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“Spatiotemporal evaluation of EMEP4UK-WRF v4.3 atmospheric chemistry transport 

simulations of health-related metrics for NO2, O3, PM10 and PM2.5 for 2001–2010” by C. 

Lin et al. 

 

Responses to anonymous reviewer #1 

 

We thank the reviewer for their time spent in reviewing our paper. Below, we respond to all 

comments made. The reviewer’s comments are reproduced in their entirety, in italics.  

 

The article presents a thorough evaluation of EMEP4UK model results against measurements 

of the AURN monitoring stations. While a thorough validation is a major and essential task when 

using an air quality model this article does not present any new insights or methodology on how 

such a validation should be done. Furthermore some of the presented validation work is IMO 

not complete and flawed to some extent. More specifically I have following remarks: 

 

Response: We are pleased to read the reviewer’s comment that our paper “presents a thorough 

evaluation of the EMEP4UK model results against measurements of the AURN monitoring 

stations.” The reviewer then states that the article does not present any new insights or 

methodology on how such a validation should be done. In response we refer the reviewer and 

other readers of this discussion to the stated scope of Geoscientific Model Development, which 

encompasses articles reporting “full evaluations of previously published models” 

(http://www.geoscientific-model-development.net/about/aims_and_scope.html). Our article fits 

this scope: it reports, for the first time and for a temporally and spatially large dataset, the 

comparisons between output from the EMEP4UK model and observational data.  

 

The criticisms in the latter part of the reviewer’s comment above are repeated with more detail 

in their subsequent comments and we respond to them individually below. 

 

 

1) For some unclear reason the authors have omitted the root mean square (RMSE) statistic 

from their analysis. They base this e.a. on the Thunis et al., 2012 paper. However in this paper 

even in the abstract the first statistic encountered is RMSE. In general there is agreement that a 

combination of bias, R and RMSE are best suited as each of these focuses on a different type of 

possible error in the model results when compared to observations. 

 

Response: We are not clear why the reviewer thinks that our choice of the model-measurement 

statistics to present is based on the Thunis et al. (2012) paper. In our Introduction we cite several 

examples of the many studies that have discussed the choice of model-measurement statistic (for 

air quality studies), the work of Thunis and co-workers being amongst those we quote (P2, L5-

9). We wrote: “Much has been written on air quality model evaluation (see, for example, Vautard 

et al., 2007; Dennis et al., 2010; Derwent et al., 2010; Rao et al., 2011; Thunis et al., 2012; Thunis 

et al., 2013; Pernigotti et al., 2013), including publications arising out of international 

collaborative programmes such as AQMEII (Air quality modelling evaluation international 

initiative, http://aqmeii-eu.wikidot.com) and FAIRMODE (Forum for air quality modelling in 

Europe, http://fairmode.jrc.ec.europa.eu).” These and other studies highlight the very wide suite 

of possible model-measurement statistics that can be used. We emphasise many times throughout 

our paper the basis of our selection of model-measurement comparison to publish in this paper 

(both the model-measurement statistics and the air pollutant concentration averaging used in 

those statistics): namely that it was guided by the needs of the health burden and epidemiology 

community making first use of this large model dataset. The first two sentences and the fourth 

http://www.geoscientific-model-development.net/about/aims_and_scope.html
http://aqmeii-eu.wikidot.com/
http://fairmode.jrc.ec.europa.eu)/
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sentence of our Abstract make this clear: “This study was motivated by the use in air pollution 

epidemiology and health burden assessment of data simulated at 5 km  5 km horizontal 

resolution by the EMEP4UK-WRF v4.3 atmospheric chemistry transport model. Thus the focus 

of the model-measurement comparison statistics presented here was on the health-relevant 

metrics of annual and daily means of NO2, O3, PM2.5 and PM10 (daily maximum 8-hour running 

mean for O3). ”…“The two most important statistics highlighted in the literature for evaluation 

of air quality model output against policy (and hence health)-relevant standards – correlation and 

bias – were evaluated by site type, year, month and day-of-week.” We do not dispute that RMSE 

is also a relevant model-measurement comparison statistic. But it is not practical to include 

results for all possible comparison statistics, which is why we focused on the correlation and bias 

statistics that are important for the health specialists. To further emphasise and justify this 

application of our evaluation we provided four paragraphs of discussion on the correlation and 

bias statistics in relation to health studies from P15, L1 to P15, L36. We will provide further 

emphasis and justification for our metrics in revised Introduction and Methods sections. 

 

We refer to the work of Thunis et al. (2012) again in our Discussion section, in the context of 

commenting on the magnitudes of the model-measurement comparison statistics that may be 

expected for the type of air pollution model used in our work (see further comment on this 

below). 

 

 

2) On p. 13 line 10 - 14 the authors blame deviations between modeled and observed data 

(almost) completely on the observed data’s lack on representativenes and measurement error. 

Problems in representativenes are rather a problem of incompatibility: both model and 

observations are representative at a certain scale (neither of which is better than the other). 

However, these scales could (and are often) incompatible but this is neither the fault of model 

or observation. Measurement error is indeed a concern but in practice model error often by far 

exceeds the measurement error. 

 

We believe the reviewer puts an interpretation on our text here that is not what we state, and at 

the same time ignores one of the key messages we promote from our model-measurement 

comparison. The specific text to which the reviewer refers above reads: “Even for a well-

specified Eulerian model (in terms of input data, transport, chemistry, etc.), model-measurement 

agreement may not be perfect for (at least) the following two reasons: first, the model simulates 

a volume-averaged concentration whereas the monitor records the composition of the air in one 

part of that volume, which may or may not reflect the average concentration for the whole 

volume over the relevant time-averaging period; and, secondly, the measurement may be in 

error.” So we and the reviewer are in agreement that there is an intrinsic incompatibility in the 

spatial scale of model and measurement. At no point here, or elsewhere in the paper, do we claim 

that one is better than the other, or ‘blame’ deviations between modelled and observed data 

“(almost) completely on measurements.” We are simply reminding readers of this intrinsic 

incompatibility in scales, together with the reminder that measurements have an associated 

uncertainty. In fact, we do fully acknowledge model error at several points in our presentation 

and discussion of results, including in both the conclusions and in the abstract. We specifically 

emphasise (i.e. ‘blame’) shortcomings in emissions input into the model as being the dominant 

driver for the model-measurement deviations (shortcomings in absolute magnitudes in 

emissions, in their temporal disaggregation and in the averaging of emissions across a model 

grid). For example, this is the text we write in the Abstract:  “The directions of these biases are 

consistent with expectations of the effects of averaging primary emissions across the 5 km × 5 

km model grid in urban areas, compared with monitor locations that are more influenced by these 

emissions than the grid average. …The biases are also indicative of potential underestimations 
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of primary NOx and PM emissions in the model, and, for PM, with known omissions in the 

model of some PM components, e.g. wind-blown dust.”; and, as further example, this is the text 

we write in the Conclusions “….is strongly indicative that the main driver of model shortcoming 

is inaccuracy of emissions (totals and the monthly and day-of-week temporal factors applied in 

the model to the totals).” 

 

 

2) In line with the previous remark, after reading the text I have some doubts on whether the 

authors have understood the full extent of the methodology presented to the FAIRMODE 

community and outlined in the articles by Thunis et al. (2012) to which they refer. A sentence 

like p13 line 21" The presence of measurement certainty degrades the values that can be 

expected from air quality model measurement statistics" is a case in point: in the methodology 

proposed by Thunis et al. measurement uncertainty is used as the ’ruler’ by which model 

uncertainty is judged: more measurement uncertainty then effectively means that model results 

can also be more uncertain! 

 

Response: (We presume the reviewer intended to quote our text in their comment as “The 

presence of measurement UNcertainty degrades the values that can be expected from air quality 

model-measurement statistics”, which is what we wrote, rather than “The presence of 

measurement certainty degrades the values…” which is what the reviewer writes that we wrote.) 

We don’t understand why the reviewer thinks that we don’t understand the concept that the 

greater the uncertainty that may exist in measurements the poorer the model-measurement 

comparison statistics may be. We think our sentence fully encapsulates this concept. We refer to 

the work of Thunis and co-workers at this point in the Discussion as a very useful previously-

published ‘yard stick’ for the magnitudes of correlation coefficients and bias that might be 

expected for atmospheric chemistry transport model output vs. measurement (which are of 

similar construct to our model-measurement comparisons) when allowing for the possibility that 

there may be uncertainty in the measurement up to the level permitted under EU directives for 

reporting air pollutant measurements. We do not claim that these levels of uncertainties are the 

actual uncertainties in our particular set of measurements, but that if they were then these are the 

sorts of magnitudes of model-measurement statistics that might be expected.  

    

 

In the end I was therefore left somewhat disconcerted by the text. Amassing all these results in 

a, admittedly, clear form must have been a major undertaking but there is not really anything 

new here. Worse yet, the authors seem to have missed some of the points made in the articles 

that they refer. I therefore recommend not publishing this article. 

 

Response: We hope that our extensive responses above have addressed the reviewer’s concerns. 

In summary, the novelty of work is the publication of new model evaluation statistics derived 

from an extensive set of simulations from the EMEP4UK model, with deliberate focus on the 

model-measurement comparison needs of the health burden and epidemiology community users 

of these simulations. 
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2010. 
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gmd-2016-183  

“Spatiotemporal evaluation of EMEP4UK-WRF v4.3 atmospheric chemistry transport 

simulations of health-related metrics for NO2, O3, PM10 and PM2.5 for 2001–2010” by C. 

Lin et al. 

 

Responses to anonymous reviewer #1’s second comments (RC2) 

 

We thank the reviewer for their additional comments, to which we respond below. The 

reviewer’s comments are reproduced in italics.  

 

1) There are indeed many statistics some of which are ’quite exotic’ that can be used to assess 

model performance so one could argue that RMSE should not be included. However, in all 

articles quoted RMSE is included and this is not just because the authors had a big appetite for 

statistics but because this statistic ’completes the picture’ when assessing model performance in 

conjunction with the bias and correlation. Why not extend your analysis with the RMSE? 

 

Response: We do not dispute that RMSE is also an often-used model-measurement statistic, but 

we focused here on the correlation and bias statistics relevant for the health effects community 

using the output from these model simulations – as is stated in the abstract, with detailed 

epidemiological commentary on this in the Discussion section. (See also our response to the 

similar comment in our upload to the online Interactive Discussion section of this paper on 

30/09/16.) Reviewer #2 accepts the appropriateness of our material. Our paper contains a large 

number of tables and graphics of model-measurement statistics already. All the raw model and 

measurement values used to calculate our statistics will be available to allow anyone to calculate 

any additional model-measurement statistics.  

