
Manuscript prepared for Geosci. Model Dev.
with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls.
Date: 14 December 2016

The Oceanographic Multipurpose Software

Environment
:::::::::::::

OMUSE
::::::

1.0:
:::

a
:::::::::::::::::

framework
:::::

for

::::::::::::::::::

multi-model
::::::::::::::::::::::

oceanographic
::::::::::::::::::

simulations
:

Inti Pelupessy1,2, Ben van Werkhoven3, Arjen van Elteren2, Jan Viebahn1,
Adam Candy4, Simon Portegies Zwart2, and Henk Dijkstra1

1Institute for Marine and Atmospheric Research Utrecht, Utrecht University, The Netherlands.
2Leiden Observatory, Leiden University, The Netherlands
3The Netherlands eScience Center, The Netherlands
4Civil Engineering and Geosciences, Delft Technical University, The Netherlands

Correspondence to: Inti Pelupessy (f.i.pelupessy@uu.nl)

Abstract.

In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). This

framework aims to provide a homogeneous environment for existing or newly developed numeri-

cal ocean simulation codes, simplifying their use and deployment. In this way, OMUSE facilitates

the design of numerical experiments that combine ocean models representing different physics or5

spanning different ranges of physical scales. Rapid development of simulation models is made pos-

sible through the creation of simple high-level scripts, with the low-level core part of the abstrac-

tion designed to deploy these simulations efficiently on heterogeneous high performance computing

resources. Cross-verification of simulation models with different codes and numerical methods is

facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments10

is fostered by allowing complex numerical experiments to be expressed in portable scripts that con-

form to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules

and model components currently included, which range from a simple conceptual quasi-geostrophic

solver , to the global circulation model POP. We discuss the types of the couplings that can be

implemented using OMUSE and present example applications, that demonstrate the efficient and15

relatively straightforward model initialisation and coupling within OMUSE. These also include the

concurrent use of data analysis tools on a running model. We also give examples of multi-scale and

multi-physics simulations by embedding a regional ocean model into a global ocean model, and in

coupling a surface wave propagation model with a coastal circulation model.

1 Introduction20

Models of the global open ocean have now reached a mature state. Different models, such as MITgcm,

MPI-OM, POP, MOM, NEMO, which have been developed in large international collaborations, are

1



widely used in the community. These models constitute the ocean components in the current CMIP5-

type global climate models, with a horizontal resolution as fine as 25 km, focusing on projected

forecasts of future climate change (IPCC, 2013). They are also used in an ocean-only model con-25

figuration (Maltrud et al., 2010) at even higher resolutions (down to about 10 km) to adequately

resolve western boundary currents, such as the Gulf Stream, the Agulhas Current and Kuroshio, and

to explicitly represent meso-scale eddies.

At the coastal zone, very different models are required, incorporating, for example, tides, river

run-off, sediment transport and wave dynamics (e.g. Zijlema, 2010). In many cases, unstructured30

mesh models are used (Danilov, 2013; Leuttich and Westerink, 2004) in order to provide an accurate

representation (Candy et al., 2014) of complex and irregular domain bounds that strongly influence

local flows. An additional challenge in regional coastal ocean models, such as ADCIRC and SWAN,

is that they are not bounded entirely by a coastline and typically contain at least one boundary open

to the global ocean. These open ocean boundaries are usually handled with restoring functions that35

relax to observations (climatology or transient over a specific period in the past).

In order to evaluate the human-scale impacts of climate change, for example the effect of sea

level rise on coastal erosion (Cazenave, 2004), both the open ocean and coastal zone need to be

jointly considered. Increasing temperatures and the changes in wind field can give rise to changes in

ocean currents, which in-turn cause dynamical changes in sea level (Brunnabend et al., 2014). These40

conditions will affect the wave climate and may lead to changes in erosion at sandy coasts. To tackle

such problems one can proceed in three ways: nesting of a regional model into a global ocean model

(for example, by using the package AGRIFF1), by developing a model to simulate the physics of

both global and coastal flows, or by finding an efficient way to couple two different (e.g., open and

coastal) models together.45

In this paper, we follow the latter approach, borrowing from ideas in the astrophysical commu-

nity. In simulations of the formation of stars and galaxies, a wide variety of codes need to be com-

bined. For example, hydrodynamic codes (describing interstellar gas dynamics) are coupled with

N-body codes (for the gravitational dynamics of stars) and processes on different scales, ranging

from planetary to galactic, compete to determine the evolution of the coupled system. Given the50

need to correctly capture the interactions of the processes represented in the different codes, the

community has come up with a Python framework (AMUSE) allowing easy interaction of different

codes (Portegies Zwart et al., 2013; Pelupessy et al., 2013).

In oceanography similar problems for multi-scale and multi-physics are encountered, and a num-

ber of coupling frameworks exists in the earth system modelling community (e.g. Hill et al., 2004;55

Buis et al., 2006; Gregersen et al., 2007; Jacob et al., 2005; Larson, 2005; Peckham et al., 2013;

Valcke, 2013), These can be roughly divided into (Valcke et al., 2012) integrated and coupling li-

brary approaches, where the former splits codes into elemental units after which the framework

1http://www-ljk.imag.fr/MOISE/AGRIF/

2



merges them into a coupled executable, and the latter approach makes an API available to codes

such that concurrently running codes can share information. The example of AMUSE provides a use-60

ful alternative since it takes the approach of integrating different codes in a high-level programming

language (Python), using physically motivated programming interfaces to communicate with seper-

ately running instances of the simulation codes. This has the benefit of the parallelism and flexibility

provided by a coupling library approach, and the benefit of abstracting much of the bookkeeping in-

herent to code couplings using modern high-level constructs. In this way quite complex simulations65

can be described in compact scripts, that can be easily understood and easily distributed.

The aim of this paper is to present OMUSE, a framework which adapts the AMUSE approach for use

in the ocean modeling community. In section 2, the design and architecture of OMUSE is presented,

with a particular focus on data structures, unit conversion and grid remapping. The initial set of

codes included is presented in section 3. In section 4 we discuss the code coupling features of the70

OMUSE framework with particular emphasis on a quasi-geostrophic model as a conceptual test case.

In section 5, we present simple applications of OMUSE showing its capabilities. A summary and

discussion of these results concludes the paper (section 6).

2 Design and Architecture

As inherited from AMUSE, the basic idea of OMUSE is the abstraction of the functionality of simula-75

tion codes (the community code base) into physically motivated interfaces that hide their complexity

and numerical implementation. OMUSE provides the user optimized building blocks that can be com-

bined to design numerical experiments. The requirement of the high-level glue language is not so

much performance, but one of algorithmic flexibility and ease of programming. Hence, a modern

interpreted scripting language with object-oriented features, in our case Python (van Rossum, 1995),80

is the natural choice. Furthermore, Python has a large user and developer base in scientific comput-

ing, and many libraries are available. Amongst these are libraries for numerical computations, data

analysis and visualization, which can be used in an OMUSE scripts.

An OMUSE application consists, roughly speaking, of a user script, an interface layer and the

community code base (Pelupessy et al., 2013), as illustrated in Fig. 1. The user script is constructed85

by the user and defines a numerical experiment by specifying the initial data, the simulation codes

to be used and the interactions between the codes. It may include analysis or plotting functions, in

addition to writing simulation data to file. The setup and communication with a community code

is handled by the framework in the interface layer, which consists of a communication interface

with the community code as well as unit handling facilities and an object-oriented interface. The90

interface layer also ensures the consistency of the interactions with the various simulation codes by

maintaining a state model for each.

3



Figure 1. Design of the OMUSE framework. This schematic representation shows the design of the interface

to a community code (“code”) and the way it is accessed from the OMUSE framework. The code has a thin

layer of interface functions in its native language (e.g. Fortran) which communicates through an MPI message

channel with the Python host process. On the Python side, the user script (“OMUSE simulation script”) makes

only generic calls to a high-level interface. This high-level interface calls the low-level interface functions,

hiding details about units and the code implementation (the communication through the MPI channel does not

interfere with the code’s own parallelization because the latter has its own MPI_WORLD_COMM context).

Adapted from Pelupessy et al. (2013).

(1) qg=QG()

(2) qg=QG(debugger="gdb")

(3) pop=POP(number_of_workers=8)

(4) pop=POP(channel_type="distributed", hostname="Cartesius",

number_of_workers=600)

Figure 2. Examples of the instantiation of simulation codes within OMUSE. (1) simple instantiation on a local

machine of the QG, (2) instantiation of a code inside a debugger, (3) local instantiation of an MPI-parallel code

(POP), (4) instantiation of POP on a remote machine for a massively parallel high resolution run through the

distributed channel (see section 2.2).

Below we give an overview of the design and architecture of OMUSE (as inherited from AMUSE,

more details can be found in Pelupessy et al., 2013). The main developments compared with AMUSE

are, apart from the addition of oceanographic codes: improvements in grid support, amongst these95

support for curvilinear grids and extensive framework support for grid remappings and grid gener-

ation routines. In addition, a number of domain specific units and utility libraries and support for

various file formats, such as NetCDF (Rew and Davis, 1990) output, have been added.

4



2.1 Remote function interface

The interface to a community code is provided by a set of functions, each communicating with the100

code through a remote function protocol. Currently the default implementation in OMUSE of this

remote function protocol is based on MPI. A community code is started by the instantiation of an

interface object (Fig. 2), transparent to this. Python provides the possibility of linking Fortran or

C/C++ codes directly, however we found that a remote protocol provides two important benefits.

First, it provides for build-in parallelism
:::

(this
::::::::::

parallelism
::

is
::::::::

exploited
::

in
:::

the
:::::::

current
:::::

setup
:::

for
:::

the105

::::::

running
::

of
::::::

codes,
:::::::

although
::::

data
::::::::

transport
:::::::

between
:::::

codes
::

is
:::

not
:::

yet
::::

fully
:::::::

parallel,
:::

see
::::::

section
:::

6). The

choice for an intrinsically parallel interface is much preferable over an approach where parallelism

is added a-posteriori, because unless great care is taken in the design, features can creep in that

preclude easy parallelization later on. Secondly, a lot of existing simulation codes are not written

in a way that allows for multiple instances. They may, for example, use global variables or assume110

a single global state. This makes it unwieldy to instantiate multiple copies of the same code when

linking directly. Using remote function interfaces means that the codes run as separate executables,

and thus this problem cannot occur (in addition this prevent collisions between incompatible libraries

when the codes are built with different compilers).

Within the remote data communication channel, the MPI protocol can be replaced by a different115

method, two of which are currently available: a channel based on sockets and one based on eStep2

technology for distributed computing. At present, the sockets channel is mainly useful for cases were

a component process is to be run on one machine
:::

the
::::

same
::::::::

machine
::

as
:::

the
:::::

master
:::::

script. As its name

implies, it is based on standard TCP/IP sockets. The distributed channel is described in section 2.2

below. When using the MPI channel, different MPI implementations can be used (e.g. OpenMPI or120

MPICH), but not mixed.

