggregated to 5 km × 5 km resolution. For the outer domain, 40 

the model used the EMEP 50 km × 50 km resolution emission estimates provided by the Centre for Emission Inventories and 
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Projections (CEIP, http://www.ceip.at/). The annual total emissions were temporally split using prescribed monthly, day-of-

week, and diurnal hourly emission factors (the latter differing between weekdays, Saturdays and Sundays) for each pollutant 

and for each of the SNAP (Selected Nomenclature for Sources of Air Pollution) sectors (Simpson et al., 2012). Methane 

concentration was prescribed. Emissions estimates for international shipping were those from ENTEC UK Ltd. (now Amec 

Foster Wheeler) (ENTEC, 2010). Daily emissions from biomass burning were derived from the Fire INventory from NCAR 5 

version 1.0 (FINNv1) (Wiedinmyer et al., 2011). Natural emissions of isoprene, monoterpenes, dimethylsulfide (DMS), wind-

induced sea salt and NOx from soils and lightning, were as described in Simpson et al. (2012). Natural emissions of dust 

included Saharan dust uplift, but not of windblown dust within the model domain.  

 

The default EMEP MSC-W photochemical scheme was used, which contains 72 gas-phase species and 137 reactions; the 10 

gas/aerosol partitioning formulation was the model for aerosols reacting system (MARS) (Binkowski and Shankar, 1995). 

Simulation of secondary organic aerosol (SOA) formation, ageing and partitioning was via the 1-D volatility basis set 

(Donahue et al., 2006) with its implementation in the model as described by Bergström et al. (2012). The EMEP4UK model 

output for PM2.5 comprised the sum of the PM2.5 fractions of: elemental carbon (EC), ‘other’ primary PM in the emissions 

inventories (encompasses material such as flyash, and brake and tyre wear), sea salt, mineral dust, primary and secondary 15 

organic matter (OM), ammonium (NH4
+), sulphate (SO4

2) and nitrate (NO3
). PM10 is the sum of PM2.5 plus the PMcoarse 

fractions of EC, ‘other’ primary PM (as above), sea salt, dust, OM and NO3
. The split of NO3

 into PMcoarse and PM2.5 uses a 

parameterised approach dependent on relative humidity, as described by Simpson et al. (2012). It is acknowledged this split is 

somewhat uncertain, as discussed in Vieno et al. (2014). Despite the comprehensiveness of PM composition simulation, some 

known contributions are missing, in particular wind-blown dust. Traffic-induced road dust resuspension is likely 20 

underestimated. Also, as described in the next section, different measurement techniques and conditions incorporate different 

proportions of the ambient PM water content. Because of uncertainty in what measurements measure, and variability in 

measurement techniques employed through the time period of interest, we chose to use as model output the dry mass of PM. 

This contributes some unquantifiable variable negative model bias for PM2.5 and PM10.  

 25 

2.2. Measurement data  

Hourly measurements of the concentrations of NO2, O3, PM10 and PM2.5 at the AURN stations during 2001-2010 were 

downloaded and processed using the R package ‘openair’ (Carslaw and Ropkins, 2012) from the R workspaces provided and 

updated daily by Ricardo-AEA. Because of the emphasis in this study on data for health-related applications, the model-

measurement comparisons were principally based on the daily pollutant metrics recommended by the World Health 30 

Organisation (WHO, 2006), i.e., daily mean concentrations for NO2, PM2.5 and PM10 (NO2_daymean, PM2.5_daymean and 

PM10_daymean), and daily maximum running 8-h mean for O3 (O3_max8hmean).  

 

A data capture threshold of 75% was applied throughout the process of calculating statistics from the hourly measurements, 

as is standard protocol for EU data reporting (http://acm.eionet.europa.eu/databases/airbase/aggregation_statistics.html). For 35 

example, daily mean concentrations of NO2, PM2.5 and PM10 were only calculated when there were at least eighteen hourly 

measurements in a day. For O3, there had to be at least six hourly measurements in any 8-h window for an 8-h rolling mean to 

be calculated, and at least eighteen 8-h rolling means for a daily maximum 8-h mean to be valid.  

 

Comparison with model output was only undertaken for AURN sites with ≥75% data capture rate over the whole 10-y period. 40 

This means that at least 2,739 out of 3,652 pairs of daily measured and modelled values were required for inclusion. For PM2.5, 
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there were only four sites meeting the 75% data capture requirement over the ten years, so comparisons for PM2.5 were 

restricted to the period 2009-2010. 

 

AURN monitoring sites are classified according to their general location and proximity to particular sources of air pollution 

(https://uk-air.defra.gov.uk/networks/site-types). Sites classified as suburban background (only one or two sites per pollutant), 5 

suburban industrial (one site) and urban industrial (four sites or fewer depending on pollutant) were excluded from the model-

measurements comparison as being insufficient in number to provide meaningful comparison for these site classifications. 

Model-measurement comparison therefore focused on potential differences between rural background (RB) and urban 

background (UB). The numbers of each type of AURN site contributing data to this model-measurement comparison are 

summarised in Table 1. The names, coordinates, classifications and pollutant data captures of all sites supplying data for this 10 

work are given in Supplementary Information Table S1. Measurements at urban traffic sites were not included in the 

comparisons reported in the main paper because these are deliberately located close to strong sources of NOx and PM and not 

at all representative of air in the wider area simulated in a model grid.   

 

The coordinates of each AURN station with valid measurements during the period 2001-10 was used to locate the 5 km × 5 15 

km grid of the EMEP4UK domain whose centroid was closest to the station. The WRF-modelled hourly 2-m surface 

temperature data at each AURN site were also extracted and converted to daily means.  

 

Measurements from the UK AURN adhere to EU Directives on reference instrumentation and QA/QC procedures. 

Concentrations of NO2 and O3 are derived from chemiluminescence and UV-absorption analysers, respectively. The ‘real time’ 20 

measurement of PM mass concentrations is technically more challenging than for O3 and NO2, and the instrumentation used 

in the UK varied during the 2001-10 period. After about 2008, the majority of measurements of PM10 and PM2.5 have been 

made by TEOM-FDMS (Tapered Element Oscillating Microbalance Filter Dynamics Measurement System) which has been 

demonstrated as equivalent to the EU reference method (Harrison, 2010). The TEOM-FDMS system records a value for both 

‘volatile’ and ‘non-volatile’ PM and it is the sum of these values that is used in this work. All the 2009-10 PM2.5 measurement 25 

data in this study are derived from TEOM-FDMS instruments. However, for PM10, prior to the introduction of the auxiliary 

FDMS unit, measurements were derived using the TEOM instrument alone. The inlet and element of these instruments were 

held at 50 °C to limit condensation of water, but this caused loss of some volatile components of PM10. All TEOM values were 

therefore multiplied by 1.3 before archiving to provide an estimate of the average loss of volatile components, as recommended 

by the EC Working Group on Particulate Matter (EC, 2001). PM10 values from the few TEOM-only instruments remaining in 30 

the AURN after the general introduction of FDMS units in 2008 have been scaled using the more sophisticated Volatile 

Correction Model (Green et al., 2009), rather than the single 1.3 scaling factor, to account for the loss of volatile components. 

PM10 data from the few Beta-Attenuation Monitor (BAM) instruments present in the AURN have been scaled by 1.3 if they 

had a heated inlet and 0.83 if they did not have a heated inlet.  

