
Reply to reviewers: “Finding the Goldilocks zone:
Compression-error trade-off for large gridded datasets”

Jeremy Silver, Charlie Zender

October 28, 2016

We wish to thank the reviewers to taking the time to read the manuscript and provide
feedback. We note that we have taken the challenge of major revision seriously and reworked
the analysis to a much more fine-grained level, included a range of new and interesting results,
remade all the figures, and restructured and rewritten much of the text. We believe that the
reviewers’ comments have helped to improve the manuscript and strengthen our findings.

Main changes

• Compression, errors and complexity are assessed at the variable-level, rather than the
dataset-level (i.e. for a number of variables combined).

• We calculated a range of statistics on the individual variables, in order to improve our
understanding of why certain variables compress well with one method or another.

• Some material was moved to a supplementary document.

• The introduction has been abbreviated as recommended.

• The Methods section was expanded to provide a clearer description of the layer-packing
method.

• The discussion includes a brief review of related work.

• Additional description of the deflate and shuffle compression algorithms were added to
the Methods section.

• All figures have been reworked.

Minor changes

• Variables are now chunked in a consistent manner for the different methods to improve
comparability across compression methods.

• A minor error was found and corrected in the calculation of file sizes. The differences
would have been very minor for the results in the original manuscript, since the file
sizes were much larger than when doing the analysis on individual variables, but became
apparent when working with the single-variable data files. The error was that the results
were calculated based on “resident” rather than “actual” file size.
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• Minor improvements were made to the layer-packing code, resulting in more stable treat-
ment of non-finite values, avoiding rare cases of floating-point overflow, and more stable
handling of dimensions.

• We ran the test suite on a variable of size 1.5 GB to examine the performance of the
methods on larger datasets. This was included as an example referenced in the timing
results, rather than adding it to the suite of variables presented in all results. This was
mainly because, in the process of setting it up, the test suite was run many dozens of
times; to accelerate the testing the variables considered were kept relatively small (the
largest was about 65 MB).

1 Reviewer 1

1.1 General comments

1. This paper addresses an important issue because data compression is very much needed to
mitigate large data volumes in geophysical data. Treating the dimensions differently when
applying lossy compression to gridded data makes a lot of sense.

We agree.

2. Section 1 and 2 need some rearranging and improvement (more details are given below in
“specific comments”) in terms of introducing the ideas and terminology. It could be better
to shorten the introduction and then really explain the methods well in section 2.

We have rearranged material in these sections given the feedback provided.

3. The audience for this work may not be too familiar with compression techniques other than
just using defaults in netCDF, so improving the explanations for the techniques would be
helpful. (For example, defining a “deflate and shuffle” algorithm).

We have provided additional details as suggested.

4. The paper’s contribution should be clarified in the introduction (section 1). It is not clear
to me whether “layer packing” is a new idea that is first presented here. (It is mentioned
a bit more clearly in section 3).

Layer packing per say is not a new idea, and is the foundation for compression in the
GRIB data format. However the idea of layer-packing is generalised here beyond two-
dimensional slices. The work presented here is a test-of-concept for combining some of
the better aspects of both GRIB and netCDF/HDF5 formats.
The introduction and discussion reiterate these points.

5. For this paper to really impact the broader geophysical data community, I feel that more
details on the compression approaches need to be provided.

We have provided more details as recommended.

6. More details on the datasets are needed to be able to understand why compression effects
the each differently. Perhaps look at variables instead of multi-variable datasets?

This is an excellent suggestion and one that we have adopted. One of the main changes
to the manuscript between the initial submission and this revision is that we examine
compression in a variable-by-variable approach rather than as a whole-dataset approach.
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This allows us to look at individual variables in terms of their compressibility, the “com-
plexity” of the variable and error resulting from the lossy compression; this fine-grained
approach allows for greater insight and a much larger sample size. As such the results
section has been heavily revised.

1.2 Specific comments

1. page 2, par. 1: For this audience, please give more explanation of the techniques. For
example, please provide more explanation of how “deflate and shuffle” works (rather than
just pointing to a reference).

We have introduced additional detail about these methods as recommended.

2. page 2, line 22: “Linear packing with a single scale-offset parameter” – is discussed here
but not well-defined. Note that “packing” is later defined in line 32. Then “scalar linear
packing” on p.3. line 2. In general, the terminology used and defined in this paragraph is
hard to follow in that it is sometimes defined after being used. (Also, is “linear packing
with a single scale-offset parameter” the same as “scalar linear packing”?)

We have reviewed how the notation is introduced in order to improve readability.

3. p.2, line 29: I’m not sure the audience will be familiar with “quantization” (like the
audience for a CS publication would).

This has been clarified

4. section 2.1.1 (“Layer packing”) Here I would suggest providing more detail (maybe an
example) – particularly if this approach is the main contribution of the paper. Rather
than providing syntax details, consider defining/explaining the parameters (the reader
may not be familiar with what these are) here.

In hindsight we agree that details about the algorithm itself are required, rather than
syntax. We have moved the syntax to a supplementary section. The algorithm itself is
outlined in the methods section.

5. section 2.1.2, line 15: Explain what “level” means in the algorithm.

This has been explained.

6. section 2.1.2, line 17: Explain a shuffle filter.

We have added additional details.

7. section 2.3: Regarding the datasets listed, more information about the model source (other
than acronym and reference) would be helpful - especially in interpreting the results.
Without more details, I cannot really understand how the datasets differ and, therefore,
why/how they would respond to compression differently. For example, the number of grid
points are given - but does this number represent a domain on the entire globe for all
datasets? The number of vertical levels is listed, but do all models simulate to the same
height? What is the time dimension? Hourly? Monthly averages? Is the time dimension
the same for each data set?
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The original description of these datasets was deliberately kept short, as this was not the
main focus of the paper. We have compromised by abbreviating the description of the
datasets to a table and moving the full descriptions of these datasets to the Supplementary
Material section.
Regarding the question about why variables respond differently to compression, we believe
that this has been solidly addressed in the analysis of the entropy of the data and exponent
fields, which was made possibly by following the suggestion to shift the focus of the paper
from compressing entire datasets to compressing individual variables.

8. Fig 1: For compression results, I think it would be more intuitive/standard to compare
to the uncompressed size (and have all ratios below 1.0). Also I don’t understand the
meaning of the comp./decomp. time in the left panel for uncompressed data.

The compression ratios are now defined in terms of the uncompressed size as suggested,
and we have also moved to a more standard definition of the compression ratio (i.e.
uncompressed size / compressed size, so that larger values represent greater compression).
The compression times represent the time taken from the original data to the compressed
file, whereas the decompression time is to unpack the layer-packed data. This has been
clarified

9. page 6, line 30: The paper could be much stronger with specific examples of individual
variables and how affected by compression approach and choice of metric (e.g. by std. dev.
or mean normalization). Since all results are averaged across datasets, this information
is not available.

We agree and we have adopted the variable-level rather than dataset-level approach. We
included examples of six variables (among a total of 255) in the Supplementary Material
document as illustrations of the errors induced by the six lossy compression methods
considered.

10. Section 3: This section contains some useful information (and examples) about linear
scaling and layer packing that would have been good to explain earlier in the paper when
the concepts/algorithms are first introduced (and before the results are given).

We have given additional details about linear scaling and layer packing in the Methods
section. Additional examples for illustrative variables appear in the Results section.

11. More related lossy compression work on geophysical data should be mentioned for bet-
ter context, for example: Hubbe, Wegener et al., ISC ’13 (http: // link. springer.
com/ chapter/ 10. 1007% 2F978-3-642-38750-0_ 26 ), Baker, et al., HPDC ’14 (http:
// dl. acm. org/ citation. cfm? id= 2600217 ), Woodring et al., LDAV ’11 (http: //
ieeexplore. ieee. org/ xpls/ abs_ all. jsp? arnumber= 6092314& tag= 1)

We have given more details about related lossy compression work in this field. We thank
the reviewer for the suggested citations and have included some in the manuscript.

12. Other competitive lossy compression algorithms for scientific data should probably be men-
tioned as many may be affected by differences in the variation across spatial dimensions
for gridded data – this could be really interesting. Also many lossy compression methods
for scientific data could eventually by incorporated into netCDF.

We have expanded the discussion to refer to other lossy compression algorithms for sci-
entific data, formats beyond netCDF (e.g. based on image- and video-compression).
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13. Fig. 2: Because the differences between the datasets are not more thoroughly addressed,
then it’s unclear what conclusion to draw by comparing the SD and mean normalizations
in Figure 2 (e.g., what is the takeaway point?). Basically, it seems that the two plots are
quantitatively similar enough that both should be included only to illustrate a point, which
I am not seeing. Can you clarify?

Both plots were included in order avoid the perception of a biased interpretation of the
results. Normalization by the SD or the mean advantages one method or the other,
however the conclusions are the same regardless of the normalization. We agree that
including both plots does not add much value to the paper. We note that all the figures
have been completely reworked.

14. fig 3: Same comment as above, plus I am not sure what conclusion to draw given that
some datasets compress better than others without a more clear understanding of dataset
differences. I think looking at individual variables, rather than entire datasets would make
it easier for the reader to understand the differences in the approaches.

As noted previously, we agree with the reviewer’s comment and have redone the analysis
to examine variables separately, rather than groups of variables clustered together as
datasets.

1.3 Final thoughts

1. I like the idea of treating spatial dimensions differently with lossy compression, and I think
the authors could have really taken off with this concept and it explored it much more
thoroughly. I question whether the contributions in this particular version are significant
enough for a GMD paper.

The purpose of this study was to test the concept of layer-packing, in an attempt to
combine some of the best aspects of the GRIB and netCDF/HDF5 data formats. We
acknowledge that the results have not been conclusively in favour of the layer-packing
with respect to bit-grooming, however we would argue that this is worth publishing all
the same. This partly relates to the discussion of publishing “positive” versus “negative”
results; if only “positive” findings are published, this will result in a great deal of time and
effort being wasted within the scientific community in repeating superficially appealing
experiments. As such, transferring this knowledge to the public domain has value. The
geoscientific modelling and measurement community (e.g. the volume of data generated
by satellite retrievals) relies heavily on these data formats, and it is important that their
refinement is an ongoing process.
Regardless of any ambiguity between the choice of bit-grooming or layer-packing, one
clear result from this study is that simple linear packing typically results in much greater
loss of precision than either of the two lossy methods discussed here. This is despite its
widespread use.
Other useful contributions include the focus on the error-compression trade-off, the finding
that the normalized entropy of the exponent field can be used to help determine which
compression method is most appropriate, and the idea (introduced in the discussion) that
the changes in the normalized entropy of the data could be used to determine how many
significant figures should be retained.
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2 Reviewer 2

2.1 General comments

1. This paper describes a variant of lossy encoding which leverages the multi-dimensional
nature of many scientific datasets that have greater data variances along different axes.
The axes with small variations in data values are labeled “thin dimensions” and the axes
with large variations in values are labeled “thick dimensions”. The datasets are then
“layer packed” with a linear scaling algorithm in the thin dimensions, recording a scale &
offset value for each coordinate in the thick dimension.
I think the insights into the “thick” and “thin” dimensions are the primary value of this
paper, with the actual compression algorithm and results being less important, overall.

Yes – one of the main things we are trying to do here is to assess whether treating different
dimensions differently during gives much benefit over and above other methods that can
be easily applied to such datasets. This is essentially trying to combine the best elements
of GRIB and netCDF/HDF5.

2.2 Specific comments

1. Applying the idea of thick & thin dimensions appropriately to other compression methods
(such as the JPEG-2000 algorithm used in GRIB2) would be more valuable than just the
idea of the simple scale & offset compression chosen.