The interface works as follows: when an instance of an imported simulation code is made, an

MPI process is spawned as a separate process somewhere in the MPI cluster environment. This pro-

cess consists of a simple event loop that waits for a message from the Python side. It will make

the requested
::::::::

simulation
::::

code
:

subroutine calls on the basis of the incoming message ID and any125

additional data that may follow the initial MPI message, and subsequently send the results back

(Portegies Zwart et al., 2013). Since there is no direct memory access, the interfaces themselves

must be carefully designed to ensure all necessary information for a given physical domain can

be retrieved. Additionally, the communication requirements between processes must not be too

demanding. Where this is not the case (e.g. when a strong algorithmic coupling is necessary) a130

different approach may be more appropriate.

Note that the interface design allows the parallelism of MPI parallel codes to be maintained even

when the communication channel uses MPI (OMUSE can be used to run massively parallel codes with

thousands of processes). This is guaranteed with the recursive parallelism mechanism in MPI-2. The

2http://estep.esciencecenter.nl

5



spawned processes share a standard MPI_WORLD_COMM context, which ensures that an interface135

can be build around an existing MPI code with minimal adaptation (Fig. 1). Other parallelization

paradigms, such as OpenMP, are also supported within OMUSE. In practice, for the implementation

of the interface for an MPI code, one has to reckon with similar issues as for the stand-alone MPI

application. The socket and distributed channels also accommodate MPI parallel processes. The

choice between the different available channels depends on the computing resources needed for a140

given run. For runs distributed over remote machines the distributed channel may be required, while

locally on a cluster the MPI channel often provides the most optimized communciation path.

2.2 Distributed computing

Current computing resources available to researchers are more diverse than simple workstations:

clusters, clouds, grids, desktop grids, supercomputers and mobile devices complement stand-alone145

workstations, and in practice one may want to take advantage of this ecosystem.

To run in such a "Jungle computing environment" (Seinstra et al., 2011), OMUSE implements
::::

also

a communication channel based on eStep technology (Drost et al., 2012). This channel starts a dae-

mon and connects with it, to communicate with remote workers. This daemon is aware of local and

remote resources and the middleware (e.g. SSH) over which they communicate. The daemon uses150

the Xenon library to start the worker on a remote machine, executing the necessary authorization,

queueing or scheduling automatically. Because OMUSE contains large portions of C, C++, and For-

tran, and requires a large number of libraries, it is not copied automatically, but it is assumed to

be installed on the remote machine. A binary-only release can be generated for resources, such as

clouds, that employ virtualization. With these modifications, OMUSE is capable of starting remote155

workers on any computer the user has access to, without significant effort required from the user.

From the user point of view, to use the distributed resources, any OMUSE script can be distributed by

simply adding properties to each worker instantiation in the script, specifying the channel used, as

well as the name of the resource, and the number of nodes required for this worker (see Fig. 2).

2.3 Unit conversion160

In order to simplify the handling of units, a unit algebra module is included in OMUSE (Fig. 3). This

module wraps standard Python numeric types or Numpy arrays, such that the resulting quantities (i.e.

a numeric value together with a unit) can transparently be used as numeric types (see the function

definition example in figure 3). Even high-level algorithms, like e.g. ODE solvers, typically do not

need extensive modification to work with OMUSE quantities (and in many cases work without any165

changes, if they are formulated in a dimensionally consistent way).

OMUSE enforces the use of units in the interfaces of the community codes. The specification of

the unit dimensions of the interface functions is part of the interface specification (much in the same

way as the data types of the functions). Using the unit-aware interfaces, any data that is exchanged

6



(1) q = 1. | units.Sv

dt= 1. | units.day

(2) (q*dt).as_quantity_in(units.m**3)

(3) (q*dt).value_in(units.km**3)

(4) def Reynolds_number(vel, length, visc):

return vel*length / visc

(5) R = Reynolds_number( 0.1 | units.cm/units.s, 1000. | units.km,

1.e-6 units.m**2/units.s)

Figure 3. An illustration of the use of the OMUSE unit algebra module, with (1) definition of a scalar quantity

using the | operator, (2) conversion of a quantity to different units, (3) conversion of quantity to float, (4)+(5)

definition of a function and its call using quantities.

within modules will be automatically converted without additional user input, or - if the units are not170

commensurate - a code exception is generated. Keeping track of different systems of units and the

various conversion factors when using different codes quickly becomes tedious. Enforcing the use

of units therefore eliminates an important source of errors.

2.4 Data model

The interfaces to the code send low-level data types (e.g. an array of floats) over the remote func-175

tion channel. While this is simple and closely matches the underlying C or Fortran interface, it

needs considerable duplicated bookkeeping
:::

one
:::::

needs
::

to
::::::::

duplicate
:::::

much
:::

of
:::

the
::::::::::::

’bookkeeping’
::::

(i.e.

:::::::::

organizing
:::

the
:::::::

different
::::::

arrays
:::

and
::::

their
:::::::::

indexing) in the user script if
:::

the
:::

low
:::::

level
::::

data
:::::

types
:::

are

used directly. Therefore, in order to simplify working with the codes, a data model is added to the

interfaces based on the construction of high-level objects that store the data (Fig. 4). Two base data180

stores are available: Particle sets and Grids (the main difference between these are that Particle sets

can be extended dynamically and are unordered, while Grids are fixed when generated, ordered and

can be multidimensional). These data stores can either reference memory in the main Python mem-

ory space (for sets defined independent of any code) or reference the data in the (possibly distributed)

memory space of the community code. Subsets can be defined on the sets without additional storage185

(see fig. 4, these subsets are implemented as views on the underlying local or remote data) and new

sets can be constructed using simple operations.

2.4.1 Grid support

Compared to AMUSE, OMUSE expands the support of grid data structures by introducing different

grid data types. All types of grids share the same base functionality, including grid sampling and190

slicing, the creation of save points, and the creation of grid copies that include part or all of the

grid attributes. The new grid types form a hierarchy (fig. 5), where each grid type has its own set

of (derived) grid attributes (such as cell sizes) and utility functions (for basic operations, such as

7



(1) grid=new_cartesian_grid((100,100))

(2) grid.ssh=0. units.m

(3) subgrid=grid[0:50,0:50]

(4) channel=QG.grid.new_channel_to( grid )

(5) channel.copy_attributes( ["psi"] )

(6) channel.transform( ["ssh"], lambda x:f0/g*x, ["psi"])

Figure 4. Example usage of the high-level grid data structure: (1) initialization of an empty Cartesian grid, (2)

defining an attribute, here a scalar field of sea surface height (3) subgrid generation by indexing, (4) definition

of an explicit channel from in-code storage to a grid in memory (5) update of grid attributes over the channel,

(6) functional transform over a channel.

StructuredGrid Unstructured Grid

Grid

RectilinearGrid

RegularGrid

CartesianGrid

Figure 5. Hierarchy of grid data types in OMUSE. Arrows denote inheritance of the corresponding classes in

OMUSE.

checking overlap or the extent of a grid). The grid types supported are: Cartesian (single, constant

cell size,
:::::

same in each dimension), Regular (constant cell size
:

,
:::::::

different
:

per dimension), Rectilinear195

(cell boundaries specified per dimension), Structured (cells specified by a grid of corner points) and

Unstructured (cell corners are specified for each cell individually).

2.4.2 Grid remappings

Grid remapping is a fundamental operation for coupled climate models, where heat and water fluxes

are periodically transferred between different component models, each using different grids inter-200

nally. In many cases, these remappings must be performed in an energy or mass conserving manner

to maintain the global conservation conditions of the coupled climate system. As such, OMUSE in-

terfaces with CDO for their implementation of a second-order conservative remapping scheme (see

section 3.2). However, different remapping backends can be used within OMUSE.

OMUSE extends AMUSE with support for remapping quantities between different grids (AMUSE205

included support only for copying data between two equivalent grids). OMUSE allows the user to

8



(1) pop = POP(...)

(2) source = pop.elements

(3) adcirc = Adcirc(...)

(4) target = adcirc.elements

(5) remapper = conservative_spherical_remapper(source, target)

(6) remapper.forward_mapping(["ssh"])

Figure 6. Example usage of the high-level grid remapping functionality in OMUSE. In this example, the grid

attribute ssh (for ‘sea surface height’) is remapped from the source grid to the target grid, both stored inside

the community codes, using a second-order conservative remapping scheme (the default). Unit conversions are

performed automatically by the interface of the receiving community code.

instantiate grid remapping objects. The remapper is initialized by setting the source and destination

grid and can be used to remap a list of grid attributes from one grid to the other.

The use of such a remapping object is illustrated in Fig. 6, where as an example, the sea surface

height values from one ocean model are remapped to the grid of another ocean model. Note that210

it does not matter (for the syntax) whether the grid values reside inside the community code or in

Python memory. In this example both grids are stored in the memory of the community code, and, if

needed, unit conversion of the values transferred between the models is automatically performed by

the interface of the receiving code, as explained in section 2.3.

Support for remapping between unstructured grids, is limited in the CDO library. Conservative215

interpolation of fields represented on unstructured mesh discretisations (Farrell et al., 2009) is being

generalised in the libsupermesh library (libSupermesh, 2016) and could be utilised in the future.

2.5 State model

The internal work flows of different codes are in general not the same, even if they represent similar

physics. This can be due to the differences in the algorithms or simply because of design choices. For220

example, a change in one of the grid variables may necessitate a reinitialization of variables in one

code, while in another code this may not be needed. It is easy to add the corresponding functions for

such reinitialization to the interface. The problem with this is that it introduces differences between

the interfaces, and is obviously error prone if controlled by the user. In order to manage this, the

interfaces in OMUSE can be supplied with a representation of the work flow of a code. This is done225

in the form of a graph consisting of model states as the vertices and the transitions between them

as the edges. Model states each have a set of allowable interface function calls. Such an interface

call can trigger a transition between states (and for each transition there is a respective interface

function). With this state model OMUSE keeps track of the state of a, changing the state when needed

(and calling the corresponding interface methods). The state model will change state automatically230

if an operation is requested that is not allowed in the current state. If the request can not be fulfilled

9



Figure 7. Example of a state model in OMUSE. The diagram gives the states that a simulation code can

be in. Transitions between these can be triggered by explicit calls to the corresponding function (e.g.

initialize_code from START to INIT) or implicitly (e.g. querying the grid state of a code may only be

possible in the RUN state, and in this case the framework will call the necessary functions in order to get to the

RUN state, guaranteeing a consistent state of the simulation code in the process). Adapted from Pelupessy et al.

(2013).

an error is returned. The state model is flexible: states can be added and removed as required. Most

codes can be made to conform to a simple state model similar to the six state model shown in Fig. 7.