 

In the revised paper we have provided additional up-front confirmation of the model-

measurement statistics computed in this work with the addition of the following sentence at the 

end of the Introduction: “Two important statistics for evaluation of air quality model output for 

health studies – correlation and bias (see Discussion) – were evaluated by type of monitor 

location, year, month and day-of-week.” We have also changed the phrasing from “the two most 

important statistics” to “two important statistics” where similar text occurs elsewhere in the 

paper. 

 

 

2) There was indeed a typo in my comment: this should off course have been ’UNcertainty’. 

However the response the authors provide to the comment I gave concerning model vs 

observation uncertainty rather me in my conviction that they did not fully understand the concept 

proposed by Thunis et al. Let me try to explain. The concept of a Model Quality Objective (MQO) 

presented by Thunis et al. is that statistics used to describe model performance (bias, R or RMSE, 

...) in themselves do not allow an actual assessment of how good the model is performing. Thunis 

et al. therefore propose to use the observation uncertainty as a ’yard stick’ by which model 

uncertainty can be assessed. This e.a. implies that if model uncertainty is smaller than 

observation uncertainty there is no statistical basis for trying to improve the model in the sense 

that you’ll not be able to discern the improvement based on a comparison with measured values. 

This also means that if measurement uncertainty increases this does not ’degrade the values’ but 

rather result in that ’poorer’ model performance may still be acceptable. 

 

Response: We thank the reviewer for providing further explanation of the concept of the model 

quality objective presented by Thunis and co-workers. We maintain that we understand the 

concept, and that the issue is in the wording in some of the text we used to expresses our thoughts. 
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We understand that the measurement uncertainty is used as a ‘yard stick’ against which model 

uncertainty can be assessed and that if model uncertainty is smaller than measurement 

uncertainty then it will not be possible to discern any improvement in model performance, when 

model performance is being assessed against measurements. We accept that the use of the 

phrasing “degrade the values” in our original statement – “The presence of measurement 

uncertainty degrades the values that can be expected from air quality model-measurement 

statistics” – is misleading. We have now amended this sentence to read: “The presence of 

measurement uncertainty constrains the extent to which model-measurement statistics can be 

used to evaluate the performance of a model.” We have also amended the first sentence in the 

following paragraph from the original: “Table 3 shows that in the large majority of instances the 

values of model-measurement correlation and NMB from this EMEP4UK-WRF modelling 

exceed the threshold values described above for satisfactory model performance in the presence 

of measurement uncertainties at the levels assigned.” to now read: “Table 3 shows that in the 

large majority of instances the values of model-measurement correlation and NMB from this 

EMEP4UK-WRF modelling satisfy the model performance criteria values derived for 

measurement uncertainties at the magnitudes discussed above.” Phrasing in the relevant sentence 

in the abstract has also been modified to now read: “Model-measurement correlation and bias 

were generally better than values that incorporate realistic magnitudes of measurement 

uncertainties.” We have thoroughly re-read all text and believe there is nothing that is 

incompatible with the work of Thunis and co-workers. 
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“Spatiotemporal evaluation of EMEP4UK-WRF v4.3 atmospheric chemistry transport 

simulations of health-related metrics for NO2, O3, PM10 and PM2.5 for 2001–2010” by C. 

Lin et al. 

 

Responses to anonymous reviewer #2 (RC3) 

 

We thank the reviewer for their time spent reviewing our paper. Our responses to the comments 

made are given below. The reviewer’s comments are reproduced in italics here.  

 

The paper presents a thorough and well laid out evaluation of the performance of the 

EMEP4UK-WRF model by comparison with observations from the AURN network based on 

metrics most appropriate to assessment of health impacts. The assessment is thorough and 

results are presented for a range of station types, for different averaging periods and for a range 

of pollutants. Explanations are given and discussed for discrepancies between modelled and 

observed values, such as the model overestimation of O3 and underestimation of NO2. I believe 

the paper fits the remit of the journal, as set out in the GMD Aims and Scope, and I recommend 

some minor revisions be made as follows: 

 

Response: We thank the reviewer for their endorsement of the thoroughness and appropriateness 

of the material we present in the paper, and for their recommendation of its suitability for 

publication in GMD. We have made all requested minor revisions as indicated below. 

 

Introduction, page 2, line 27-29. The text is slightly confusing since the authors suggest they 

have undertaken epidemiological studies, although the current paper is not based on 

epidemiology, rather it is atmospheric chemistry modelling. If the authors are referring to work 

other than this paper, references should be given at the end of the sentence, or the text made 

clearer as to what is being referred to here. 

 

Response: We have both rephrased this sentence to make its message more direct and added a 

citation to an epidemiological study using these modelling data. The modified sentence now 

reads (page 2, lines 27-29): “As part of a multi-institution project on the health impacts of 

exposure to multiple pollutants, we have derived UK-wide distributions of surface air pollution 

at hourly temporal resolution over multiple years (2001-2010), at 5 km × 5 km horizontal 

resolution, using the EMEP4UK-WRF atmospheric chemistry transport model (ACTM) 

(Butland et al., 2016).” 

 

Page 3, line 17: please clarify daily mean as 24 hour mean here to remove any potential 

ambiguity.  

 

Response: The text has been modified at this point to “daily (i.e. 24-h) mean” so as to emphasise 

to the reader that the use of the phrase “daily mean” throughout this paper refers to the full 24-h 

mean.   

 

Section 2.4, page 6: The FAC2 metric is explained here but has been presented earlier in the 

paper without enough explanation (in Table 1 for example).  

 

Response: We have checked and Table 1 is the only place where the terminology ‘FAC2’ appears 

before its definition is given in Section 2.4. Also, although ‘FAC2’ is one of the column headings 

in Table 1, discussion of the data in this column of the table does not occur until the Results 

section of the paper, after the definition of FAC2 has been provided. Nevertheless, we appreciate 
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the reviewer’s comment that the reader’s attention is drawn to Table 1 earlier in the paper and 

that this could cause confusion. We have therefore inserted the additional text “(as defined in 

Section 2.4)” after the text in the caption of Table 1 that states that the table also contains a 

summary of measurement-model statistics. 

 

Introduction, line 4: Suggest add references to COMEAP 2009 report for PM.  

 

Response: The COMEAP (2009) reference has been added to the citations in this sentence. 

 

Line 18: suggest replace “and away from” with “or away from”.  

 

Response: The requested change has been made. 

 

Page 14, line 17: “trends” not “trend” 

 

Response: The requested change has been made. 

 

Table 1: Some of the abbreviations need expanding (e.g. FAC2) in the table heading since they 

are not addressed previously in the text. 

 

Response: The definition for the acronym AURN, the UK Automatic Urban and Rural Network, 

is now given in full in the caption to Table 1. For the meanings of the acronyms for the 

measurement-model statistics presented in Table 1 the reader is now directed via the table 

caption to Section 2.4 where the definitions of these statistics is given (see also response to a 

comment above).  

 

  

 

 

References cited in this response 

 

Butland, B. K., Atkinson, R. W., Milojevic, A., Heal, M. R., Doherty, R. M., Armstrong, B. G., 

MacKenzie, I. A., Vieno, M., Lin, C. and Wilkinson, P.: Myocardial infarction, ST-elevation and 

non ST-elevation myocardial infarction and modelled daily pollution concentrations: a case-

crossover analysis of MINAP data, Open Heart, 3, e000429. doi:10.1136/openhrt-2016-000429, 

2016. 

 

 

COMEAP: Long-term exposure to air pollution: effect on mortality, UK Department of Health 

Committee on the Medical Effects of Air Pollutants. ISBN 978-0-85951-640-2, 

https://www.gov.uk/government/publications/comeap-long-term-exposure-to-air-pollution-

effect-on-mortality, 2009
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Abstract  

This study was motivated by the use in air pollution epidemiology and health burden assessment of data simulated at 5 km  

5 km horizontal resolution by the EMEP4UK-WRF v4.3 atmospheric chemistry transport model. Thus the focus of the model-

measurement comparison statistics presented here was on the health-relevant metrics of annual and daily means of NO2, O3, 

PM2.5 and PM10 (daily maximum 8-hour running mean for O3). The comparison was temporally and spatially comprehensive 20 

covering a 10-year period (2 years for PM2.5) and all measurement data from the UK national reference monitor network, 

which applies consistent operational and QC/QA procedures for each pollutant (60, 49, 29 and 35 sites for NO2, O3, PM2.5 and 

PM10, respectively). The two important statistics highlighted in the literature for evaluation of air quality model output against 

policy (and hence health)-relevant standards – correlation and bias – were evaluated by site type, year, month and day-of-

week. Model-measurement correlation and bias were generally better than values that incorporate realistic magnitudes of 25 

measurement uncertainties. Temporal correlations of daily concentrations were good for O3, NO2 and PM2.5 at both rural and 

urban background sites (median values of r across sites in the range 0.70-0.76 for O3 and NO2, and 0.65-0.69 for PM2.5), but 

poorer for PM10 (0.47-0.50). Bias differed between environments, with generally less bias at the background sites and least 

bias at rural background sites (median normalised mean bias (NMB) values for daily O3 and NO2 of 8% and 11%, respectively). 

At urban background sites there was a negative model bias for NO2 (median NMB = 29%) and PM2.5 (26%) and a positive 30 

model bias for O3 (26%). The directions of these biases are consistent with expectations of the effects of averaging primary 

emissions across the 5 km × 5 km model grid in urban areas, compared with monitor locations that are more influenced by 

these emissions than the grid average. This effect was particularly pronounced for comparison against urban traffic monitors, 

which are deliberately located close to strong sources of NOx and PM. The biases are also indicative of potential 

underestimations of primary NOx and PM emissions in the model, and, for PM, with known omissions in the model of some 35 

PM components, e.g. some components of wind-blown dust. There were instances of monthly and weekday/weekend 

variations in extent of model-measurement bias. Overall, the greater uniformity in temporal correlation than in bias is strongly 

indicative that the main driver of model-measurement differences (aside from grid vs monitor spatial representivity) was 

inaccuracy of model emissions (both in annual totals and in the monthly and day-of-week temporal factors applied in the model 

to the totals) rather than simulation of atmospheric chemistry and transport processes. Since, in general for epidemiology, 40 

capturing correlation is more important than bias, the detailed analyses presented here support the use of data from this model 

framework in air pollution epidemiology. 

Deleted:  most

Deleted: found in past studies 

Deleted: allowed for45 

Deleted: representativity



10 

 

 

1 Introduction 

The adverse associations between ambient air pollution – especially particulate matter (PM), ozone (O3) and nitrogen dioxide 

(NO2) – and morbidity and mortality are well documented (WHO, 2006; COMEAP, 2009; WHO, 2013b; WHO, 2013a). Air 

pollution also causes substantial environmental and economic impact to ecosystems and crops (ROTAP, 2009; LRTAP 5 

Convention, 2010; Harmens et al., 2015).  