 35 

The objective of all these external scaling processes for these PM measurements has been to provide the best practical measure 

of ‘reference equivalent’ PM10 (and PM2.5) mass concentrations spatially and temporally across the AURN. Nevertheless, these 

instrumental issues introduce considerable additional uncertainty to the PM measurement data: first, scaling factors, where 

applied, are an average scaling in time and space whereas the real scaling that would have been required would have varied 

between sites and for different times at an individual site; secondly, there may be a discontinuity in the PM10 time series 40 

associated with instrument change at a particular site, and dates of instrument change varied across the network. Uncertainty 

in measurement-model comparison is also introduced by the use of dry mass PM as the model output. 

 

Deleted: ),

Deleted: ) and urban traffic (UT) sites.45 

Deleted: (Green et al., 2009)

https://uk-air.defra.gov.uk/networks/site-types


8 

 

Irrespective of these changes to PM10 instrumentation, all PM, NO2 and O3 instruments in the AURN are maintained and 

calibrated in accordance with the QA/QC protocol for the UK ambient air quality monitoring network (http://uk-

air.defra.gov.uk/networks/network-info?view=aurn), and all data are subject to the network data review and ratification 

process before ‘ratified’ archiving.  

 5 

2.3. Evaluation of spatial aspects of model performance 

The coherence between long-term spatial patterns of modelled and measured concentrations was investigated through the 

correlation across sites of the 10-y (2-y for PM2.5) means of the daily pollutant metrics at each site.  

 

2.4. Evaluation of temporal aspects of model performance 10 

The daily pollutant metrics were grouped by day of week, month of year, and year of the 10-y period. Statistics were then 

calculated on the grouped pairs of daily model simulations and measurements for each pollutant at each site, and summarised 

by site type. Of the various statistics proposed for quantifying performance of air-quality models, correlation, bias and RMSE 

are consistently cited for evaluation against policy-relevant metrics of pollutant concentration (USEPA, 2007; Derwent et al., 

2010; Thunis et al., 2012). The first two statistics in particular are important for application to health studies (see Discussion).  15 

 

In each of the following, the index i runs over the n pairs of model (Mi) and observation (Oi) concentrations per time series at 

each site. The term ‘observation’ is used, in this section only, synonymously with the term ‘measurement’ used elsewhere in 

this paper, to avoid ambiguity of an M label for model and for measurement. 

Pearson’s correlation coefficient: 𝑟 =
1

𝑛−1
∑ (

𝑀𝑖−�̅�

𝑠𝑀
)𝑛

𝑖=1 (
𝑂𝑖−�̅�

𝑠𝑂
)  20 

�̅� and �̅�  are the mean of the modelled and observed concentrations respectively, and 𝑠𝑀 and 𝑠𝑂 are their respective sample 

standard deviations.  

Mean bias: MB =
1

𝑛
∑ 𝑀𝑖 − 𝑂𝑖
𝑛
𝑖=1   and normalised mean bias:  NMB =

∑ 𝑀𝑖−𝑂𝑖
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 

Root mean square error: RMSE = √
∑ (𝑀𝑖−𝑂𝑖)

2𝑛
𝑖=1

𝑛
 

The FAC2 statistic, the proportion of all pairs of modelled and observed concentrations that are within a factor of two of 25 

each other, was also calculated. This statistic provides additional general indication of overall model skill. 

 

3. Results  

3.1. Evaluation of spatial aspects of model-measurement statistics 

Scatter plots of the individual-site model versus measurement 10-y means of NO2_daymean, O3_max8hmean, PM10_daymean, 30 

and 2-y means for PM2.5_daymean, by site type, are shown in Figure 1 and illustrate the extent of model-measurement spatial 

correlation across the UK. The data in these plots are additionally categorised according to the latitude of the monitor site. The 

numerical values of model-measurement correlation, FAC2, NMB, MB and RMSE associated with each plot in Figure 1 are 

presented in Table 1. The correlation between the normalised bias and the latitude across all sites in a given panel of Figure 1 

are given in Table 2. This table also presents the correlation between normalised bias and modelled 10-y mean temperature by 35 

site type and pollutant. The equivalent of Figure 1 with data categorised by mean temperature is shown in SI Figure S1.  
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3.1.1. NO2 

Figure 1a shows excellent model-measurement agreement in 10-y mean NO2 across RB sites (spatial correlation coefficient of 

0.98, regression slope and intercept of 1.10 and 0.0045 g m-3, n = 7). This is further emphasised by the low bias for 10-y 

mean NO2 at these 7 RB sites: MB = 0.7 g m-3, NMB = 0.06; and low scatter: RSME = 1.05 g m-3, FAC2 = 1.00 (Table 1). 5 

Spatial correlation between modelled and measured 10-y mean NO2 was also high at UB sites (r = 0.68, n = 37) (Figure 1a), 

although modelled NO2 concentrations were, on average, lower than measured concentrations at urban sites (MB = 9.5 µg 

m-3, NMB = 0.31, FAC2 = 0.84, RSME = 11.9 g m-3) (Table 1). The negative model bias at urban sites can be attributed to 

either or both underestimation of NOx emissions and the instantaneous dilution of NOx emissions into a 5 km × 5 km model 

grid cell irrespective of where the monitor is positioned with respect to emissions of NOx in reality. If air at the urban monitor 10 

is more influenced by NOx emissions than represented by the model grid average then the model value will underestimate the 

contributions at the monitor from both primary emitted NO2 and secondary NO2 formed by reaction between primary NO and 

O3. This model grid dilution effect will be more pronounced the closer the monitor is sited to strong sources of NOx.  

 

For urban sites, model-measurement agreement was generally better at lower latitude sites, i.e. for sites in the south of the UK 15 

compared with sites in the north (Figure 1a). The slight increase in model negative bias for NO2 in the north does not appear 

to be related to the absolute concentration of NO2 since the differential is similar across a range of NO2 concentrations at sites 

in the south and north. Normalised bias was significantly positively correlated with temperature (Table 2, SI Figure S1b), i.e. 

less negative at higher temperature, which is consistent with the smaller negative bias for southern UK, since average 

temperature decreases with increasing latitude in the UK.  20 

 

3.1.2. O3 

Figure 1b shows that the modelled 10-y mean of daily max 8-h mean O3 concentration was greater than measured at all except 

one site (the coastal RB at Weybourne); but that all modelled and measured 10-y mean O3 concentrations were within a factor 

of two except at one UT site, London Marylebone Road, which is a kerbside site exposed to very high traffic flows. 25 

 

As for NO2, the model-measurement statistics for the 10-y mean O3 at RB sites were very good (NMB = 0.08, MB = 5.8 g 

m-3, FAC2 = 1.00, RSME = 8.7 g m-3, n = 17) and better than at the UB sites (NMB = 0.27, MB = 15.1 g m-3, FAC2 = 1.00, 

RSME = 15.9 g m-3, n = 30) (Table 1). The positive model bias for O3 at UB sites is presumably driven by the same issue as 

the negative model bias for NO2 at the UB sites: the dilution of model NOx emissions in urban areas into the 5 km × 5 km 30 

model grid means that the model insufficiently simulates the reactive removal of O3 by NO close to the urban monitor.  