2.6 Object-oriented interfaces

The object-oriented, or high-level, interfaces are the recommended way of interacting with the com-235

munity codes. They consist of the low-level MPI interface to a code, with the unit handling, data

model and state model on top of this. At this level the interactions with the code are uniform across

different codes and the details of the code are hidden as much as possible. A lot of the bookkeeping

(arrays / unit conversion
::::

such
::

as
:::

the
:::::::

explicit
:::::::

indexing
::

of
::::::

arrays
:::

and
::::

unit
::::::::::

conversions) is absent in the

high-level interface formulation. This makes the high-level interface much easier to work with and240

less prone to errors: the user does not need to know what internal units the code is using, and does

not need to remember the calling sequence nor the specific order of calls.

10



2.7 IO

Community codes that are included into OMUSE will usually contain subroutines to read in and write

simulation data. This
:::::

While
:::::

calls
::

to
::::

these
::::

can
::

be
:::::

added
:::

to
:::

the
::::::::

interface,
:::

this
:

functionality is prefer-245

ably not used within OMUSE. Instead, all simulation data is to be written and read from within the

OMUSE script (although in practice there can be reasonsto retain some of ,
:::

for
:::::::

example
::

to
:::

use
:::::::

existing

:::::::::::::

post-processing
::::::

scripts,
::

to
:::::

retain the original functionality as part of the interface). OMUSE includes

a default output format based on HDF53 that writes out all data pertaining to a data set, effectively

standardizing the IO for all the codes included in the framework. In order to simplify import and250

export of data, OMUSE contains a framework for generic I/O to and from different file formats. A

number of common file formats used in the oceanographic and climate modelling community are

implemented (ADCIRC grid files, netCDF), as well as generic table format file readers.

2.8 Data analysis

After a simulation, the generated data needs to be analyzed. Python has good numerical and plotting255

libraries available, such as Numpy and Matplotlib (Dubois et al., 1996; Hunter, 2007), and thus data

analysis can be easily incorporated into the OMUSE workflow. While the simulation codes are run-

ning their internal state (as exposed through the interface) is accessible. This provides opportunities

for efficient online data analysis, and also monitoring (or visualizing) the state of a running simula-

tion. Based on the state of the model, the simulations can also be scripted beyond what is originally260

implemented in the simulation code (examples of the latter are event-driven data output, or repeat

simulation / resampling according to predefined conditions).

3 Component modules

In the present version, OMUSE contains an initial set of ocean models, namely QG, ADCIRC, POP

and SWAN (ideally one would like te reach a ’Noah’s arc’ milestone, Portegies Zwart et al. (2009),265

of having at least two independent application codes per domain). The implementation in OMUSE of

the code interfaces is described in this section. The models cover different physics and / or a ranges

of validity. and allow for are a number of different couplings between them. They also represent

different levels of complexity in terms of code implementation, numerical schemes and a variety of

discretizations (described below). In addition to the simulation codes, OMUSE also contains support270

codes, including for example the CDO package introduced above in section 2.4.2 which is used to

implement remapping schemes between different grids.

3http://www.hdfgroup.org

11



3.1 Simulation codes

3.1.1 QG

OMUSE includes QG, a code to calculate the dynamics of quasi-geostrophic ocean flow. The flow on275

a β−plane with Coriolis parameter f = f0 +β0y is described by the barotropic stream function ψ

of the depth-integrated current velocity u= (u,v), with zonal velocity u=−∂ψ/∂y and meridional

velocity v = ∂ψ/∂x. QG solves the governing barotropic vorticity equation (BVE) for ψ (Pedlosky,

1996),

∂

∂t
∇

2ψ+ J(ψ,∇2ψ)+β0
∂ψ

∂x
=

1

ρ0H

(

∂τy

∂x
−
∂τx

∂y

)

−RH∇
2ψ+AH∇

4ψ, (1)280

where the Jacobian J , here representing the advection of relative vorticity, is defined by

J(F,G) =
∂F

∂x

∂G

∂y
−
∂F

∂y

∂G

∂x
, (2)

and τ = (τx, τy) represents the wind stress. QG can also solve for the first baroclinic mode of a

mode expansion of the continuously stratified quasi-geostrophic vorticity equation (Flierl, 1978).

The parameters ρ0 and H are the reference ocean density and reference ocean depth, respectively.285

RH and AH are the bottom and lateral friction coefficients. QG solves (1) on a rectangular domain

using a Cartesian grid. Boundary conditions consist of no-mass flux and/or no tangential stress (see

for example Dijkstra and Katsman, 1997).

The QG code is written in Fortran 90 and uses the Poisson solver from the fishpack4 or Intel

MKL5 libraries (depending on compiler). Although conceptually simple, QG provides an instructive290

case study for importing a code in OMUSE, with its relatively simple internal state and without the

complications of coordinate transformations, and serves as a template for other ocean models in

OMUSE.

3.1.2 POP

The Parallel Ocean Program (POP) is a parallel global circulation model for ocean flows that solves295

the three-dimensional primitive equations for a stratified fluid using the hydrostatic and Boussinesq

approximations (Smith et al., 2010). POP is often used to calculate strongly eddying ocean circula-

tion models. However, resolving eddies on a scale that captures the instabilities that lead to ocean

eddies requires the use of a high-resolution grid. Such high-resolution runs are computationally ex-

pensive, and POP is also frequently used for simulations at lower resolutions, in this case the effect300

of eddies is captured using sub-grid parameterizations (Gent and McWilliams, 1990).

The POP grid is a structured 2D grid in the horizontal dimensions, usually in a dipolar or tripolar

configuration. POP requires that the grid dimensions are set at compile time. Therefore, we currently

4www2.cisl.ucar.edu/
5software.intel.com/en-us/intel-mkl

12



support two modes in which POP can be used through the OMUSE interface. The high-resolution

mode assumes a grid size of 3600× 2400, corresponding to a 0.1◦ resolution. The low-resolution305

mode assumes grid dimensions of 320×384 horizontal grid points, corresponding to a 1.0◦ resolution

with tropical stretching. Vertically, the grid contains 40 or 42 non-equidistant layers, increasing in

thickness from several meters near the surface to 250 meters just above the lower boundary at 6000

meters.

OMUSE interfaces with a version of POP (based on version 2.1) that contains several extensions310

(van Werkhoven et al., 2014) 6. This implementation includes a flexible load-balancing scheme and

optionally uses Graphics Processing Units (GPUs) to accelerate compute-intensive parts of the code.

Considering the fact that it takes at least 1000 simulated years to reach a near statistical equilibrium

state, it is common practice to restart POP from a spun-up solution. The so-called ‘restart file’ and

other settings can be set through the OMUSE Python interface after the code has been instantiated315

and reached the ‘START’ state (see Fig. 7).

As with all codes in OMUSE, the POP interface employs a state machine that tracks the model

state and ensures consistency by automatically calling the appropriate transition functions in the

low-level interface. To be able to set many of the configuration options through the Python interface

it was necessary to split several of the initialization routines in the POP source code. This was320

required because these routines used to read their configuration from a namelist file and immediately

proceeded to initialize the model using that configuration. Within OMUSE, the model parameters are

set through the interface as part of the Python script.

As such, the namelist file is only used to provide the code with default settings. After the settings

have been read from the namelist, the model halts and waits for the settings that are specific to325

the experiment to be passed through the interface. When the user has completed configuring the

experiment, the state machine will automatically call a state transition function to complete the

model initialization and advance the model to a state from which the user can interact with the

model data or begin evolving the model.

The POP interface provides two different ways to supply the model with forcings, such as wind330

stress, surface heat flux, and surface freshwater flux. The first method is by setting the location of

a file containing monthly averages of forcing data that will automatically be interpolated in time by

the model. It is also possible to directly supply the model with forcing data through the interface,

allowing POP to be coupled with, for example, an atmospheric model. When forcing data is supplied

through the interface, POP will not use data from file for that type of forcing.335

In the OMUSE examples repository7, we have included an example Python script for setting up a

POP run in high-resolution mode in a cluster environment. The user script has to specify the location

of the cluster head node and provide the requested number of nodes and cores and time required for

6https://github.com/NLeSC/eSalsa-POP
7https://bitbucket.org/omuse/omuse-examples/

13



the simulation. After that the user can instantiate the interface to create a running simulation and

interact with the model.340

3.1.3 ADCIRC

The Advanced 3D Circulation model (ADCIRC) solves the shallow water primitive equations on

a triangular unstructured mesh in either two or three dimensions. Water surface elevations ζ, are

obtained by solving the vertically-integrated continuity equation in the Generalized Wave Continuity

Equation (GWCE) formulation (Leuttich and Westerink, 2004). The momentum equations are either345

solved in vertically integrated form (2D mode), or in 3D (applying the Boussinesq and hydrostatic

pressure approximations). In 3D, ADCIRC uses a generalized stretched vertical coordinate system

(Leuttich and Westerink, 2004).

The ADCIRC mesh is represented in the OMUSE interface as an unstructured grid of nodes and

elements (which can be accessed as the nodes and elements attributes of an ADCIRC instance),350

representing the nodes and triangular elements of the grid. In the case of ADCIRC all prognostic

variables (with the exception of the wet-dry status of elements) are defined by a linear P1 finite el-

ement Galerkin representation over the entire domain, described by coefficients associated to mesh

node positions. For example, in the simplest 2D case these are the water level, its time derivative

and the current velocities. The attributes of the elements are the nodes of each triangle, and its status355

(indicating whether an element is dry or wet). In addition to this, the interface defines a forcings

grid, which accepts the (possibly time-dependent) forcings. Depending on the parameters of the sim-

ulation these can be for example wind stresses, atmospheric pressure, tidal potential, wave stresses

etc. Boundaries are represented as sets of grids (one for each segment defined) with a reference to

the nodes in the boundary segment, a type attribute (describing the type of boundary) and any ex-360

tra attributes necessary to specify the boundary condition (e.g. the water level for a boundary with

prescribed elevations).

3.1.4 SWAN

In addition to the above models of hydrodynamical ocean circulation, OMUSE includes an interface

to SWAN (Simulating WAves Nearshore), a code to calculate the propagation of wind-driven surface365

waves (Zijlema, 2010, and references therein). SWAN uses a statistical description of the space and

time varying wave properties, solving for the evolution of the action density N(x, t;σ,θ), defined in

terms of the wave energy density spectrum E as N = E/σ, where N is a function of space x, time

t, relative radian frequency σ and direction θ. The evolution of the action density is governed by the

action balance equation (e.g. Komen et al., 1994),370

∂N

∂t
+∇x · [(cg +U)N ] +

∂(cσN)

∂σ
+

(∂cθN)

∂θ
=
Stot

σ
, (3)

14



with cg the wave group velocity, U the (depth averaged) current velocity, cσ and cθ the propaga-

tion velocities in spectral and directional space, respectively. The source/sink term Stot represents

the physical processes which generate, dissipate or redistribute wave energy. Amongst them, SWAN

includes generation of waves by wind, non-linear transfer of wave energy (including three- and four-375

wave interactions) and wave decay due to whitecapping, bottom friction and wave breaking (see

SWAN, 2015, for more information).