 

Whilst policies and legislation have been put in place to limit and mitigate the impacts of air pollution (Heal et al., 2012), there 

is increasing recognition that more effective protection of human health may be achieved by not focusing  on individual 

pollutants but  by taking a multi-pollutant approach (USEPA, 2008; Dominici et al., 2010). Compared with the traditional 10 

single pollutant focus (WHO, 2006), an approach  based on pollution mixtures has the advantage of enabling the complexity 

of exposures and health effects to be characterized more fully: it can help identify harmful emission sources, and it has potential 

to provide a more effective framework for air-quality regulation, for example by focusing on sources and pathways that 

influence several pollutants at once. There are analytical complexities in assessing the potential interactions between 

combinations of pollutants (Kim et al., 2007; Mauderly and Samet, 2009), including the paucity of measured exposure data, 15 

which are typically derived from relatively sparse monitoring sites that may measure different combinations of pollutants at 

different locations. Furthermore, monitor networks are usually established for compliance with legislation (e.g. deliberately 

sited close to, or away from, pollution sources), so may lack representativeness for characterising population exposure (Duyzer 

et al., 2015) leading to bias in air pollution epidemiology (Sheppard et al., 2012).  

 20 

Modelling can increase the availability of air pollution data (Jerrett et al., 2005). The current gold standard for air-quality 

modelling are process-based, deterministic atmospheric chemistry models (Colette et al., 2014). These seek to simulate the 

multitude of complex factors that govern the spatial and temporal variability in air pollutant concentrations, including the 

distributions of different emissions sources, local and long-range dispersion processes, in situ photochemistry and dry and wet 

deposition processes. 25 

 

As part of a multi-institution project on the health impacts of exposure to multiple pollutants, we have derived UK-wide 

distributions of surface air pollution at hourly temporal resolution over multiple years (2001-2010), at 5 km × 5 km horizontal 

resolution, using the EMEP4UK-WRF atmospheric chemistry transport model (ACTM) (Butland et al., 2016). This represents 

a unique dataset of ACTM simulations at this spatial and temporal resolution over this geographical coverage and time 30 

duration. The EMEP4UK-WRF model (Vieno et al., 2010; 2014; 2016) is a regional application of the European Monitoring 

and Evaluation Programme (EMEP) MSC-W model (Simpson et al., 2012). The EMEP model framework has been evaluated 

and used for many years in scientific support (Fagerli et al., 2015), in, for example, evaluation of emissions regulations within 

the UNECE framework (e.g. the Gothenburg Protocol) and the European Commission’s Clean Air for Europe (CAFE) 

programme (www.emep.int).  35 

 

The high temporal and spatial resolution output from the EMEP4UK-WRF model has many advantages for air pollution studies 

including: (i) provision of data at times and locations where monitoring data are not available; this has the dual benefit of 

increasing effective sample size in multi-pollutant health epidemiology and of reducing reliance on the assumption that a single 

monitor is representative of species concentrations over a large area; (ii) provision of data on individual particle chemical 40 

components in addition to the aggregated mass concentration of PM that is measured; (iii) the facility to explore many related 
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aspects such as geographical or demographic differences in exposures to air pollutant mixtures (and related issues of 

environmental justice), and (iv) the impacts of potential future emissions scenarios.  

 

It is important to have an understanding of the performance capabilities of any model, relevant to the use to which the model 

output is to be put. Much has been written on air quality model evaluation (see, for example, Vautard et al., 2007; Dennis et 5 

al., 2010; Derwent et al., 2010; Rao et al., 2011; Thunis et al., 2012; Thunis et al., 2013; Pernigotti et al., 2013), including 

publications arising out of international collaborative programmes such as AQMEII (Air quality modelling evaluation 

international initiative, http://aqmeii-eu.wikidot.com) and FAIRMODE (Forum for air quality modelling in Europe, 

http://fairmode.jrc.ec.europa.eu). The literature ranges from discussion of epistemological categories of evaluation to 

development of specific metrics and criteria for comparison between modelled and measured concentrations. Detail is not 10 

repeated here, other than to note that there are fundamental limitations to agreement between model and measurements, which 

include: uncertainties intrinsic to the measurements; limitations in model input data (e.g. emissions) and in other aspects of 

model descriptions of physical processes; and that models simulate a volume-average concentration whilst monitors measure 

at a specific location.  

 15 

The objective of this paper is to record detailed assessment of the modelled surface concentrations of O3, NO2 and PM2.5 and 

PM10 using metrics of these pollutants relevant to air pollution epidemiology and health burden assessment, namely the daily 

(i.e. 24-h) mean for PM and NO2 and the maximum daily 8-h running mean for O3. The measurements are taken from the UK’s 

Automatic Urban and Rural Network (AURN) of ‘real-time’ reference monitors. The key emphasis in this work is 

comprehensiveness and consistency: the model-measurement evaluation is UK wide, over an extended time period (10 years), 20 

and based on measurements subject to a single set of operational and QC/QA procedures for each pollutant. Two important 

statistics for evaluation of air quality for health studies – correlation and bias (see Discussion) – were evaluated by type of 

monitor location, year, month and day-of-week. 

 

2. Methodology 25 

2.1. Model data  

The EMEP MSC-W regional Eulerian ACTM is described in Simpson et al. (2012) and at www.emep.int. The EMEP4UK 

model providing data in this work (Vieno et al., 2014; Vieno et al., 2016) was based on version vn4.3, driven by meteorology 

from the Weather Research and Forecast model (www.wrf-model.org) version 3.1.1. The WRF model was constrained by 

boundary conditions from the US National Center for Environmental Prediction (NCEP)/National Center for Atmospheric 30 

Research (NCAR) Global Forecast System (GFS) at 1 resolution, every 6 hours. Nesting within the EMEP4UK model reduces 

horizontal resolution from 50 km × 50 km over a greater European model domain to 5 km × 5 km over an inner domain 

covering the British Isles plus adjacent parts of France, Belgium, Holland and Denmark, as illustrated in Vieno et al. (2014). 

Both WRF and EMEP4UK models use 20 vertical layers, with terrain following coordinates, and resolution increasing towards 

the surface (centre of the surface layer ~45 m). The vertical column extends up to 100 hPa (~16 km). The boundary conditions 35 

for the inner domain were taken from 3-hourly output from the European domain in a one-way nested setup, whilst for the 

European domain they were measurement derived and adjusted monthly (Vieno et al., 2010). Ground-level modelled species 

concentrations were calculated hourly at 3 m above the surface vegetation or other canopy by making use of the constant-flux 

assumption and definition of aerodynamic resistance (Simpson et al., 2012).  

 40 
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Anthropogenic emissions of NOx, NH3, SO2, primary PM2.5, primary PMcoarse (where PMcoarse is the difference between PM10 

and PM2.5), CO and non-methane VOC for the UK for each modelled year were taken from the National Atmospheric Emission 

Inventory (NAEI, http://naei.defra.gov.uk) at 1 km2 resolution and aggregated to 5 km × 5 km resolution. For the outer domain, 

the model used the EMEP 50 km × 50 km resolution emission estimates provided by the Centre for Emission Inventories and 

Projections (CEIP, http://www.ceip.at/). The annual total emissions were temporally split using prescribed monthly, day-of-5 

week, and diurnal hourly emission factors (the latter differing between weekdays, Saturdays and Sundays) for each pollutant 

and for each of the SNAP (Selected Nomenclature for Sources of Air Pollution) sectors (Simpson et al., 2012). Methane 

concentration was prescribed. Emissions estimates for international shipping were those from ENTEC UK Ltd. (now Amec 

Foster Wheeler) (ENTEC, 2010). Daily emissions from biomass burning were derived from the Fire INventory from NCAR 

version 1.0 (FINNv1) (Wiedinmyer et al., 2011). Natural emissions of isoprene, monoterpenes, dimethylsulfide (DMS), wind-10 

induced sea salt and NOx from soils and lightning, were as described in Simpson et al. (2012). Natural emissions of dust 

included Saharan dust uplift, but not of windblown dust within the model domain.  

 

The default EMEP MSC-W photochemical scheme was used, which contains 72 gas-phase species and 137 reactions; the 

gas/aerosol partitioning formulation was the model for aerosols reacting system (MARS) (Binkowski and Shankar, 1995). 15 

Simulation of secondary organic aerosol (SOA) formation, ageing and partitioning was via the 1-D volatility basis set 

(Donahue et al., 2006) with its implementation in the model as described by Bergström et al. (2012). The EMEP4UK model 

output for PM2.5 comprised the sum of the PM2.5 fractions of: elemental carbon (EC), ‘other’ primary PM in the emissions 

inventories (encompasses material such as flyash, and brake and tyre wear), sea salt, mineral dust, primary and secondary 

organic matter (OM), ammonium (NH4
+), sulphate (SO4

2) and nitrate (NO3
). PM10 is the sum of PM2.5 plus the PMcoarse 20 

fractions of EC, ‘other’ primary PM (as above), sea salt, dust, OM and NO3
. The split of NO3

 into PMcoarse and PM2.5 uses a 

parameterised approach dependent on relative humidity, as described by Simpson et al. (2012). It is acknowledged this split is 

somewhat uncertain, as discussed in Vieno et al. (2014). Despite the comprehensiveness of PM composition simulation, some 

known contributions are missing, in particular wind-blown dust. Traffic-induced road dust resuspension is likely 

underestimated. Also, as described in the next section, different measurement techniques and conditions incorporate different 25 

proportions of the ambient PM water content. Because of uncertainty in what measurements measure, and variability in 

measurement techniques employed through the time period of interest, we chose to use as model output the dry mass of PM. 

This contributes some unquantifiable variable negative model bias for PM2.5 and PM10.  

 

2.2. Measurement data  30 

Hourly measurements of the concentrations of NO2, O3, PM10 and PM2.5 at the AURN stations during 2001-2010 were 

downloaded and processed using the R package ‘openair’ (Carslaw and Ropkins, 2012) from the R workspaces provided and 

updated daily by Ricardo-AEA. Because of the emphasis in this study on data for health-related applications, the model-

measurement comparisons were principally based on the daily pollutant metrics recommended by the World Health 

Organisation (WHO, 2006), i.e., daily mean concentrations for NO2, PM2.5 and PM10 (NO2_daymean, PM2.5_daymean and 35 

PM10_daymean), and daily maximum running 8-h mean for O3 (O3_max8hmean).  

