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Abstract.

Earth System Models (ESMs) are becoming increasingly complex, requiring extensive knowledge

and experience to deploy and use in an efficient manner. They run on high-performance architec-

tures that are significantly different from the everyday environments that scientists use to pre and

post-process results (i.e. MATLAB, Python). This results in models that are hard to use for non5

specialists, and that are increasingly specific in their application. It also makes them relatively inac-

cessible to the wider science community, not to mention to the general public. Here, we present a

new software/model paradigm that attempts to bridge the gap between the science community and

the complexity of ESMs, by developing a new JavaScript Application Program Interface (API) for

the Ice Sheet System Model (ISSM). The aforementioned API allows Cryosphere Scientists to run10

ISSM on the client-side of a webpage, within the JavaScript environment. When combined with

a Web server running ISSM (using a Python API), it enables the serving of ISSM computations

in an easy and straightforward way. The deep integration and similarities between all the APIs in

ISSM (MATLAB, Python, and now JavaScript) significantly shortens and simplifies the turnaround

of state-of-the-art science runs and their use by the larger community. We demonstrate our approach15

via a new Virtual Earth System Laboratory (VESL) Web site.
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1 Introduction

Earth System Models (ESMs) across the Earth science community have become increasingly so-

phisticated, enabling more accurate simulations and projections of the Earth’s climate as well as the

state of the atmosphere, ocean, land, ice, and biosphere. As demonstrated by the Coupled Model In-20

tercomparison Project 5 (CMIP-5, Taylor et al., 2009, 2012) and its new iteration (CMIP-6, Eyring

et al., 2016) of the World Climate Research Programme (WCRP), the multiplicity of ESMs, and the

complexity of the physics they capture, is significant. The description of the outputs for CMIP-5

runs is 133 pages long by itself, showing the complexity and comprehensive nature of the processes

modeled in the ESMs that participated in the project. Any one of these models is massive both in25

terms of the number of lines of code, but also in terms of structure and modularity (or lack thereof).

GEOS-5 for example (Molod et al., 2015), one of the Atmosphere and Ocean General Circulation

Models (AOGCMs) that participated in CMIP-5, is made of 600,000 lines of Fortran code, compris-

ing 88 physical modules (as of Jan 2016). This is fairly representative of the complexity of ESMs

nowadays, and of the multiplicity of physical processes necessary to realistically model the evolution30

of the whole Earth System.

The above described complexity results in serious issues regarding the way simulations are run.

For example, what we generally define as pre-processing and post-processing phases are increasingly

different from the computational phase itself. The computational core is usually written in C or

Fortran, which easily supports parallelism and High Performance Computing (HPC). However, in the35

pre-processing phase, where datasets are processed into a binary file used by the computational core,

or in the post-processing phase, where simulation results are visualized, scientific environments such

as MATLAB or Python are increasingly relied upon. This results in additional complexity to manage

different environments: scientists are well-acquainted with the difficulties of porting their software to

HPC instances, while struggling to process the data inputs and results on local workstations where40

data upload/download can be a limiting factor, hard drive memory requirements substantial, and

problems due to the use of different APIs significant (MATLAB, Python, and IDL, among others).

Another complexity originating from the wide variety of physical processes represented in ESMs

is the difficulty in initializing a computational run. For example, in the Ice Sheet System Model

(ISSM, Larour et al., 2012), one of the land ice components of GEOS-5, developed at the National45

Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL), in collaboration

with University of California, Irvine (UCI), the initialization setup for the Greenland Ice Sheet (GIS)

transient simulations from 1850 to present day amounts to 3,000 lines of MATLAB code. This com-

prises model setup, data interpolation onto an ISSM compatible mesh, solution parameterizations,

and initialization strategies, among other things. This simulation, part of the Ice Sheet Modeling50

Intercomparison Project 6 (ISMIP-6 Nowicki et al., 2016) that accounts for ice sheets in CMIP-6,

is a fairly representative example of some of the most advanced simulations that can be run with
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an Ice Sheet Model (ISM). Such simulations cannot easily be systematized and need to be tailored

specifically for each ice sheet they are applied to.