SWAN discretizes (3) on rectilinear, curvilinear (structured) or unstructured (triangular) grids in

one or two dimensions. The OMUSE interface to SWAN supports rectilinear and unstructured grids

(curvi-linear grids can be added). The type of grid, as well as the type of grid for the forcings are380

determined when the code is instantiated. Depending on the selected grid the interface defines a

regular grid grid or an unstructured grid with nodes and elements attributes. These have an

attribute to access the action densityN of the grid. In addition to this, the bathymetry can be specified

and a number of potentially time-varying forcing inputs, like water levels, water current velocities

and wind velocities can be used (again a separate grid is used for the forcings).385

To simplify the interface a few restrictions are placed on the forcings. For example, all the forcings

in the interface use the same grid (whereas SWAN supports different grids for different forcings). This

is not a limitation: within OMUSE, any regridding (if necessary because the sources of the forcings

use different grids) can be done on the framework level. If both calculation grid and input grid are

unstructured, they are both assumed to use the same grid.390

In case of stationary calculations, the interface still defines an evolve_model, but it simply

calculates the stationary action density (for all input times). It can still make sense to evaluate this

in a time dependent fashion, as the input forcings (and thus the equilibrium state) may change with

time.

3.2 Support modules395

In addition to the simulation codes, support modules written in different languages can be included

in OMUSE. Such a support module may, for example, provide functionality for coupling models. A

support module can be interfaced with the same remote function interface as used for simulation

codes. Currently, the only support module specific to OMUSE is CDO which is used for computing

grid remapping weights and performing the remapping of quantities between different grids.400

3.2.1 CDO

Climate Data Operators (CDO, 2015) is a command-line tool developed and maintained by the Max

Planck Institute Hamburg containing over 400 operators that can process and manipulate climate

data stored in self-describing file formats, such as netCDF.

An OMUSE interface to CDO was created to be able to access the grid remapping functional-405

ity within CDO. This library contains a reimplementation of the SCRIP package (Jones, 1999).

15



The remapping weights computed by SCRIP are used by ,
::::::

which
::

is
::::

used
:::

in other climate model

couplers, such as
::::::

OASIS
::::::::::::::::::

(Valcke, 2013) (while
:::::

other
:::::::

couplers
::::

such
:::

as the Model Coupling Toolkit

(Jacob et al., 2005) , and OASIS (Valcke, 2013)
:::

can
:::

use
:::

the
::::::::::

remapping
::::::

weights
::::

and
:::::::::

addresses). In

particular, the second-order conservative remapping scheme implemented in SCRIP is used to com-410

pute remapping weights for conservative exchanges of (e.g. heat and water) fluxes at the ocean-

atmosphere interface.

A number of minor code modifications were necessary to be able to access the functionality in

CDO as a library rather than as a command line tool. The low-level interface in OMUSE has to ensure

that the internal state of CDO is consistent even though the code is not running as a command line415

tool. To do this, all grid information has to be propagated correctly to the different grid data storage

structures used internally by CDO. In addition, the interface mimics some of the behavior of CDO to

produce the exact same results as when invoked from the command line. These include ignoring any

land masks in the source and target grids and increasing the number of search bins in the computation

of remapping weights.420

OMUSE implements a high-level object-oriented interface (called CDORemapper) on top of the

low-level interface to CDO. This remapper can be initialized in three ways: (1) using a precomputed

weights file as produced by CDO from the command line, containing all information about the source

and destination grids, as well as the remapping weights, (2) using netCDF files for storing source

and destination grid information (as used by CDO and SCRIP) and (3) setting OMUSE grid data types425

as source or destination grid. Modes (2) and (3) can be combined (if desired), and for these modes

the remapping weights are computed automatically as the remapper initializes.

When using the default second-order conservative remapping scheme, the implementation of CDO

also computes the gradients of the source field each time a quantity is being remapped. Note that

the second-order conservative remapping scheme comes with limitations: the source grid has to be a430

structured grid because of the way SCRIP computes area integrals
::

for
:::

the
:::::::::

calculation
::

of
:::

the
::::::::

gradients

::::::

needed
::

for
:::

the
::::

2nd
:::::

order (for more information see the CDO documentation).

In figure 8 we show the result of a remapping performed by the CDO remapper using the OMUSE

interface. A sea surface temperature field is remapped from POP using a 0.1◦ tripole grid to an un-

structured grid. The second-order conservative remapping scheme was used to compute the remap-435

ping weights based on the grid information presented by the OMUSE interfaces of both simulations.

3.3
::::::::

Extending
::::::::

OMUSE

:::

The
:::::

effort
::::::::

required
::

to
::::::

import
:::

or
::::::::

interface
::

an
:::::::::

additional
:::::

code
::::

with
:

OMUSE
::::

varies
:::::

with
:::

the
:::::

code

:::::::::

complexity,
::::

and
:::::::::

depending
::

on
:::::::

whether
::

a
::::::

similar
:::::

code
::::::

already
:::::

exists
::::::

within
:::

the
:::::::::

framework
:::

(in
::::

this

::::::

respect
:::

the
:::::

codes
::::::

already
::::::::

included
::::::

provide
::

a
:::::

good
::::::

starting
::::::

point).
::

In
:::::

order
::

to
:::

be
:::::::::

interfaced,
:

a
:::::

code440

:::::

needs
::

to
::

be
::::::

written
::

in
::

a
:::::::::::

programming
::::::::

language
::

for
::::::

which
::::

MPI
::

or
::::::

socket
:::::::

bindings
:::

are
::::::::

available.
::::

The

16



Figure 8. Result of a remapping performed by the CDO remapper using the OMUSE interface. A sea surface

temperature field is remapped from POP using a 0.1◦ tripole grid (on the left) to the elements of an unstructured

grid (on the right).

:::::::

complete
:::::::::

procedure
:::::

(along
::::

with
:::::::::

examples)
::

is
::::::::

described
::

in
:::::

detail
::

in
:::

the
::::::::::::

documentation
:::::::

section
::

of
:::

the

:::::

source
::::::::::

distribution
:::

and
:::

the
::::::

project
:::::::

website;
::::

here
:::

we
::::

only
::::::

briefly
::::::

outline
:::

the
:::::::::

procedure.
:

::

To
::::::

import
::

a
:::::::::

community
:::::

code,
::::

one
::::

first
::::::

creates
:

a
::::::::

directory
::

in
::::

the OMUSE
:::::::::

community
::::

code
:::::

base

:::::::

directory
:::::

with
:::

the
:::::

name
:::

of
:::

the
:::::::

module.
::::

The
:::::::

original
::::::

source
::::

tree
:::

is
::::::::

imported
::

in
::

a
:::::::::::

subdirectory445

:::

(by
:::::::::

convention
::::::

named
::

‘
:::

src
::

’).
::::

The
::::::::

top-level
::::::::

directory
:::::::

contains
::::

the
::::::

Python
::::

side
:::

of
:::

the
::::::::

interface

:

(‘
:::::::::::::::

interface.py
::

’),
::

the
::::::::

interface
::

in
:::

the
:::::

native
::::::::

language
::

of
:::

the
::::

code
::::

(e.g.
:

‘
::::::::::::::

interface.c
:

’)
:::

and
::

a

:::

file
::

for
:::

the
:::::

build
::::::

system
::

(‘
:::::::::

Makefile
::

’).
:

:::

The
::::::

Python
::::::::

interface
:::::::::

(described
::

in
:::

the
::::

file
:::::::::::::::

interface.py)
::::::::

typically
::::::

defines
::::

two
:::::::

classes,
:::

the

:::::::

low-level
::::::::

interface
::::

and
:::

the
:::::::::

high-level
::::::::

interface.
::::

The
:::::::

former
:::::::

contains
:::

the
::::::::

function
:::::::::

definitions
:::

of450

::

the
:::::

calls
:::::

which
:::

are
:::::::::

redirected
:::::::

through
:::

the
::::

MPI
::::::::::::::

communications
:::::::

channel
::

to
:::

the
::::::::::::

corresponding
::::

call

::::::

defined
::

in
:::

the
:::::

native
:::::::

interface
:::

file
::

(
:::::::::::::

interface.c
:

).
:::

The
:::::::::

high-level
:::::::

interface
::::::

defines
:::

the
:::::

units
::

of
:::

the

::::::::

arguments
::

of
:::

the
::::::::

function
::::

calls
::::

(see
::::::

section
::::

2.3).
::

In
:::::::

addition
::

it
:::::::

specifies
:::

the
::::::::::

parameters
::

of
:::

the
:::::

code,

::

the
:::::

state
:::::

model
:::::::

(section
::::

2.5)
:::

and
:::

the
::::::::

mapping
::

of
:::

the
:::::

object
:::::::

oriented
::::

data
:::::

types
::

to
:::

the
::::::::::::

corresponding

:::::::

low-level
:::::

calls.
:::

By
::::::

default,
:::

the
::::

data
::

of
:::

the
:::::::::

simulation
:

is
::::::::::

maintained
::

in
:::

the
:::::::::

community
::::::

code’s
:::::::

memory455

::::

(and
:::::::

accessed
:::::::::::

transparently
::

as
::::::::

described
::

in
:::::::

section
::::

2.4).

:::

For
:::::::

modern
:::

and
::::::::

modular
:::::

codes,
:::::

often
:::

no
::

or
:::::

little
:::::::

changes
::

in
:::

the
:::::::

original
::::::

source
::::

code
:::::

base
:::

(in

:

‘
:::

src
::

’)
:::

are
::::::

needed.
::

In
:::::

other
:::::

cases,
:

a
:::::

code
::::

may
::::

need
:::::::::

significant
:::::

source
:::::

code
:::::::

changes
::::

(e.g.
::

to
:::::::

seperate

::

the
::::::::::

initilization
::::::

stages
:::

and
:::::::::::

timestepping)
:::

or
:::::::

additions
:::

to
:::::::::

implement
::::::::::

functionality
::::

that
::

is
:::::::

required
:::

for

::

the
:

OMUSE
:::::::

interface
::::

(e.g.
:::::::::

externally
:::::::

imposed
::::::::

boundary
:::::::::

conditions
:::

for
::::::

grids).
::

In
:::::

these
:::::

cases
:::::

more460

17



::::

effort
::

is
:::::::

required
:::

to
:::::

import
:::

the
:::::

code
:::

and
::::

this
:::

will
::::

also
:::::

make
::

it
::::

more
:::::::

difficult
::

to
::::::

update
:::

the
::::::::

interface

::

to
:

a
::::

new
::::::

version
::

of
:::

the
::::::::::

community
:::::

code.