We agree, and we spent a large amount of time trying to get this to work while preparing
these revisions.
In revising this work, we were able to run (after many technical hiccups) the same set of
tests for GRIB/JPEG2000 compression as well (using 8, 12, 16 and 20 bits to represent
the data). Our preliminary results showed that the JPEG2000 algorithm yields greater
compression compared to the methods presented here for the same level of error; this
echoes the findings of Caron (2014), which describe the efficient compression achieved.
However like bit-grooming or layer-packing, JPEG2000 does not offer clear controls about
the resultant errors and thus some experimentation (in setting the number of bits per
value) is needed to avoid excessive loss of precision. We found that there was a large
spread in the magnitude of the relative errors compared to the other methods considered.
However the technical challenges required to convert a general netCDF field into GRIB
format to be far in excess of what may be recommended to the average practitioner of
geoscientific modelling. For this reason, and for the large spread in the compression
and error result in the GRIB-compressed fields, and in order to keep the manuscript as
focussed as possible, we chose not to include these results.

2. Near the bottom of page 6, “for simplicity will have” should be corrected to “for simplicity
we have”.

Yes, well spotted. We have fixed this.

2.3 Reviewer 2’s comments to Review 1

1. Very nice review, much more detailed than mine. We seem to have homed in on the
same insights: the differences in dimensions are the valuable part of the paper, and they
aren’t explored in enough detail to warrant a lot of enthusiasm in the current state of the
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paper. My current feeling is a very “weak” accept, and I would prefer to ask for further
exploration of the dimension ideas.

Following the suggestions from Reviewer 1, the analysis and results have been considerably
expanded and the revised manuscript offers further perspectives into the relationship
between lossy compression, the resulting error and underlying complexity of the data.

3 Reviewer 3

3.1 Summary

The paper introduces a “layer packing” lossy compression technique that takes advantage of
the minimal horizontal variations in geoscience data relative to the larger variations across
vertical dimensions. The layer packing technique is compared against many widely used lossless
and lossy compression techniques and evaluated based on accuracy and time to solution. Layer
packing is found to be beneficial in some cases while not in others, leading to the conclusion
that care must be taken to evaluate whether lossy compression is worth the risk.

3.2 General Comments

1. The paper makes a good first attempt to evaluate the layer packing technique, but the
paper would benefit from an additional revision. First, it’s not clear what the paper is
contributing. The authors state that the technique is used in GRIB (page 7, section 3)
but that the evaluation was not possible due to relative error not being reported. Since
the technique is not new, then the only contributions of the paper are the announcement
of the general availability of the new non-GRIB tools, as well as the modestly detailed
evaluation of the many compression techniques.

The geoscientific modelling and remote-sensing community has to deal with the ever-
growing volume of data generated. As such, it is important that the storage methods are
reviewed in terms of the trade-off between compression, error and read/write times.
We have tried to avoid debate about data formats. Both have an important roles; the
geoscientific community relies heavily on netCDF/HDF5, and GRIB remains the format
of choice in many operational meteorological centres. Despite its excellent compression
performance, GRIB can be regarded as less user-friendly.
The GRIB layer-packing is restricted to two-dimensional slices, whereas the layer-packing
described here can operate on arbitrary hyperslices. The work presented in this manuscript
aims to generate discussion about ways of incorporating the best of both methods.
With reference to the comment from Page 7, Section 3: “Caron (2014) estimated that
GRIB2 files are on average 44% of the size of the equivalent deflate-compressed netCDF-4
files (n.b. relative errors were not reported, which limits the comparison)”. The intended
meaning was that the study of Caron (2014) reported the compression ratio, but not the
relative errors, which makes it difficult to place the Caron (2014) results with those of
this study.
The revisions to the original manuscript, focusing the analysis on the compressibility, er-
rors and complexity of individual variables offers additional insights into these relationship
and we believe adds substantially to the value of the paper.
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3.3 Specific Comments and Technical Corrections

1. The title, though catchy, is overloading the term “Goldilocks Zone” – the region around a
star where perhaps liquid water might be found on a planet’s surface. The title after the
colon is clear on its own.

We have abbreviated the title, which as already been through several iterations.

2. Page 2, line 3: “NetCDF” starts the last sentence on the line, though it should be
“netCDF” for consistency.

We have revised for consistency of this term.

3. Page 2, line 5: Why are three references necessary to describe the “deflate” compression
method? Throughout the paper, be consistent with terms. scale-offset vs scale and offset.
linear-packing vs linear packing.

Additional description of the deflate and shuffle algorithms has been added as suggested
by Reviewer 1. We have reconsidered the references in this section. We have also reviewed
the usage of the terms mentioned to improve the consistency of the manuscript.

4. Page 3, line 30: I would suggest adding that ncdump is a command-line utility from the
netCDF package because it might not be common knowledge. The paper introduces the “nc-
packlayer” program and also uses other “nc”-prefixed tools from the NCO suite. For exam-
ple, perhaps the following: “...(following the output format for the netCDF command-line
utility ncdump)...”

Yes, this is correct, thanks for pointing this out. We have clarified this point.

5. Page 3 (section 2 in general): More detail could be spent on the layer packing technique
itself; the many monospaced examples of section 2 don’t substantially add to the narrative
and instead come across like a tutorial or README.

We have expanded the description of the algorithm itself. To keep the article short and
concise, we have moved these details to an appendix.

6. Page 4, line 11: run-on sentence

Thanks for pointing this out. This has been corrected.

7. Page 4: The dollar symbol “$” is not explained, though I think you meant for it to refer
to a shell variable syntax.

Yes, this is correct. This has been clarified.

8. Page 5, Section 2.3: If I do the math correctly, the size of the datasets are (1) 962MB,
(2) 267MB, (3) 68MB, (4) 613MB, (5) 30MB, and (6) 717MB. The rationale for the
proposed compression is the growing volume of data in the geosciences, though none of
these datasets are over a gigabyte in size. Compression of a multi-gigabyte dataset would
make the argument more compelling, because datasets of such size will become more com-
monplace. Writing large datasets to disk as they are computed is a challenging problem
and it would be nice to evaluate whether compressing large datasets is a viable option as
they are generated. General comment about all Figures: Consider labeling the left and
right panes of each figure as (a) and (b). For example, page 6, paragraphs starting on
lines 9 and 17 sound too similar since Figure 1 is showing different things but is referred
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to in the text in the same way. It would be more clear to say something like “Figure 1A
shows...” and “Figure 1B presents...”

The point about the magnitude of the file size is quite reasonable. We ran the test suite
on variable of size 1.5 GB to examine the performance of the methods on larger datasets.
This was included as an example referenced in the timing results, rather than adding it
to the suite of variables presented in all results. This was mainly because, in the process
of setting it up, the test suite was run many dozens of times; to accelerate the testing the
variables considered were kept relatively small (the largest was about 65 MB).
However by the same token, the analysis for the revised manuscript has been done on
individual variables alone, so the basic unit of study has become much smaller. While
this might not impress those working with terabyte-scale data, it allows for greater insight
into the methodology itself.
Regarding the figures, some of these have been moved to a supplementary material section.
All panel plots now have labels (a), (b), etc., as suggested.

9. Page 7: Starting on this page, for some reason all references to “figure 3” are lower case.

Thanks for pointing this out – it has been fixed.

10. Page 8: Figure 1: The red and orange colors are too similar, though their position is clear
from the legend.

All the figures have been thoroughly reworked. The color scheme in question no longer
appears.

11. Page 8, Figure 1, right panel: What does it mean to have the first column as “uncom-
pressed” time since everything is normalized to DEFLATE? Was it the time to generate
the data? Was it the time to copy the file?

Yes, in hindsight this wasn’t very clear. It was effectively the time to copy the data. This
bar is not included it in the revised manuscript. Thanks for drawing attention to it.

12. Page 8, line 4: The reference to the HDF Group is used as an in-text citation as “(Group,
2016)”. It would be best to fix your citation to not use HDF Group as a first/last name
pair. See also your references on page 13, line 17.

Thanks for pointing this out. The default behaviour of the reference manager should have
been over-ruled. This has been corrected.

13. Page 9, line 1: run-on sentence

Thanks for pointing this out. It has been corrected.

14. Page 10, Figure 3 caption: capitalize the Figure 1 and Figure 2 references.

This has been made more consistent.

15. Page 11, line 6: misspelled “considered” – please consider a full spell check.

This has been fixed and we will ensure to run the spell checker again before resubmitting.
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Abstract. The netCDF-4 format is widely used for large gridded scientific datasets, and includes several compression methods:

lossy linear scaling and
::
the

:
non-lossy deflate and shuffle algorithms. Many multidimensional

::::::::::
geoscientific datasets exhibit con-

siderable variation over one or several spatial dimensions (e.g. vertically) with less variation in the remaining dimensions (e.g.

horizontally). On such datasets, linear scaling with a single pair of scale and offset parameters often entails considerable loss of

precision. We propose a method (termed “layer packing” )
:::::::
introduce

:::
an

::::::::
alternative

:::::::::::
compression

::::::
method

::::::
called

:::::::::::::
“layer-packing”5

that simultaneously exploits lossy linear scaling and lossless compression. Layer packing
:::::::::::
layer-packing

:
stores arrays (instead

of a scalar pair) of scale and offset parameters.

An implementation of this method is compared with existing compressiontechniques
::::::
lossless

::::::::::::
compression,

::::::
storing

::::
data

::
at

::::
fixed

:::::::
relative

::::::::
precision

::::::::::::
(bit-grooming)

::::
and

:::::
scalar

:::::
linear

:::::::
packing

:
in terms of compression ratio, accuracy , and speed. Layer

packing produces typical errors of 0.01-0.02of the standard deviation within the packed layer, and yields files roughly 33smaller10

than the lossless deflate algorithm. This was similar to

:::::
When

::::::
viewed

::
as

:
a
::::::::
trade-off

:::::::
between

:::::::::::
compression

:::
and

:::::
error,

::::
layer

:::::::
packing

:::::
yields

::::::
similar

::::::
results

::
to

:::::::::::
bit-grooming

:
(storing be-

tween 3 and 4 significant figuresper datum. In the six test datasets considered, layer packing demonstrated a better compression/error

trade-off than storing 3-4 significant digits in half of cases and worse in the remaining cases, highlighting the need to compare

lossy compression methods in individual applications. Layer packing preserves substantially more
:
).

:::
Bit

::::::::
grooming

:::
and

:::::::::::
layer-packing15

::::
offer

::::::::::
significantly

:::::
better

::::::
control

::
of

:
precision than scalar linear packing, whereas scalar linear packing achieves greater compression

ratios
:
.
:::::::
Relative

:::::::::::
performance,

:::
in

:::::
terms

::
of

:::::::::::
compression

:::
and

::::::
errors,

::
of
:::::::::::

bit-groomed
::::
and

::::::::::
layer-packed

::::
data

:::::
were

:::::
most

:::::::
strongly

:::::::
predicted

:::
by

:::
the

:::::::
entropy

::
of

:::
the

::::::::
exponent

:::::
array,

::::
and

:::::::
lossless

::::::::::
compression

::::
was

::::
well

::::::::
predicted

:::
by

:::::::
entropy

::
of

:::
the

:::::::
original

::::
data

::::
array. Layer-packed data files must be “unpacked” to be readily usable. These

:::
The

::::::::::
compression

::::
and

::::::::
precision characteristics

make layer-packing a competitive archive format for many geophysical
::::::::
scientific datasets.20

Keywords. netCDF-4; HDF5; Lossy compression; Data storage format
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1 Introduction

The volume of both computational and observational geophysical data has grown dramatically in recent decades, and this

trend is likely to continue. While disk storage costs have fallen, strong constraints remain on data storage. Hence, in practice,

compression of large datasets continues to be important for efficient use of storage resources.

Two important sources of large volumes of data are computational modelling and remote-sensing (principally from satel-5

lites). These data often have a “hypercube” structure, and storage
:::
are

:::::
stored

::
in
:
formats such as HDF5 (http://www.hdfgroup.

org), netCDF-4 (http://www.unidata.ucar.edu/netcdf) and GRIB
::::::
GRIB2 (http://rda.ucar.edu/docs/formats/grib2/grib2doc/). Each

of these has their own built-in compression techniques, allowing data to be stored in a compressed format, while simultane-

ously allowing access to the data (i.e. incorporating the compression/decompression algorithms into the format’s API).
:::::
These

::::::::::
compression

:::::::
methods

:::
are

:::::
either

:::::::::
“lossless”

:::
(i.e.