One of the approaches that could mitigate some of the issues discussed above involves the devel-55

opment of computational frameworks capable of serving ESM simulations. This type of solution in-

volves running simulations that already include pre and post-processing phases (i.e.where the model

setup has already been carried out or is carried out by the server itself by uploading key datasets) and

in which the user is allowed to control only a few, key parameters. Similarly, once the computation

is carried out on the server-side, the results are post-processed automatically, and only significant60

results are provided to the user. This type of approach has already been explored, for example, in

areas relating to serving of large datasets, such as the NASA Earth Observing System Data and In-

formation System (EOSDIS) EarthData server, which provides a portal with integrated processing

capabilities for large scale datasets collected by NASA missions. However, fewer examples of this

kind of approach are available that serve simulation results, and to our knowledge, no comprehen-65

sive ESM, nor module thereof, has ever been integrated into a server solution capable of delivering

ESM computations on the fly. The reason for this is simple: the complexity of the physics involved

is significant, reconciling pre/post processing phases and simulation cores is inherently difficult, and

basing a simulation framework on server technologies represents a significant software development

challenge.70

Specifically, the bottlenecks that preclude deeper integration of ESMs within server infrastructures

include:

1. Bridging the gap between ESM formulations of the physical cores and Web technologies such

as HyperText Markup Language (HTML, World Wide Web Consortium, 1997) and JavaScript

(ECMA International, 2016), which are not scientifically oriented languages and are thus not75

inherently used by Earth scientists. Because ESMs are not natively integrated into Web tech-

nologies, it renders the link between server infrastructures and simulation engines difficult

2. The significant turnaround between generation and serving of simulations. This lag is due to

the fact that these two processes are inherently different in the way they are designed and,

moreover, are usually considered to be completely separate phases of what should, essentially,80

be the same process.

3. The distributed nature of Web simulations. Every step of an ESM run can be considered a

separate, logical component. For example, post-processing of a simulation may be done on a

different machine than the one that initially generated it.

4. The lack of existing integrated frameworks wherein simulations, pre and post-processing, and85

the serving of the data and/or simulation results all occur within the same architecture.

Here, we present a new approach applied to the ISSM framework, a land ice model of significant

size and complexity, to serve simulations relating to the evolution of polar ice sheets. Here, by serv-
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ing, we imply providing a way to run simulations interactively within a Web environment, without

any of the results ever being cached. Our solution is based on a new JavaScript API for the ISSM90

framework itself, allowing it to be fully integrated within an HTML webpage (described in Section

2) and to run local to the webpage. For models of larger size, we also show how we leverage the

existing ISSM Python API to run a web server (based on Apache and the FastCGI module) that

can run faster parallel computations, and to which the webpage client can upload model inputs and

download computation along with pre and post-processing results directly (Section 3). This new ap-95

proach allows for a quick turnaround between running simulations and porting such simulations to a

webpage interface for access to the wider science community (Section 4). We execute this approach

(Section 5) within the newly-designed Virtual Earth System Laboratory (VESL), demonstrating how

we can provide access to cryosphere-related simulations to the science community, and to the wider

public in general, thereby easily providing access to the wide array of modular physics embedded in100

ISSM. We conclude with a discussion of the potential of this new approach to both facilitate a wider

use of ESMs by scientists of varied disciplines and to shorten the gap between science simulations

and public outreach.

2 ISSM JavaScript API

Most ISMs are written in Fortran, C, or C++, for reasons related to computational efficiency and to105

the ease of integration within HPC environments using parallel libraries, such as Message Passing

Interface (MPI) via OpenMP (Gropp et al., 1996; Gropp and Lusk, 1996; OpenMP Architecture

Review Board, 2015). However, many simpler models exist that rely on different APIs, such as the

MATLAB code described in MacAyeal (1993) or the Excel-based Greenland and Antarctica Ice

Sheet Model designed for educational purposes (GRANTISM, Pattyn, 2005). These models have110

in common the desire to rely on a simple code base, and to reduce/optimize the set of physics

captured in the code, in order to make it more accessible. Our approach here, however, is to facilitate

accessibility without sacrificing the complexity and full-set of features of ISSM by implementing

a brand new API using the JavaScript language. The goal is to be able to integrate ISSM within

Web-based solutions, relying on JavaScript as a language that enables control of the behavior of an115