::

In
:::

our
:::::::::

experience
:::::::

writing
::

an
::::::::

interface
::

to
::

a
::::

new
:::::

code,
:::::

which
::::

also
:::::::

involves
:::::::

writing
:::::

tests,
::::::

testing

:::

and
:::::::::

debugging
:::

the
::::::::

interface,
:::::::::

represents
::

a
::::::

modest
:::::::

amount
::

of
::::::

work.
:::::

While
::::::

every
::::

code
::

is
::::::::

different

:::

and
:::

has
:::

its
::::

own
:::::::::::

peculiarities,
::

it
::

is
::::::::

typically
:::::::::

something
::::

that
:::

can
:::

be
:::::::::

completed
:::

(by
::::::::

someone
:::::

with465

::::

some
:::::::::

familiarity
::::

with
:::

the
::::::

source
::::::

code)
::::::

during
:

a
:::::

short
:::::::

working
::::

visit
::

or
:::::

small
:::::::::

workshop.
:::::::

Defining
:::

an

:::::::

interface
:::

for
:

a
::::

new
:::::::

domain
::::::::

(exposing
::::

new
::::::::

physics)
:::

can
::::

take
::::::

longer,
::

as
:::::

these
::::

need
::::::::::

refinement
::::

over

::::

time.
:

4 Code couplings

In addition to providing a unified interface to various types of codes, OMUSE has the objective of470

facilitating multi-physics simulations. For example, one would like to be able to couple a large-scale

ocean circulation code with a regional ocean model (coupling across different scales), or couple a

wave propagation model to an ocean flow model (coupling of different physics). Within OMUSE,

community codes can be combined into coupled models which have wider applicability than the

original codes. The setup of OMUSE allows for this in a transparent manner, such that the coupled475

models have a similar interface as the individual models.

The types of coupling that OMUSE can be applied to is large, and range from simple input - out-

put coupling to dynamic one-way coupling and to the development of two-way coupled solvers

(see more examples Pelupessy et al. (2013)). OMUSE provides the following features to facilitate the

building of coupled models: simplified, uniform access to the code simulation state, unified inter-480

faces to the state of the simulation domain and its boundary conditions, and extensive automation of

bookkeeping
:::

data
:::::::

transfer
:::

and
:::::::::

conversion
:

operations.

4.1 QG model coupling

Some care is needed in the design of the code interfaces to ensure that couplings are as simple as pos-

sible. For example, the internal state of the QG simulation consists of the stream function ψ on two485

time levels, these are represented as a grid object with attributes psi, dpsi_dt and positions x and

y. It is more convenient to represent the two time levels as the (backward) time derivative dpsi_dt,

because this representation is independent of the time step (which can be different between codes).

The stream function ψ (and its derivative) can also be queried at any position using an interface func-

tion get_psi_state_at_point . This function performs an (averaging) sampling and provides490

a grid independent way to query and communicate the physical state. Another way to achieve this

would be to perform a copy using a remapping channel as described in section 2.4.2.

In addition, QG has two mechanisms to receive input from other codes: it calculates the evolu-

tion of the stream function using an input wind stress field. This wind stress field can be set by

18



(1) class QGmodelWithRefinements(QG):

def interpolate_grid(self, grid):

...

def add_refinement(self, offset, ..):

...

def evolve_model(self):

...

def update_refined_regions(self):

...

(2) qg=QGmodelWithRefinement()

qg.add_refinement( offset=[0,0] | units.m, ...)

Figure 9. Schematic (left) and (abbreviated) definition of the refined QG model class (right) with an example

(2) of its instantiation.

changing the wind stress attributes tau_x and tau_y on the forcings grid. These can be copied495

or remapped from another grid (read in from disk or generated dynamically by another code) or

by defining a (time and or position depend) functional form (from an analytic wind model, for ex-

ample). Other possible inputs are the boundary conditions: ψ and ∂ψ/∂t on the domain boundary.

These consist of four grid objects (one for each cardinal direction) of size No × 2, where No is the

number of grid points (in the corresponding dimension). Using these boundary grids it is possible500

to implement two different strategies to vary the resolution over and/or the shape of the domain,

namely grid nesting and domain decomposition.

4.1.1 Nested grid refinement

Depending on the parameters, equation (1) allows solutions with very narrow western boundary

currents. Numerically this presents a challenge as the required resolution at this boundary may be505

much higher than for the rest of the basin. This is a typical situation where a nested solver (e.g.

Debreu and Blayo, 2008) may efficiently be employed. We can implement such a multi-grid coupled

solver within OMUSE using the base QG as an underlying engine. The solution of (1) is obtained on

a base grid with a refined region of higher resolution where the two grids are solved by separate

instances of the QG.510

Practically speaking, the following refinement strategy is followed (Fig. 9). Given a parent domain

Lx ×Ly a refined sub domain is defined by its offset, extension lx × ly and resolution dx. The low

resolution region consists of the whole domainLx×Ly (including the refined region). The QG is used

to solve for the flow on Lx ×Ly . A second instance of the QG is used to solve the flow equation (1)

on the high resolution subdomain lx×ly given appropriate boundary conditions. This high resolution515

solution is then resampled and copied back (restriction operation) to correct the corresponding part

of the domain on the low resolution grid.

19



If the boundary of the high resolution domain coincides with the boundaries of the parent domain

(e.g. the east and south boundaries in Fig. 9) the boundary conditions are inherited from its parent.

Otherwise, the boundary of the high resolution region lies in the interior of Lx ×Ly , in this case520

ψ and ∂ψ/∂t of the boundary can be obtained by interpolation of the low resolution grid. In our

template implementation of this multigrid solver, we implement it as a derived interface in OMUSE

(Fig. 9). It implements the same high-level interface (i.e. it has the same methods) as the base QG,

which allows these two to be used interchangeably. In particular, a refined region can itself have

refinements.525

4.1.2 Domain decomposition

Instead of overlapping domains, we can implement a similar coupling for (two or more) non-

overlapping
:::

(or
:::::::

partially
:::::::::::

overlapping)
:

domains. A problem here is that the information used for

the interpolated state on either side of a domain boundary does not carry information of the other

domain. In the nested case the low resolution solution is available over the whole domain, so it can530

provide this information.

This can be solved by iteration, but as the required step at each iteration (solving for ∂ψ/∂t using

a Poisson solver) is quite expensive, this would be prohibitively inefficient. For this case, the problem

can be accelerated by using accelerated vector extrapolation methods such as minimum polynomial

extrapolation (MPE, Cabay and Jackson, 1976), i.e. we are solving for the fixed points of535

x
k+1 = F(xk), (4)

where xk is the vector consisting of the ∂ψi/∂t values on the boundaries (of all mutually neighbour-

ing domains). In (4), F is the operator determining the next vector in this sequence, with iteration

index k. This operator is provided by the instances of the QG, which calculates a new set of ∂ψ/∂t

values from previous set. The MPE method does not need explicit knowledge of the sequence gen-540

erator, and as such is especially well-suited for the problem here (this information in our case is

‘hidden’ in the QG code). In practice the solution converges within a handful of iterations to satis-

factory precision.

The evolve loop of a compound QG consisting of N domains then proceeds as follows: (1) update

the internal boundaries of each domain N. ψ values are interpolated from neighbouring grids, a con-545

sistent set of ∂ψ/∂t values are calculated using the MPE method. (2) all the domains are stepped

forward in time. An example of this will be shown in section 5.2 below.

Note that both preceding examples
::

(in
::::

4.1.1
::::

and
:::::

4.1.2)
:

implement fairly close couplings. Never-

theless, the OMUSE framework can be used to implement these efficiently (both from the viewpoint550

of effort required to implement them as from a computational viewpoint
:

). The most CPU intensive

parts of the computations (i.e. the solutions to the BVE (1)) are executed by the (optimized) QG

20



Figure 10. Comparison of QG and ADCIRC for a simplified mid-latitude ocean configuration. Shown is the

equilibrium SSH for a square domain basin of equal depth, driven by surface wind stress using the setup of

Viebahn and Dijkstra (2014) (resulting in a single gyre solution) at two different Reynolds numbers:R= 1 (top

panels) and R= 10 (bottom panels), where R= UL/AH and U = τ0/(ρβ0LH) is a characteristic horizontal

velocity. In each case, the left panel shows the solution obtained using QG, and the right panel the ADCIRC

solution is shown.

solver, while on the framework level a limited amount of bookkeeping operationsand data transfer is

:::::::::

operations,
::::

such
::

as
::::

data
:::::::

transfer
:::

and
::::::::::

conversions
:::

are handled.

5 Applications555

To demonstrate the capabilities of OMUSE we present a number of example applications. These

illustrate the application of the unified interfaces of OMUSE to calculate the same problem using

different codes (section 5.1), the use of OMUSE to implement intra-code domain decomposition

(section 5.2), a two-way coupling between codes with different physics (section 5.3), the embedding

of a high resolution region in a low resolution domain using different codes (section 5.4) and the560

addition of data analysis to a running computation (section 5.5).

5.1 Critical transitions in a single-gyre ocean circulation model

The idealized classical model of a homogeneous mid-latitude wind-driven ocean (Sverdrup, 1947;

Stommel, 1948; Munk, 1950) has been extensively studied using dynamical systems theory (e.g.

21



0 5 10 15 20 25 30 35 40 45
Reynolds number

103

104

105

106

107

ψ
[m

2
/
s]

Figure 11. Part of the bifurcation diagram showing the upper and lower branches of steady and oscillatory

solutions for a single gyre ocean model. Shown are the mean (dashed) and maximum (solid) value of the

stream function for QG (black) and ADCIRC (green) model runs, as a function of the Reynolds number R. For

ADCIRC the stream function is calculated as ψ = gζ/f0, where ζ is the free-surface height. The values shown

represent time averaged values in case the system shows oscillatory behaviour. The flow undergoes a cyclic fold

bifurcation near R= 25 as indicated by the vertical dashed lines (Viebahn and Dijkstra, 2014). The ADCIRC

solution becomes (numerically) unstable at this bifurcation.

Ierley and Sheremet, 1995; Sheremet et al., 1997), where the successive bifurcations in single-layer565

(constant density) models are analyzed as the parameters of the model are varied. Here we will use

two completely different simulation codes to obtain equilibrium solutions and study the bifurcation

diagram in a single-gyre setup (Viebahn and Dijkstra, 2014).

The first code QG solves the BVE (1), while ADCIRC solves the primitive equations and does

not impose the quasi-geostrophic approximation. In this sense this simple numerical experiment570

will illustrate a-posteriori the validity of the approximations made in deriving (1). We run the QG

simulation for a 1000 km×1000 km basin with a resolution of No = 200× 200 with parameters

β0 = 1.8616× 10−11(ms)−1 RH = 0 s−1, AH = 1194 m2s−1, and a wind stress

τx =−
τ0
π
cos(πy/L) ; τy = 0, (5)

where τ0 is determined by the adopted Reynolds number R= τ0/(ρ0β0AHH) (ρ0 = 1025 kg/m3
575

andH = 4000m) For ADCIRC, a triangular grid matching this geometry is generated by subdividing

the cells of a (No = 50× 50) Cartesian grid into four triangles by adding a vertex to the center of

22



Figure 12. Stream function ψ for a non-rectangular domain run with QG on a composite domain. Plotted is ψ

after 15 days of evolution with the composite QG code (section 4.1.2) on a domain consisting of two coupled

subdomains, indicated by the cyan and green rectangles.

the cell. The parameters of ADCIRC are chosen to match the parameters in QG, and the same wind

stress is applied.