 

The lack of model-measurement spatial correlation in 10-y mean O3 concentration across all RB sites (r = 0.21, p = 0.428, n = 

17) (Figure 1b) is driven solely by the outlying model-measurement comparison at the Weybourne site, the cause of which is 

unknown. When this site is excluded, there is highly significant spatial correlation between model and measurement across all 35 

remaining RB sites (r = 0.81, p < 0.001, n = 16) (Table 1). There was also highly significant spatial correlation between 

modelled and measured O3 concentration at UB sites (r = 0.73, p < 0.001, n = 30) (Figure 1b, Table 1), although the lower 

than unity gradient indicates a trend for a less positive bias at higher O3 concentrations. This is again a reflection of the NO + 

O3 reaction: higher O3 at an UB monitor is likely because the monitor is sited further from immediate sources of primary NO 

and so less susceptible to the localised (sub-model-grid) effect. Normalised bias in 10-y mean O3 was not correlated with 40 

latitude or long-term temperature at either RB or UB sites (Table 2, Figure 1b and SI Figure 1b). 

Deleted:  and

Deleted: and at UT sites (r = 0.79, n = 16) 

Deleted: both types of 

Deleted: . The model-measurement discrepancy was less across all 45 
statistics at UB sites

Deleted: ) than at UT sites (MB = 34.2 µg

Deleted: , NMB = 0.64, FAC2 = 0.13

Deleted: is particularly

Deleted: for comparison with monitors at UT sites which are 50 
deliberately 

Deleted:  close

Deleted:  both types of

Deleted: Only two UT sites measured O3 so summary model 
performance statistics for these sites are not illuminating. The large 55 
model overestimation of O3 at the London Marylebone Road UT site 

is an extreme example of a regional model not being able to simulate 

the large local NOx emissions and consequent local NOx-O3 

chemistry by the kerbside of this central London street with very 

heavy traffic.60 



10 

 

 

3.1.3. PM10 

The 10-y mean of daily-mean simulations of PM10 concentrations were all within a factor of two of the corresponding 

measurements for all sites (Figure 1c). The 10-y mean PM10 concentrations were well modelled at UB sites in terms of low 

bias and error (NMB = 0.06, MB = 1.26 g m-3, FAC2 = 1.00, RSME = 2.7 g m-3, n = 20) and the spatial correlation across 5 

sites, whilst not particularly high, was statistically significant (r = 0.58, p = 0.007, n = 20) (Table 1). Modelled PM10 

concentrations were higher than measured at RB sites (NMB = 0.39, MB = 6.6 g m-3, FAC2 = 1.00, RSME = 6.8 g m-3, n = 

4) (Figure 1c, Table 1) but were also well correlated (r = 0.91, p = 0.092) despite the small number of comparison sites and 

small range in 10-y mean PM10 values across the RB sites.   

 10 

In general there were no strong associations between model-measurement bias for 10-y mean PM10 and latitude, although there 

was significance for smaller bias at UB sites with higher latitude (r = 0.48, p = 0.031) (Figure 1c, Table 2) and, 

correspondingly, a tendency for smaller bias in cooler areas (r = 0.40, p = 0.078) (SI Figure 1c, Table 2).  

 

3.1.4. PM2.5 15 

Figure 1d shows that all 2-y mean modelled PM2.5 concentrations were within a factor of two of the corresponding site 

measurements, but that at nearly all sites the model yielded lower PM2.5 concentrations than were measured. (Even for the 

shorter time period used for PM2.5 comparisons there were only two RB sites with PM2.5 monitors so no further comment is 

made on these data.) Although mean bias at UB sites was negative (NMB = 0.27, MB = 3.5 g m-3, FAC2 = 1.00, n = 28) 

(Table 1), there was a trend for model underestimation to be greater at sites with higher PM2.5 concentrations (Figure 1d). This 20 

trend is likely for the same reason as given above: that the regional model cannot fully capture the localisation of urban 

emissions. The lower biases in model simulations of PM10 compared with PM2.5 is, at least in part, due to a positive model bias 

in the simulation of the sea salt component of PMcoarse, which is an important component of background PMcoarse in the UK 

(AQEG, 2005). In contrast to the other sites, there was a positive model bias at the RB site at Auchencorth Moss in Scotland. 

However, the long-term average concentration of PM2.5 at this site is very low (~5 g m-3) and only about half the next lowest 25 

measured PM2.5 concentration. Accurate measurement of these very low concentrations of PM2.5 is a considerable challenge 

(AQEG, 2012).   

 

Model-measurement spatial correlation of PM2.5 across UB sites was moderate but statistically significant (r = 0.58, p = 0.001, 

n = 28). As with PM10, there was no strong association between model bias for PM2.5 and geographical location (Table 2, 30 

Figure 1d and SI Figure 1d) although there was a tendency for smaller bias with higher latitude (r = 0.28, p = 0.141) and in 

cooler areas (r = 0.43, p = 0.022). This may indicate a negative bias in simulating secondary PM components that have smaller 

concentrations in the north of the UK compared with the south which is more influenced by transport of these components and 

of their precursors from continental Europe (Vieno et al., 2014).    

 35 
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3.2. Evaluation of temporal aspects of model-measurement statistics 

3.2.1. Statistics for daily metrics across the full simulation period 

Table 3 summarises the individual-site model vs measurement r, NMB, RMSE and FAC2 statistics, grouped by site type, for 

the 10 years of daily NO2, O3, PM10 concentrations, and 2 years of daily PM2.5 concentrations. Statistics for an individual site 

are derived from up to 3,652 pairs of daily model-measurement comparisons.  5 

 

The temporal variability in daily NO2 and O3 over the 10 years was well captured by the model at both RB and UB sites. The 

median (25th percentile, 75th percentile, no. of sites) model-measurement correlation coefficients for NO2_daymean across RB 

and UB sites were 0.75 (0.73, 0.78, n = 7) and 0.70 (0.63, 0.77, n = 37), respectively, whilst for O3_max8hmean they were 

0.73 (0.72, 0.76, n = 17) and 0.76 (0.74, 0.78, n = 30), respectively. Model-measurement NMB for NO2 and O3 at RB sites 10 

was also small. The median (25th percentile, 75th percentile) NMB across RB sites for the 10 years of NO2_daymean and 

O3_max8hmean were 0.08 (0.02, 0.12) and 0.11 (0.08, 0.12), respectively. The corresponding NMB data across UB sites were 

larger, 0.29 (0.40, 0.12) and 0.26 (0.18, 0.32) for NO2_daymean and O3_max8hmean respectively, with the explanations 

for the negative and positive bias values for NO2 and O3, respectively, at urban locations as described above.  

 15 

Table 3 shows that the agreement between modelled and measured temporal variability in daily PM2.5 over the 2 years of 

available data was also reasonable. The median (25th percentile, 75th percentile, no. of sites) model-measurement temporal 

correlation coefficients for PM2.5_daymean across RB and UB sites were 0.65 (0.64, 0.65, n = 2) and 0.69 (0.67, 0.73, n = 28), 

respectively. The correlations for PM10_daymean were poorer, with corresponding data for correlation coefficients across RB 

and UB sites for the 10 years of available data of 0.47 (0.46, 0.48, n = 4) and 0.50 (0.45, 0.55, n = 20). However, although 20 

temporal correlation was acceptable for PM2.5_daymean there was substantial bias, with median (25 th percentile, 75th 

percentile) NMB values at RB and UB sites of 0.38 (0.18, 0.59) and 0.26 (0.33, 0.22), respectively (but note only two sites 

featured in the RB comparison). 

 

3.2.2. NO2_daymean grouped by different periods of time 25 

Figure 2 shows box-whisker plots summarising the individual site model-measurement r, FAC2, NMB and RMSE statistics 

for daily mean NO2, with the daily data grouped by year, by month, and by day of week. All box plots indicate substantial 

inter-site variability in model-measurement statistics, but also differences in these statistics between site type and, in some 

instances, between the individual blocks of time over which the data are averaged.  