::
no

::::::::
precision

::
is

::::
lost)

::
or

::::::
“lossy”

::::
(i.e.

::::
some

::::::::
accuracy

::
is

::::
lost).

:
10

The
:
In
::::

this
::::::
study,

:::
we

:::::::
examine

:::
the

::::::::::
advantages

:::
and

:::::::::
trade-offs

::
of

:::
in

:::::::
allowing

:::
for

::::::::
different

::::::::
treatment

::
of

::::::::::
dimensions

:::
in

:::
the

::::::::::
compression

:::::::
process.

::::
One

:::::::::
motivation

:::
for

:::
this

::::
work

::
is

:::::::::
improving

:::
the

::::
lossy

:::::::::::
compression

:::::
ratios

:::::::
typically

:::::::
achieved

::::
with

:
HDF5and

netCDF-4 formats
::::::::
/netCDF4,

:::
so

::::
they

:::
are

:::::
more

::::::::::
comparable

::::
with

::::::::::
impressive

::::::::::
compression

::::::::
achieved

:::
by

:::::::
GRIB2.

:::::::
Records

:::
in

::::::
GRIB2

:::
are

::::::
strictly

:::::::::::::
two-dimensional

::::
and

:::
this

::::::
format

:::::
allows

:::
for

::::
only

:
a
::::::
limited

:::
set

::
of

:::::::::
predefined

::::::::
metadata.

::::::::
However

::::::
GRIB2

:::::
offers

:::::::
excellent

:::::::::::
compression

::::::::
efficiency

:::::::::::::
(Caron, 2014) ,

::::
built

:::::
upon

:::
the

:::::
JPEG

:::::
image

:::::::::::
compression

::::::::
methods;

::
it

:
is
::::::::

therefore
::::::::::
well-suited15

::
for

::::::::::
operational

:::::::::::
environments.

:::
By

:::::::
contrast,

::::::::::::::
HDF5/netCDF4 provide a highly flexible framework, allowing for attributes, groups,

and user-defined data types. Variables can be defined with as many as 32 or 1024 dimensions (respectively for the two formats);

the relatively free framework to define meta-data allows such formats to be self-documenting and applicable for many contexts.

NetCDF-4 is built upon HDF5, and inherits most of its capabilities. Both
:::
This

::::::
format

::
is
::::
well

::::::
suited

:::
for

:::::
more

:::::::::::
experimental

:::::::::::
environments

:::
and

::::::
allows

:::::::::::
introduction

::
of

::::::::::
user-defined

::::::::::
parameters

::
to

:::::
guide

::::
and

:::::::
improve

:::::::::::
compression.

:::
We

::::
use

:::
this

:::::::::
flexibility20

::
to

::::::
develop

::
a
:::::
lossy

::::::::::
compression

:::::::::
algorithm,

::::::
termed

::::::::::::::
“layer-packing”,

:::::
which

:::::::::
combines

:::::::
desirable

:::::::
features

:::::
from

::::
both

::::::
GRIB2

::::
and

HDF5
::::::::
/netCDF4.

:

::::::::::::
Layer-packing

::
is

:
a
::::::
variant

:::
of

::::::::::
compression

:::
via

::::::
linear

::::::
scaling

::::
that

:::::::
exploits

:::
the

::::::::
clustering

:::
of

:::
data

::::::
values

:::::
along

:::::::::::
dimensional

::::
axes.

:::
We

:::::::
contrast

:::
this

::::
with

:::::
other

:::::::::::
compression

:::::::
methods

::::::::
(rounding

::
to

:::::
fixed

::::::::
precision,

::::
and

:::::
simple

:::::
linear

:::::::
scaling)

::::
that

:::
are

::::::
readily

:::::::
available

::::::
within

:::
the

:::::::::::::
netCDF4/HDF5

::::::::::
framework.

::::
The

::::::::::
performance

::
is
:::::::::
quantified

::
in

:::::
terms

::
of

:::
the

::::::::
resultant

:::
loss

::
of

::::::::
precision

::::
and25

::::::::::
compression

:::::
ratio.

:::
We

:::
also

::::::::
examine

::::::
various

::::::::
statistical

::::::::
properties

:::
of

::::::
datasets

::::
that

:::
are

::::::::
predictive

:::
for

::::
their

::::::
overall

:::::::::::::
compressibility

:::
and

:::
the

::::::
relative

:::::::::::
performance

::
of

:::::::::::
layer-packing

:::
or

:::::::
rounding

::
to
:::::
fixed

::::::::
precision.

:

2
:::::::
Methods

::::
This

::::::
section

:::::::
outlines

:::
the

::::::::::::::
implementation

::
of

:::
the

::::::::::::
layer-packing

:
and netCDF-4 include the

:::::::::
-unpacking

::::::::
methods,

:::
the

:::::::
storage

:::::
format

:::
(in

:::
the

:::::::::::::
implementation

:::::::::
described),

:::
the

:::
test

::::
data

::::
sets,

::::::::
evaluation

:::::::
metrics

:::
and

:::
the

::::::::::
performance

::
of

:::
the

:::::::::::
compression

:::::::
methods30

::
on

:::
the

:::
test

:::::
cases

::::::::::
considered.
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2.1
:::::::::::

Compression
:::::::::
algorithms

2.1.1
::::::
Deflate

::::
and

::::::
shuffle

:::
The “deflate” compression algorithm (Deutsch, 2008; Ziv and Lempel, 1977, 1978) and a shuffle filter

::::::::
algorithm

:::::::::::::::
(Deutsch, 2008) is

:
a
:::::::::::
widely-used,

:::::::
lossless

::::::::::
compression

:::::::
method,

::::::::
available

::::::
within

::::
most

:::::::
modern

::::::::::
installations

:::
of

:::
the

::::::::
netCDF4

::
or

::::::
HDF5

::::
API.

::::
The

:::::
deflate

::::::::
algorithm

::::::
breaks

:::
the

::::
data

:::
into

::::::
blocks,

:::::
which

:::
are

::::::::::
compressed

:::
via

:::
the

:::::
LZ77

::::::::
algorithm

:::::::::::::::::::::::::::::::::
(Ziv and Lempel, 1977, 1978) combined5

::::
with

:::::::
Huffman

::::::::
encoding

:::::::::::::::
(Huffman, 1952) .

::::
The

::::
LZ77

:::::::::
algorithm

:::::::
searches

:::
for

:::::::::
duplicated

::::::
patterns

:::
of

::::
bytes

::::::
within

:::
the

:::::
block.

::::
The

:::::::
Huffman

::::::
coding

::::
step

:::::::
involves

::::::::::
substituting

::::::::
frequently

:::::
used

:::::::::
“symbols”

::::
with

::::::
shorter

::::::::::
bit-sequence

::::
and

::::
rarer

:::::::
symbols

::::
with

::::::
longer

::::::::::
bit-sequence. These are “lossless” compression techniques, in that no precision is lost. By contrast, “linear scaling” is a “lossy”

compression method (implying a loss of accuracy), which rounds the

:::::
When

::::
used

::
in

:::
the

:::::::::::::
netCDF4/HDF5

:::::::::
framework,

:::
the

::::::
deflate

::::::::
algorithm

::
is

::::
often

:::::::
applied

:::::::
together

:::
with

:::
the

::::::
shuffle

::::
filter

:::::::::::::::::::
(HDF5 Group, 2002) .10

:::
The

::::::
shuffle

::::
filter

::::
does

::::
not

::::::::
compress

:::
data

:::
as

::::
such,

:::
but

::::::
instead

:::::::
changes

:::
the

::::
byte

::::::::
ordering

::
of

:::
the

::::
data;

:::
the

::::
first

::::
byte

::
of

::::
each

:::::
value

:
is
::::::

stored
::
in

:::
the

::::
first

::::::
chunk

::
of

:::
the

::::
data

:::::::
stream,

:::
the

::::::
second

:::::
byte

::
in

:::
the

::::::
second

::::::
chunk,

::::
and

:::
so

:::
on.

::::
This

:::::
tends

::
to

::::::::
improve

:::
the

::::::::::::
compressibility

:::
of

:::
the

::::
data,

::::::::::
particularly

::
if

::::
there

::
is
:::::::::::::

autocorrelation
::
in

:::
the

::::
data

::::::
stream

::::
(i.e.

:::
data

::::
that

:::
are

::::
close

:::
in

::::
value

:::::
tend

::
to

:::::
appear

:::::
close

::::::::
together).

:

::
In

::
all

:::
of

:::
the

::::::::
following

:::::
work,

:::
we

::::
have

::::
used

:::
the

::::::
deflate

:::::::::
algorithm

:::
and

:::
the

::::::
shuffle

:::::
filter

:::::::
together,

::::
and

:::
are

:::::::::
henceforth

:::::::
referred15

::
to

:::::::::
collectively

:::
as

:::::::::
DEFLATE

:::
for

:::::::
brevity.

::
In

:::
the

::::::
results

::::::::
presented

::::::
below,

:::::::::::
compression

:::
via

:::::::::
DEFLATE

::::
was

::::::::
performed

:::::
with

:::
the

:::::
ncks

:::
tool

:::
of

::
the

:::::
NCO

::::::
bundle

:::::::::::::
(Zender, 2008) .

::::
The

:::::::::::
compression

::::
level

:::
(set

::::::
taking

:::::
values

:::::::
between

::
1 &

::
9,

:::::
where

::
1

:::::
means

::::::
fastest

:::
and

:
9
::::::
means

:::::::
greatest

:::::::::::
compression)

:::::::
dictates

:::
the

::::::
amount

::
of

::::::::
searching

:::
for

:::::::::
duplicated

:::::::
patterns

::::
that

:
is
:::::::::
performed

::::::
within

:::
the

:::::
LZ77

::::
step.

:::
For

:::
all

::::::::::
applications

::::::
(either

:::
as

::
an

:::::::::::
independent

::::::
method

:::
or

::
in

:::::::::::
combination

::::
with

:::
the

::::::::
methods

:::::::
outlined

:::::::
below),

:::
the

:::::
same

::::::::::
compression

::::
level

::::
was

::::
used

::::::
within

:::::::::
DEFLATE

:::::::
(namely,

:::::
level

::
4).

:
20

:::::
When

:::::
using

:::
the

::::::::
netCDF4

:::::::::
framework

:::
to

::::::::
compress

::
a

:::::::
variable,

:::
the

::::
user

:::::
must

:::::
define

::::
the

:::
size

:::
of

:::
the

:::::::
“chunk”

::::::
within

::::::
which

::::::::::
compression

::::::
occurs.

:::
In

::
all

:::
the

::::::
results

::::::::
presented

::::
here

:::::
(both

:::
for

:::::::::
DEFLATE

::::
and

::
for

:::
the

:::::
other

:::::::::::
compression

::::::::
methods),

:::
the

::::::
chunk

:::
size

::::
was

:::::
equal

::
to

:::
the

::::::
layers

::::::
packed

:::::
using

::::::::::::
layer-packing

::::
(see

::::::
Section

::::::
2.1.3).

::::
The

:::::
same

:::::::
analyses

:::::
were

:::::::::
performed

::::::
setting

:::
the

:::::
chunk

::::
sizes

::
to

::::::::::
encompass

:::
the

:::::
whole

:::::::
variable,

::::
and

:::
the

::::::::::
conclusions

::::::
reached

::
in
::::
this

:::::
article

:::::
were

:::::::::
essentially

:::
the

:::::
same.

2.1.2
:::::
Scalar

::::::
linear

:::::::
packing25

:::
One

::::
can

::::::::
compress

:
a
::::
field

:::::
using

:
a
:::::::::::::
lower-precision

:::::
value

::::
(e.g.

::
as

::::::::
two-byte

:::::::
integers

:::::
rather

::::
than

:::::::
four-byte

:::::::
floating

:::::
point

::::::::
numbers)

:::
and

::
a

:::::
linear

::::::::::::
transformation

::::::::
between

:::
the

:::::::
original

:::
and

:::::::::::
compressed

:::::::::::::
representations;

::::
this

::::::
process

:::
is

::::::
termed

:::::::::
“packing”.