In Figure 10 we compare the stable stationary solutions of the two codes (these are obtained by580

running until the maximum fractional changes in either stream function ψ (for QG) or sea surface

elevation η (for ADCIRC) between two successive diagnostic time intervals changes less than 10−4).

As can be seen, the two codes calculate solutions that agree well (although small differences can be

seen). Figure 11 shows the corresponding bifurcation diagram when varying the Reynolds number.

The correspondence between the two codes is good for low Reynolds number, showing the same585

qualitative behaviour. At the bifurcation (above R≈ 25) we found that the solutions obtained by

ADCIRC become unstable to a basin-wide fast gravity wave mode, which is not represented in the

QG model.

5.2 QG on a composite domain

As a first example of the use of OMUSE to construct new solvers by composing various subcodes,590

we show the results of an idealized calculation solving the BVE (eq. 1) on composite domains. The

coupled solver presented in section 4.1.2 is employed for this. It uses separate instances of QG to

calculate the ocean flow (i.e. solutions to equation (1)) for a composite domain. In figure 12 the

solution is calculated on a domain with a western boundary that is stepped. The domain (shown in

Figure 12) consists of a 4000×4000 km basin extended on the western side with a 1200 ×2000 km595

23



Figure 13. Schematic representation of the ADCIRC-SWAN coupling.

subdomain (the respective subdmains are indicated in the figure by the green and cyan rectangles).

The solution is shown for a Reynolds number R= 10, with similar single gyre forcing as (5) after

15 days of evolution (at this early stage one can distinguish the Rossby waves moving east to west

from the interior of the large basin, into the smaller domain).

Using such a composite domain it is possible to calculate the effects of topographic features on600

the dynamics of boundary currents, or change the resolution across the domain. Such idealized mod-

elling on a simplified domain is often useful to reduce the real world topography to its essential fea-

tures, e.g. Le Bars et al. (2012). The example above implements a tailored solver using the high-level

OMUSE interface to QG. This demonstrates that the interfaces of OMUSE are capable of expressing

fairly tight couplings. The alternative, and maybe more obvious, way to implement such solver is to605

adapt the underlying Poisson solver to various domain shapes, which may involve changing the data

representation. In contrast, the implementation here is done without reference to the underlying data

structures and in principle does not depend on the grid type or shape used in the underlying solver.

5.3 Implementation of a coupled SWAN-ADCIRC model

The propagation of wind-driven surface waves is sensitive to water levels and current velocities. The610

properties of the underlying circulation will affect the evolution of the wind-driven wave field and

the location of wave-breaking zones. On the other hand, wind-driven wave transport can generate

radiation stress gradients that can in turn drive circulation set-up and currents. Currents can also be

affected by changes in the vertical momentum mixing and bottom friction stresses generated by the

wind-driven wave field. Thus, in many coastal applications, such as the calculation of storm surges,615

waves and circulation processes should be mutually coupled.

Here we will demonstrate the implementation of such a coupling within the OMUSE framework,

applying it to a coupling of the ADCIRC circulation model and the SWANwave propagation model. A

fully integrated coupled ADCIRC/SWAN model exists (Dietrich et al., 2011), and below we compare

24



(1) channel1=hurricane.grid.new_channel_to( swan.forcings )

(2) channel2=hurricane.grid.new_channel_to( adcirc.forcings )

(3) channel3=adcirc.nodes.new_channel_to( swan.forcings )

(4) channel4=swan.nodes.new_channel_to( adcirc.forcings )

(5) while time<tend:

(3) hurricane.evolve_model(time+dt/2)

(4) channel1.copy_attributes(["tau_x","tau_y"])

(5) channel2.copy_attributes(["vx","vy"])

(6) adcirc.evolve_model(time+dt/2)

(7) swan.evolve_model(time+dt/2)

(8) channel3.copy_attributes(["current_vx","current_vy"])

(9) channel4.copy_attributes(["wave_tau_x","wave_tau_y"])

Figure 14. Definition of communication channels and evolve step corresponding to figure 13.

and contrast our method of coupling with this existing approach. The physical interactions between620

the different simulated components are schematically given in Fig. 13. Figure 14 shows the (some-

what simplified) OMUSE code corresponding to this model coupling. Note that in this coupling both

SWAN and ADCIRC use the same unstructured (triangular) grid. The communication between the

codes (as shown in Fig. 14) is handled by channels, whereby the framework handles the copying

(and unit conversion) of data.625

As an example we apply the coupled code to calculate the wave height and storm surge of hurri-

cane Gustav (2008) 8 in the Gulf of Mexico. The hurricane is modelled using an analytic prescription

(Holland, 1980) from data of a hurricane storm track (positions, central pressures, maximum wind-

speed, storm radius) read in from file. Implementation of this analytic model is in the form of a

Python class mimicking a full simulation code. ADCIRC is run in 2D barotropic mode with meteo-630

rological forcing from the hurricane model and SWAN provides the wave stresses. There is no forcing

on the open ocean boundaries. For the discretization of the action density, SWAN uses 36 bins in the

directional space and 32 bins in frequency (from 0.05 to 1 Hz). The standard set of third generation

wave parameters, including the effects of wave breaking, bottom friction and 3-wave interaction is

used. The time step (dt) between updates of the coupled quantities is 600 seconds.635

In figure 15 we show the resulting wave heights calculated by the model during the development

of hurricane Gustav at three different times. The results of the OMUSE coupling are similar to the re-

sults of the integrated coupling implementation (Dietrich et al., 2011, and above mentioned website).

Technically the coupling as in OMUSE differs from the implementation by Dietrich et al. (2011), as

the latter directly copies data in the unified memory space of a single binary (an for that reason is640

more efficient). However, both implement the same coupled processes and the approach taken by

8The data for this example comes from:

http://www.caseydietrich.com/2012/06/27/example-input-files-for-swanadcirc/

25



Figure 15. Significant wave heights for hurricane Gustav (2008), calculated using a coupled ADCIRC-SWAN

simulation. The significant wave height field (shading, with contours at 1, 3, 6, 9 and 12 meters) is shown

with the (model) wind field superimposed (arrows, where the arrow on the lower left corresponds to 30 m/s),

and the storm track (dashed line). Shown are frames 156, 168 and 180 hours after start of the simulation

(2008/08/25/0000 UTC), in the three panels from top to bottom, respectively.

26



Figure 16. Schematic representation of the POP-ADCIRC one way coupling for an embedded domain. The

labelled arrows indicate the use of remapping channels. "remap" stands for a conservative remapping between

the structured POP grid and the unstructured ADCIRC grid, while "interp." indicates that the variables are

interpolated.

(1) forcings_channel=pop_forcings_grid.new_remapping_channel_to(

adcirc.forcings, conservative_spherical_remapper)

(2) boundary_channel=pop_grid.grid.new_remapping_channel_to(

adcirc.elevation_boundary, interpolating_remapper)

(3) while time<tend:

(4) pop.evolve_model(time+dt/2)

(5) forcings_channel.copy_attributes(["tau_x","tau_y"])

(5) boundary_channel.copy_attributes(["ssh"])

(6) adcirc.evolve_model(time+dt)

(7) pop.evolve_model(time+dt)

(8) time+=dt

Figure 17. Definition and use of remapping channels for the POP-ADCIRC embedding of figure 16.

OMUSE does not depend on the particular aspects of the selected codes - exactly the same script

could be used by other codes using the same interfaces.

5.4 Embedded regional model

A recurring problem for regional or coastal modelling is the application of realistic boundary condi-645

tions from the open ocean, even more so when one is interested in the effect of large scale or global

processes on the regional level. One approach to obtain realistic boundary conditions at the required

scale is the nesting of a high resolution and small scale model in a lower resolution but larger scale

model (e.g. Debreu et al., 2012; Djath et al., 2014).

Here we illustrate the implementation of (one-way) nesting in OMUSE by embedding a regional650

high resolution barotropic ADCIRC model of the Caribbean and North American Atlantic coast into

a POP global circulation model (see fig. 16). In this case, since POP uses a curvilinear structured

grid and ADCIRC an unstructured triangular mesh, it is necessary to perform a remapping when

transporting variables from one code to the other (these functional remapping channels are indicated

in figure 16 by the labelled arrows).655

27



Figure 18. Sea surface heights and velocities of a ADCIRC run embedded in a global circulation POP model.

Top panels show the sea surface height (SSH) of a region covering the Western North Atlantic Ocean, Caribbean

Sea and Gulf of Mexico. The upper left panel shows the high resolution ADCIRC SSH field (superimposed on

the POP field) and the upper right panel the low resolution POP field. The black square indicated in the top

right panel is shown in more detail in the lower panels where the SSH with velocities superimposed are shown

(in the case of ADCIRC the barotropic velocities are shown, for POP the are the surface velocities). The dashed

line (top right panel) is the open ocean boundary of the regional ADCIRC model.

For the actual implementation of the coupling in OMUSE, the difference between using a remap-

ping channel and a normal (data copying) channel (such as the ones used in section 5.3) is small:

the only difference with a normal channel is that upon initialization the actual remapping method to

be used needs to be specified for a new remapping channel. The usage of the remapping channel to

prescribe the data flow in the coupled model (figure 17) uses the same semantics.660

In order to calculate the dynamics of the nested regional model, ADCIRC in 2D barotropic mode

needs an input wind stress field and the specification of either the sea surface level or normal fluxes

on the boundary. In addition to this, the model can be initialized from remapped flow variables

(barotropic velocities and sea surface heights). Note that a fully consistent coupling between the

two codes is not possible since they solve for a different set of variables (2D barotropic vs 3D665

baroclinic). For the (conceptual) example here, a coupling was made on the sea surface elevation, and

28



the bathymetry of the ADCIRC grid was limited to 500m depth (so the barotropic basin represented in

ADCIRC can only be compared with the upper 500m layer of POP). The time step for the coupling

(updates of the boundary surface elevations) is taken to be equal to the POP internal time step of

approximately 30 minutes. The remappings are performed at each time step for the wind stresses670

and for the sea surface heights.

Figure 18 shows the sea surface heights and velocities on the original low resolution POP grid and

the embedded higher resolution ADCIRC grid after 30 days of adjustment (after this the ADCIRC

solution follows the (slow) variations of POP). A fully consistent coupling is possible when using

ADCIRC in baroclinic mode. In this case, the coupling proceeds (with a larger number of coupling675

variables involved) along similar lines.

5.5 On-the-fly data analysis

In addition to consuming massive amounts of CPU time, current large scale simulations are capable

of generating enormous amounts of data. Usually, it is possible to store only a very limited subset

of this data, this limits the data analysis that can be performed. One solution to this has been to do680

(part of) the analysis on the fly. Online data analysis offers several opportunities, including the fact

that special actions can be taken when interesting events occur. Such special actions may include

inspecting the model internal data at resolutions, both spatial and temporal, that are not available or

feasible with offline data analysis. While running simulations through OMUSE, the simulation state

is accessible, and this allows for data analysis while a simulation is running.685

As a proof-of-concept application we add an online ocean eddy tracker on top of the POP model.