  30 

By year. Figure 2a shows there were no long-term trends in the model-measurement correlations of daily mean NO2 across the 

years, for rural or for urban sites. At RB sites, a high fraction of modelled daily mean NO2 was within a factor of two of the 

measurements, without inter-annual trend (10-y mean of the median FAC2 each year = 0.85) (Figure 2b). There was some 

inter-year variation in the model-measurement NMB at RB sites which, although near zero on average for years 2001-2003 

and 2007-10 (mean of median NMB = 0.03) was positive in years 2004-2006 (mean of median NMB = 0.18) (Figure 2c). The 35 

model accuracy at both types of urban sites showed a slight trend to lower FAC2 (Figure 2b) and greater negative NMB (Figure 

2c) in years 2008-2010. The larger model-measurement bias in the latter, whilst similar values of correlation are retained, is 

potentially indicative of shortcomings in emissions totals in these latter years of the study. Data for RMSE (Figure 2d) suggest 

slightly greater imprecision in these latter years also. RMSE was consistently greater at UB sites than at RB sites. 

 40 
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By month. The model-measurement statistics for daily mean NO2 exhibited some seasonal variability (Figure 2e-h). Figure 2e 

shows that there was a similar small seasonal variation in model-measurement correlation at all site types, with higher 

correlation coefficients on average in autumn and winter, and lower correlation coefficients in spring and summer. Correlation 

was fairly similar across RB and UB sites. The RMSE values were smallest in spring and summer when correlation was lower 

(Figure 2h) and largest in winter months when correlation was greatest. Model bias was smallest at RB sites, and whilst FAC2 5 

at RB sites was fairly constant between months (Figure 2f), the median NMB at RB sites varied between a median of 0.07 in 

March and a median of 0.21 in October (Figure 2g). In contrast, in urban areas, model-measurement difference was least in 

winter months, December-January-February (mean of median FAC2 = 0.72, mean of median NMB = 0.28, for UB sites), and 

lowest in late spring and early summer (mean of median FAC2 = 0.67, mean of median NMB = 0.33, over May, June and 

July for UB sites) (Figures 2f and 2g).  10 

 

These seasonal variations may have a variety of causes. In terms of chemical and meteorological effects, the NO + O3 titration 

effect already described will be greater in summer than in winter, and the model grid dilution effect will be exacerbated in 

summer by greater convective boundary-layer mixing. Some part of the explanation for poorer model-measurement accuracy 

in summary may also be due to shortcomings in the values of the monthly emission factors used in the model to disaggregate 15 

the annual emissions totals of NOx (and VOC). The more consistent temporal correlations across site types compared with bias 

is again consistent with issues with the specification of amount and dilution of local emissions into the 5 km model grids rather 

than issues with describing the meteorology.  

 

By day of week. Model-measurement correlation for daily mean NO2 was similar for all days of the week at all site types 20 

(Figure 2i). On the other hand, there were pronounced differences in NMB between weekday and weekend for both RB and 

UB sites (Figure 2k). NMB was more positive at weekends at RB sites than during weekdays, and NMB was similarly less 

negative at weekends compared with weekdays. There was less weekday/weekend contrast in RMSE (Figure 2l). The invariant 

day-of-week correlation but weekday/weekend differences in NMB again indicates that general meteorology is captured well 

by the model but that there may be shortcomings in the day-of-the-week factors applied in the model to disaggregate the annual 25 

local NOx (and VOC) emission totals.  

 

3.2.3. O3_max8hmean grouped by different periods of time 

As with daily mean NO2, Figure 3 reveals some trends in model-measurement statistics for daily maximum 8-h mean O3 for 

data grouped by year, month, and day of week.  30 

 

By year. Figures 3a-d show that there were no long-term trends in the O3_max8hmean model-measurement statistics at RB 

and UB sites over the years 2001-2010. Model-measurement correlations were similar at both types of sites (mean of median 

r = 0.76 and 0.77 for RB and UB sites, respectively) (Figure 3a), but bias was less at RB than at UB sites (mean of median 

FAC2 = 0.98 and 0.87, mean of median NMB = 0.10 and 0.33, respectively) (Figures 3b and 3c). Error was likewise less at 35 

RB than at UB sites (mean of median RMSE = 16.7 and 23.0 g m-3, respectively (Figure 3d). 

 

By Month. Model-measurement correlation exhibited a pronounced seasonal variation (but which was similar for both RB and 

UB sites), with much better correlation in winter and summer than in spring and autumn (Figure 3e). On the other hand, model 

bias was generally lower in spring and summer than in autumn and winter, with the smallest bias in June, and the greatest in 40 

October (Figure 3g). This seasonal variation in bias was more pronounced at UB sites than at RB sites. There was smaller 

seasonal variation in RMSE (Figure 3h) than for other model-measurement statistics. As discussed above for NO2, the seasonal 
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trends in O3 model biases may be due to shortcomings in assigning seasonal trends to emissions of NOx and reactive VOC that 

together impact on regional O3 concentrations. However, many factors influence surface concentrations of O3, acting on 

different temporal and spatial scales (Royal Society, 2008), so the seasonal patterns in correlation and bias are likely the net 

consequence of a number of drivers. 

 5 

By day of week. Model-measurement correlation at both types of background sites did not show variation with day of the week 

(mean of median r = 0.74 and 0.76 for RB and UB sites, respectively) (Figure 3i). Correlation was much poorer at the 

Weybourne RB site (r = ~0.29), but, as noted above, the Weybourne comparison (which is only for O3) is clearly anomalous. 

Model-measurement bias at RB sites was largely similar across day-of-week (mean of median FAC2 = 0.97, mean of median 

NMB = 0.11), with slightly reduced positive bias on weekend days (Figures 3j and 3k). At UB sites, bias was greater during 10 

Tuesday-Friday (mean of median NMB = 0.30 and mean of median FAC2 = 0.87), but mean NMB reduced to 0.15 on Sundays 

and mean FAC2 increased to 0.95 (Figures 3j and 3k). The RMSE was also lower at weekends than weekdays (Figure 3l). The 

positive model bias at the urban sites, plus the improved model bias over the weekend, both indicate the issue of dilution into 

the 5 km  5 km model grid of urban NOx emissions and the consequent lack of capture of the NO reaction with O3 at sites 

influenced by traffic emissions (which are lower in the model at weekends).   15 

 

3.2.4. PM10_daymean grouped by different periods of time 

By year. Model-measurement correlations of daily mean PM10, grouped by year, did not show any inter-annual trend across 

the 10-y evaluation period or across the site types (Figure 4a), except for enhanced correlations, on average, in 2003. Annual 

averages of model-measurement accuracy in daily PM10 showed some inter-annual variabilities (Figures 4b and 4c for FAC2 20 

and NMB) but no trends across the 10 years. Annual averages of RMSE decreased slightly across the 10 years although inter-

site variability in RMSE was somewhat greater in 2010 (Figure 4d). 

 

By month. Model-measurement comparison statistics for daily mean PM10 displayed strong seasonality at both types of sites 

(Figure 4e-h). Correlations were similar for the RB and UB sites, with the best correlation in summer and the worst in late 25 

autumn and winter (Figure 4e). In terms of bias, at RB sites PM10 concentration was best simulated in late summer (mean of 

median NMB = 0.04 for July and August), and most overestimated in late autumn (NMB = 0.69 for October) (Figure 4g). A 

similar seasonal pattern was apparent at the UB sites, but superimposed on a lower bias on average: PM10 concentration was 

underestimated in late summer, but overestimated in late autumn and winter, with better accuracy on average in the summer 

half of the year. The RMSE values were similar at both RB and UB sites but at both site types there was strong seasonality 30 

with substantially lower RMSE values during spring and summer (Figure 4h), when correlation was also better (Figure 4e), 

than during autumn and winter.    