HTML webpage. In addition, by making the JavaScript API similar in all possible aspects to the

existing MATLAB and Python ISSM APIs, model runs and simulations can be transferred easily

to the Web, furthering our objective of disseminating ISSM to the larger scientific community and,

possibly, the general public through Web interfaces. It is to be noted that the new API being of

equivalent complexity (to capture the full range of physics) to the MATLAB or Python APIs, users120

that want to use this API should be fully knowledgeable with using ISSM in MATLAB or Python

already. This means that the new API does not make use of ISSM easier in terms of learning curve,

but makes it more flexible in terms of being deployed to the Web.
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The basis for representing a model in ISSM is a series of classes (mesh, mask, geometry, settings,

toolkits, etc.) that are carried into a global model class. The first task was, therefore, to translate125

all ISSM classes from MATLAB and Python into JavaScript. Fig. 1 shows an example of such a

translation for the mesh2d class (used to represent a 2D mesh triangulation comprising a list of

vertex coordinates x,y of size numberofvertices with corresponding lat,long coordinates,

a list of triangle indices called elements (of size numberofelements), and a projection code

using an EPSG Geodetic Parameter Dataset). The constructors are very similar, and there is a one-130

to-one correspondence between the mesh2d methods in both APIs. The example of the marshall

routine (which collects all the mesh info onto a binary buffer that will be sent to the ISSM C++ core)

shows the similarity between both codes, with differences in the syntax reduced to a bare minimum.

This equivalence is essential in preserving all of the physics captured in each class of ISSM, and

could only be achieved because MATLAB, Python, and JavaScript are similar in their syntax and135

grammar.

In a standard modeling analysis, scientists will develop their models and run within the MATLAB

(or Python) environment. Usually, outreach of the results will be done separately, in a different web

based environment, leading to inefficiencies and potential loss of information/accuracy between the

science analysis and the outreach itself. To remedy this issue, it is very convenient to provide an ef-140

ficient way to transfer a model directly from MATLAB to the JavaScript environment, where it will

be loaded easily using a standard ’include’ statement. This is implemented through the savemodel

routine for each subclass of the model class. As shown in Fig. 1 for the mesh2d class implemen-

tation, the savemodel routine allows users to write the MATLAB model to a JavaScript file. This

allows users to run simulations in MATLAB using ISSM, and, once the simulations are over, to save145

the MATLAB defined model into a JavaScript equivalent file. This routine, which closely matches

the constructor, is the key to shortening the transition time between the setup of an ISSM simulation

and its transition into a webpage environment. The fact that all of the information of a given class

is identical in both APIs demonstrates the comprehensiveness of the new JavaScript implementation

of ISSM, and that it achieves its goal of replicating ISSM within a webpage environment.150

In a standard model run, MATLAB classes (or Python) are used to setup the model, but the com-

putations themselves are carried out in C++. This C++ code is present at several levels: 1) For each

pre and post-processing module (or, wrapper) that requires significant computational power, such

as interpolation routines that transfer information between gridded dataset and unstructured Finite

Element Modeling (FEM) meshes typical of ISSM; and 2) For each of the computations pertaining155

to ice flow itself (the physical engine in ISSM), which we refer to as the ISSM core. For pre and

post-processing modules, the computations are assumed local to the workstation. For the ISSM core

itself, parallelization is inherent (using the MPI libraries), and this core usually runs on a parallel

cluster.
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When we look at this configuration and try and transfer this paradigm to a webpage environ-160

ment, we are however faced with two issues: 1) C++ code cannot be run native to a webpage easily

and 2) parallelism is not yet implemented in browsers, and would anyway result in heavy taxation

of CPU ressources (on local workstations/laptops/tablets), which is not practical. We therefore ap-

proached this issue in two ways: 1) we translated the entire C++ code (both modules/wrappers and

the ISSM core itself) into JavaScript for model runs that are small enough to be run locally; and 2)165

for models that are too large to run local, we implemented a way of uploading (using the JavaScript

classes) a model to a web server on the Amazon EC2 cloud, where computations are carried out

and returned to the JavaScript client once completed. The latter approach is described in the next

section. We here further describe the translation of the C++ modules and ISSM core into JavaScript

code. This translation was carried out using the Emscripten compiler (Zakai, 2011) . This compiler170

enables translation of C++ code directly into JavaScript, with computational efficiencies that are

within an order of magnitude of the translated C++ code. Listing 1 shows how Emscripten was inte-

grated within the existing Makefile structure of ISSM. All the pre and post-processing wrappers

(TriMesh, NodeConnectivity, ContourToMesh, ElementConnectivity, InterpFromMeshToMesh2d,

IssmConfig, EnumToString, and StringToEnum) as well as the ISSM core itself (issm) are com-175

piled into JavaScript executables using the C++ files and a set of Emscripten related flags (described

in the IssmModule_CXXFLAGS variable). This Makefile is similar to its MATLAB and Python

counterparts, with the exception of the issm core, which is compiled as a JavaScript module instead

of a C++ executable. This Makefile is integrated within Autotools (Vaughan et al., 2000), enabling

for quick activation of the compilation using a simple "--with-javascript" option during the180

configuration phase of the ISSM software.