The interest in ocean eddies comes from the fact that eddies transport considerable energy and

mass and as such influence the dynamics of large-scale ocean circulation and the climate (e.g.

Viebahn and Eden, 2010; Griffies et al., 2015). To understand eddy properties and variability, several

mesoscale eddy tracking algorithms have been proposed in recent years. We have adapted a sea sur-690

face height-based eddy tracking code that is implemented in Python, called py-eddy-tracker

(Mason et al., 2014). The code uses high-pass filtered sea level anomaly (SLA) fields. On the filtered

fields, contours are computed at 1 cm intervals for levels between -100 cm to 100 cm. These contours

are then searched to locate eddies based on their shape, area, and amplitude. py-eddy-tracker

tracks eddies across successive sea level anomaly (SLA) fields using a search ellipse, bounded by695

the local (long baroclinic) Rossby wave speed.

We have generalized the code in order to use different data sources, including output that is ob-

tained directly from numerical models. To this end, we have modified the py-eddy-tracker to

be able to handle grids that contain gaps, as land-only blocks are not part of the simulation in POP.

We use Basemap9 to compute a landmask for the given grid and apply it to the SLA field. Finally,700

9http://matplotlib.org/basemap/

29



from omuse.ext.eddy_tracker.interface import EddyTracker

from omuse.community.pop.interface import POP

p=POP( ... ) #start POP as you would do normally

dt_analysis = 7 | units.day

tracker = EddyTracker(grid=p.nodes, domain=’Regional’,

lonmin=0. | units.deg, lonmax=50. | units.deg,

latmin=-45. | units.deg, latmax=-20. | units.deg, dt_analysis)

tnow = p.model_time

stop_time = p.model_time + (1 | units.yr)

while (tnow < stop_time):

p.evolve_model(tnow + dt_analysis)

tracker.find_eddies( ssh=p.nodes.ssh, rtime=p.model_time )

tnow = p.model_time

tracker.stop(tend)

p.stop()

Figure 19. This example demonstrates how to build an application that analyzes data from a running simulation

using OMUSE. This code implements an online eddy tracking program that tracks the eddies based on sea surface

height every seven days for one year of POP simulation.

we have created a simple, but easy to use, interface to the py-eddy-tracker that understands

the grid data structures and units used in OMUSE.

Figure 19 shows the code required to build an online eddy tracking program with OMUSE. The

interface EddyTracker is given the OMUSE grid datatype used by POP and automatically per-

forms unit conversions and extracts the information that it needs (i.e. the sea surface height and the705

coordinates of the grid points).

Figure 20 shows the output of the online eddy tracking program that uses sea surface height

data directly from a running POP simulation. In this image, we can clearly see the large anticyclonic

eddies that result from the retroflection of the Agulhas Current, as well as many smaller eddies being

tracked over time by the online eddy tracking algorithm. The data generated by the online eddy710

tracker can, for example, be used to compare the statistics of the simulated eddies to the analysis

made using py-eddy-tracker (or other tools) of altimetry data.

6 Summary and Discussion

We have presented the Oceanographic Multipurpose Software Environment (OMUSE) which pro-

vides a homogeneous interface to existing or newly-developed ocean models. As illustrated by the715

results in the previous section, the use cases for OMUSE range from running simple numerical ex-

periments with single codes (e.g. section 5.1), to combining simulation codes and data analysis tools

(section 5.5) and setting up fairly complicated and strongly coupled solvers (section 5.2) to solve

30



Figure 20. Output of the online eddy tracking application using data from a running POP simulation, showing a

region around the southern tip of Africa. The green lines show the contours between areas of different sea level

anomaly values. Red indicates areas of elevated sea level, and is used to detect anticyclonic eddies. Similarly,

blue indicates a lower sea level, and is used to identify cyclonic eddies. The red or blue lines indicate the track

that an eddy has travelled since it was first detected.

problems that are intrinsically multi-scale (section 5.4) and/or require different physics (section 5.3).

Using OMUSE, simulations can be easily scripted and on-the-fly data-analysis can be added.720

The implementation of the different use cases is facilitated by several aspects of the OMUSE de-

sign. OMUSE defines standardized interfaces and data structures for different codes. The data struc-

tures and the state model as well as the communication model used in OMUSE are flexible and allow

a wide variety of codes, written in different languages, to be integrated with OMUSE. OMUSE also

works well with established methods to generate initial conditions and analyze the resulting data.725

OMUSE shares some of the goals of a number of other coupling frameworks that have been devel-

oped in the earth system modelling community (e.g. Hill et al., 2004; Buis et al., 2006; Gregersen et al.,

2007; Jacob et al., 2005; Larson, 2005; Peckham et al., 2013; Valcke, 2013). The closest equivalent

is the Community Surface Dynamics Modeling System (CSDMS; Peckham et al., 2013). CSDMS and

OMUSE follow a similar design philosophy (as summarized in Peckham et al. (2013)), by aiming730

for a modular component based modelling framework. This similarity translates, in principle, into

inter-operability since the interface components of the CSDMS could be easily adopted for an OMUSE

interface (and possibly vice versa). The CSDMS BMI (basic model interface) and CMI (component

31



model interface) are roughly equivalent to the OMUSE low and high-level interfaces, respectively

The main differences between OMUSE and CSDMS are that the former presents Python as the main735

user interface for programming an application, while for the CSDMS there are various choices, in-

cluding a GUI frontend. In addition, OMUSE simplifies the interaction with the community codes

using high-level object-oriented data structures and OMUSE has a more extensive and flexible state

model.

It is important to ensure the accuracy, reliability and reproducibility of a integrated framework like740

OMUSE. We employ a number of strategies to ensure this is the case. The framework itself is tested

daily and upon the commit of changes using more than 2000 component tests that cover approxi-

mately 80% of the framework code and range from basic tests of the interfaces to the simulation

codes as a whole. The simulation codes themselves are validated by comparing the results of test

problems run using OMUSE with the results of the code running stand-alone (usually a number of745

test problems are developed for the simulation codes). In some cases (for example the ADCIRC-

SWAN coupling) the results of a coupled solver implemented within OMUSE can be compared with a

reference coupling implementation (Dietrich et al., 2011, e.g.). In any case, to ensure the correctness

of a new application in OMUSE one should conduct the usual tests to ensure the validity and verify

the results.750

An important concern of a coupling framework such as OMUSE is performance. While the initial

driver for the development of OMUSE is to simplify the setup and development of coupled simu-

lations, the architecture of OMUSE is designed with a high degree of parallelism. The internal data

structures are efficient. Also the individual simulation codes are often highly optimized. So the per-

formance of an OMUSE application is rarely a concern, but this is strongly problem dependent. In755

practice, the overhead imposed by the framework is often measured to be rather small (less than a

few percent), but it is not difficult to formulate problems where the strength of the coupling is intrin-

sically so strong that very frequent communication between the component solvers is necessary.

In this respect a limitation of the current design of OMUSE is the fact that the communication

between solvers is handled by the master script. This imposes a bottleneck for the performance760

of the communication between e.g. two parallel codes. While in the current setup there are some

mitigating techniques that can be applied (asynchronous communication or grouping and spawning

the communication-intensive subprocesses), ultimately we would need to implement a distributed

communication channel that would direct the data flow from the sending to the receiving process

directly. Note that such distributed communication channels would not change the semantics of the765

use of a channel between data structures.

32



Code availability

The main framework and community modules are production ready. OMUSE is foreseen to grow over

time with new codes and capabilities. OMUSE is freely downloadable 10 and comes with a testing

framework and basic examples. Furthermore, it can easily be adapted for private use (the licence is770

GPL3).

We distribute the simulation codes that are interfaced by OMUSE together with the framework, if

the authors distribute their code with an open source licence, otherwise these codes must be down-

loaded separately. New codes or extensions, as well as bug fixes may be submitted to the repository.

OMUSE encourages the practice of distributing simulation codes by reporting automatically, upon775

conclusion of an OMUSE script, which community codes were used during the run and suggesting

references for inclusion in any publications.

Extending OMUSE

The effort required to import or interface a code within varies with the code complexity, and depending

on whether a similar code already exists within the framework (in this respect the codes already780

included provide a good starting point). In order to be interfaced, a code needs to be written in a

programming language for which MPI or socket bindings are available. The complete procedure

(along with examples) is described in detail in the documentation section of the source distribution

and the project website; here we only briefly outline the procedure.

To import a community code, one first creates a directory in the community code base directory785

with the name of the module. The original source tree is imported in a subdirectory (by convention

named ‘src’). The top-level directory contains the Python side of the interface (‘interface.py’), the

interface in the native language of the code (e.g. ‘interface.c’) and a file for the build system

(‘Makefile’).

The Python interface (described in the file interface.py) typically defines two classes, the790

low-level interface and the high-level interface. The former contains the function definitions of

the calls which are redirected through the MPI communications channel to the corresponding call

defined in the native interface file (interface.c). The high-level interface defines the units of the

arguments of the function calls (see section 2.3). In addition it specifies the parameters of the code,

the state model (section 2.5) and the mapping of the object oriented data types to the corresponding795

low-level calls. By default, the data of the simulation is maintained in the community code’s memory

(and accessed transparently as described in section 2.4).

For modern and modular codes, often no or little changes in the original source code base (in

‘src’) are needed. In other cases, a code may need significant source code changes (e.g. to seperate

the initilization stages and timestepping) or additions to implement functionality that is required for800

10https://bitbucket.org/omuse/omuse

33



the interface (e.g. externally imposed boundary conditions for grids). In these cases more effort is

required to import the code and this will also make it more difficult to update the interface to a new

version of the community code.

In our experience writing an interface to a new code, which also involves writing tests, testing

and debugging the interface, represents a modest amount of work. While every code is different805

and has its own peculiarities, it is typically something that can be completed (by someone with

some familiarity with the source code) during a short working visit or small workshop. Defining an

interface for a new domain (exposing new physics) can take longer, as these need refinement over

time.

Acknowledgements. OMUSE was developed as part of the ABC-MUSE project, funded by Netherlands eScience810

Center (file number 027.013.701, 2013-2016). This research was supported by the European Union’s Horizon

2020 research and innovation programme under grant agreement No 671564 (COMPAT project) and by the

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research,

NWO) under project number 858.14.062. We want to thank Marcel Zijlema and Julie Pietrzak for discussing

and commenting on the manuscript.815

34



References

CDO 2015: Climate Data Operators. Available at: http://www.mpimet.mpg.de/cdo, 2015.

Brunnabend, S.-E., Dijkstra, H. A., Kliphuis, M. A., van Werkhoven, B., Bal, H. E., Seinstra, F., Maassen, J.,

and van Meersbergen, M.: Changes in extreme regional sea surface height due to an abrupt weakening of

the Atlantic meridional overturning circulation, Ocean Science, 10, 881–891, doi: 10.5194/os-10-881-2014,820

2014.