 

By day of week. Patterns in day-of-week model-measurement statistics for daily mean PM10 (Figure 4i-l) showed some 

similarity with those for daily mean NO2 (Figure 2i-l). Model-measurement correlations were fairly consistent throughout the 35 

week and similar at all site types (Figure 4i) (a small reduction in correlation on Wednesdays at RB sites is likely simply a 

statistical artefact, as observed also for RMSE values on a Wednesday, and a Tuesday (Figure 4l)). There was no significant 

variation in model accuracy at RB with day of the week (Figures 4j and 4k), although there are only 4 sites for this comparison. 

At UB sites, PM10 concentration was simulated most accurately on weekdays (mean of median NMB = 0.01, mean of median 

FAC2 = 0.87) (Figures 4j and 4k), but was overestimated at RB sites (mean of median NMB = 0.41). The positive bias at RB 40 

sites was probably due to the overestimation of sea salt, as mentioned above. At weekends, positive bias in PM10 concentrations 
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increased at UB sites (Figure 4k), yet RMSE did not change (Figure 4l), suggesting that the day-of-week emission factors used 

in the model might not adequately reflect actual weekday-weekend differences in emissions.  

 

Again, the general consistency in temporal correlation with site type and time period, compared with the variation in bias, is 

consistent with the main driver of model shortcoming being in accuracy of emissions (totals and temporal disaggregation) 5 

rather than in simulation of atmospheric chemistry and transport processes.   

 

3.2.5. PM2.5_daymean grouped by different periods of time 

By year. Figures 5a-d summarise the model evaluation statistics for PM2.5 daily means for the 2-y period of available monitor 

data (2009-10). The PM2.5 model-measurement comparison statistics are generally poorer in 2010 but two years is insufficient 10 

to draw any conclusion on inter-annual trend As for PM10 daily mean comparisons, there was positive bias for daily mean at 

RB sites (mean of median NMB = 0.39) and negative bias at UB sites (mean of median NMB = 0.26) (Figure 5c). However, 

PM2.5 was measured at only two RB sites, and at one of these, Auchencorth Moss in Scotland, the PM2.5 concentrations were 

substantially lower than at any of the other measurement sites. At least half of the modelled PM2.5 daily mean concentrations 

were within a factor of two of the measurements at all sites, except the RB site of Auchencorth Moss (Figure 5b). Of the two 15 

RB sites, the model accurately simulated daily mean PM2.5 concentration at Harwell (mean NMB = 0.02, mean FAC2 = 0.90), 

but there was substantially positive bias at Auchencorth Moss (mean NMB = 0.81, FAC2 = 0.43). As noted above for PM10, 

RMSE was, for unknown reason, greater in 2010 (Figure 5d). 

 

By month. Model-measurement correlation was generally better in the summer half of the year than in the winter half (e.g. 20 

mean of median r = 0.76 and 0.68, respectively, at UB sites) (Figure 5e). Similarly, there were greater values of FAC2 in 

spring and summer than in autumn and winter, particularly at UB sites (mean of median FAC2 = 0.86 and 0.78, respectively) 

(Figure 5f). Although model-measurement bias did not vary substantially with season (Figure 5g), as for PM10 there was a 

seasonal correspondence of lower RMSE values (Figure 5h) and higher correlation (Figure 5e) during spring and summer, and 

vice versa during autumn and winter. 25 

 

By day of week. In contrast to the other three pollutants, there was no obvious differences in model-measurement statistics 

between weekdays and weekend at any site type (Figure 5i-l), but there are substantially less comparison data for PM2.5 than 

for the other three pollutants (2 years rather than 10 years).  

 30 

3.2.6. Hourly model-measurement statistics 

The focus in this work was model-measurement comparisons at daily and annual averaging resolution, but concentration data 

were available at hourly resolution and the Supplementary Information presents figures and discussion of the comparison 

statistics for NO2 and O3 averaged by hour of day. These data support the general observations presented above for the longer 

averaging periods, in particular that correlations between model and measurement hourly data were generally consistent 35 

throughout the day but that bias and RMSE showed systematic variation, which is interpreted as error in the hour-of-day 

emissions factors used to disaggregate the annual NOx emissions totals in the model (and to over-dilution of the NOx emissions 

into the model grid compared to the siting of the monitor at urban sites).   
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4. Discussion   

The work presented here was motivated by the use of the EMEP4UK-WRF model output for air pollution epidemiology and 

health burden assessment; therefore the model-measurement comparison focused on health-relevant metrics for the most 

important ambient air pollutants: specifically the annual and daily means for PM10, PM2.5, NO2 and O3 (the daily maximum 8-

h mean for O3) (WHO, 2013a). The model-measurement comparison was comprehensive; all available data from all non-5 

roadside monitors in the UK’s national automated urban and rural network for 2001-2010 were used, which span the range of 

ambient environments in which people are exposed to air pollution in the UK. Focus was placed on two important statistics 

for evaluation of air quality model output against health-relevant standards – correlation (temporal and spatial) and bias (e.g. 

USEPA, 2007; Derwent et al., 2010; Thunis et al., 2012) – and also on the RMSE statistic, as discussed further below.  

 10 

Even for a well-specified Eulerian model (in terms of input data, transport, chemistry, etc.), model-measurement agreement 

may not be perfect for (at least) the following two reasons: (i) the model simulates a volume-averaged concentration whereas 

the monitor records the composition of the air in one part of that volume, which may or may not reflect the average 

concentration for the whole volume over the relevant time-averaging period; and (ii) the measurement may be in error. A rural 

background monitor in homogenous terrain and well-away from local sources may be anticipated to be sampling air that is 15 

more homogenous over the 5 km  5 km model grid in which it is located than an urban background monitor. The 

representativeness of an urban background monitor for the air in the model grid in which it is located will be dependent on the 

extent of urban area within that grid (and hence to some extent dependent on the absolute size of the particular urban area), as 

well as the distance of the monitor from specific local pollutant emission sources.        

 20 

The presence of measurement uncertainty constrains the extent to which model-measurement statistics can be used to evaluate 

the performance of a model. Thunis et al. (2012), as part of the FAIRMODE project (fairmode.jrc.ec.europa.eu), developed a 

series of relationships that define minimum values for model-measurement statistics, given a value, U, for measurement 

uncertainty; for example, |NMB| < 2𝑈/�̅� and 𝑟 > 1 − 2(𝑈/𝜎𝑂)
2. They then estimated minimum values for these statistics 

(termed model performance criteria, MPC) by taking example values for �̅� and 𝜎𝑂 from more than 700 monitoring stations 25 

around Europe (for 2009) and using the measurement data quality objectives for measurement uncertainty specified in the EU 

Air Quality Directive as values for U. For daily maximum 8-h mean O3 and daily mean PM10 these are 15% and 25%, 

respectively (EC Directive, 2008). At these levels of constant relative measurement uncertainty, model-measurement 

correlation coefficients for daily mean PM10 of 0.44-0.48 (the range reflects the two types of measurement site) satisfy the 

MPC (Thunis et al., 2012). For daily maximum 8-h mean O3 the minimum values for r to satisfy the MPC are in the range 30 

0.54-0.69. Minimum values for |NMB| for daily mean PM10 are 0.58, and for daily maximum 8-h mean O3 are in the range 

0.32 to 0.33 (Thunis et al., 2012). These MPC values are presented in Table 3 for comparison against the r and NMB values 

derived in the present model-measurement comparison. If measurement uncertainty is greater than specified in the EU data 

quality objectives, for example for measurement of concentrations lower than the relevant air quality limit value, as is the case 

for the majority of concentrations, then MPC for r are lower and |NMB| values are greater than quoted above; estimates of 35 

these MPC values from the European dataset of measurements described above are also presented in Table 3 (Thunis et al., 

2013; Pernigotti et al., 2013). The intention here is to provide an overview of how the EMEP4UK-WRF model-measurement 

statistics compare in general with the threshold criteria for comparison of an air quality model against measurement in the 

European air quality context. It is recognised that satisfying the MPC is a necessary but not sufficient part of model validation. 