The JavaScript modules and ISSM core are continuously tested against regression tests, similar

to the MATLAB and Python APIs (Larour et al., 2012). The integration framework for the tests

relies on Jenkins, an open-source automation server (Jenkins, 2016), which provides continuous

integration and delivery of validated ISSM code. The ISSM Jenkins webpage is available at https:185

//ross.ics.uci.edu:8080/, where the entire validation suite is in the process of being transferred to

JavaScript. This ensures that continuous development impacts all of the APIs in ISSM in a similar

fashion without imparting delays to the JavaScript API (due to the fact that it would be used by a

smaller base of ISSM users).

3 HTTP/Python Server190

Using the JavaScript API, it is possible to run a full-fledged simulation using any of the physical

modules described in Larour et al. (2012). However, to our knowledge, Emscripten does not yet

allow computations in parallel within a browser. This limits the range of model sizes and mesh

resolution to a level that compromises large-scale simulations. In these cases, our approach was to

6

https://ross.ics.uci.edu:8080/
https://ross.ics.uci.edu:8080/
https://ross.ics.uci.edu:8080/


rely on the cloud computing capabilities of ISSM, as described in Larour and Schlegel (2016), and to195

host a Web server that would deliver ISSM computations to any client running the ISSM JavaScript

API. This server relies on the Python API of ISSM to carry out computations ranging from tens to

hundreds of thousands of degrees of freedom, allowing continental-scale simulations. The server is

fully-elastic and scalable, and relies on the Amazon EC2 infrastructure (Inc, 2008), and can spin-up

Compute Optimized CC4.8x large instances (up to 64 threads of computational power) on demand,200

making it a robust solution for serving computations. Refer to Larour and Schlegel (2016) for more

details on this part of the architecture.

In terms of server configuration itself, our approach was to rely on the Python API of ISSM to

leverage the FastCGI Web interface, described in Market (1996), on an Apache server. This allows

requests coming into the Apache server from the client-side to be routed directly to a Python script.205

The Web client, running ISSM embedded inside JavaScript, can therefore upload a marshalled binary

input file (created by the call to the marshall routine of each model class, as described in Fig. 1) to

the EC2 instance Apache server, which then routes it to the Python script that launches the parallel

job.

Fig. 2 describes this process schematically, and compares it to what happens in more classic210

simulations relying on MATLAB and an HPC infrastructure, such as a cluster. The fundamental

differences between the traditional simulation paradigm and our new solution are: 1) The client ar-

chitecture, which runs either MATLAB or an HTML webpage with JavaScript; 2) The upload/down-

load of binary input files, which is done either through an SSH copy call or an XMLHttpRequest,

respective to the aforementioned client architectures; and 3) The launching of a given computation,215

which is handled via a queuing system on the head node or a FastCGI-relayed Python call on an

EC2 instance, again, respective to the client architecture. In terms of parallel computations, ISSM

executables are run using an MPI call in both cases. The strong similarity between both architectures

was purposefully designed so as to limit the amount of repeated code, and to ensure the robustness

of the computations themselves, which are transparent to the API they rely upon.220

4 All-In-One Design/Simulations

Listing 2 shows a typical model setup for a simulation in ISSM relying on the MATLAB API.

The steps include loading a model (or generating one using a mesher), modifying a certain input

parameter, setting up a cluster class (pointing to the parallel cluster) and calling the solve routine.

Once the results are carried out/downloaded, plotmodel is run to visualize them.225