 

A data capture threshold of 75% was applied throughout the process of calculating statistics from the hourly measurements, 

as is standard protocol for EU data reporting (http://acm.eionet.europa.eu/databases/airbase/aggregation_statistics.html). For 

example, daily mean concentrations of NO2, PM2.5 and PM10 were only calculated when there were at least eighteen hourly 40 

measurements in a day. For O3, there had to be at least six hourly measurements in any 8-h window for an 8-h rolling mean to 

be calculated, and at least eighteen 8-h rolling means for a daily maximum 8-h mean to be valid.  
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Comparison with model output was only undertaken for AURN sites with ≥75% data capture rate over the whole 10-y period. 

This means that at least 2,739 out of 3,652 pairs of daily measured and modelled values were required for inclusion. For PM2.5, 

there were only four sites meeting the 75% data capture requirement over the ten years, so comparisons for PM2.5 were 

restricted to the period 2009-2010. 5 

 

AURN monitoring sites are classified according to their general location and proximity to particular sources of air pollution 

(https://uk-air.defra.gov.uk/networks/site-types). Sites classified as suburban background (only one or two sites per pollutant), 

suburban industrial (one site) and urban industrial (four sites or fewer depending on pollutant) were excluded from the model-

measurements comparison as being insufficient in number to provide meaningful comparison for these site classifications. 10 

Model-measurement comparison therefore focused on potential differences between rural background (RB), urban background 

(UB) and urban traffic (UT) sites. The numbers of each type of AURN site contributing data to this model-measurement 

comparison are summarised in Table 1. The names, coordinates, classifications and pollutant data captures of all sites supplying 

data for this work are given in Supplementary Information Table S1. 

 15 

The coordinates of each AURN station with valid measurements during the period 2001-10 was used to locate the 5 km × 5 

km grid of the EMEP4UK domain whose centroid was closest to the station. The WRF-modelled hourly 2-m surface 

temperature data at each AURN site were also extracted and converted to daily means.  

 

Measurements from the UK AURN adhere to EU Directives on reference instrumentation and QA/QC procedures. 20 

Concentrations of NO2 and O3 are derived from chemiluminescence and UV-absorption analysers, respectively. The ‘real time’ 

measurement of PM mass concentrations is technically more challenging than for O3 and NO2, and the instrumentation used 

in the UK varied during the 2001-10 period. After about 2008, the majority of measurements of PM10 and PM2.5 have been 

made by TEOM-FDMS (Tapered Element Oscillating Microbalance Filter Dynamics Measurement System) which has been 

demonstrated as equivalent to the EU reference method (Harrison, 2010). The TEOM-FDMS system records a value for both 25 

‘volatile’ and ‘non-volatile’ PM and it is the sum of these values that is used in this work. All the 2009-10 PM2.5 measurement 

data in this study are derived from TEOM-FDMS instruments. However, for PM10, prior to the introduction of the auxiliary 

FDMS unit, measurements were derived using the TEOM instrument alone. The inlet and element of these instruments were 

held at 50 °C to limit condensation of water, but this caused loss of some volatile components of PM10. All TEOM values were 

therefore multiplied by 1.3 before archiving to provide an estimate of the average loss of volatile components, as recommended 30 

by the EC Working Group on Particulate Matter (EC, 2001). PM10 values from the few TEOM-only instruments remaining in 

the AURN after the general introduction of FDMS units in 2008 have been scaled using the more sophisticated Volatile 

Correction Model (Green et al., 2009), rather than the single 1.3 scaling factor, to account for the loss of volatile components. 

PM10 data from the few Beta-Attenuation Monitor (BAM) instruments present in the AURN have been scaled by 1.3 if they 

had a heated inlet and 0.83 if they did not have a heated inlet.  35 

 

The objective of all these external scaling processes for these PM measurements has been to provide the best practical measure 

of ‘reference equivalent’ PM10 (and PM2.5) mass concentrations spatially and temporally across the AURN. Nevertheless, these 

instrumental issues introduce considerable additional uncertainty to the PM measurement data: first, scaling factors, where 

applied, are an average scaling in time and space whereas the real scaling that would have been required would have varied 40 

between sites and for different times at an individual site; secondly, there may be a discontinuity in the PM10 time series 

associated with instrument change at a particular site, and dates of instrument change varied across the network. Uncertainty 

in measurement-model comparison is also introduced by the use of dry mass PM as the model output. 

Field Code Changed

Field Code Changed

Field Code Changed

https://uk-air.defra.gov.uk/networks/site-types


14 

 

 

Irrespective of these changes to PM10 instrumentation, all PM, NO2 and O3 instruments in the AURN are maintained and 

calibrated in accordance with the QA/QC protocol for the UK ambient air quality monitoring network (http://uk-

air.defra.gov.uk/networks/network-info?view=aurn), and all data are subject to the network data review and ratification 

process before ‘ratified’ archiving.  5 

 

2.3. Evaluation of spatial aspects of model performance 

The coherence between long-term spatial patterns of modelled and measured concentrations was investigated through the 

correlation across sites of the 10-y (2-y for PM2.5) means of the daily pollutant metrics at each site.  

 10 

2.4. Evaluation of temporal aspects of model performance 

The daily pollutant metrics were grouped by day of week, month of year, and year of the 10-y period. Statistics were then 

calculated on the grouped pairs of daily model simulations and measurements for each pollutant at each site, and summarised 

by site type.  

 15 

Of the various statistics proposed for quantifying performance of air-quality models, correlation and bias, defined below, are 

consistently cited for evaluation against policy-relevant metrics of pollutant concentration (USEPA, 2007; Derwent et al., 2010; 

Thunis et al., 2012). In each of the following, the index i runs over the n pairs of model (Mi) and observation (Oi) concentrations 

per time series at each site. The term ‘observation’ is used, in this section only, synonymously with the term ‘measurement’ 

used elsewhere in this paper, to avoid ambiguity of an M label for model and for measurement. 20 

Pearson’s correlation coefficient (r): 

𝑟 =
1

𝑛−1
∑ (

𝑀𝑖−�̅�

𝑠𝑀
)𝑛

𝑖=1 (
𝑂𝑖−�̅�

𝑠𝑂
)  

�̅� and �̅�  are the mean of the modelled and observed concentrations respectively, and 𝑠𝑀 and 𝑠𝑂 are their respective sample 

standard deviations.  

Mean bias (MB) and normalised mean bias (NMB): 25 

   𝑀𝐵 =
1

𝑛
∑ 𝑀𝑖 − 𝑂𝑖
𝑛
𝑖=1  and         𝑁𝑀𝐵 =

∑ 𝑀𝑖−𝑂𝑖
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 

The FAC2 statistic, the proportion of all pairs of modelled and observed concentrations that are within a factor of two of 

each other, was also calculated. This statistic provides additional general indication of overall model skill. 

 

3. Results  30 

3.1. Evaluation of spatial aspects of model-measurement statistics 

Scatter plots of the individual-site model versus measurement 10-y means of NO2_daymean, O3_max8hmean, PM10_daymean, 

and 2-y means for PM2.5_daymean, by site type, are shown in Figure 1 and illustrate the extent of model-measurement spatial 

correlation across the UK. The data in these plots are additionally categorised according to the latitude of the monitor site. The 

numerical values of model-measurement correlation, FAC2, NMB and MB associated with each plot in Figure 1 are presented 35 

in Table 1. The correlation between the normalised bias and the latitude across all sites in a given panel of Figure 1 are given 

in Table 2. This table also presents the correlation between normalised bias and modelled 10-y mean temperature by site type 

and pollutant. The equivalent of Figure 1 with data categorised by mean temperature is shown in SI Figure S1.  
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3.1.1. NO2 

Figure 1a shows excellent model-measurement agreement in 10-y mean NO2 across RB sites (spatial correlation coefficient of 

0.98, regression slope and intercept of 1.10 and 0.0045 g m-3, n = 7). This is further emphasised by the low bias for 10-y 

mean NO2 at these 7 RB sites: MB = 0.7 g m-3, NMB = 0.06 and FAC2 = 1.00 (Table 1). Spatial correlation between modelled 5 

and measured 10-y mean NO2 was also high at UB sites (r = 0.68, n = 37) and at UT sites (r = 0.79, n = 16) (Figure 1a), 

although modelled NO2 concentrations were, on average, lower than measured concentrations at both types of urban sites. The 

model-measurement discrepancy was less across all statistics at UB sites (MB = 9.5 µg m-3, NMB = 0.31, FAC2 = 0.84) 

than at UT sites (MB = 34.2 µg m-3, NMB = 0.64, FAC2 = 0.13) (Table 1). The negative model bias at urban sites can be 

attributed to either or both underestimation of NOx emissions and the instantaneous dilution of NOx emissions into a 5 km × 5 10 

km model grid cell irrespective of where the monitor is positioned with respect to emissions of NOx in reality. If air at the 

urban monitor is more influenced by NOx emissions than represented by the model grid average then the model value will 

underestimate the contributions at the monitor from both primary emitted NO2 and secondary NO2 formed by reaction between 

primary NO and O3. This model grid dilution effect is particularly pronounced for comparison with monitors at UT sites which 

are deliberately sited close to strong sources of NOx.  15 

 

For both types of urban sites, model-measurement agreement was generally better at lower latitude sites, i.e. for sites in the 

south of the UK compared with sites in the north (Figure 1a). The slight increase in model negative bias for NO2 in the north 

does not appear to be related to the absolute concentration of NO2 since the differential is similar across a range of NO2 

concentrations at sites in the south and north. Normalised bias was significantly positively correlated with temperature (Table 20 

2, SI Figure S1b), i.e. less negative at higher temperature, which is consistent with the smaller negative bias for southern UK, 

since average temperature decreases with increasing latitude in the UK.  

 

3.1.2. O3 

Figure 1b shows that the modelled 10-y mean of daily max 8-h mean O3 concentration was greater than measured at all except 25 

one site (the coastal RB at Weybourne); but that all modelled and measured 10-y mean O3 concentrations were within a factor 

of two except at one UT site, London Marylebone Road, which is a kerbside site exposed to very high traffic flows. 

 

As for NO2, the model-measurement statistics for the 10-y mean O3 at RB sites were very good (NMB = 0.08, MB = 5.8 g 

m-3, FAC2 = 1.00, n = 17) and better than at the UB sites (NMB = 0.27, MB = 15.1 g m-3, FAC2 = 1.00, n = 30) (Table 1). 30 

The positive model bias for O3 at UB sites is presumably driven by the same issue as the negative model bias for NO2 at the 

UB sites: the dilution of model NOx emissions in urban areas into the 5 km × 5 km model grid means that the model 

insufficiently simulates the reactive removal of O3 by NO close to the urban monitor. Only two UT sites measured O3 so 

summary model performance statistics for these sites are not illuminating. The large model overestimation of O3 at the London 

Marylebone Road UT site is an extreme example of a regional model not being able to simulate the large local NOx emissions 35 

and consequent local NOx-O3 chemistry by the kerbside of this central London street with very heavy traffic. 