:::
In

:::
the

:::::::
common

::::
case

:::
of

::::::::::
representing

::::::::
four-byte

:::::
floats

:::
as

:::::::
two-byte

::::::::
integers,

:::::
there

::
is

::::::
already

::
a
::::::
saving

::
of

:::
50%

::::::
relative

::
to

:::
its

:::::::
original

:::::::::::
representation

::::::::
(ignoring

:::
the

:::::
small

::::::::
overhead

:::
due

:::
to

::::::
storing

:::::::::
parameters

:::::::
involved

::
in
:::

the
::::::::::::::

transformation).
::
In

::::
this

::::
case,

::
a

:::::
range

::
of

:::::::::::::
transformations

:::
are

::::::
readily

::::::::
available.

:::
We

::::
call

:::
this

::::::
“scalar

:::::
linear

::::::::
packing”

:::
(or

::::
LIN,

:::
for

:::::
short)

::::
and

::
it

::
is

:::
the

:::::::
standard

::::::
method

:::
of30

::::::
packing

:::
in

:::
the

:::::::::
geoscience

::::::::::
community.

:::
Its

::::::::
attributes

:::
are

::::::
defined

::
in
::::

the
::::::
netCDF

:::::
User

:::::
Guide

:::::::::::::::::
(Unidata, 2016) and

::
it

:::
has

::
a

::::
long

:::
and

::::
wide

::::::::
tradition

::
of

:::::::
support,

::::::::
including

::::::::
automatic

:::::::::::
interpretation

::
in
::
a
:::::
range

::
of

:::::::
netCDF

:::::::
readers.
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:::::
Scalar

:::::
linear

:::::::
packing

:::
to

::::::
convert

::::::::::::
floating-point

:
data to discrete values within a defined range.A common usage of linear

scaling is to represent variables as (signed or unsigned)
::
an

::::::::
unsigned two-byte integers, which allows for 216 = 65536 different

values. If applied to a four-byte floating point (i.e. single precision)array, this use of linear scaling cuts data usage by
::::::
integer

:::::::::::
representation

::
is
:::::::
outlined

::::::
below:

:

::::::::::::::::
maxPackedV alue

::
=

::::::
216− 1

::
=

:::::
65535

:
5

:::::
vMin

::
=

::::::::
minimum

:::::
value

::
of

::::
data

:

:::::
vMax

::
=
:::::::::
maximum

::::
value

:::
of

::::
data

::::::::::
add_offset

::
=

:::::
vMin

:

:::::::::::
scale_factor

::
=

:::::::::::::::::::::::::::::::
(vMax− vMin)/maxPackedV alue

:

::::::
packed

::
=

:::::::::::::::::::::::::::::::::::::
uint16((data− add_offset)/scale_factor)10

:::::
where

::::::
vMin,

::::::
vMax,

:::::::::::
add_offset

:::
and

::::::::::::
scale_factor

:::
are

:::::
scalar

::::::
floating

:::::
point

::::::
values,

::::
data

::
is

:
a
:::::::
floating

::::
point

:::::
array

:::
and

:::::::
packed

:
is
:::
an

:::::::
unsigned

::::::::
two-byte

::::::
integer

:::::
array

::
of

:::
the

::::
same

:::::::::
dimension

::
as

:::::
data,

:::
and

:::
the

:::::::
function

::::::::
uint16(·)

:::::::
converts

:::::
from

::::::
floating

:::::
point

::
to

:::::::
two-byte

::::::
integer.

:::::
Care

::::
must

::
be

:::::
taken

::
in

:::::::
handling

:::::::
infinite,

:::::::::::
not-a-number

::
or
:::::::::
undefined

:::::
values

:::::
(such

::::::
details

:::
are

::::::
omitted

:::::
here).

::::
The

::::
value

::
of
:::::::::::::::::
maxPackedV alue

:::::
listed

::::
uses

::
all

::::::
values

::
in

:::
the

::::::::
two-byte

::::::
integer

:::::
range

::
to

::::::::
represent

:::::
floats;

::::
one

:::
can

::::::
choose

:
a
::::::::
different

::::
value

::
of

:::
of

::::::::::::::::
maxPackedV alue,

:::::::
leaving

:::::
some

:::::::
two-byte

::::::
values

::
for

:::
the

::::::
special

::::::::::::
floating-point

::::::
values.

:::
The

::::::
values

::
of

:::::::::::
add_offset15

:::
and

::::::::::::
scale_factor

::::
must

::
be

::::::
stored

:::::
along

::::
with

::::::
packed

::
to

::::::
enable

:::
the

::::::
reverse

:::::::::::::
transformation:

::::::::
unpacked

::
=
:::::::::::::::::::::::::::::::::::::
float(packed)× scale_factor+ add_offset

:

::::
Data

::::::
packed

::::
with

::::
this

:::::::
method

:::::
often

:::
can

:::
be

::::::::::
compressed

:::::::::::
substantially

:::::
more

::::
than

:::
the

:
50%

:::::
noted

::::::
above.

::::
This

::
is
:::::

done
:::
by

:::::::
applying

:::::::::
DEFLATE

::
to
:::

the
:::::::

packed
::::
data;

::::
this

:::
was

:::::
done

:::
for

::
all

:::::::
datasets

::::::::::
compressed

::::
with

::::
LIN

:::::
here.

::
In

::::
this

:::::
study,

:::::::::::
compression

::
via

::::::::::
DEFLATE

:::
was

:::::::::
performed

:::::
with

:::
the

::::::
ncpdq

:::
tool

::
of

:::
the

:::::
NCO

::::::
bundle

:::::::::::::
(Zender, 2008) . When the deflate and shuffle filters20

are also applied, the savings are typically much greater.

2.1.3
::::::::::::
Layer-packing

In many applications in the geophysical sciences, a multidimensional gridded variable may range
::::
varies

:
dramatically across

one dimension while exhibiting a limited range of within slices of this variable. Examples include:

– variation in atmospheric density ,
:::
and

:
water vapour mixing ratio with respect to height25

– variation in ocean temperature ,
:::
and current velocity with respect to depth

– variation in atmospheric concentrations of nitrogen dioxide with respect to height and time

We will use the term “thick dimensions” to denote those dimensions that account for the majority of the variation in such

variables, “thin dimensions” to denote the remaining dimensions; in the case of the first example above (assuming a global

grid and a geographic coordinate system), the vertical dimension (pressure or height) is thick, and the horizontal dimensions30

(latitude, longitude) and time are thin. We will use the term “thin slice” to describe a slice through the hypercube for fixed
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values of the thick dimensions. Note that there are cases with multiple thick dimensions, such as the third example noted

above.

Linear-packing with a single scale-offset pair
:::::
Scalar

:::::
linear

:::::::
packing applied to such gridded variables results

:::
will

:::::
result

:
in a

considerable loss of accuracyacross thin slices of such variables. This is because in order to cover the scale of variation spanned

by the thick dimensions, few discrete values will be spanned by the individual thin slices. At least two distinct methods can5

achieve a better compromise between data compression and loss of accuracy. First, one
:::
To

:::::
reduce

::::
loss

::
of

::::::::
precision

::::::
within

:::
the

:::
thin

:::::
slice,

:::
one

:::
can

:::::
store

::
for

::::
each

:::::::
variable

::::::
arrays

::
of

:::::::::
scale-offset

:::::
pairs,

::::
with

::::
size

::::::::::::
corresponding

::
to

::
the

:::::
thick

:::::::::
dimensions

:::::
only.

::::
This

:
is
:::
the

::::
key

:::::::::
innovation

::
of

:::
the

:::::::::::
layer-packing

::::::::
technique

:::
(or

:::::
LAY

:::
for

:::::::
brevity).

::::::::::::
Layer-packing,

:::
as

::::::::
discussed

::::
here,

::::
was

:::::::::::
implemented

::
via

:::
the

:::::::::
following

::::::::
algorithm

:::::::::
(described

::::
here

::
in

:::::::::::
pseudocode):

for var in vars do10

if (var in splitV ars) and intersection(dimensions[var],splitDims) is not None then

::::::::::::::
theseSplitDims

::
=

:::::::::::::::::::
intersection(dimensions[

:::
var]

::::::::::
,splitDims)

:

:::::::::::::
theseDimLens

::
=

::::::
lengths

::
of

:::::::::::::::
theseSplitDims

:::::::::
iSplitDim

::
=

::::::
indices

::
of

:::::::::::::::
theseSplitDims

::
in

::::::::::
dimensions[

:::
var]

::::::::::::
splitDimIdxs

::
=
::
all

:::::::
possible

:::::
index

::::::::::::
combinations

:::
for

::::::::::::::
theseSplitDims

:
15

:::::::
nSplits

:
=
:::::::
number

::
of

:::::::::::
combinations

:::::
given

::
in

:::::::::::::
splitDimIdxs

:::::
nDim

::
=
:::::
length

:::
of

:::::::::
dimensions[

:::
var]

::::::
indices

::
=
:::
list

::
of

::::::
length

::::::
nDim,

::::
with

::::
each

:::::::
element

:::::
equal

::
to

::::::
Ellipsis

:

::::
data

::
=

::
the

::::
data

:::::
array

::::::
packed

::
=

::::
array

::
of

::::::
zeros,

::::
type

:
is
:::::::
uint16,

::::
with

:::
the

::::
same

:::::
shape

::
as

:::::
data20

::::::::::
add_offset

::
=

::::
array

::
of
::::::
zeros,

::::
type

:
is
:::::
float,

::::
with

::::::::::
dimensions

:::::
given

::
by

::::::::::::::
theseDimLens

:::::::::::
scale_factor

::
=

::::
same

:::
as

::::::::::
add_offset

:

for iSplit in range(0,nSplits) do

:::::::::::::::::
indices[iSplitDim]

:
=
:::::::::::::::::::
splitDimIdxs[iSplit]

:

::::::::
thinSlice

::
=

::::::::::::
Data[indices]

:
25

:::::
vMin

::
=

::::::::
minimum

:::::
value

::
of

:::::::::
thinSlice

:::::
vMax

::
=
:::::::::
maximum

::::
value

:::
of

::::::::
thinSlice

:

::::::::::::::::::::::::::::::
add_offset[splitDimIdxs[iSplit]]

:
=
::::::
vMin

:::::::::::::::::::::::::::::::
scale_factor[splitDimIdxs[iSplit]]

:
=
::::::::::::::::::::::::::::::::
(vMax− vMin)/maxPackedV alue

:

:::::::::::::
packed[indices]

::
=
::::::::::::::::::::::::::::::::::::::::::
uint16((thinSlice− add_offset)/scale_factor)30

end for

::::
write

:::::::
packed,

:::::::::::
add_offset,

::::::::::::
scale_factor

::
to

:::
file

:

else

::::
write

:::
the

::::
data

:::::
array

::
to

:::
file

:

end if35
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end for

:::
The

::::::::
two-byte

:::::::::::
representation

::::::
halves

:::
the

::::::
storage

::::
cost

::
of

:::
the

::::
array

:::::
itself,

::::::::
however

:::::
arrays

::
of

::::
scale

::::::
factors

::::
and

:::::
linear

:::::
offsets

:::::
must

:::
also

:::
be

:::::
stored

:::
and

:::
this

:::::
adds

::
to

::
the

::::
total

:::::
space

::::::::
required.

:::::::::::
Compression

::
is

:::::::
generally

:::::::::::
significantly

::::::::
improved

::
by

::::::::
applying

:::::::::
DEFLATE

:::
and

:::
this

::::
was

::::
done

:::
for

:::
all

::::::
datasets

:::::::::
presented

::::
here.

:

::::::
Further

:::::
details

:::::
about

:::
the

:::::::::::::
implementation

:::
are

:::::
given

::
in

::
the

:::::::::::::
Supplementary

:::::::
Material

:::::::::
document.

:::
The

::::
code

::
to
:::::::
perform

::::::::::::
layer-packing5

::::::::
described

::
in

::::
this

:::::
article

::::
was

:::::::
written

::
as

::::::::::
stand-alone

::::::::::::
command-line

:::::
tools

::
in

::::::
Python

:::
(v.