In the large majority of instances, Table 3 shows that the values of model-measurement correlation and NMB from this 40 

EMEP4UK-WRF modelling achieve the model performance criteria values derived for the potential measurement uncertainties 

discussed above. For example, the 25th percentile across sites of EMEP4UK-WRF model-measurement correlation for daily 

maximum 8-h mean O3 at RB and UB sites (r = 0.72 and 0.74, respectively) exceed the values of 0.54 and 0.69 derived by 
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Thunis et al. (2012) for RB and UB sites, and of 0.40 and 0.51 derived by Thunis et al. (2013) for greater measurement 

uncertainty at lower concentrations. Likewise, the 75th percentile of EMEP4UK-WRF model-measurement NMB values for 

the O3 metric (0.12 and 0.32 for RB and UB sites) are lower than the respective Thunis et al. (2012) values of 0.32 and 0.33 

and Thunis et al. (2013) values of 0.37 and 0.41. For daily mean PM10 the 25th percentile values of EMEP4UK-WRF model-

measurement correlation coefficients are similar to those of Thunis et al. (2012) and better than those of Pernigotti et al. (2013) 5 

when allowing for increasing measurement uncertainty at lower PM10 concentrations (r = 0.33 and 0.33 for RB and UB sites, 

respectively). The EMEP4UK-WRF model-measurement NMB values are generally considerably lower than those of Thunis 

et al. (2012) and Pernigotti et al. (2013) (NMB = 0.67 and 0.65 for RB and UB sites, respectively, in the latter case). Estimated 

values for MPC for daily mean PM2.5 and daily mean NO2 using a comparable measurement dataset are not published, although 

detailed evaluation of potential levels of measurement uncertainty for PM2.5 and NO2 are presented by FAIRMODE (for hourly 10 

average, rather than daily average, in the case of NO2). These data suggest that the MPC for daily mean PM2.5 and daily mean 

NO2 are likely to be roughly similar to those published respectively for daily PM10 and for daily maximum 8-h mean O3. If so, 

then Table 3 shows that the model-observation statistics for daily mean NO2 and PM2.5 are also generally in line with or better 

than their respective MPC values.  

 15 

The UK AURN operates as a single network subject to standardised QA/QC procedures (as described in the Section 2) so 

measurement uncertainty might be expected to be lower than the values used by Thunis et al. (2012; 2013) and Pernigotti et 

al. (2013). On the other hand, as described in Section 2.2, instrumentation for ‘real time’ measurement of PM10 and PM2.5 in 

the UK has varied and in some instances has necessitated post hoc application of correction factors, which increases 

measurement uncertainty for these species compared with measurement of NO2 and O3. Also, the above analysis of magnitudes 20 

of model-measurement statistics does not allow for uncertainty arising from lack of spatial representativeness of the 

measurement location within its model grid, as discussed already.  

 

Although the model-measurement statistics reported in this work are for the most part in line with or better than anticipated 

model performance criteria, there were also instances of trends in statistics with site type, month-of-year and day-of-week. (In 25 

general there were no obvious inter-annual trends across the decade of comparisons.) Bias was least overall for rural sites (e.g. 

median normalised mean bias values for O3 and NO2 of 0.08 and 0.11, respectively), reflecting the smaller likelihood for sub-

grid variations in sources, dispersion and deposition to perturb concentrations at the monitor location away from the model 

grid average. There was a tendency for positive model bias for O3 at UB sites (median NMB = 0.26) and for negative model 

bias in NO2 (0.29) and PM2.5 (0.26) at these sites. The negative biases may reflect both underestimation of primary emissions 30 

of NOx and PM and a tendency for air at urban background monitor locations to be more influenced by the primary emissions 

in the vicinity than simulated by the model which effectively averages all emissions evenly across the 5 km  5 km grid in 

which the monitor is located. Unless the urban area is very large – greater than a few km in linear dimension – then the air 

even at a background site in the centre of that urban area is likely to be more influenced by local primary emissions than 

peripheral (suburban) parts of the urban area included in the model grid average. A further contributor to model negative bias 35 

for PM are known omissions in the model of some PM components, including particle-bound water and some sources of dust 

resuspension, as noted in Section 2.1.  

 

The positive model bias for O3 at UB sites is consistent with the explanations given above for the negative model biases for 

NO2 (and PM2.5). The dilution of the NOx emissions in urban areas into the 5 km × 5 km model grid means that the model 40 

underestimates the reactive removal of O3 by NO in the vicinity of the urban monitor, an effect that cannot be resolved even 

by the comparatively high resolution of the EMEP4UK-WRF ACTM.  
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Instances of trends in model-measurement bias with month or day of the week are described in the Results section. The 

generally good daily temporal correlations discussed already indicate that the model captured the day-to-day changes in air 

mass movements which are the strongest influences on surface concentrations of pollutants at this temporal resolution. The 

observed seasonal and weekday/weekend variations in bias (and of diurnal variations in bias – see Supplementary Information) 

are therefore strongly suggestive of shortcomings in the monthly and weekday/weekend (and hour-of-day) emissions factors 5 

applied in the model to disaggregate the annual total emissions supplied by the emissions inventories.     

  

As stated at the outset, the motivation here was use of the EMEP4UK-WRF model output for health studies. In the context of 

use of concentration data for epidemiology, in the broadest terms correlation is more important than bias, and for the model 

output reported here, model-measurement correlations (both temporal and spatial) were generally considerably better, 10 

particularly for the gaseous pollutants, than bias statistics. Epidemiological studies of association of ambient air pollution with 

health require an estimate of exposure for each subject, most usually from measurements from monitors but increasingly from 

models. The difference between the estimates and a hypothetical gold standard, for example concentration outside the residence 

of each subject, is called exposure measurement error. (It is assumed here that it is the association of ambient pollution with 

health outcome at the small-area level that is important, because of the link to regulation (Dominici et al., 2000), rather than 15 

exposure at the level of the individual, and therefore issues of disparity between the concentration at a location and true personal 

exposure are not considered.) The consequences of measurement error are to reduce the power of the study to detect an 

association and to bias the magnitude of the association (Sheppard et al., 2005; Sheppard et al., 2012; Armstrong and Basagaña, 

2015).   

 20 

The agreement statistics determining the magnitude of this ‘blunting’ depends on the specific context. Study power is simplest, 

depending only on the correlation between the true and estimated exposure. Of the two main types of epidemiological studies 

of air pollution: in ‘spatial studies’ power is diminished according to the correlation of long-term true and estimated means 

over space; in ‘time series studies’ it depends on correlations of daily values over space. Thus the model-measurement 

correlations reported in Sections 3.1 and 3.2 have a fairly direct implication for study power in those two study types except 25 

that errors in the measured values as estimates of the mean over the population in the grid square (or wider area) are not allowed 

for. Because of this, the power of studies using modelled concentrations would be somewhat better than implied by the 

correlations reported (Butland et al., 2013).  