 

The lack of model-measurement spatial correlation in 10-y mean O3 concentration across all RB sites (r = 0.21, p = 0.428, n = 

17) (Figure 1b) is driven solely by the outlying model-measurement comparison at the Weybourne site, the cause of which is 

unknown. When this site is excluded, there is highly significant spatial correlation between model and measurement across all 40 

remaining RB sites (r = 0.81, p < 0.001, n = 16) (Table 1). There was also highly significant spatial correlation between 
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modelled and measured O3 concentration at UB sites (r = 0.73, p < 0.001, n = 30) (Figure 1b, Table 1), although the lower 

than unity gradient indicates a trend for a less positive bias at higher O3 concentrations. This is again a reflection of the NO + 

O3 reaction: higher O3 at an UB monitor is likely because the monitor is sited further from immediate sources of primary NO 

and so less susceptible to the localised (sub-model-grid) effect. Normalised bias in 10-y mean O3 was not correlated with 

latitude or long-term temperature at either RB or UB sites (Table 2, Figure 1b and SI Figure 1b). 5 

 

3.1.3. PM10 

The 10-y mean of daily-mean simulations of PM10 concentrations were all within a factor of two of the corresponding 

measurements for all sites (Figure 1c). The 10-y mean PM10 concentrations were well modelled at UB sites (NMB = 0.06, MB 

= 1.26 g m-3, FAC2 = 1.00, n = 20) and the spatial correlation across sites, whilst not particularly high, was statistically 10 

significant (r = 0.58, p = 0.007, n = 20) (Table 1). Modelled PM10 concentrations were higher than measured at RB sites (NMB 

= 0.39, MB = 6.6 g m-3, FAC2 = 1.00, n = 4) (Figure 1c, Table 1) but were also well correlated (r = 0.91, p = 0.092) despite 

the small number of comparison sites and small range in 10-y mean PM10 values across the RB sites. In contrast, 10-y mean 

PM10 was lower than measured at UT sites (NMB = 0.25, MB = 7.8 g m-3, FAC2 = 1.00, n = 5) (Figure 1c, Table 1) with 

no evidence of spatial correlation across the sites (r = 0.40, p = 0.502). The lower modelled values at UT sites is again due to 15 

the issue that primary PM emissions associated with traffic and other urban sources close to the UT monitor are in the model 

diluted and averaged across the 5 km  5 km grid resolution.   

 

In general there were no strong associations between model-measurement bias for 10-y mean PM10 and latitude, although there 

was significance for smaller bias at UB sites with higher latitude (r = 0.48, p = 0.031) (Figure 1c, Table 2) and, 20 

correspondingly, a tendency for smaller bias in cooler areas (r = 0.40, p = 0.078) (SI Figure 1c, Table 2).  

 

3.1.4. PM2.5 

Figure 1d shows that all 2-y mean modelled PM2.5 concentrations were within a factor of two of the corresponding site 

measurements, but that at nearly all sites the model yielded lower PM2.5 concentrations than were measured. (Even for the 25 

shorter time period used for PM2.5 comparisons there were only two RB sites with PM2.5 monitors so no further comment is 

made on these data.) The negative bias was smaller at UB sites (NMB = 0.27, MB = 3.5 g m-3, FAC2 = 1.00, n = 28) than 

at UT sites (NMB = 0.38, MB = 5.5 g m-3, FAC2 = 1.00, n = 5) (Table 1). There was a trend for model underestimation to 

be greater at sites with higher PM2.5 concentrations (Figure 1d). This trend, and the greater underestimation at UT sites, is for 

the same reason as given above for PM10: the inability of the regional model to capture the localisation of urban emissions, 30 

particularly close to traffic sources. The lower biases in model simulations of PM10 compared with PM2.5 is, at least in part, 

due to a positive model bias in the simulation of the sea salt component of PMcoarse, which is an important component of 

background PMcoarse in the UK (AQEG, 2005). In contrast to the other sites, there was a positive model bias at the RB site at 

Auchencorth Moss in Scotland. However, the long-term average concentration of PM2.5 at this site is very low (~5 g m-3) and 

only about half the next lowest measured PM2.5 concentration. Accurate measurement of these very low concentrations of 35 

PM2.5 is a considerable challenge (AQEG, 2012).   

 

Model-measurement spatial correlation of PM2.5 across UB sites was moderate but statistically significant (r = 0.58, p = 0.001, 

n = 28). As with PM10, there was no strong association between model bias for PM2.5 and geographical location (Table 2, 

Figure 1d and SI Figure 1d) although there was a tendency for smaller bias with higher latitude (r = 0.28, p = 0.141) and in 40 
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cooler areas (r = 0.43, p = 0.022). This may indicate a negative bias in simulating secondary PM components that have smaller 

concentrations in the north of the UK compared with the south which is more influenced by transport of these components and 

of their precursors from continental Europe (Vieno et al., 2014).    

 

3.2. Evaluation of temporal aspects of model-measurement statistics 5 

3.2.1. Statistics for daily metrics across the full simulation period 

Table 3 summarises the individual-site model vs measurement FAC2, NMB and r statistics, grouped by site type, for the 10 

years of daily NO2, O3, PM10 concentrations, and 2 years of daily PM2.5 concentrations. Statistics for an individual site are 

derived from up to 3,652 pairs of daily model-measurement data.  

 10 

The temporal variability in daily NO2 and O3 over the 10 years was well captured by the model at both RB and UB sites. The 

median (25th percentile, 75th percentile, no. of sites) model-measurement correlation coefficients for NO2_daymean across RB 

and UB sites were 0.75 (0.73, 0.78, n = 7) and 0.70 (0.63, 0.77, n = 37), respectively, whilst for O3_max8hmean they were 

0.73 (0.72, 0.76, n = 17) and 0.76 (0.74, 0.78, n = 30), respectively. Model-measurement NMB for NO2 and O3 at RB sites 

was also small. The median (25th percentile, 75th percentile) NMB across RB sites for the 10 years of NO2_daymean and 15 

O3_max8hmean were 0.08 (0.02, 0.12) and 0.11 (0.08, 0.12), respectively. The corresponding NMB data across UB sites were 

larger, 0.29 (0.40, 0.12) and 0.26 (0.18, 0.32) for NO2_daymean and O3_max8hmean respectively, with the explanations 

for the negative and positive bias values for NO2 and O3, respectively, at urban locations as described above.  

 

Table 3 shows that the agreement between modelled and measured temporal variability in daily PM2.5 over the 2 years of 20 

available data was also reasonable. The median (25th percentile, 75th percentile, no. of sites) model-measurement temporal 

correlation coefficients for PM2.5_daymean across RB and UB sites were 0.65 (0.64, 0.65, n = 2) and 0.69 (0.67, 0.73, n = 28), 

respectively. The correlations for PM10_daymean were poorer, with corresponding data for correlation coefficients across RB 

and UB sites for the 10 years of available data of 0.47 (0.46, 0.48, n = 4) and 0.50 (0.45, 0.55, n = 20). However, although 

temporal correlation was acceptable for PM2.5_daymean there was substantial bias, with median (25th percentile, 75th 25 

percentile) NMB values at RB and UB sites of 0.38 (0.18, 0.59) and 0.26 (0.33, 0.22), respectively (but note only two sites 

featured in the RB comparison). 

 

3.2.2. NO2_daymean grouped by different periods of time 

Figure 2 shows box-whisker plots summarising the individual site model-measurement FAC2, NMB and r statistics for daily 30 

mean NO2, with the daily data grouped by year, by month, and by day of week. All box plots indicate substantial inter-site 

variability in model-measurement statistics, but also differences in these statistics between site type and, in some instances, 

between the individual blocks of time over which the data are averaged.  

  

By year. Figure 2a shows there were no long-term trends in the model-measurement correlations of daily mean NO2 across the 35 

years, for rural or for urban sites. At RB sites, a high fraction of modelled daily mean NO2 was within a factor of two of the 

measurements, without inter-annual trend (10-y mean of the median FAC2 each year = 0.85) (Figure 2b). There was some 

inter-year variation in the model-measurement NMB at RB sites which, although near zero on average for years 2001-2003 

and 2007-10 (mean of median NMB = 0.03) was positive in years 2004-2006 (mean of median NMB = 0.18) (Figure 2c). The 

model accuracy at both types of urban sites showed a slight trend to lower FAC2 (Figure 2b) and greater negative NMB (Figure 40 
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2c) in years 2008-2010. The larger model-measurement bias in the latter, whilst similar values of correlation are retained, is 

potentially indicative of shortcomings in emissions totals in these latter years of the study.  

 

By month. The model-measurement statistics for daily mean NO2 exhibited some seasonal variability (Figure 2d-f). Figure 2d 

shows that there was a similar small seasonal variation in model-measurement correlation at all site types, with higher 5 

correlation coefficients on average in autumn and winter, and lower correlation coefficients in spring and summer. Correlation 

was fairly similar between site types, better on average for RB and UB sites and slightly poorer at UT sites. Model bias was 

smallest at RB sites, and whilst FAC2 at RB sites was fairly constant between months (Figure 2e), the median NMB at RB 

sites varied between a median of 0.07 in March and a median of 0.21 in October (Figure 2f). In contrast, in urban areas, 

model-measurement difference was least in winter months, December-January-February (mean of median FAC2 = 0.72 and 10 

0.28, mean of median NMB = 0.28 and 0.59, for UB and UT sites, respectively), and lowest in late spring and early summer 

(mean of median FAC2 = 0.67 and 0.06, mean of median NMB = 0.33 and 0.73, over May, June and July for UB and UT 

sites, respectively) (Figures 2e and 2f).  

 

These seasonal variations may have a variety of causes. In terms of chemical and meteorological effects, the NO + O3 titration 15 

effect already described will be greater in summer than in winter, and the model grid dilution effect will be exacerbated in 

summer by greater convective boundary-layer mixing. Some part of the explanation for poorer model-measurement accuracy 

in summary may also be due to shortcomings in the values of the monthly emission factors used in the model to disaggregate 

the annual emissions totals of NOx (and VOC). The more consistent temporal correlations across site types compared with bias 

is again consistent with issues with the specification of amount and dilution of local emissions into the 5 km model grids rather 20 

than issues with describing the meteorology.  

 

By day of week. Model-measurement correlation for daily mean NO2 was similar for all days of the week at all site types 

(Figure 2g). On the other hand, there were pronounced differences in NMB between weekday and weekend for both RB and 

UB sites (Figure 2i). NMB was more positive at weekends at RB sites than during weekdays, and NMB was similarly less 25 

negative at weekends compared with weekdays. The invariant day-of-week correlation but weekday/weekend differences in 

NMB again indicates that general meteorology is captured well by the model but that there may be shortcomings in the day-

of-the-week factors applied in the model to disaggregate the annual local NOx (and VOC) emission totals.  