:::::
2.7.6).

::::::
These

:::
are

:::::
freely

::::::::
available

:::
on

https://github.com/JeremySilver/layerpack.
:::::::

Beyond
:::
the

::::::::
standard

::::::
Python

::::::::::
installation,

::
it
:::::::
requires

:::
the

:::::::
numpy

::
and

:::::::::::
netCDF-4

:::::::
modules

::
be

::::::::
installed.

2.1.4
:::
Bit

::::::::
grooming

:::
One

:
can store the data at a fixed precision (i.e. a chosen number of significant digits, or NSD). This method is known as “bit-10

grooming” and is detailed by Zender (2016) and implemented in the NCO package (Zender, 2008). If bit-groomed data remain

uncompressed in floating-point format this coarsening will not affect the file size, however the application of the deflate/shuffle

algorithms will in general improve the compressibility of the coarsened data, due to quantization to
:
as

::::
they

::::
will

::
be

::::::::::
represented

::
by a smaller number of values.

::::::
discrete

::::::
values.

:::
For

::::::
further

::::::::::
explanation,

:::
we

::::
must

::::::
briefly

:::::::::
summarize

::::
how

:::::::::::
floating-point

::::::::
numbers

::
are

::::::::::
represented

:::
by

:::::::::
computers.15

Second, one can represent the field using a lower-precision value (e. g. as two-byte integers rather than four-byte floating

point numbers ) and an agreed transformation between the original and compressed representations; this process is termed

“packing”. In the common case of representing four-byte floats as two-byte integers, there is already a saving of 50relative

to its original representation (ignoring any overhead due to storing parameters involved in the transformation) . In this case,

a range of transformations are readily available. The simplest is to use linear transformation with a single scale-offset pair,20

thereby avoiding the thick/thin dimension distinction. We call this “scalar linear packing” and it is the standard method of

packing in the geoscience community. Its attributes are defined in the netCDF User Guide (Unidata, 2016) and it has a long

and wide tradition of support, including automatic interpretation in a range of netCDF readers. Another option is to store

for each variable arrays of scale-offset pairs, with size corresponding to the thick dimensions only. We will refer to this

technique as “layer packing”. In this article, we compare the merits of these lossy compression methods alongside established25

compression techniques. We do not consider packing procedures using application-specific transformations; although these

may be efficient for particular applications, they are of less general interest and if they involve storing normalization factors

(i.e. parameters for use in the transformation) then their performance is likely to perform similarly tothe layer packing described

above.
:::::::::::::
Single-precision

:::::::::::
floating-point

::::::::
numbers

::::::
occupy

:::
32

:::
bits

::::::
within

:::::::
memory.

::::::::::::
Floating-point

::::::::
numbers

:::
are

::::::::::
represented

::
as

:::
the

::::::
product

::
of

::
a

::::
sign,

:::::::::
significand

::::
and

::
an

::::::::::
exponential

:::::
term:30

datum = sign · significand ·baseexponent
:::::::::::::::::::::::::::::::::
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:::
The

:::::
IEEE

::::::::
standard

:::::::
specifies

::::
that

:::
the

::::
sign

::::::::
accounts

:::
for

::
1
:::
bit,

:::
the

::::::::::
significand

::::
(also

:::::::
known

::
as

:::
the

:::::::::
mantissa)

::
23

::::
bits

::::
and

:::
the

:::::::
exponent

::
8

::::
bits.

:::
The

::::
base

::
is

:
2
:::
by

::::::::::
convention.

:::
The

::::
sign

::
is

::
an

::::::
integer

:::::
from

::
the

:::
set

:::::::
{−1,1},

:::
the

::::::::::
significand

:
is
::
a
:::
real

:::::::
number

::
in

:::
the

::::
range

::::::::
[0.0,1.0)

::::
and

::
the

::::::::
exponent

::
is

:::
an

::::::
integer

:::::::
between

::::
-128

:::
and

:::::
+127;

::::
see,

:::
for

::::::::
example,

:::::::::::::::::
(Goldberg, 1991) for

::::::
further

::::::
details.

In Section 2, we compare the performance of bit grooming, scalar linear packing, layer packing, and deflate methods. These

are assessed in terms of the compression savings and loss of precision. The choice of the compression methodology depends on5

other factors such as read/write speeds, portability and flexibility. These considerations are discussed in Section 3
::
Bit

:::::::::
grooming

::::::::
quantizes1

:::
data

::
to

::
a

::::
fixed

:::::::
number

::
of

:::::::::
significant

:::::
digits

::::::
(NSD)

::::
using

:::::::::
bitmasks,

:::
not

::::::
floating

:::::
point

:::::
math.

::::
The

::::
NSD

::::::::
bitmasks

::::
alter

::
the

:::::
IEEE

:::::::
floating

::::
point

::::::::
mantissa

::
by

::::::::
changing

::
to

::
1

:::
(bit

::::::
setting)

::
or

::
0
:::
(bit

:::::::
shaving)

:::
the

::::
least

:::::::::
significant

::::
bits

:::
that

:::
are

::::::::::
superfluous

::
to

::
the

::::::::
specified

::::::::
precision.

:::::::::
Sequential

::::::
values

::
of

:::
the

::::
data

:::
are

::::::::
alternately

::::::
shaved

::::
and

:::
set,

:::::
which

::::::
nearly

:::::::::
eliminates

:::
any

:::::
mean

:::
bias

::::
due

::
to

::::::::::
quantization

::::::::::::::
(Zender, 2016) .

::
To

:::::::::
guarantee

:::::::::
preserving

::::
1–6

:::::
digits

::
of

:::::::::
precision,

::
bit

:::::::::
grooming

::::::
retains

::::::::::::
5,8,11,15,18

:::
and

:::
2110

::::::
explicit

:::::::
mantissa

::::
bits,

:::::::::::
respectively,

:::
and

::::::
retains

:::
all

:::::::
exponent

::::
bits.

3 Methods

This section outlines the implementation of the layer-packing and unpacking methods, the storage format (in the implementation

described), the test data sets, evaluation metrics and the performance of the compression methods on the test cases considered
::
In

::
the

:::::::::
following

:::
we

:::::::::
compared

::::::
storing

:::
2,

::
3,

::
4
::::
and

::
5

:::::::::
significant

::::::
digits;

:::::
these

:::
are

:::::::
denoted

::::::
NSD2,

:::::::
NSD3,

::::::
NSD4

:::
and

:::::::
NSD5,15

::::::::::
respectively.

::::::
Similar

::
to

::::
LIN

:::
and

:::::
LAY,

:::::::::
DEFLATE

:::
was

::::::
applied

:::::::
together

::::
with

::::::::
rounding.

::
In

::::
this

:::::
study,

::::::::::
compression

:::
via

:::::::::::
bit-grooming

:::
was

:::::::::
performed

:::::
using

:::
the

:::::
ncks

::::
tool

:::::
within

:::
the

:::::
NCO

:::::::
package

:::::::::::::
(Zender, 2008) .

2.1 Software implementation and storage format
:::::::
Datasets

2.1.1 Layer packing

The code to perform layer-packing described in this article was written as stand-alone command-line tools in Python (v.2.7.6).20

These are freely available on . Beyond the standard Python installation, it requires the numpy and netCDF-4 modules be

installed. The compression is performed as follows: Other optional flags allow for increased verbosity (-V), over-writing

existing output files (-O) and defining the DEFLATE compression level (-L).

The mandatory -d flag is followed by a comma-separated list of the thick dimensions. The optional -v flag is followed

by a comma-separated list of variables to pack. The default is to pack all variables defined along any of the thick dimensions25

listed. In the output file (in this example packed.nc) each variable that is packed (e.g.var1) is replaced by a trio of variables

containing the arrays of packed values, scale factors and offsets. In this example, these are termed var1SUBSCRIPTNBSUBSCRIPTNBshort,

var1SUBSCRIPTNBSUBSCRIPTNBscale
::::::::
following

::::
tests,

:::
we

:::::::::
compared

:
a
::::
total

:::
of

:::
255

::::::::
variables

:::::
from

:::
six

:::::::
datasets.

:::::
Each

::::::
variable

::::
was

::::::::
extracted

::::::::::
individually

::
to

:::
file

::
as

::::::::::::
uncompressed

:::::::
netCDF, and var1SUBSCRIPTNBSUBSCRIPTNBoffset, with

data type unsigned short
:::
the

:::
file

:::
was

::::
then

::::::::::
compressed

:::::
using

:::
the

:::::::
methods

:::::::::
described,

::::::::
allowing

::
for

:::::::::::
computation

::
of

:::::::::::
compression30

1
::
The

::::::
process

:
of
:::::::::

quantization
::::
means

:::::::
mapping,

:
in
:::
this

:::
case

:::
via

:
a
:::::
process

:::::
similar

::
to

::::::
rounding,

::::
from

:
a
::::
large

::
set

::
of

:::::
possible

:::::
inputs

::
(in

:::
this

:::
case

::
the

:::
full

::
set

::
of

::
real

::::::
numbers

:::::::::
representable

::
as

:::::
floating

::::
point

:::::
values)

::
to

:
a
:::::
smaller

::
set

::
(in

:::
this

:::
case

::::
those

:::::
floating

::::
points

::::::
defined

:
to
::::::
reduced

::::::
precision

:::::
desired

::
by

::
the

::::
user).
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::
ID

: ::::::::
Description

:::
Grid

::::
type

::::
Dims

::
TS

::::
Dims

:
#

:::
vars

:
1

::::
Global

::::
3-D

::::
NWP

::::::::
reanalyses

: :::::::::
Rectangular

:::::::::::::::::::::::::::::
(nx,ny,nz,nt) = 240× 121× 37× 16

: ::::::::::::::::
(nx,ny) = 240× 121

: ::
14

:

2 ,
::
3-D

:::::
CTM

:::::
output

:::::::::
Rectangular

:::::::::::::::::::::::::::
(nx,ny,nz,nt) = 9× 10× 56× 172

: :::::::::::::
(nx,ny) = 9× 10

::
77

:

3 ,
:::
3-D

::::
NWP

:::::
model

:::::
output

: :::::::::
Rectangular

:::::::::::::::::::::::
(nx,ny,nz) = 165× 140× 32

: ::::::::::::::::
(nx,ny) = 165× 140

: ::
20

:

4 , or
::::

Global
::::
3-D

::::
NWP

::::::::
reanalyses

: :::::::::
Rectangular

::::::::::::::::::::::::::::
(nx,ny,nz,nt) = 288× 144× 42× 8

::::::::::::::::
(nx,ny) = 288× 144

: ::
11

:

5 significant figures (respectively). The following yields three significant digits (NSD3). ncks -4 -L4 -ppc vars=3 in.nc out.nc LSSCALAR: Deflate compression (level 4) with shuffle filter, scalar linear packing for each variable ncpdq -4 -L4 in.nc out.nc LSARRAY: Deflate compression (level 4) with shuffle filter, layer packing for selected dimensions ncpacklayer -L4 -v vars -d dims in.nc out.nc
::::
Dust

::::::::::::::
transport-dispersion

:::::
model

: :::::::::
Rectangular

::::::::::::::::::::::
(nx,ny,nz) = 192× 94× 28

:::::::::::::::
(nx,ny) = 192× 94

::
15

:

:
6

:::
3-D

::::::
coupled

:::::::::
NWP-CTM

:::::
output

: :::::::
Irregular

::::::::::::::::::
(nx′ ,nz) = 48602× 30

:::::::::
nx′ = 48602

:::
118

Table 1.
:::::::
Summary

:::
of

:::
the

:::::::
datasets

::::
used

::
in
::::

this
:::::
study.

:::::::::::
Abbreviations:

:::
ID

::
=
::::::

index,
:::::
NWP

::
=

::::::::
numerical

::::::
weather

:::::::::
prediction,

:::::
CTM

::
=

::::::::::::::
chemistry-transport

::::::
model,

::::
Dims

::
=
:::::::::
Dimensions

::
of
:::

the
:::::::

variable,
:::
TS

::::
Dims

::
=
:::::::::
Dimensions

:::
of

::
the

::::
thin

::::
slice,

:
#

:::
vars

:
=
::::::

number
:::

of
:::::::
variables

::
per

::::::
dataset.