 

Low correlation of ‘true’ and estimated exposures also often reduces estimated size of association (e.g. relative risk per unit 30 

exposure), but other aspects of the error distribution also matter, notably the extent of Berkson or classical type (Butland et al., 

2013; Armstrong and Basagaña, 2015). It is difficult and beyond the scope of this paper, to separate Berkson and classical 

error, but in the absence of this it would be reasonable to consider the model-measured correlations as broad guides to bias in 

association as well as power. Perhaps surprisingly, additive bias (e.g. estimating concentration 10 units too high on average) 

has little effect in epidemiological studies, at least if the exposure-health association is assumed linear, as it usually is (although 35 

bias in association is also dependent on relative magnitudes of variance in ‘true’ and estimated exposures).   

 

As well as the good temporal correlations for daily pollutant metrics, the good spatial correlations between long-term averaged 

modelled and measured concentrations across urban sites for all four pollutants selected encouragingly suggests that the 

EMEP4UK-WRF modelled pollutant concentration may broadly reduce exposure measurement error caused by using pollution 40 

measurements from air pollution monitors far from the population under consideration. On the other hand, a bias error in the 

simulations contributes to uncertainty in the investigation of any threshold in concentration-health effect, and in health impact 

assessments that apply concentration-response functions to estimated concentrations of exposure.   
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This study has worked with the EMEP4UK-WRF v4.3 model. Model-measurement statistics will be different for other models. 

However, other ACTM are similarly constructed and so the broad discussion points relating to intrinsic limitations to monitor 

versus grid-volume comparison statistics, unresolved sub-grid variabilities, and shortcomings in magnitudes and temporal 

trends in emissions are generalizable. Local dispersion models can better represent the sources and dispersion at high spatial 5 

resolution but these can only be configured for specific urban areas at a time, are similarly constrained by the accuracy of the 

spatiotemporal emissions data and require provision of boundary conditions of meteorology and atmospheric composition 

(often supplied by an ACTM). Dispersion models have also been combined with land-use regression models (Wilton et al., 

2010; Michanowicz et al., 2016) but again for individual areas only. Some progress is being made in combining measurement 

(both ground-based and satellite) and model data through data assimilation (e.g. (MACC-II: Monitoring Atmospheric 10 

Composition and Climate - Interim Implementation  (www.gmes-atmosphere.eu/about/); Singh et al., 2011) and data fusion 

(Berrocal et al., 2011; Zidek et al., 2012; Friberg et al., 2016), but these approaches are computationally demanding, 

particularly for reactive species, and can only be applied to historic data. National-scale air pollution modelling as described 

here, despite acknowledged limitations for health studies (Butland et al., 2013), has the benefit of providing self-consistent 

chemical concentration fields, data for air pollutant components that are either not, or only sparsely, measured and provide the 15 

capacity to investigate the potential effects of alternative possible futures.  

 

5.  Conclusions 

This study was motivated by the use in air pollution epidemiology and health burden assessment of data simulated at 5 km  

5 km horizontal resolution by the EMEP4UK-WRF v4.3 atmospheric chemistry transport model. A spatially and temporally 20 

comprehensive set of model-measurement comparison statistics are presented for daily and annual concentrations of NO2, O3, 

PM10 and PM2.5 across the UK for a 10 year period.  

 

In general for epidemiology, capturing correlation is more important than bias and RMSE, and in this study model-

measurement temporal correlation of daily concentrations was generally better than expectations reported in the literature that 25 

take into account potential measurement uncertainties. Model-measurement bias varied according to monitor site classification 

with generally less bias at the rural and urban background sites compared with urban traffic sites. Bias was least overall for 

rural background sites. The greater consistency in temporal correlation with site type and across months and day of week, 

compared with variations in bias, is strongly indicative that the main driver of model shortcoming is inaccuracy of emissions 

(totals and the monthly and day-of-week temporal factors applied in the model to the totals) rather than in simulation of 30 

atmospheric chemistry and transport processes.  

 

Despite discussed limitations, these detailed analyses support use of model data such as these in air pollution epidemiology. 

Air pollution modelling at the spatial coverage and spatial resolution described here has the benefit of increasing study power, 

of providing data for air pollutant components that are either not, or only sparsely, measured and of enabling investigation of 35 

the potential effects of alternative future scenarios. 

 

 

Code and data availability 

This study used output from the EMEP4UK-WRF model which is a regional application of the European Monitoring and 40 

Evaluation Programme (EMEP) MSC-W model (available at www.emep.int, version vn4.3 used here) driven by meteorology 
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from the Weather Research and Forecast model (www.wrf-model.org) version 3.1.1. As described and referenced in Section 

2.1, the EMEP4UK model has increased spatial resolution over a British Isles inner domain and uses national emissions data 

for the UK. All EMEP4UK modifications are included in the official EMEP model. The model and measurement data used to 

derive the statistics presented in this work are archived at the University of Edinburgh at doi:xx.xxx/aaaaaaaaaaaaa. 
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Table 1: Numbers of UK AURN (Automatic Urban and Rural Network) sites satisfying the data capture criteria described in 

Section 2.2, together with model-measurement statistics (as defined in Section 2.4) for the 10-y means of NO2_daymean, 

O3_max8hmean, PM10_daymean, and for the 2-y means of PM2.5_daymean. The latter data provide a measure of the spatial 

agreement between modelled and measured pollutant concentrations across the UK.  

 5 

 n r FAC2 NMB MB / g m-3 RMSE / g m-3 

NO2_daymean (2001-2010) 

Rural Background 7 0.98 1.00 0.06 0.68 1.05 

Urban Background 37 0.68 0.84 0.31 9.52 11.85 

       

O3_max8hmean (2001-2010) 

Rural Background 17 0.21 (0.81a) 1.00 0.08 5.80 8.66 

Urban Background 30 0.73 1.00 0.27 15.08 15.91 

       

PM10_daymean (2001-2010) 

Rural Background 4 0.91 1.00 0.39 6.56 6.76 

Urban Background 20 0.58 1.00 0.06 1.26 2.74 

       

PM2.5_daymean (2009-2010) 

Rural Background 2 1.00 1.00 0.19 1.32 2.04 

Urban Background 28 0.58 1.00 0.27 3.51 3.78 

 
a Value of r when the outlier site for RB O3 measurements (Weybourne) is discounted. 

 

 

Table 2: Correlation of the normalised bias between model and measurement 10-y means of pollutant daily metrics (2-y 10 

mean for PM2.5) at a site with the latitude or with the 10-y mean temperature at that site. Correlations significant at p <0.05 

are highlighted in bold. RB, rural background; UB, urban background. No data for PM2.5 (RB) since only n = 2 sites. 

 

Pollutant n Correlation between normalised bias and stated variable 

Latitude Temperature 

NO2 (RB) 7 0.20 (p = 0.671) 0.16 (p = 0.730) 

NO2 (UB) 37 0.53 (p < 0.001) 0.37 (p = 0.026) 

    

O3 (RB) 17 0.24 (p = 0.353) 0.39 (p = 0.119) 

O3 (UB) 30 0.12 (p = 0.530) 0.08 (p = 0.674) 

    

PM10 (RB) 4 0.66 (p = 0.340) 0.68 (p = 0.324) 

PM10 (UB) 20 0.48 (p = 0.031) 0.40 (p = 0.078) 

    

PM2.5 (UB) 28 0.28 (p = 0.141) 0.43 (p = 0.022) 
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Table 3: Median (25th percentile, 75th percentile) values of the n individual-site model-measurement statistics of daily pollutant 

metric for the full 10-y period (2-y period for PM2.5), grouped by site type: RB, rural background; UB, urban background. Also 

shown are the minimum values for r, and maximum values for |NMB| and RMSE that satisfy model performance criteria 

(MPC) if there is uncertainty in the measurement. See footnotes and main text for further details. 