 

3.2.3. O3_max8hmean grouped by different periods of time 30 

As with daily mean NO2, Figure 3 reveals some trends in model-measurement statistics for daily maximum 8-h mean O3 for 

data grouped by year, month, and day of week. There are only two UT sites for O3 comparisons, and one of these is the 

‘extreme’ kerbside site of London Marylebone Road, so data for UT sites are not discussed further.  

 

By year. Figures 3a-c show that the O3_max8hmean model-measurement statistics at RB and UB sites remained fairly constant 35 

over the years 2001-2010. Model-measurement correlations were similar at both types of sites (mean of median r = 0.76 and 

0.77 for RB and UB sites, respectively) (Figure 3a), but bias was less at RB than at UB sites (mean of median FAC2 = 0.98 

and 0.87, mean of median NMB = 0.10 and 0.33, respectively) (Figures 3b and 3c).  

 

By Month. Model-measurement correlation exhibited a pronounced seasonal variation (but which was similar for both RB and 40 

UB sites), with much better correlation in winter and summer than in spring and autumn (Figure 3d). On the other hand, model 

bias was generally lower in spring and summer than in autumn and winter, with the smallest bias in June, and the greatest in 
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October (Figure 3f). This seasonal variation in bias was more pronounced at UB sites than at RB sites. As discussed above for 

NO2, the seasonal trends in O3 model biases may be due to shortcomings in assigning seasonal trends to emissions of NOx and 

reactive VOC that together impact on regional O3 concentrations. However, many factors influence surface concentrations of 

O3, acting on different temporal and spatial scales (Royal Society, 2008), so the seasonal patterns in correlation and bias are 

likely the net consequence of a number of drivers. 5 

 

By day of week. Model-measurement correlation at both types of background sites did not show variation with day of the week 

(mean of median r = 0.74 and 0.76 for RB and UB sites, respectively) (Figure 3g). Correlation was much poorer at the 

Weybourne RB site (r = ~0.29), but, as noted above, the Weybourne comparison (which is only for O3) is clearly anomalous. 

Model-measurement bias at RB sites was largely similar across day-of-week (mean of median FAC2 = 0.97, mean of median 10 

NMB = 0.11), with slightly reduced positive bias on weekend days (Figures 3h and 3i). At UB sites, bias was greater during 

Tuesday-Friday (mean of median NMB = 0.30 and mean of median FAC2 = 0.87), but mean NMB reduced to 0.15 on Sundays 

and mean FAC2 increased to 0.95 (Figures 3h and 3i). The positive model bias at the urban sites, plus the improved model 

bias over the weekend, both indicate the issue of dilution into the 5 km  5 km model grid of urban NOx emissions and the 

consequent lack of capture of the NO reaction with O3 at sites influenced by traffic emissions (which are lower in the model 15 

at weekends).   

 

3.2.4. PM10_daymean grouped by different periods of time 

By year. Model-measurement correlations of daily mean PM10, grouped by year, did not show any inter-annual trend across 

the 10-y evaluation period or across the three site types (Figure 4a), except for enhanced correlations, on average, in 2003. 20 

Annual averages of model-measurement accuracy in daily PM10 showed some inter-annual variabilities (Figures 4b and 4c for 

FAC2 and NMB) but no trends across the 10 years.  

 

By month. Model-measurement comparison statistics for daily mean PM10 displayed strong seasonality at all three types of 

sites (Figure 4d-f). Correlations were similar for the three types of site, with the best correlation in summer and the worst in 25 

late autumn and winter (Figure 4d). In terms of bias, at RB sites PM10 concentration was best simulated in late summer (mean 

of median NMB = 0.04 for July and August), and most overestimated in late autumn (NMB = 0.69 for October) (Figure 4f). 

A similar seasonal pattern was apparent at the urban sites, but superimposed on a more general negative bias. Thus, at UB 

sites, PM10 concentration was underestimated in late summer, but overestimated in late autumn and winter, with better accuracy 

on average in the summer half of the year. At UT sites, negative bias for PM10 concentration was greatest in summer (mean of 30 

median NMB = 0.42 for July and August) and least in late autumn (NMB = 0.13 for October).  

 

By day of week. Patterns in day-of-week model-measurement statistics for daily mean PM10 (Figure 4g-i) showed some 

similarity with those for daily mean NO2 (Figure 2g-i). Model-measurement correlations were fairly consistent throughout the 

week and similar at all site types (Figure 4g) (a small reduction in correlation on Wednesdays at RB sites is likely simply a 35 

statistical artefact. There was no significant variation in model accuracy at RB with day of the week (Figures 4h and 4i), 

although there are only 4 sites for this comparison. At UB sites, PM10 concentration was simulated most accurately on 

weekdays (mean of median NMB = 0.01, mean of median FAC2 = 0.87) (Figures 4h and 4i), but was overestimated at RB 

sites (mean of median NMB = 0.41) and was underestimated at UT sites (mean of median NMB = 0.25). The positive bias at 

RB sites was probably due to the overestimation of sea salt, as mentioned above, and the underestimation at UT sites could be 40 

attributed to the dilution and underestimation of local primary PM10 from traffic sources, e.g., from tyre/brake wear. At 

weekends, positive bias in PM10 concentrations increased at UB sites, whereas the negative bias at UT sites reduced, suggesting 
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that the day-of-week emission factors used in the model might not adequately reflect actual weekday-weekend differences in 

emissions.  

 

Again, the general consistency in temporal correlation with site type and time period, compared with the variation in bias, is 

consistent with the main driver of model shortcoming being in accuracy of emissions (totals and temporal disaggregation) 5 

rather than in simulation of atmospheric chemistry and transport processes.   

 

3.2.5. PM2.5_daymean grouped by different periods of time 

By year. Figures 5a-c summarise the model evaluation statistics for PM2.5 daily means for the 2-y period of available monitor 

data (2009-10). The PM2.5 model-measurement comparison statistics are generally poorer in 2010 but two years is insufficient 10 

to draw any conclusion on inter-annual trend As for PM10 daily mean comparisons, there was positive bias for daily mean at 

RB sites (mean of median NMB = 0.39) and negative bias at UB and UT sites (mean of median NMB = 0.26 and 0.41 at 

UB and UT sites, respectively) (Figure 5c). However, PM2.5 was measured at only two RB sites, and at one of these, 

Auchencorth Moss in Scotland, the PM2.5 concentrations were substantially lower than at any of the other measurement sites. 

At least half of the modelled PM2.5 daily mean concentrations were within a factor of two of the measurements at all sites, 15 

except the RB site of Auchencorth Moss and the UT site of Bury Roadside (Figure 5b). Of the two RB sites, the model 

accurately simulated daily mean PM2.5 concentration at Harwell (mean NMB = 0.02, mean FAC2 = 0.90), but there was 

substantially positive bias at Auchencorth Moss (mean NMB = 0.81, FAC2 = 0.43). 

 

By month. Model-measurement correlation was generally better in the summer half of the year than in the winter half (e.g. 20 

mean of median r = 0.76 and 0.68, respectively, at UB sites) (Figure 5d). Similarly, there were greater values of FAC2 in 

spring and summer than in autumn and winter, particularly at UB sites (mean of median FAC2 = 0.86 and 0.78, respectively) 

(Figure 5e). On the other hand, model-measurement bias did not vary with season (Figure 5f). 

 

By day of week. In contrast to the other three pollutants, there was no obvious differences in model-measurement statistics 25 

between weekdays and weekend at any of the three types of site (Figure 5g-i), but there are substantially less comparison data 

for PM2.5 than for the other three pollutants.  

 

3.2.6. Hourly model-measurement statistics 

The focus in this work was model-measurement comparisons at daily and annual averaging resolution, but concentration data 30 

were available at hourly resolution and the Supplementary Information presents figures and discussion of the comparison 

statistics for NO2 and O3 averaged by hour of day. These data support the general observations presented above for the longer 

averaging periods, in particular that correlations between model and measurement hourly data were generally consistent 

throughout the day but that bias showed systematic variation, which is interpreted as error in the hour-of-day emissions factors 

used to disaggregate the annual NOx emissions totals in the model (and to over-dilution of the NOx emissions into the model 35 

grid compared to the siting of the monitor, particularly for UT sites).   
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4. Discussion   

The work presented here was motivated by the use of the EMEP4UK-WRF model output for air pollution epidemiology and 

health burden assessment; therefore the model-measurement comparison focused on health-relevant metrics for the most 

important ambient air pollutants: specifically the annual and daily means for PM10, PM2.5, NO2 and O3 (the daily maximum 8-

h mean for O3) (WHO, 2013a). The model-measurement comparison was comprehensive; all available data from all monitors 5 

in the UK’s national automated urban and rural network for 2001-2010 were used, which span the range of ambient 

environments in which people are exposed to air pollution in the UK. Focus was placed on two important statistics for 

evaluation of air quality model output against policy (and hence health) relevant standards: correlation (temporal and spatial) 

and bias (e.g. USEPA, 2007; Derwent et al., 2010; Thunis et al., 2012), as discussed further below.  

 10 

Even for a well-specified Eulerian model (in terms of input data, transport, chemistry, etc.), model-measurement agreement 

may not be perfect for (at least) the following two reasons: first, the model simulates a volume-averaged concentration whereas 

the monitor records the composition of the air in one part of that volume, which may or may not reflect the average 

concentration for the whole volume over the relevant time-averaging period; and, secondly, the measurement may be in error. 

A rural background monitor in homogenous terrain and well-away from local sources may be anticipated to be sampling air 15 

that is more homogenous over the 5 km  5 km model grid in which it is located than an urban traffic monitor that is deliberately 

sited close to a major source of air pollutant emissions and therefore not representative of the composition of the atmosphere 

averaged over the model grid. The representativeness of an urban background monitor for the air in the 5 km  5 km model 

grid in which it is located will be between these two extremes and to some extent dependent on the size of the urban area, as 

well as the distance of the monitor from specific local pollutant emission sources.        20 

 

The presence of measurement uncertainty constrains the extent to which model-measurement statistics can be used to evaluate 

the performance of a model. Thunis et al. (2012) developed a series of relationships that define minimum values for model-

measurement statistics, given a value, U, for measurement uncertainty; for example, |NMB| < 2𝑈/�̅� and 𝑟 > 1 − 2(𝑈/𝜎𝑂)
2. 