An additional step can be carried out once a given MATLAB ISSM model has been built, wherein

the model is saved into a JavaScript file (md.js) in some webpage directory. This model can then be

used (as shown in Listing. 3) to run the exact same setup and simulation as is done with MATLAB,

but on the client’s machine. The HTML code for this simulation is typical of a webpage, and in-
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cludes: 1) Standard HTML markup (i.e. W3C-compliant html, head, and body objects); 2) Include230

statements for the ISSM binaries created by Emscripten, the model itself (md.js), and a sort of front-

end controller (engine.js, which controls the display of and interaction with the simulation on the

webpage); and 3) HTML elements such as a canvas where the results will be plotted (similar to the

figure statement in MATLAB), a second canvas for the color bar, and a button element to launch the

simulation. The listing for engine.js shows how similar the MATLAB and JavaScript setup are. Upon235

loading, if the RUN button is clicked, the value of a slider (the model input of interest) is retrieved

and then SolveGlacier called. The SolveGlacier() routine modifies the input parameter, sets up the

cluster class (pointing to the EC2 server), and calls the solve routine. After computations are carried

out and downloaded, a callback function PlotGlacier is triggered, which plots the model results onto

the aforementioned HTML canvas elements. If users do not want to rely on this particular routine240

for plotting, they can instead provide their own callback routine to plot using their own rendering

engine.

Fig. 3 shows an example of such a webpage hosting a simulation for the Columbia Glacier, Alaska.

In this particular example, the model input that is modified is the surface mass balance (SMB). This

parameter measures the amount of precipitation (in snow or water) at the surface of the ice, minus245

runoff of water from melting and evaporation. This parameter is essential in controling the input of

mass to the glacier. Once this input is modified, we can measure its impact on the response of the

glacier (the ice flow) through time. This response is a complex interplay between mass transport

processes and the stress equilibrium of the ice. The result is a new flow regime (speed), which ISSM

can compute and which can be visualized through a time evolution of the speed at the surface of the250

ice.

Here, the webpage is part of VESL, where the JavaScript API of ISSM was leveraged along with

the HTTP/Python Server architecture described previously to showcase the capabilities of ISSM to

serve computations on the fly and to visualize them instantly (Larour et al., 2016). The simulations

within VESL are all simulations that were carried out using ISSM for scientific publications. By255

adding a savemodeljs step at the end of the MATLAB simulation workflow, we were able to transfer

the model used for the simulations from the MATLAB environment onto the webpage. Once that was

done, we replicated a workflow similar to the MATLAB workflow in the engine.js code. With this

approach, it is possible to deploy a simulation like the one described above on a Web platform with

significantly shortened turnaround and using the exact same capabilities as the initial MATLAB so-260

lution itself. This breakthrough is only possible because of the duplication of the entire architecture:

again, by making JavaScript code that is logically equivalent to our MATLAB or Python constructs

and by mapping the whole workflow described in Fig. 2 from MATLAB/HPC infrastructures to

HTML/JavaScript/EC2. Our methodology paves the way to leveraging Web technologies and cloud

computing to host large-scale simulations of modeling engines such as ISSM, all without loss of the265

physical representation of processes nor scalability.
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5 Examples

Fig. 3 and Fig. 4 show examples of simulations that rely on the ISSM JavaScript API, and that

are hosted on the VESL Web site (Larour et al., 2016). VESL’s purpose is to twofold: to showcase

simulations that demonstrate ISSM capabilities, and to demonstrate the capabilities of our new Web-270

based modeling solution to the wider scientific community and general public. Several simulations

are hosted, leveraging the large set of capabilities in ISSM.

The first simulations pertain to the simulation of glacier flow, mainly from work on Haig Glacier

(Adhikari and Marshall, 2011) and Columbia Glacier (Gardner, Fahnestock, Larour, pers. comm.).

Fig. 3 shows the Columbia Glacier webpage, where SMB variations can be specified, with ISSM then275

computing the resulting impact on the glacier evolution over a period of 10 years. This simulation

includes all the physical processes that control the evolution of a glacier, and is fully representative

of the complex physics required in the analysis.

The second set of simulations pertain to ice sheet modeling in Antarctica and Greenland. Fig. 4

shows the webpage corresponding to the friction SeaRISE (Bindschadler et al., 2013) experiment280

over the entire Greenland ice sheet. In this simulation, the user can decrease the friction at the

ice/bedrock interface under the ice sheet and compute the resulting changes in steady-state velocity

at the surface. The model is fairly high resolution (12,000 elements), which allows for computationas

that are physically representative.

The third set of simulations pertains to Sea-Level Rise (SLR) modeling, relying on the ISSM-285

SESAW module (Adhikari et al., 2016) to compute gravitationally consistent sea-level and geodetic

signatures caused by cryosphere and climate-driven mass change. Presently, two sets of simulations

demonstrate: 1) Eustatic SLR and its impact on coastline migration in the USA; and 2) SLR from

eustatic, gravity, and elastic deformation on a global scale, wherein users can turn off specific sets of

SLR physics to understand the impact of gravitation on redistribution of SLR around the world and290

the impact of local elastic deformation of the Earth lithosphere.