::::
The

::::::::
dimension

::::
sizes

:::
are

:::::::
indicated

::
as:

:::
nx::

=
:::::
length

::
of

:::
the

:::::::
east-west

:::::::::
dimension,

::
ny::

=
:::::
length

::
of

:::
the

:::::::::
north-south

::::::::
dimension,

:::
nz

:
=
:::::
length

::
of

:::
the

::::::
vertical

::::::::
dimension,

::
nt::

=
:::::
length

::
of

:::
the

:::
time

::::::::
dimension

::::
and

:::
nx′

:
=
:::::
length

::
of

:::
the

:::::::::
generalized

::::::::
horizontal

::::::::
coordinate

::::::::
dimension

::::
(used

::
for

:::
the

::::::::::
unstructured

:::
grid

::
in

:::
last

:::::
dataset

:::::
only).

:::
and

::::
error

::::::
metrics

::::::::
described

::::::
below.

::::
The

::::::
datasets

:::
are

::::::::::
summarised

::
in

:::::
Table

::
1.

::::::
Further

::::::
details

::
are

::::::::
provided

::
in

:::
the

:::::
online

::::::::::::
Supplementary

:::::::
Material

::::::
section.

:

:::
The

::::::::
variables

::::::
chosen

::::
from

:::::
these

:::::::
datasets

::::
were

:::::
those

::::
with

:::
the

::::::
largest

::::::
number

::
of

::::::::::
data-points

::::::
overall.

::::
For

:::::::
example

::
in

:::::::
datasets

:::
2-5,

::::::::
variables

::::::
without

::
a
::::::
vertical

:::::::::
coordinate

::::
were

::::
not

:::::::::
considered

::
in

:::
the

:::::::
analysis,

:::::
since

::::
these

:::::::
account

:::
for

::::
only

:
a
:::::
small

:::::::
fraction

::
of

::
the

::::
total

:::::
data.

::
A

::::
small

:::::::
number

::
of

:::
the

:::::::
variables

::::
that

:::::
would

::::::::
otherwise

:::
be

:::::::
included

::::::
(based

::
on

:::
the

:::::::::
dimensions

::::::
alone)

::::
were

::::::::
excluded5

:::
due

::
to

:::
the

:::::::::
occurrence

::
in

:::::::::
seemingly

::::::
random

::::
data

:
(i.e. two-byte) integer, floating-point and floating-point, respectively. Suppose

the original definition of var1 is (following output format for the command line utility ncdump) : then the corresponding trio

will have dimensions as follows: In other words, the scale and offset arrays have one element per thin slice. Data remain in

netCDF format in this packed format and retain all their attributes. Data can be unpacked as follows: The -d and -v flags are

not used, since this information is contained in the trios of packed arrays.10

2.1.1 Methods compared

::
of

::
all

:::::::::::
magnitudes)

::
in

::::::
regions

:::
of

:::
the

:::::
array

:::::
where

::::::
values

::::
were

:::
not

:::::::
defined

:::
(in

:::
the

:::::
sense

::
of

::::::::::
sea-surface

:::::::::::
temperatures

::::
over

::::
land

::::::
points),

::::::
which

:::
we

::::::
believe

::::::
should

::::
have

:::::
been

::::::
masked

::::
with

::
a
::::::::
fill-value;

:::
the

::::::::
rationale

:::
for

::::::::
excluding

:::::
these

::::::::
variables

::
is

::::
first,

::::
that

::::
these

::::::
regions

::::
did

:::
not

::::::
appear

::
to

::::::
contain

::::::::::
meaningful

::::
data

:::
and

:::
that

:::
the

:::::::
extreme

:::::
range

:::
of

:::
the

:::::::::::::::
seemingly-random

::::
data

:::
led

::
to

:::::
gross

::::::
outliers

::
in

:::
the

::::::::::
distribution

::
of

::::
error

::::::::
statistics

::
for

::::
LIN

::::
and

::::
LAY

::
in

:::::::::
particular.15

We will compare layer packing with a number of other compression methods, which in each case use command-line

tools from the NCO bundle (Zender, 2008) . The formats compared, the commands used to achieve these and the capitalized

abbreviations, are listed below. UNCOMPRESSED: Uncompressed netCDF ncks -3 in.nc out.ncDEFLATE: Deflate

compression (level 4) with shuffle filter ncks -4 -L4 in.nc out.ncNSD2, NSD3, NSD4, NSD5: Deflate compression

(level 4) with shuffle filter, and bit grooming storing20
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2.2 Tests
:::::
Error

:::
and

::::::::::::
compression

::::::
metrics

The methods are compared with two metrics. The first relates to the compression efficiency, relative to DEFLATE above (deflate

compression with shuffle filter). Compression ratios are defined relative to the file sizegenerated by DEFLATE (i.e.smaller is

better)
::
as

:::::::::::::
(uncompressed

:::::::::::::::
size)/(compressed

:::::
size),

:::
and

::
as

:::::
such

:::::
larger

::::::
values

:::::::
indicate

::::::
greater

:::::::::::
compression. The second

:::::
metric

relates to the accuracy (or, seen another way, the error) of the compressed data relative to the original data. The error of5

UNCOMPRESSED is zero (as it is the reference data), as is DEFLATE since it ensures lossless compression. The remaining

methods cause some loss of precision.

These errors can be summarised in different ways. In
:::::
Error

:::
was

:::::::::
quantified

::
by

:::
the

::::
root

:::::::::::
mean-square

:::::::::
difference

:::::::
between

:::
the

::::::
original

::::
and

::
the

::::::::::
compressed

:::::::::
variables.

:::::::
However

::
in

:
order to compare results across variables with different scales and units, the

errors must be normalized somehow. A single normalization factor per variable can be used, however this has the disadvantage10

that the results will be heavily influenced by variation across the thick dimension; for example, if a field ranges across several

orders of magnitude
:::
We

:::::::::
considered

::::
four

::::::::
different

::::::::::::
normalization

::::::::
methods,

:::::
which

:::::::::::
emphasized

:::::::
different

:::::::
aspects

::
of

:::
the

:::::
error

::::::
profile.

:::
The

::::::
errors

::::
were

::::::::::
normalized

:::::
either

:::
by

:::
the

:::::::
standard

::::::::
deviation

:::
or

:::
the

:::::
mean

::
of

:::
the

:::::::
original

:::::
data,

:::
and

:::::
these

:::::
were

:::::
either

::::::::
calculated

:::::::::
separately

:::
per

:::
thin

:::::
slice

::
or

:::::
across

:::
the

:::::
entire

:::::::
variable

::
–

:::
the

:::::::
rationale

::
is

::
as

:::::::
follows.

:::::
When

::::::::::
normalizing

::
by

:::
the

:::::
mean

:::
(of

:::
the

:::::
entire

:::::::
variable,

::
or
:::
of

:::
the

:::::::::
thin-slice),

:::::::
variables

::::
with

::
a
:::
low

:::::::::::::::::::::::
mean-to-standard-deviation15

::::
ratio

::::
(e.g.

:::::::
potential

::::::::
vorticity)

::::
will

:::::
show

:::::
larger

:::::
errors

:::::
using

::::
the

:::::::::::
layer-packing

::::::::::::
compression.

:::::::
Whereas

::::::
when

::::::::::
normalizing

:::
by

::
the

::::::::
standard

::::::::
deviation,

::::::::
variables

::::
with

::
a

::::
high

::::::::::::::::::::::
mean-to-standard-deviation

:::::
ratio

:::
will

:::::
show

:::::
larger

::::::
errors

:::::
using

:::
the

:::::::::::
bit-grooming

::::::::::
compression

:
(e.g. values of O(100) at one end of the thick dimension and

::::::::::
atmospheric

:::::::::::
temperatures

:::::
stored

::::
with

:::::
units

::
of

:::
K,

::::::::::::
concentrations

::
of

:::::::::
well-mixed

:::::::::::
atmospheric

::::
trace

:::::
gases

::::
such

::
as

::::
CO2:::

or
:::::
CH4).

:
If
:::
we

::::::::
calculate

:::
the

::::
ratio

:::
of

:::
the

::::::
RMSE

::
to

:::::::::::
normalization

::::::
factor

:::
(i.e.

::
the

:::::
mean

:::
or

:::::::
standard

:::::::::
deviation)

:::
per

:::
thin

:::::
slice,

::::
and

::::
then20

::::::
average

::::::
across

:::
the

:::::::::
normalized

::::::
errors

::::
(n.b.

::::
there

::
is
::::
thus

::::
one

:::
per

:::
thin

:::::
slice)

:::
the

::::::::
resulting

::::::
metric

:::
will

:::
be

:::::
more

:::::::
sensitive

::
to

:::::
large

::::::
relative

:::::
errors

::::::
within

::::::::::
subsections

::
of

:::
the

::::
data

:::::
array.

::::
The

:::::::::
alternative

::
is
::
to
::::::::

calculate
:::
the

::::::::::::
normalization

:::::
factor

::::::
across

:::
the

::::::
whole

:::::::
variable,

:::
and

:::
the

::::::::
resulting

:::::
metric

::::
will

::
be

:::::
more

::::::::
reflective

::
of

::::::
relative

::::::
errors

:::::
across

:::
the

:::::
entire

::::
data

:::::
array.

::::
This

::::
may

::
be

::::::::::
understood

::
in

::
the

:::::::
context

::
of

:
a
::::::::::
hypothetical

::::::::::::::
thee-dimensional

:::::
array,

::::
with

::::::
values

::::::
ranging

::::
from

:
O(104) at the other) , then errors will be highly

non-uniform across the thick dimension.As such, we choose to normalize errors within each thin slice of a given variableby the25

standard deviation or mean of
:
to

:::::::
O(100)

::::::
across the original values across that thin slice; the rationale for

::::::
vertical

:::::::::
dimension

:::
and

:
a
:::::
mean

:::::
value

::
of

:::::::
O(103),

::::
and

:::::
errors

::::::
roughly

:::::::
uniform

:::
of

::::::::
O(10−1);

::
if

::::::
relative

:::::
errors

:
(normalizing by the standard deviation

or the mean is discussed in section 2.4 below. For
:::::
mean)

:::
are

::::::::
calculated

:::
for

:::
the

:::::
whole

:::::
array

::::
then

::::
they

:::
will

::
be

:::::::::
O(10−4),

:::::::
whereas

:
if
:::::::::
calculated

:::::
across

:::::
each

:::
thin

:::::
slice

::::::::
separately

::::
they

::::
will

:::::
range

:::::
from

:::::::
O(10−1)

:::
to

::::::::
O(10−5),

:::
and

::::
may

:::::
have

:
a
:::::
mean

::
of

:::::::::
O(10−2).

:::
The

::::
case

::
of

:::::::
uniform

:::::
errors

::
is

::::
most

:::::
likely

::
to

::::
arise

:::
for

::::
LIN,

:::::::
whereas

:::::::::::
bit-grooming

:::::::::
guarantees

::::::::
precision

:::
for

::::
each

::::::::
individual

::::::
datum30

:::
and

:::::::::::
layer-packing

:::
for

:
each thin sliceof a given variable, the standardized error is defined as the ratio of the root mean-squared

error to the standard deviation (or the mean); for a given variable , the standardized error is defined as the mean standardized

error averaged across all thin slices. The error for LSARRAY is computed based on the unpacked contents of the file.
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2.3 Datasets

2.3
:::::::::

Complexity
::::::::
statistics

::
In

::::
order

::
to
:::::
make

:::::
sense

::
of

:::::
which

::::::::
variables

::::::::
compress

::::
well

::
or

::::::
poorly

::::
with

:::::::
different

::::::::
methods,

:
a
:::::
range

::
of

::::::::
statistics

::::
were

:::::::::
calculated

::
for

::::
each

::::::::
variable.