 5 

 

n r FAC2 NMB MB / g m-3 RMSE / g m-3 

 MPCa 

 
 r NMB 

RMSE / 

g m
-3

 

NO2_daymean 

RB 7 0.75  

(0.73, 0.78) 

0.86  

(0.82, 0.87) 

0.08  

(0.02, 0.12) 

0.94  

(0.35, 1.31) 

6.43 

(6.16, 7.06) 

    

UB 37 0.70  

(0.63, 0.77) 

0.73  

(0.61, 0.88) 
0.29  

(0.40, 0.15) 

9.18  

(14.60, 3.22) 

14.96 

(9.89, 19.12) 

    

           

O3_max8hmean 

RB 17 0.73  

(0.72, 0.76) 

0.97  

(0.96, 0.99) 

0.11  

(0.08, 0.12) 

7.22  

(5.66, 8.00) 

17.10 

(16.41, 17.97) 

 0.54a 

0.40b
 

0.32a 

0.37b
 

 

UB 30 0.76  

(0.74, 0.78) 

0.89  

(0.85, 0.94) 

0.26  

(0.18, 0.32) 

14.30  

(11.10, 17.87) 

21.82 

(18.64, 23.88) 

 0.69a 

0.51b
 

0.33a 

0.41b
 

 

           

PM10_daymean 

RB 4 0.47  

(0.46, 0.48) 

0.75  

(0.69, 0.82) 

0.43  

(0.26, 0.59) 

6.17  

(5.13, 7.60) 

13.62 

(12.92, 14.46) 

 0.48a 

0.33c
 

0.58a 

0.67c
 

 

14c
 

UB 20 0.50  

(0.45, 0.55) 

0.86  

(0.84, 0.88) 

0.03  

(0.01, 0.14) 

0.61  

(0.20, 2.69) 

12.35 

(11.92, 13.77) 

 0.44a 

0.33c
 

0.58a 

0.65c
 

 

20c
 

           

PM2.5_daymean 

RB 2 0.65  

(0.64, 0.65) 

0.66  

(0.55, 0.78) 

0.38  

(0.18, 0.59) 

1.32  

(0.54, 2.09) 

5.19 

(5.01, 5.37) 

    

UB 28 0.69  

(0.67, 0.73) 

0.81  

(0.76, 0.85) 
0.26  

(0.33, 0.22) 

3.43  

(4.74, 2.91) 

7.05 

(6.39, 8.03) 

    

 

a Model performance criteria as defined in Thunis et al. (2012) (see also fairmode.jrc.ec.europa.eu), with estimated MPC values 

for the daily PM10 and daily maximum 8-h O3 air pollutant metrics assuming constant relative uncertainty in measurements at 

the maximum allowed measurement uncertainties of 15% for the O3 metric and 25% for the PM10 metric specified in the EU 

air quality directive. 10 

b Estimated values of MPC for daily maximum 8-h O3 presented in Thunis et al. (2013) using measurement uncertainty that 

can vary with concentration being measured.  

c Estimated values of MPC for daily PM10 presented in Pernigotti et al. (2013) using measurement uncertainty that can vary 

with concentration being measured. 15 

  

Deleted: ; UT, urban traffic.

Deleted: presented by

Deleted: for satisfactory model-measurement comparisons

Deleted: given20 

Deleted: quality metric

Deleted: there is

Deleted: the measurement

Deleted:  The minimum values of r and |NMB| derived for the O3 

and PM10 metrics are assigned to the NO2 and PM2.5 metrics, 25 
respectively, and distinguished by putting in italics. See text for 

further details.

Deleted: ¶ ...

Moved up [1]:  (2012) 

Deleted: for details on the derivation of the criteria and the 30 
estimation of the values for these air pollutant metrics.¶



26 

 

Figure 1: Scatter plots of the 10-year means of the modelled and measured pollutant daily metrics at each site, grouped by site 

type, and with data markers shaded according to the latitude of the measurement site: (a) NO2; (b) O3; (c) PM10; (d) PM2.5. The 

solid and dashed lines are the 1:1, and the 2:1and 1:2 lines, respectively. The values of r, FAC2, NMB and RMSE associated 

with the data in each plot are given in Table 1. 
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Figure 2: Model-measurement statistics per site for NO2 daily mean concentrations during 2001-2010, by site type, and by (a-d) year, (e-h) month of year, and (i-l) day of week. (a), (e) and (i) 

are Pearson’s correlation coefficient (r); (b), (f) and (j) are fraction of data pairs within a factor of two (FAC2); (c), (g) and (k) are normalised mean bias (NMB); and (d), (h) and (l) are root 

mean squared error (RMSE) in g m-3. Dots show individual site statistics (n = 7 and 37 for RB and 

UB sites respectively), which are summarised in the superimposed box-plot whose shading demarcates the interquartile range (IQR) and whose whiskers extend to the largest and smallest value 

within 1.58 × IQR from the box hinges.  
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Figure 3: Model-measurement statistics per site for O3 daily maximum 8-h mean concentrations during 2001-2010, by site type, and by (a-d) year, (e-h) month of year, and (i-l) day of week. 

(a), (e) and (i) are Pearson’s correlation coefficient (r); (b), (f) and (j) are fraction of data pairs within a factor of two (FAC2); (c), (g) and (k) are normalised mean bias (NMB); and (d), (h) and 

(l) are root mean squared error (RMSE) in g m-3. Dots show individual site statistics (n = 17 and 30 for RB and UB sites respectively), which are summarised in the superimposed box-plot 

whose shading demarcates the interquartile range (IQR) and whose whiskers extend to the largest and smallest value within 1.58 × IQR from the box hinges.  
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Figure 4: Model-measurement statistics per site for PM10 daily mean concentrations during 2001-2010, by site type, and by (a-d) year, (e-h) month of year, and (i-l) day of week. (a), (e) and (i) 

are Pearson’s correlation coefficient (r); (b), (f) and (j) are fraction of data pairs within a factor of two (FAC2); (c), (g) and (k) are normalised mean bias (NMB); and (d), (h) and (l) are root 

mean squared error (RMSE) in g m-3. Dots show individual site statistics (n = 4 and 20 for RB and UB sites respectively), which are summarised in the superimposed box-plot whose shading 

demarcates the interquartile range (IQR) and whose whiskers extend to the largest and smallest value within 1.58 × IQR from the box hinges.  
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Figure 5: Model-measurement statistics per site for PM2.5 daily mean concentrations during 2009-2010, by site type, and by (a-d) year, (e-h) month of year, and (i-l) day of week. (a), (e) and (i) 

are Pearson’s correlation coefficient (r); (b), (f) and (j) are fraction of data pairs within a factor of two (FAC2); (c), (g) and (k) are normalised mean bias (NMB); and (d), (h) and (l) are root 

mean squared error (RMSE) in g m-3. Dots show individual site statistics (n = 2 and 28 for RB and UB sites respectively), which are summarised in the superimposed box-plot whose shading 

demarcates the interquartile range (IQR) and whose whiskers extend to the largest and smallest value within 1.58 × IQR from the box hinges.  
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