Finally, a fourth set of simulations pertains to Solid Earth deformation, using the ISSM-GIA

(Adhikari and Marshall, 2011) module that captures Glacial Isostatic Adjustment (GIA) from ice-

sheet loading. It should be noted that this section is a work in progress.

One potential future section may feature recent work by the ISSM team involving the application295

of ISSM to other planets (namely, Mars’ ice caps). Given the relatively quick turnaround between

ISSM simulations and their porting to the Web using the ISSM JavaScript API, our hope is that

VESL will become a forum for cryosphere scientists to discuss ice sheet related science. In addition,

by enabling simplified interfaces on existing simulations that resulted in scientific publications, we

believe the general public might gain increased interest in this type of approach to better understand300

the complexities of science for the Earth system as a whole.
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6 Conclusions

We developed a fully-functional JavaScript API for the Ice Sheet System Model (ISSM), which

allows cryosphere scientists to carry out ice flow simulations within a Web environment. This API

gives access to the entire spectrum of physical processes captured by ISSM without compromising305

its complexity and richness. For simulations requiring parallel computing, the JavaScript API can

be leveraged against a computational server hosted on a cloud instance (such as Amazon EC2) to

deliver high-performance, large-scale, and high-fidelity simulations back to the Web client. This

new set of capabilities enables hosting of high-end simulations on the NASA/JPL ESL, effectively

solving a fundamental challenge of ESMs: delivering accessible, high-performance simulations in a310

timely manner is historically and inherently difficult. We believe that our approach paves the way

for the efficient deployment of feature-rich ESM’s, a quick turnaround between scientific work and

corresponding publications, and outreach not only the science community but also to the general

public.

7 Code Availability315

The ISSM code and its JS components are available at http://issm.jpl.nasa.gov. The instructions for

the compilation of ISSM in JS mode is presented in the supplement attached to this manuscript.
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Listing 1. Makefile for Javascript Emscripten compilation of ISSM.

EXEEXT= j s

j s _ s c r i p t s = ${ISSM_DIR } / s r c / w r a p p e r s / TriMesh / TriMesh . j s \330

${ISSM_DIR } / s r c / w r a p p e r s / N o d e C o n n e c t i v i t y / N o d e C o n n e c t i v i t y . j s \

${ISSM_DIR } / s r c / w r a p p e r s / ContourToMesh / ContourToMesh . j s \

${ISSM_DIR } / s r c / w r a p p e r s / E l e m e n t C o n n e c t i v i t y / E l e m e n t C o n n e c t i v i t y . j s \

${ISSM_DIR } / s r c / w r a p p e r s / InterpFromMeshToMesh2d / InterpFromMeshToMesh2d . j s \

${ISSM_DIR } / s r c / w r a p p e r s / I s smConf ig / I s smConf ig . j s \335
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${ISSM_DIR } / s r c / w r a p p e r s / EnumToString / EnumToString . j s \

${ISSM_DIR } / s r c / w r a p p e r s / Str ingToEnum / StringToEnum . j s \

${ISSM_DIR } / s r c / w r a p p e r s / Issm / i ssm . j s

bin_SCRIPTS = issm−p r e b i n . j s340

bin_PROGRAMS = IssmModule

issm−p r e b i n . j s : ${ j s _ s c r i p t s }

c a t ${ j s _ s c r i p t s } > issm−p r e b i n . j s

345

IssmModule_SOURCES = . . / TriMesh / TriMesh . cpp \

. . / N o d e C o n n e c t i v i t y / N o d e C o n n e c t i v i t y . cpp \

. . / ContourToMesh / ContourToMesh . cpp \

. . / E l e m e n t C o n n e c t i v i t y / E l e m e n t C o n n e c t i v i t y . cpp \

. . / InterpFromMeshToMesh2d / InterpFromMeshToMesh2d . cpp \350

. . / I s smConf ig / I s smConf ig . cpp \

. . / EnumToString / EnumToString . cpp \

. . / Str ingToEnum / Str ingToEnum . cpp \

. . / Issm / i ssm . cpp

355

IssmModule_CXXFLAGS= −fPIC −D_DO_NOT_LOAD_GLOBALS_ −−memory−i n i t − f i l e 0 \