::::
Most

:::
of

::::
these

:::::::
statistics

:::::
were

::::::::
calculated

::::
over

::::::::::::::
two-dimensional

::::::::::
hyperslices

::
of

:::
the

::::::
original

::::
data

:::::
arrays

::::
and

::::
then

::
the

:::::
value

:::
for

:::
an

:::::::::
individual

:::::::
variable

:::
was

:::::
taken

:::
as

:::
the

::::::
average

:::::
over

::::
these

::::::::::
hyperslices.

:::
A

:::
full

:::
list

::
of

:::
the

::::::::
statistics

:::::::::
calculated

::
is5

::::
given

::
in
:::
the

:::::::::::::
Supplementary

:::::::
Material

:::::::::
document.

:

The tests described above were applied to the following datasets: eiSUBSCRIPTNBmnthSUBSCRIPTNBanSUBSCRIPTNBplSUBSCRIPTNB15x15SUBSCRIPTNB90N0E90S3585ESUBSCRIPTNB20080901SUBSCRIPTNB20081201

ERA-Interim reanalysis data (Dee et al., 2011) . Dimensions: 121× 240 grid-points in the horizontal, 37 vertical layers, 16

time-points.14 variables with these four dimensions.Thick dimensions chosen to be the time and vertical level. mozart4geos5SUBSCRIPTNB2011-02-01SUBSCRIPTNB2011-03-16.nc

A limited area subset from global MOZART model output (Brasseur et al., 1998) . Dimensions: 9× 10 grid-points in the10

horizontal, 56 vertical levels, 172 time-points. 77 variables with these four dimensions. Thick dimension chosen to be the

vertical level. wrfoutSUBSCRIPTNBd03SUBSCRIPTNB2013-01-24SUBSCRIPTNB07:00:00 WRF model output

(Skamarock et al., 2005) . Dimensions: 165× 140 grid-points in the horizontal, 32 vertical levels, 1 time-point. 23 variables

with these four dimensions, which constitute 85of the data stored in the file. Thick dimension chosen to be the vertical level.

MERRA300.prod.assim.inst3SUBSCRIPTNB3dSUBSCRIPTNBasmSUBSCRIPTNBCp.20130601.ncMERRA reanalysis15

product (Rienecker et al., 2011) . Dimensions: 144× 288 grid-points in the horizontal, 42 vertical levels
:::
two

::::
most

::::::::::
informative

:::::::
statistics

:::
that

:::::
arose

::::
from

::::
this

:::::::
analysis

::::
were

:::::
based

:::
on

:::
the

::::::
entropy

::
of

:::::
either

:::
the

:::::::
original

::::
data

::::
field

::
or

:::
the

::::::::::::
corresponding

::::::::
exponent

::::
field

:::
(i.e.

::
the

:::::::::::
decomposing

:::
the

::::
data

::::
array

::::
into

:::::::::
significand

:::
and

:::::::::
exponent,

:::
and

::::
then

:::::::::
calculating

:::
the

::::::
entropy

::
of

:::
the

::::::::
exponent

::::::
array).

:::
The

:::::::
entropy

::
is

:
a
:::::::
measure

::
of

::::::::
statistical

::::::::::
dispersion,

:::::
based

::
on

:::
the

:::::::::
frequency

::::
with

:::::
which

::::
each

:::::
value

::::::::
appeared

::
in

::::
each

:::::::
dataset.

:::
Let

::
us

::::::
denote

::
as

::::::
P(xi) :::

the
:::::::::
proportion

::
of
::::

the
::::
array

::::::::
occupied

:::
by

:::::
each

::::::
unique

:::::
value

:::
xi.:::

For
:::

an
:::::
array

:::::::::
containing

:::::::
discrete

::::::
values20

:::::::::::
X = {xi}ki=1,

:::
the

:::::::
entropy

:::
was

:::::::
defined

::
as

H(X) = E[− log2(P(X))] =−
k∑

i=1

P(xi) log2(P(xi))

:::::::::::::::::::::::::::::::::::::::::::

(1)

:::
For

::
an

:::::
array

::
of

::
k,

:::
the

:::::::
entropy

:::
has

:
a
:::::::::
maximum

:::::
value

::
of

:::::::
log2(k),

::::::
which

:::
will

:::::
arise

:
if
:::

all
::::::
values

:::
are

::::::
unique.

:::
For

::::::::::::::
single-precision

:::::
arrays

::
of

::::
size

::::::::::::::
232 ≈ 4.29× 109

::
or

::::::
larger,

:::
the

::::::::
maximum

:::::::
entropy

::
is

:::::
equal

::
to

:::
32.

::
In

::::
order

::
to
:::::::::

normalize
:::
for

::::
these

::::::::::
limitations

::
to

:::
the

::::::
entropy

::
of

::
a
::::
finite

:::::::
dataset,

:::
for

::::
each

::::
case

:::
the

:::::::
entropy

:::
will

:::
be

:::::::::
normalized

:::
by25

::
the

:::::::::
maximum

:::::::::
theoretical

:::::
value

::::::::
attainable

:::
for

:::
that

:::::::
dataset,

:::::
which

::::
was

:::::
taken

::
to

::
be

::::::::
log2(K),

:::::
where

:::
K

:
is
:::
the

:::::::
number

::
of

::::::::
elements

::
in

:::
the

:::
thin

::::
slice

:::
(in

::::
each

::::
case

::::::::::
K << 232).

:::
In

::
the

::::
case

:::
of

:::
the

::::::
entropy

::
of

:::
the

::::::::
exponent

:::::
array,

:::
the

::::::::::::
normalization

:::
was

:::::
based

:::
on

:::
the

::::::::::::::
min(log2(K),8),

:::::
since

:::
the

::::::::
maximum

:::::::
entropy

::
of

:::
an

::::
8-bit

::::
field

::::::
(recall, 8 time-points. 11 variableswith these four dimensions.

Thick dimension
:::
bits

:::
are

::::
used

:::
for

:::
the

::::::::
exponent

::
of

:
a
:::::::
floating

:::::
point)

::
is

::
8.

:
It
::::
was

:::::
found

:::
that

:::::
some

::
of

:::
the

::::::
datasets

::::::::::
compressed

::::::::::
significantly

:::::
using

:::::::::
DEFLATE

:::::
only.

:::
This

::::
was

::::
often

::::
due

::
to

:
a
::::
high

:::::::::
proportion30

::
of

::::
zero

::
or

::::::::
“missing”

::::::
values.

::::::::
Variables

::::
were

::::::::
classified

::
as

:::::
either

::::::::
“sparse”

::::::
(highly

:::::::::::
compressible

::
or

::::::::
otherwise

::::::::
relatively

:::::::
simple)

::
or

::::::
“dense”

:::
(all

:::::
other

:::::::::
variables).

:::::
Sparse

::::::::
variables

::::
were

:
chosen to be the vertical level. dstmch90SUBSCRIPTNBclm.ncOutput
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of the mineral Dust Entrainment And Deposition (DEAD) model (Zender et al., 2003) . Dimensions: 94× 192 grid-points

in the horizontal, 28 vertical levels, 1 time-point. 15 variables with these four dimensions, together accounting for 87of

::::
those

:::::::::
satisfying

:::
any

::::
one

::
of

:::
the

:::::::::
following

:::::::::
conditions:

:
the data stored in the file. Thick dimension chosen to be the vertical

level.famipc5SUBSCRIPTNBne30SUBSCRIPTNBv0.3SUBSCRIPTNB00003.cam.h0.1979-01-L5.ncCAM-SE

model output (Dennis et al., 2012) .Dimensions: 48602 grid-points in the horizontal, 30 vertical levels, 1 time-point. 1235

variables with these three dimensions, together accounting for 87of the data stored in the file. Thick dimension chosen to

be the vertical level.
::::::::::
compression

::::
ratio

::
is
::::::
greater

::::
than

:::
5.0

:::::
using

::::::::::
DEFLATE,

:::
the

:::::::
fraction

::
of

::::::
values

:::::
equal

::
to

:::
the

::::
most

::::::::
common

::::
value

:::
in

:::
the

:::::
entire

:::::::
variable

::
is

::::::
greater

::::
than

::::
0.2,

::::
and

:::
the

:::::::
fraction

::
of

::::::::::
hyperslices

:::::
where

:::
all

::::::
values

::::
were

::::::::
identical

::
is

:::::
great

::::
than

:::
0.2.

:::::
These

:::::::::
definitions

:::::
were

::::::::
somewhat

::::::::
arbitrary

:::
and

:::::
other

::::::::::::
classifications

:::
may

:::
be

:::::::
optimal,

:::
but

::
it

::
is

::::
seen

::::
(e.g.

::
in

::::::
Figures

::::
1C,

:::
3A

:::
and

:::
3B)

::::
that

:::::
sparse

::::::::
variables

:::
do

:::
not

::::::
always

:::::
follow

:::
the

:::::
same

::::::
pattern

::
as

:::::
dense

::::::::
variables.

:::
Of

:::
the

::::
255

:::::::
variables

::
in

:::::
total,

:::
181

:::::
were10

:::::::
classified

:::
as

:::::
dense.

::::
The

:::::::::
breakdown

::::::
among

:::
the

:::::::
different

::::::::
categories

::
is
:::::
given

::
in

:::::
Table

:
1
::
in

:::
the

:::::::::::::
Supplementary

:::::::
Material

:::::::::
document.

2.4 Results
:::::::::::
Compression

::::
and

:::::
error

::::::
results

Figure 1shows the compression ratios for the six test data sets. As noted above, compression ratios are defined by normalizing

by the file sizes from DEFLATE (deflate and shuffle). Without compression, files are on average 2.27 times larger than the15

benchmark, indicating the high efficiency of the lossless deflate and shuffle filters. Relative to the DEFLATE benchmark, the

lossy methods had average compression ratios of 0.51
::
A

:::::
shows

:::
the

::::::::::
distribution

::
of

:::::::::::
compression

:::::
ratios,

::::::::::
normalized

:::::
errors

::::
and

:::::
timing

::::::::
statistics

:::
for

:::
the

:::::::
different

::::::::
methods.

::
In

:::
the

:::::
case

::
of

:::
the

:::::::::::
compression

:::::
ratios

:::
and

::::::::::
normalized

::::::
errors,

:::::
results

:::
are

:::::::::
presented

::::::::
separately

:::
for

:::
the

:::::
dense

::::
and

:::::
sparse

:::::::::
variables.

:::
For

:::::
dense

:::::::::
variables,

:::
the

::::::
median

:::::::::::
compression

:::::
ratios

::::
were

:::
1.3

::::::::::::
(DEFLATE),

:::
3.2

(NSD2), 0.66
::
2.4

:
(NSD3), 0.77

:::
2.0 (NSD4), 0.91

::
1.6

:
(NSD5), 0.35 (LSSCALAR) and 0.66 (LSARRAY). In three data sets20

(1, 3, 4)the
:::
4.2

:::::
(LIN)

:::
and

::::
2.6

::::::
(LAY).

:::
For

::::::
sparse

::::::::
variables,

:::
the

::::::
median

:::::::::::
compression

:::::
ratios

::::
were

:::
2.0

:::::::::::
(DEFLATE),

:::
4.3

::::::::
(NSD2),

:::
3.3

:::::::
(NSD3),

:::
2.8

:
(NSD4and LSARRAY (shown in cyan and gray, respectively) produce very similar file sizes (within 4of one

another). For the other three data sets LSARRAY yields file sizes between 71
:
),
:::
2.3

::::::::
(NSD5),

:::
7.4

:::::
(LIN) and 77of NSD4, roughly

in between the NSD2 and
:::
5.2

::::::
(LAY).

::
It

:::
can

:::
be

::::
seen

:::
that

::::
LIN

::::
gave

:::
the

:::::::
greatest

:::::::::::
compression,

::::
and

:::
the

::::
LAY

:::::::::::
compression

:::::
ratios

::::
were

::::::::::
comparable

::::
with

:::::
those

::
of

::::::
NSD2

::
or NSD3file-sizes for these data sets. In each case, LSSCALAR produces the greatest25

compression .