Buis, S., Piacentini, A., Déclat, D., and the PALM Group: PALM: a computational framework for assem-

bling high-performance computing applications, Concurrency and Computation: Practice and Experience,

18, 231–245, 2006.

Cabay, S. and Jackson, L.: A Polynomial Extrapolation Method for Finding Limits and Antilimits of Vector825

Sequences, SIAM Journal on Numerical Analysis, 13, 734–752, 1976.

Candy, A. S., Avdis, A., Hill, J., Gorman, G. J., and Piggott, M. D.: Integration of Geographic Information Sys-

tem frameworks into domain discretisation and meshing processes for geophysical models, Geosci. Model

Dev. Discuss., 7, 5993–6060, doi:10.5194/gmdd-7-5993-2014, 2014.

Cazenave, A.: Present-day sea level change: Observations and causes, Reviews Of Geophysics, 42, RG3001–20,830

2004.

Danilov, S.: Ocean modeling on unstructured meshes, Ocean Modelling, 69, 195–210,

doi:10.1016/j.ocemod.2013.05.005, 2013.

Debreu, L. and Blayo, E.: Two-way embedding algorithms: a review: Submitted to Ocean Dynamics: Special

Issue on Multi-Scale Modelling: Nested Grid and Unstructured Mesh Approaches, Ocean Dynamics, 58,835

415–428, 2008.

Debreu, L., Marchesiello, P., Penven, P., and Cambon, G.: Two-way nesting in split-explicit ocean models:

Algorithms, implementation and validation, Ocean Modelling, 49-50, 1–21, 2012.

Dietrich, J., Zijlema, M., Westerink, J., Holthuijsen, L., Dawson, C., Luettich, R., Jensen, R., Smith, J., Stelling,

G., and Stone, G.: Modeling hurricane waves and storm surge using integrally-coupled, scalable computa-840

tions, Coastal Engineering, 58, 45–65, 2011.

Dijkstra, H. A. and Katsman, C. A.: Temporal variability of the Wind-Driven Quasi-geostrophic Double Gyre

Ocean Circulation: Basic Bifurcation Diagrams, Geophys. Astrophys. Fluid Dyn., 85, 195–232, 1997.

Djath, B., Melet, A., Verron, J., Mollines, J.-M., Barnler, B., Gourdeau, L., and Debreu, L.: A 1/36° model of

the Solomon Sea embedded into a global ocean model: On the setting up of an interactive open boundary845

nested model system, Journal of Operational Oceanography, 7, 34–46, 2014.

Drost, N., Maassen, J., Van Meersbergen, M. A., Bal, H. E., Pelupessy, F., Zwart, S. P., Kliphuis, M., Dijk-

stra, H. A., and Seinstra, F. J.: High-performance distributed multi-model/multi-kernel simulations: A case-

study in jungle computing, in: Parallel and Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW), 2012 IEEE 26th International, pp. 150–162, IEEE, 2012.850

Dubois, P. F., Hinsen, K., and Hugunin, J.: Numerical Python, Computers in Physics, 10, 1996.

Farrell, P. E., Piggott, M. D., Pain, C. C., Gorman, G. J., and Wilson, C. R. G.: Conservative interpolation

between unstructured meshes via supermesh construction, Computer Methods in Applied Mechanics and

Engineering, 198, 2632–2642, doi:10.1016/j.cma.2009.03.004, 2009.

35



Flierl, G. R.: Models of vertical structure and the calibration of two-layer models, Dynamics of Atmospheres855

and Oceans, 2, 341–381, 1978.

Gent, P. R. and McWilliams, J. C.: Isopycnal mixing in ocean circulation models, Journal of Physical Oceanog-

raphy, 20, 150–155, 1990.

Gregersen, J. B., Gijsbers, P. J. A., and Westen, S. J. P.: OpenMI: Open modelling interface, Journal of Hy-

droinformatics, 9, 175–191, 2007.860

Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour, C. O., Dunne, J. P., Goddard,

P., Morrison, A. K., Rosati, A., Wittenberg, A. T., Yin, J., and Zhang, R.: Impacts on Ocean Heat from

Transient Mesoscale Eddies in a Hierarchy of Climate Models, Journal of Climate, 28, 952–977, 2015.

Hill, C., DeLuca, C., Suarez, M., Da Silva, A., and others: The architecture of the earth system modeling

framework, Computing in Science & Engineering, 6, 18–28, 2004.865

Holland, G. J.: An Analytic Model of the Wind and Pressure Profiles in Hurricanes, Monthly Weather Review,

108, 1212–1218, 1980.

Hunter, J. D.: Matplotlib: A 2D graphics environment, Computing In Science & Engineering, 9, 90–95, 2007.

Ierley, G. R. and Sheremet, V. A.: Multiple solutions and advection-dominated flows in the wind-driven circu-

lation. Part I: Slip, Journal of marine research, 53, 703–737, 1995.870

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assess-

ment Report of the Intergovernmental Panel on Climate Change (IPCC) [Stocker, T.F. et al. (eds)], Cambridge

University Press, Cambridge, UK and New York, NY, also available from www.ipcc.ch, 2013.

Jacob, R., Larson, J., and Ong, E.: M× N communication and parallel interpolation in Community Climate

System Model Version 3 using the model coupling toolkit, International Journal of High Performance Com-875

puting Applications, 19, 293–307, 2005.

Jones, P. W.: First-and second-order conservative remapping schemes for grids in spherical coordinates,

Monthly Weather Review, 127, 2204–2210, 1999.

Komen, G., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.: Dynamics and Mod-

elling of Ocean Waves, Cambridge University Press, 1994.880

Larson, J.: The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics Parallel Coupled

Models, International Journal of High Performance Computing Applications, 19, 277–292, 2005.

Le Bars, D., De Ruijter, W. P. M., and Dijkstra, H. A.: A New Regime of the Agulhas Current Retroflection:

Turbulent Choking of Indian–Atlantic leakage, Journal of Physical Oceanography, 42, 1158–1172, 2012.

Leuttich, R. and Westerink, J.: Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Ele-885

ment Model Version 44.XX, Tech. rep., 2004.

libSupermesh, 2016: libsupermesh parallel supermeshing library. Available at:

https://bitbucket.org/libsupermesh/libsupermesh, 2016.

Maltrud, M., Bryan, F., and Peacock, S.: Boundary impulse response functions in a century-long eddying global

ocean simulation, Environmental Fluid Mechanics, 10, 275–295, 2010.890

Mason, E., Pascual, A., and McWilliams, J. C.: A new sea surface height–based code for oceanic mesoscale

eddy tracking, Journal of Atmospheric and Oceanic Technology, 31, 1181–1188, 2014.

Munk, W.: On the wind driven ocean circulation, Journal of Meteorology, 7, 79–93, 1950.

36



Peckham, S. D., Hutton, E. W., and Norris, B.: A component-based approach to integrated modeling in the

geosciences: The design of CSDMS, Computers & Geosciences, 53, 3–12, 2013.895

Pedlosky, J.: Ocean Circulation Theory, Springer, 1996.

Pelupessy, F. I., van Elteren, A., de Vries, N., McMillan, S. L. W., Drost, N., and Portegies Zwart, S. F.: The

Astrophysical Multipurpose Software Environment, Astronomy and Astrophysics, 557, 84, 2013.

Portegies Zwart, S., McMillan, S., Harfst, S., Groen, D., Fujii, M., Nualláin, B. Ó., Glebbeek, E., Heggie, D.,

Lombardi, J., Hut, P., Angelou, V., Banerjee, S., Belkus, H., Fragos, T., Fregeau, J., Gaburov, E., Izzard, R.,900

Jurić, M., Justham, S., Sottoriva, A., Teuben, P., van Bever, J., Yaron, O., and Zemp, M.: A multiphysics

and multiscale software environment for modeling astrophysical systems, New Astronomy, 14, 369–378,

doi:10.1016/j.newast.2008.10.006, 2009.

Portegies Zwart, S., McMillan, S. L. W., van Elteren, E., Pelupessy, I., and de Vries, N.: Multi-physics sim-

ulations using a hierarchical interchangeable software interface, Computer Physics Communications, 183,905

456–468, 2013.

Rew, R. and Davis, G.: NetCDF: an interface for scientific data access, IEEE Computer Graphics and Applica-

tions, 10, 76–82, doi:10.1109/38.56302, 1990.

Seinstra, F. J., Maassen, J., Van Nieuwpoort, R. V., Drost, N., Van Kessel, T., Van Werkhoven, B., Urbani, J.,

Jacobs, C., Kielmann, T., and Bal, H. E.: Jungle computing: Distributed supercomputing beyond clusters,910

grids, and clouds, in: Grids, Clouds and Virtualization, pp. 167–197, Springer, 2011.

Sheremet, V. A., Ierley, G. R., and Kamenkovich, V. M.: Eigenanalysis of the two-dimensional wind-driven

ocean circulation problem, Journal of marine research, 55, 57–92, 1997.

Smith, R. D., Jones, P. W., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-

Kemper, B., Gent, P., and others: The Parallel Ocean Program (POP) reference manual, Los Alamos National915

Laboratory, LAUR-10-01853, 2010.

Stommel, H.: The westward intensification of wind-driven ocean currents, Trans. Amer. Geophysical Union,

22, 202–206, 1948.

Sverdrup, H. U.: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the

eastern Pacific, Proceedings of the National Academy of Sciences of the United States of America, 33, 318,920

1947.

SWAN: Scientific and Technical Documentation, Delft University, 2015.

Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geoscientific Model

Development, 6, 373–388, 2013.

Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R., Ford, R. W., Jacob, R., Larson, J., O’Kuinghttons, R.,925

Riley, G. D., and Vertenstein, M.: Coupling technologies for Earth System Modelling, Geoscientific Model

Development, 5, 1589–1596, 2012.

van Rossum, G.: Python tutorial, Technical Report CS-R9526, Centrum voor Wiskunde en Informatica, Ams-

terdam, 1995.

van Werkhoven, B., Maassen, J., Kliphuis, M., Dijkstra, H., Brunnabend, S., van Meersbergen, M., Seinstra, F.,930

and Bal, H.: A distributed computing approach to improve the performance of the Parallel Ocean Program

(v2. 1), Geoscientific Model Development, 7, 267–281, 2014.

37



Viebahn, J. and Dijkstra, H. A.: Critical Transition Analysis of the Deterministic Wind-Driven Ocean Circu-

lation — A Flux-Based Network Approach, International Journal of Bifurcation and Chaos, 24, 1430 007,

2014.935

Viebahn, J. and Eden, C.: Towards the impact of eddies on the response of the Southern Ocean to climate

change, Ocean Modelling, 34, 150–165, 2010.

Zijlema, M.: Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids, Coastal

Engineering, 57, 267–277, 2010.

38