$ (AM_CXXFLAGS) $ (CXXFLAGS) $ (CXXOPTFLAGS) $ (COPTFLAGS) \

−s EXPORTED_FUNCTIONS= " [ ’ _TriMeshModule ’ , ’ _NodeConnec t iv i tyModule ’ , \

’ _ContourToMeshModule ’ , ’ _E lemen tConnec t i v i t yModu le ’ , \

’ _InterpFromMeshToMesh2dModule ’ , ’ _IssmConfigModule ’ , ’ _EnumToStringModule ’ \360

, ’ _StringToEnumModule ’ , ’ _IssmModule ’ ] " −s DISABLE_EXCEPTION_CATCHING=0 \

−s ALLOW_MEMORY_GROWTH=1 −s INVOKE_RUN=0

IssmModule_LDADD = ${ deps } $ ( TRIANGLELIB ) $ ( GSLLIB )

11



Figure 1. Line by line comparison of the code behind the mesh2d class, within the MATLAB ISSM API (upper

frame) and the JavaScript ISSM API (lower frame). Routines followed by a dashed line have been folded for

ease of reading. 12
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Figure 2. Similarities between a standard ISSM run from a terminal running MATLAB and connected to a

high-performance cluster (HPC) and a web based ISSM run from a Webpage runing JavaScript, connected to

a Web server runing on an Amazon EC2 Cloud instance. In the first case (lower frames) a MATLAB instance

running on a local workstation terminal running marshalls an input binary file, which is then uploaded (using

an ssh call) to a master node on a cluster. The binary file is then queued into the system (using a qsub command

from a scheduler, for example). The parallel runs are then carried out using the ISSM executable and an MPI-

compatible environment. In the second case, a browser client makes an XMLHttpRequest and uploads a Binary

Large Object (the exact same binary file MATLAB would upload), which is received by an HTTP server (e.g.

Apache) running on an Amazon EC2 compute-optimized instance. The HTTP server then uses a FastCGI

module to interface to a Python wrapper, which automatically triggers a system call to the MPI environment

running the ISSM executable. In both cases, an output binary file is created by the ISSM executable, which is

then shipped back to the MATLAB instance or the client’s Web browser.

;365

Listing 2. MATLAB code for a typical simulation of the Virtual Earth System Laboratory (VESL).

% Load Model :

md= loadmode l ( ’ Models / md . mat ’ ) ;

% S o l v e :

13



md . smb . m a s s _ b a l a n c e = s m b _ i n i t i a l ;370

f o r i =1 :md . mesh . n u m b e r o f v e r t i c e s ,

md . smb . m a s s _ b a l a n c e ( i ) = md . smb . m a s s _ b a l a n c e ( i )+ smbvalue ;

end

md . c l u s t e r = g e n e r i c ( ’ name ’ , ’ l o c a l h o s t ’ , ’ np ’ , 8 ) ;375

md= s o l v e (md , T r a n s i e n t S o l u t i o n E n u m ( ) ) ;

%P l o t Model :

v e l =md . r e s u l t s . T r a n s i e n t S o l u t i o n ( 1 ) . Vel ;

p l o t m o d e l (md , ’ d a t a ’ , ve l , ’ l o g ’ , 1 0 , ’ f i g u r e ’ , 1 , ’ c o l o r b a r ’ , ’ on ’ , . . .380

’ o v e r l a y ’ , ’ on ’ , ’ images ’ , ’ r a d a r . png ’ ) ;

% Ex po r t t o JS model :

md . s a v e m o d e l j s ( ’md ’ , w e b s i t e r o o t ) ;

Listing 3. Equivalent (see Listing. 2) Hmtl/Javascript code for a typical simulation within the Virtual Earth

System Laboratory. Prototype webpage.

<html>385

< s c r i p t type =" t e x t / j a v a s c r i p t " s r c =" . / b i n / issm−b i n a r i e s . j s ">< / s c r i p t >

< s c r i p t type =" t e x t / j a v a s c r i p t " s r c =" . / s r c / e n g i n e . j s ">< / s c r i p t >

< s c r i p t type =" t e x t / j a v a s c r i p t " s r c =" . / j s / md . j s ">< / s c r i p t >

<body data−spy=" s c r o l l " data− t a r g e t =" nav " onload=" e n g i n e ( ) ; ">390

< ca nv as id =" co lumbia ">< / ca nv a s >

< div c l a s s =" b o r d e r e d margin−8 padding−8">

< ca nv a s id =" columbia−c o l o r b a r " c l a s s =" c o l o r b a r −v "> < / ca nv as >395