They then estimated minimum values for these statistics by taking example values for �̅�  and 𝜎𝑂  from more than 700 25 

monitoring stations around Europe (for 2009) and using the measurement data quality objectives for measurement uncertainty 

specified in the EU Air Quality Directive as values for U. For daily maximum 8-h mean O3 and daily mean PM10 these are 

15% and 25%, respectively (EC Directive, 2008). At these levels of measurement uncertainty, model-measurement correlation 

coefficients for daily mean PM10 as low as 0.40-0.48 (the range reflects the three different types of measurement site) still 

satisfy the model-measurement performance criterion (Thunis et al., 2012). For daily maximum 8-h mean O3 the minimum 30 

values for r to satisfy the criterion are in the range 0.54-0.69. Minimum values for |NMB| for daily mean PM10 are in the range 

0.57 to 0.58, and for daily maximum 8-h mean O3 are in the range 0.32 to 0.33 (Thunis et al., 2012). Values of these statistics 

for daily mean PM2.5 and daily mean NO2 are anticipated to be similar to those above for PM10 and O3, respectively. The above 

values are presented in Table 3 for comparison against the r and NMB values derived in the present model-measurement 

comparison. If measurement uncertainty is greater than specified in the EU data quality objectives, for example for 35 

measurement of concentrations lower than the relevant air quality limit value, as the majority of concentrations are, then lower 

values of r, and greater values of |NMB|, than quoted above define satisfactory model-measurement comparison (Thunis et 

al., 2013; Pernigotti et al., 2013). 

 

Table 3 shows that in the large majority of instances the values of model-measurement correlation and NMB from this 40 

EMEP4UK-WRF modelling satisfy the model performance criteria values derived for measurement uncertainties at the 

magnitudes discussed above. For example, the 25th percentile across sites of EMEP4UK-WRF model-measurement correlation 

for daily maximum 8-h mean O3 at RB and UB sites (r = 0.72 and 0.74, respectively) well exceed the values of 0.54 and 0.69 
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derived by Thunis et al. (2012). Likewise, the 75th percentile of EMEP4UK-WRF model-measurement NMB values for the O3 

metric (0.12 and 0.32 for RB and UB sites) are lower than the respective Thunis et al. (2012) values of 0.32 and 0.33. The 

EMEP4UK-WRF model-measurement statistics for O3 at the two UT sites are, however, poorer (Table 3). For, daily mean 

PM10 the 25th percentile values of EMEP4UK-WRF model-measurement correlation coefficients are very similar to those of 

Thunis et al. (2012), but EMEP4UK-WRF model-measurement NMB values are generally much lower than those of Thunis 5 

et al. (2012). The situation is similar (better for correlation) for PM2.5, when assigning the PM10 satisfactory performance 

values to PM2.5 also (Table 3). As described in Section 2.2, instrumentation for ‘real time’ measurement of PM10 and PM2.5 

has varied and in some instances has necessitated post hoc application of correction factors, which increases measurement 

uncertainty for these species compared with measurement of NO2 and O3.    

 10 

The UK AURN operates as a single network subject to standardised QA/QC procedures (as described in the Section 2) so 

measurement uncertainty might be expected to be lower than the values used by Thunis et al. (2012). On the other hand, this 

analysis of magnitudes of model-measurement statistics does not allow for uncertainty arising from lack of spatial 

representativeness of the measurement location within its model grid, as discussed already.  

 15 

Although the model-measurement statistics reported in this work are for the most part in line with or better than expectations, 

there were also instances of trends in statistics with site type, month-of-year and day-of-week. (In general there were no obvious 

inter-annual trends across the decade of comparisons.) There was generally less bias at the background sites compared with 

traffic sites, and bias was least overall for rural background sites (e.g. median normalised mean bias values for O3 and NO2 of 

0.08 and 0.11, respectively), reflecting the smaller likelihood for sub-grid variations in sources, dispersion and deposition to 20 

perturb concentrations at the monitor location away from the model grid average. There was a tendency for positive model 

bias for O3 at UB sites (median NMB = 0.26) and for negative model bias in NO2 (0.29) and PM2.5 (0.26) at these sites. The 

negative biases may reflect both underestimation of primary emissions of NOx and PM and a tendency for air at urban 

background monitor locations to be more influenced by the primary emissions in the vicinity than simulated by the model 

which effectively averages all emissions evenly across the 5 km  5 km grid in which the monitor is located. Unless the urban 25 

area is very large – greater than a few km in linear dimension – then the air even at a background site in the centre of that urban 

area is likely to be more influenced by local primary emissions than peripheral (suburban) parts of the urban area included in 

the model grid average. A further contributor to model negative bias for PM are known omissions in the model of some PM 

components, including particle-bound water and some sources of dust resuspension, as noted in Section 2.1.  

 30 

The positive model bias for O3 at UB sites is consistent with the explanations given above for the negative model biases for 

NO2 (and PM2.5). The dilution of the NOx emissions in urban areas into the 5 km × 5 km model grid means that the model 

underestimates the reactive removal of O3 by NO in the vicinity of the urban monitor. These sub-grid effects are particularly 

acute for roadside and kerbside sites which are deliberately sited close to strong sources of NOx and PM, and which cannot be 

resolved even by the comparatively high resolution of the EMEP4UK-WRF ACTM.  35 

 

Instances of trends in model-measurement bias with month or day of the week are described in the Results section. The 

generally good daily temporal correlations discussed already indicate that the model captured the day-to-day changes in air 

mass movements which are the strongest influences on surface concentrations of pollutants at this temporal resolution. The 

observed seasonal and weekday/weekend variations in bias (and of diurnal variations in bias – see Supplementary Information) 40 

are therefore strongly suggestive of shortcomings in the monthly and weekday/weekend (and hour-of-day) emissions factors 

applied in the model to disaggregate the annual total emissions supplied by the emissions inventories.     
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As stated at the outset, the motivation here was use of the EMEP4UK-WRF model output for health studies. In the context of 

use of concentration data for epidemiology, in the broadest terms correlation is more important than bias, and for the model 

output reported here, model-measurement correlations (both temporal and spatial) were generally considerably better, 

particularly for the gaseous pollutants, than bias statistics. Epidemiological studies of association of ambient air pollution with 

health require an estimate of exposure for each subject, most usually from measurements from monitors but increasingly from 5 

models. The difference between the estimates and a hypothetical gold standard, for example concentration outside the residence 

of each subject, is called exposure measurement error. (It is assumed here that it is the association of ambient pollution with 

health outcome at the small-area level that is important, because of the link to regulation (Dominici et al., 2000), rather than 

exposure at the level of the individual, and therefore issues of disparity between the concentration at a location and true personal 

exposure are not considered.) The consequences of measurement error are to reduce the power of the study to detect an 10 

association and to bias the magnitude of the association (Sheppard et al., 2005; Sheppard et al., 2012; Armstrong and Basagaña, 

2015).   

 

The agreement statistics determining the magnitude of this ‘blunting’ depends on the specific context. Study power is simplest, 

depending only on the correlation between the true and estimated exposure. Of the two main types of epidemiological studies 15 

of air pollution: in ‘spatial studies’ power is diminished according to the correlation of long-term true and estimated means 

over space; in ‘time series studies’ it depends on correlations of daily values over space. Thus the model-measurement 

correlations reported in Sections 3.1 and 3.2 have a fairly direct implication for study power in those two study types except 

that errors in the measured values as estimates of the mean over the population in the grid square (or wider area) are not allowed 

for. Because of this, the power of studies using modelled concentrations would be somewhat better than implied by the 20 

correlations reported (Butland et al., 2013).  

 

Low correlation of ‘true’ and estimated exposures also often reduces estimated size of association (e.g. relative risk per unit 

exposure), but other aspects of the error distribution also matter, notably the extent of Berkson or classical type (Butland et al., 

2013; Armstrong and Basagaña, 2015). It is difficult and beyond the scope of this paper, to separate Berkson and classical 25 

error, but in the absence of this it would be reasonable to consider the model-measured correlations as broad guides to bias in 

association as well as power. Perhaps surprisingly, additive bias (e.g. estimating concentration 10 units too high on average) 

has little effect in epidemiological studies, at least if the exposure-health association is assumed linear, as it usually is (although 

bias in association is also dependent on relative magnitudes of variance in ‘true’ and estimated exposures).   

 30 

As well as the good temporal correlations for daily pollutant metrics, the good spatial correlations between long-term averaged 

modelled and measured concentrations across UB sites for all four pollutants selected encouragingly suggests that the 

EMEP4UK-WRF modelled pollutant concentration may broadly reduce exposure measurement error caused by using pollution 

measurements from air pollution monitors far from the population under consideration. On the other hand, a bias error in the 

simulations contributes to uncertainty in the investigation of any threshold in concentration-health effect, and in health impact 35 

assessments that apply concentration-response functions to estimated concentrations of exposure.   

 

This study has worked with the EMEP4UK-WRF v4.3 model. Model-measurement statistics will be different for other models. 

However, other ACTM are similarly constructed and so the broad discussion points relating to intrinsic limitations to monitor 

versus grid-volume comparison statistics, unresolved sub-grid variabilities, and shortcomings in magnitudes and temporal 40 

trends in emissions are generalizable. Local dispersion models can better represent the sources and dispersion at high spatial 

resolution but these can only be configured for specific urban areas at a time, are similarly constrained by the accuracy of the 

spatiotemporal emissions data and require provision of boundary conditions of meteorology and atmospheric composition 
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(often supplied by an ACTM). Dispersion models have also been combined with land-use regression models (Wilton et al., 

2010; Michanowicz et al., 2016) but again for individual areas only. Some progress is being made in combining measurement 

(both ground-based and satellite) and model data through data assimilation (e.g. (MACC-II: Monitoring Atmospheric 

Composition and Climate - Interim Implementation  (www.gmes-atmosphere.eu/about/); Singh et al., 2011) and data fusion 

(Berrocal et al., 2011; Zidek et al., 2012; Friberg et al., 2016), but these approaches are computationally demanding, 5 

particularly for reactive species, and can only be applied to historic data. National-scale air pollution modelling as described 

here, despite acknowledged limitations for health studies (Butland et al., 2013), has the benefit of providing self-consistent 

chemical concentration fields, data for air pollutant components that are either not, or only sparsely, measured and provide the 

capacity to investigate the potential effects of alternative possible futures.  

 10 

5.  Conclusions 

This study was motivated by the use in air pollution epidemiology and health burden assessment of data simulated at 5 km  

5 km horizontal resolution by the EMEP4UK-WRF v4.3 atmospheric chemistry transport model. A spatially and temporally 

comprehensive set of model-measurement comparison statistics are presented for daily and annual concentrations of NO2, O3, 

PM10 and PM2.5 across the UK for a 10 year period.  15 

 

In general for epidemiology, capturing correlation is more important than bias, and in this study model-measurement temporal 

correlation of daily concentrations was generally better than expectations reported in the literature that take into account 

potential measurement uncertainties. Model-measurement bias varied according to monitor site classification with generally 

less bias at the rural and urban background sites compared with urban traffic sites. Bias was least overall for rural background 20 

sites. The greater consistency in temporal correlation with site type and across months and day of week, compared with 

variations in bias, is strongly indicative that the main driver of model shortcoming is inaccuracy of emissions (totals and the 

monthly and day-of-week temporal factors applied in the model to the totals) rather than in simulation of atmospheric chemistry 

and transport processes.  