< / div >

< div id =" columbia−run " c l a s s =" b o r d e r e d margin−8 padding−8">

<button type =" b u t t o n " c l a s s =" i n t e r a c t i v e run−b u t t o n "

o n c l i c k =" S o l v e G l a c i e r ( ) "> RUN < / button >400

< / div >

< / body>

< / html>

f u n c t i o n e n g i n e ( ) {405

P l o t G l a c i e r ( ) ;

s l i d e r ( ’ va lue ’ , 0 , ’ c a l l b a c k ’ , f u n c t i o n ( v a l u e ) { smbvalue= v a l u e ; } ,

14



’ name ’ , ’ columbia ’ , ’ min ’ , −5 , ’max ’ , + 5 , ’ message ’ , [ ’SMB anomaly : ’ , ’m/ a ’ ] ,

’ s t e p ’ , . 1 , ’ s l i d e r s d i v ’ , ’ columbia−s l i d e r s ’ ) ;

}410

f u n c t i o n S o l v e G l a c i e r ( ) {

md . smb . m a s s _ b a l a n c e = s m b _ i n i t i a l . s l i c e ( 0 ) ;

f o r ( v a r i =0 ; i <md . mesh . n u m b e r o f v e r t i c e s ; i ++){

md . smb . m a s s _ b a l a n c e [ i ] += smbvalue ;415

}

md . c l u s t e r =new g e n e r i c ( ’ u r l ’ , s e r v e r + ’ / f a s t c g i / i s s m _ s o l v e . py ’ , ’ np ’ , 8 ) ;

md= s o l v e (md , T r a n s i e n t S o l u t i o n E n u m ( ) , ’ c h e c k c o n s i s t e n c y ’ , ’ no ’ ,

’ c a l l b a c k ’ , P l o t G l a c i e r ) ;

}420

f u n c t i o n P l o t G l a c i e r ( ) {

p l o t m o d e l (md, ’ data ’ , md . r e s u l t s [ 0 ] [ ’ Vel ’ ] , ’ log ’ , 1 0 , ’ c a n v a s i d # a l l ’ , ’ columbia ’ ,

’ c o l o r b a r ’ , ’ on ’ , ’ c o l o r b a r c a n v a s i d ’ , ’ co lumbia−c o l o r b a r ’ ,

’ o v e r l a y ’ , ’ on ’ , ’ image ’ , ’ . / images / r a d a r . png ’ ) ;425

}

15



Figure 3. Columbia Glacier ISSM simulation on the Virtual Earth System Laboratory (http://issm.jpl.nasa.gov/

earthsystemlaboratorynew). This particular simulation allows for the introduction of user-driven SMB anoma-

lies (using a slider ranging from -5 to +5 m/a) on the transient ice flow of Columbia Glacier. The computations

(upon clicking of the RUN button) are carried out on the ISSM computational server (where the model inputs

are uploaded, and from which the results are downloaded locally to the client’s Web browser). The transient

results are displayed as a movie, which can be controlled via user interface (UI) controls. The interactive ren-

dering of the velocity and thickness fields is done in 3D (or 2D, upon clicking of a toggle button) using the

ISSM WebGL rendering engine. The results are overlaid on a semi-transparent topographical rendering of the

SRTM DEM, and a background geotiff image from Gardner et al (pers. comm.). Model information can be

displayed by clicking the info button, allowing for extensive information on the model setup and the datasets

used to constrain the simulation.
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Figure 4. Greenland ISSM simulation on the Virtual Earth System Laboratory (ESL) (http://issm.jpl.nasa.gov/

earthsystemlaboratorynew). This particular simulation allows for the introduction of user-driven friction anoma-

lies (using a slider ranging from 5 to 100%) on the steady-state stress-balance velocities for the entire Greenland

Ice Sheet. The computations (upon clicking of the RUN button) are carried out on the ISSM computational

server (where the model inputs are uploaded, and from which the results are downloaded locally to the client’

Web browser). The steady-state velocities are displayed for each value of the friction coefficient that the user

chooses. The interactive rendering of the velocity field is done in 3D using the ISSM WebGl rendering engine.

The results are overlaid on a semi-transparent topographical rendering of ETOPO5 data (see reference: National

Geophysical Data Center (1988) for credits) and a background geotiff image from the Blue Marble: Land Sur-

face, Shallow Water and Shaded Topography project (see reference: NASA Goddard Space Flight Center, Reto

Stockli for credits).
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