 25 

Despite discussed limitations, these detailed analyses support use of model data such as these in air pollution epidemiology. 

Air pollution modelling at the spatial coverage and spatial resolution described here has the benefit of increasing study power, 

of providing data for air pollutant components that are either not, or only sparsely, measured and of enabling investigation of 

the potential effects of alternative future scenarios. 

 30 

 

Code and data availability 

This study used output from the EMEP4UK-WRF model which is a regional application of the European Monitoring and 

Evaluation Programme (EMEP) MSC-W model (available at www.emep.int, version vn4.3 used here) driven by meteorology 

from the Weather Research and Forecast model (www.wrf-model.org) version 3.1.1. As described and referenced in Section 35 

2.1, the EMEP4UK model has increased spatial resolution over a British Isles inner domain and uses national emissions data 

for the UK. All EMEP4UK modifications are included in the official EMEP model. The model and measurement data used to 

derive the statistics presented in this work are archived at the University of Edinburgh at doi:xx.xxx/aaaaaaaaaaaaa. 
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Table 1: Numbers of UK AURN (Automatic Urban and Rural Network) sites satisfying the data capture criteria described in 

Section 2.2, together with model-measurement statistics (as defined in Section 2.4) for the 10-y means of NO2_daymean, 

O3_max8hmean, PM10_daymean, and for the 2-y means of PM2.5_daymean. The latter data provide a measure of the spatial 

agreement between modelled and measured pollutant concentrations across the UK.  

 5 

 n r FAC2 NMB MB / g m-3 

NO2_daymean (2001-2010) 

Rural Background 7 0.98 1.00 0.06 0.68 

Urban Background 37 0.68 0.84 0.31 9.52 

Urban Traffic 16 0.79 0.13 0.64 34.16 

      

O3_max8hmean (2001-2010) 

Rural Background 17 0.21 (0.81a) 1.00 0.08 5.80 

Urban Background 30 0.73 1.00 0.27 15.08 

Urban Traffic 2 1.00 0.50 0.78 30.70 

      

PM10_daymean (2001-2010) 

Rural Background 4 0.91 1.00 0.39 6.56 

Urban Background 20 0.58 1.00 0.06 1.26 

Urban Traffic 5 0.40 1.00 0.25 7.79 

      

PM2.5_daymean (2009-2010) 

Rural Background 2 1.00 1.00 0.19 1.32 

Urban Background 28 0.58 1.00 0.27 3.51 

Urban Traffic 5 0.49 1.00 0.38 5.47 

 
a Value of r when the outlier site for RB O3 measurements (Weybourne) is discounted. 

 

 

Table 2: Correlation of the normalised bias between model and measurement 10-y means of pollutant daily metrics (2-y 10 

mean for PM2.5) at a site with the latitude or with the 10-y mean temperature at that site. Correlations significant at p <0.05 

are highlighted in bold. RB, rural background; UB, urban background; UT, urban traffic. 

 

Pollutant n Correlation between normalised bias and stated variable 

Latitude Temperature 

NO2 (RB) 7 0.20 (p = 0.671) 0.16 (p = 0.730) 

NO2 (UB) 37 0.53 (p < 0.001) 0.37 (p = 0.026) 

NO2 (UT) 16 0.48 (p = 0.058) 0.51 (p = 0.045) 

    

O3 (RB) 17 0.24 (p = 0.353) 0.39 (p = 0.119) 

O3 (UB) 30 0.12 (p = 0.530) 0.08 (p = 0.674) 

    

PM10 (RB) 4 0.66 (p = 0.340) 0.68 (p = 0.324) 

PM10 (UB) 20 0.48 (p = 0.031) 0.40 (p = 0.078) 

PM10 (UT) 5 0.35 (p = 0.558) 0.38 (p = 0.532) 

    

PM2.5 (UB) 28 0.28 (p = 0.141) 0.43 (p = 0.022) 

PM2.5 (UT) 5 0.25 (p = 0.681) -0.42 (p = 0.481) 
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Table 3: Median (25th percentile, 75th percentile) values of the n individual-site model-measurement statistics of daily pollutant 

metric for the full 10-y period (2-y period for PM2.5), grouped by site type: RB, rural background; UB, urban background; UT, 

urban traffic. Also shown are the minimum values for r and |NMB| presented by Thunis et al. (2012) for satisfactory model-

measurement comparisons for the given air quality metric assuming there is uncertainty in the measurement at the maximum 5 

allowed measurement uncertainties of 15% for the O3 metric and 25% for the PM10 metric specified in the EU air quality 

directive. The minimum values of r and |NMB| derived for the O3 and PM10 metrics are assigned to the NO2 and PM2.5 metrics, 

respectively, and distinguished by putting in italics. See text for further details. 

 

 
n r FAC2 NMB MB / g m-3 

 Min MPCa 

  r NMB 

NO2_daymean    

RB 7 0.75 (0.73, 0.78) 0.86 (0.82, 0.87) 0.08 (0.02, 0.12) 0.94 (0.35, 1.31)  0.54 0.32 

UB 37 0.70 (0.63, 0.77) 0.73 (0.61, 0.88) 0.29 (0.40, 0.15) 9.18 (14.60, 3.22)  0.69 0.33 

UT 16 0.55 (0.44, 0.62) 0.18 (0.09, 0.31) 0.66 (0.74, 0.57) 31.61 (43.42, 25.64)  0.68 0.33 

         

O3_max8hmean    

RB 17 0.73 (0.72, 0.76) 0.97 (0.96, 0.99) 0.11 (0.08, 0.12) 7.22 (5.66, 8.00)  0.54 0.32 

UB 30 0.76 (0.74, 0.78) 0.89 (0.85, 0.94) 0.26 (0.18, 0.32) 14.30 (11.10, 17.87)  0.69 0.33 

UT 2 0.58 (0.57, 0.60) 0.56 (0.45, 0.68) 0.95 (0.70, 1.19) 30.70 (27.74, 33.66)  0.68 0.33 

         

PM10_daymean    

RB 4 0.47 (0.46, 0.48) 0.75 (0.69, 0.82) 0.43 (0.26, 0.59) 6.17 (5.13, 7.60)  0.48 0.58 

UB 20 0.50 (0.45, 0.55) 0.86 (0.84, 0.88) 0.03 (0.01, 0.14) 0.61 (0.20, 2.69)  0.44 0.58 

UT 5 0.45 (0.40, 0.53) 0.77 (0.63, 0.80) 0.22 (0.33, 0.21) 7.12 (9.85, 5.97)  0.40 0.57 

         

PM2.5_daymean    

RB 2 0.65 (0.64, 0.65) 0.66 (0.55, 0.78) 0.38 (0.18, 0.59) 1.32 (0.54, 2.09)  0.48 0.58 

UB 28 0.69 (0.67, 0.73) 0.81 (0.76, 0.85) 0.26 (0.33, 0.22) 3.43 (4.74, 2.91)  0.44 0.58 

UT 5 0.73 (0.65, 0.75) 0.58 (0.56, 0.69) 0.41 (0.45, 0.37) 6.12 (6.68, 6.00)  0.40 0.57 

 10 

a Minimum model performance criteria. See Thunis et al. (2012) for details on the derivation of the criteria and the estimation 

of the values for these air pollutant metrics. 
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Figure 1: Scatter plots of the 10-year means of the modelled and measured pollutant daily metrics at each site, grouped by site 

type, and with data markers shaded according to the latitude of the measurement site: (a) NO2; (b) O3; (c) PM10; (d) PM2.5. The 

solid and dashed lines are the 1:1, and the 2:1and 1:2 lines, respectively. The values of r, FAC2 and NMB associated with the 

data in each plot are given in Table 1. 
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Figure 2: Model-measurement statistics per site for NO2 daily mean concentrations during 2001-2010, by site type, and by (a-c) year, (d-f) month of year, and (g-i) day of week. (a), (d) and (g) 

are Pearson’s correlation coefficient (r); (b), (e) and (h) are fraction of data pairs within a factor of two (FAC2); and (c), (f) and (i) are normalised mean bias (NMB). Dots show individual site 

statistics (n = 7, 37 and 16 for RB, UB and UT sites respectively), which are summarised in the superimposed box-plot whose shading demarcates the interquartile range (IQR) and whose 

whiskers extend to the largest and smallest value within 1.58 × IQR from the box hinges.  
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Figure 3: Model-measurement statistics per site for O3 daily maximum 8-h mean concentrations during 2001-2010, by site type, and by (a-c) year, (d-f) month of year, and (g-i) day of week. 

(a), (d) and (g) are Pearson’s correlation coefficient (r); (b), (e) and (h) are fraction of data pairs within a factor of two (FAC2); and (c), (f) and (i) are normalised mean bias (NMB). Dots show 

individual site statistics (n = 17, 30 and 2 for RB, UB and UT sites respectively), which are summarised in the superimposed box-plot whose shading demarcates the interquartile range (IQR) 

and whose whiskers extend to the largest and smallest value within 1.58 × IQR from the box hinges.  
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Figure 4: Model-measurement statistics per site for PM10 daily mean concentrations during 2001-2010, by site type, and by (a-c) year, (d-f) month of year, and (g-i) day of week. (a), (d) and (g) 

are Pearson’s correlation coefficient (r); (b), (e) and (h) are fraction of data pairs within a factor of two (FAC2); and (c), (f) and (i) are normalised mean bias (NMB). Dots show individual site 

statistics (n = 4, 20 and 5 for RB, UB and UT sites respectively), which are summarised in the superimposed box-plot whose shading demarcates the interquartile range (IQR) and whose whiskers 

extend to the largest and smallest value within 1.58 × IQR from the box hinges.  
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Figure 5: Model-measurement statistics per site for PM2.5 daily mean concentrations during 2009-2010, by site type, and by (a-c) year, (d-f) month of year, and (g-i) day of week. (a), (d) and 

(g) are Pearson’s correlation coefficient (r); (b), (e) and (h) are fraction of data pairs within a factor of two (FAC2); and (c), (f) and (i) are normalised mean bias (NMB). Dots show individual 

site statistics (n = 2, 28 and 5 for RB, UB and UT sites respectively), which are summarised in the superimposed box-plot whose shading demarcates the interquartile range (IQR) and whose 

whiskers extend to the largest and smallest value within 1.58 × IQR from the box hinges.  
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