:::
The

:::::::
median

::::::::::
compression

:::::
times

:
(Figure 1presents the time taken by each compression method, and the time for extraction

by LSARRAY (shown in white) . Averaged across the cases, the median standardized
::
B)

:::::::::
normalized

:::::::
relative

::
to

:::
the

:::::::::
DEFLATE

::::::::::
compression

::::
time

:::::
were

::::
0.82

::::::::
(NSD2),

::::
0.91

::::::::
(NSD3),

::::
0.79

:::::::
(NSD4),

::::
0.91

::::::::
(NSD5),

::::
0.57

::::::
(LIN),

::::
3.45

::::::
(LAY

:::::::::::
compression)

::::
and

::::
1.84

:::::
(LAY

:::::::::
extraction).

::::::::::
Differences

:::::::
between

:::
the

:::::::::::
bit-grooming

:::::::
methods

::::
were

::::::::
relatively

:::::
small

:::
and

:::::::
slightly

:::::
faster

::::
than

:::::::::
DEFLATE30

:::::
alone,

:::::::
whereas

:::
the

::::
LIN

:::::::::::
compression

::::
was

::::::
nearly

:::::
twice

:::
as

:::
fast

:::
as

::::::::::
DEFLATE.

:::::
These

::::::
values

:::
are

:::::::::
consistent

::::
with

::::::::::
DEFLATE

::::::::::
compressing

:::::
twice

:::
as

:::::
much

::::
data

:::
for

:::::::::::
bit-grooming

::
as

:::
for

:::::
LIN,

::::::
which

::::
store

::::
four

::::
and

::::
two

::::
bytes

::::
per

:::::
value,

:::::::::::
respectively.

::::
The

::::
LAY

:::::
times

:::::
(both

:::::::::::
compression

::::
and

:::::::::::::
decompression)

:::::
were

:::::::::::
significantly

::::::
slower

::::
than

:::
for

:::
the

:::::
other

:::::::::
methods,

::::::::::
particularly

:::
for

:::::::::::
compression;

:::
this

::
is
:::::

most
:::::
likely

::::
due

::
to

::::::::::
differences

::
in

::::::::::::::
implementation,

::
as

::::
this

:::::
LAY

::::
was

:::::::::::
programmed

::
in

::::::
Python

::::::
while

:::
the
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Figure 1.
:
A:

::::::::::
Distribution

::
of

::::::::::
compression

::::
ratios

:::::::
(original

:::
file

:::
size

::::::
divided

:::
by

:::::::::
compressed

:::
file

::::
size)

:::::::
measured

:::
for

:::::
seven

:::::::
methods,

::::::
applied

:
to
:::

six
:::
test

::::::
datasets

::::::
(higher

::
is
::::::
better),

:::::
plotted

::::::::
separately

:::
by

::::
dense

:::::::
variables

::::
and

:::::
sparse

:::::::
variables

:::::
(white

:::
and

::::
grey

:::::
boxes,

::::::::::
respectively).

::::
The

:::::::
box-plots

::
(in

:::::
panels

:::
A,

:
B
:::
and

:::
C)

::::
were

:::::
defined

::
as

:::::::
follows:

::
the

::::
thick

:::
line

::::
and

::
the

:::::
center

::
of

:::
the

:::
box

::::::
denotes

::
the

:::::::
median,

::
the

::::::
bottom

:::
and

:::
top

::
of

::
the

:::
box

:::::
show

::::
q0.25 :::

and
::::
q0.75::::::::::

(respectively)
::
or

:::
the

:::
0.25

::::
and

:::
0.75

:::::::
quantiles

::
of

:::
the

:::::::::
distribution,

:::
the

:::::::
whiskers

:::::
extend

::::
from

:::::::::::::
q0.25 − 1.5 · IQR

::
to

:::::::::::::
q0.25 +1.5 · IQR,

:::::
where

:::
IQR

::
is

::
the

::::::::::
inter-quartile

:::::
range

::::::::::
(q0.75 − q0.25)

:::
and

:::
the

:::::
points

:::::
shown

::
are

::
all

::::::
outliers

::::::
beyond

:::
this

:::::
range.

:
B
:
:
:::::::::
Distribution

:
of
:::::

scaled
:::::::::::::::::::::
compression/decompression

:::::
times

::
for

::::
each

::::::
method

:::::
(lower

:
is
::::::
better),

:::
with

::::
LAY

:::::::::
represented

::::
twice

::::
(for

:::::::::
compression

:::
and

:::::::::
extraction).

::::
These

:::::
times

:::
are

:::::::::
normalized

::
by

:::
the

::::::::::
compression

::::
time

::::
from

:::::::::
DEFLATE.

::
C

:
:
:::::::::
Distribution

::
of

:::::
errors,

:::::::::
normalized

:::
by

:::
the

:::::::
per-layer

:::::::
standard

:::::::
deviation.

::
D:

::::
The

::::::
achieved

::::::
lossless

::::::::::
compression

:::::
ratios

:::
(i.e.

::::
from

:::::::::
DEFLATE)

::
as

:
a
::::::
function

::
of
:::

the
:::::::::
normalized

::::::
entropy

:::
(1.0

:::::::::::
corresponding

::
to

::
the

::::::::
maximum

::::::::
theoretical

:::
for

::
the

:::::
data).
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Figure 2.
:::
The

:::::::::
relationship

:::::::
between

::::::::
normalized

:::::
errors

:::
and

::::::::::
compression

::::
ratio

:::
for

:::
the

::::
lossy

::::::::::
compression

:::::::
methods

:::::::::
considered.

:::
The

:::::
three

::::::
contours

:::
for

::::
each

:::::
method

:::::
show

::
the

::::::
bounds

:::::
within

:::::
which

:::
the

::::::::::::
two-dimensional

:::::::::::::
kernel-smoothed

::::::::
distribution

::::::::
integrates

::
to

::::
0.25,

:::
0.5

:::
and

::::
0.75,

:::::::::
respectively.

::::
Only

:::::
dense

::::::
variables

::::
were

::::
used

::
to

::::::
produce

:::
this

::::
plot.

::::
other

:::::::
methods

:::::
used

::::::::
compiled

::::::
C/C++

:::::::
utilities.

:::
We

::::::
believe

::::
that

:::
the

:::::::
overhead

:::::
from

::::::
loading

:::::
some

::
of

:::
the

::::::
python

:::::::
libraries

:::::
used

::
in

::
the

::::::::::::::
implementation

::
of

::::
LAY

::::
may

:::::
cause

::::
this

::::::
method

::
to

:::
be

::::::::
relatively

:::::
slower

:::
for

:::::::
smaller

::::
files;

:::
we

::::
note

:::
that

:::::
most

::
of

:::
the

::::::::
variables

:::::::::
considered

:::
are

::::::::
relatively

:::::
small,

::::
with

::::::::::::
uncompressed

:::
file

::::
sizes

:::::::
ranging

::::
from

:::
1.9

::::
MB

::
to

::::
65.6

::::
MB.

::::
This

:::::::::
hypothesis

:::
was

:::::::::
supported

::
by

:
a
::::

test
::::
case

:::::
where

:::
the

:::::
suite

::
of

:::::::::::
compression

:::::::
methods

:::::
were

::::::
applied

::
to

::
a
:::::
much

:::::
larger

:::::
array2

::
of

::::
size

::::::
1.5GB,

:::
the

:
compression

times were 0.37 (UNCOMPRESSED), 0.91
:::
103

::
s
:::::::::::
(DEFLATE),

:::
89

:
s
:
(NSD2), 1.00

:::
107

:
s
:
(NSD3), 0.92

::
97

:
s
:
(NSD4), 1.045

:::
109

:
s
:
(NSD5), 0.74 (LSSCALAR) and 0.88 (LSARRAY), with the time from DEFLATE serving as a benchmark within each

dataset. The median standardized extraction time for LSARRAY was 1.39 (using the same normalization factor)
::
69

:
s
:::::
(LIN)

::::
and

::
70

:
s
:::::::
(LAY),

::::
while

:::
the

:::::::::
unpacking

::::
time

:::
for

:::::
LAY

:::
was

::::
133

:
s.

Lossy
:::
For

:::
all

:::::::
methods

::::::::::
considered

::::::
except

:::::::::
DEFLATE,

:::
the

:
compression comes at a cost to the precision of the underlying

data. Figure ?? summarizes the standardized errors . A value of 0.01 in this figure indicates that, a mean error ratio of 0.0110

across thin slices of a given variable, where the error ratio is the root-mean squared error within the thin slice divided
:::::::
expense

::
of

::::::::
precision;

:::
the

::::::::::
distribution

::
of

:::::::
resultant

::::::
errors

:
is
::::::
shown

::
in

::::::
Figure

:::
1C

::::
(and

::::::
Figure

:
1
::
of

:::
the

::::::
online

::::::::::::
supplementary

:::::::
section).

::::
For

2
::
The

:::::::::
ERA-Interim

::::::::::::::::::
(Dee et al., 2011) east-west

::::
wind

::::::::
component

:
at
:::

241
::::::

latitude,
:::
480

::::::::
longitudes,

::
60

:::::
vertical

::::
levels

:::
and

:::
124

::::
times,

:::::::
spanning

::::::::
2015-07-01

::::
00:00

:::
UTC

::
to
::::::::
2015-07-31

::::
18:00

::::
UTC

::
at

::::::
6-hourly

::::::
intervals,

:::::::
converted

:::
from

::
its

::::::
original

::::
GRIB

:::::
format.

::::
This

:::::
dataset

::
can

::
be

::::::
accessed

::::::
through

::
the

::::::::
ECMWF’s

::::
public

:::::
dataset

::::
portal

:
(http://apps.ecmwf.int/datasets/

:
)
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Figure 3.
::::::
Relative

::::::::::
performance

::
of

::::
LAY

:::::::
compared

::::
with

:::::
NSD3

:::
(left

:::::::
column)

::
or

::::
NSD4

:::::
(right

:::::::
column),

::
in

::::
terms

::
of

::::::::::
compression

:::
(top

::::
row)

:::
and

::::
errors

::::::
(bottom

:::::
row).

:::
The

:::
grey

::::::
dashed

:::
line

:::::::
indicates

:::::
values

::
of

:::
1.0

::
on

::
the

::::::
y-axis.

:::
The

::::::::
LOWESS

::
fit

:::
was

::::
based

:::
on

::
the

:::::
dense

:::::::
variables

:::::
alone.
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:::::
dense

::::::::
variables,

:::
the

::::::
median

:::::::
relative

:::::
errors

::::::
shown

::
in

:::::
Figure

:::
1C

:::
are

:::::::::
1.8 · 10−3

:::::::
(NSD2),

:::::::::
2.3 · 10−4

:::::::
(NSD3),

::::::::
1.4 · 10−5

::::::::
(NSD4),

::::::::
1.8 · 10−6

::::::::
(NSD5),

::::::::
5.3 · 10−2

::::::
(LIN),

:::::::::
1.2 · 10−4

:::::::
(LAY).

:::::::::::::
Unsurprisingly,

::::
with

:::::
each

::::::::
additional

::::::::::
significant

::::
digit

:::
of

::::::::
precision

::::::::
requested

::
of

:::::::::::
bit-grooming,

:::
the

::::::::::
normalized

:::::
errors

:::
fall

:::
by

:
a
:::::
factor

::
of

:::
10.

::::
The

:::::
errors

::
of

::::
LAY

:::
are

::::::::::
comparable

::
to

:::::
those

::
of

::::::
NSD3

::
or

:::::
NSD4

:::::
while

:::
for

:::
the

:::::
metric

::::::
shown

::
in

:::::
Figure

:::
1C

::::::::::
(RMSE/SD,

:::::::::
calculated

:::::::::
separately

:::
per

:::
thin

:::::
slice,

::::
then

::::::::
averaging

:::
the

::::::
ratios),

::::
LIN

:::::::
displays

::::
much

::::::
larger

:::::
errors

::::
than

::
the

:::::
other

:::::::
methods

::
–

:::
the

:::::
errors

::
for

::::
LIN

::::
are,

::::
more

::::
than

:::
for

:::
the

::::
other

:::::
lossy

::::::::::
compression

::::::::
methods5

::
in

:::
this

:::::::::::
comparison,

:::::::
sensitive

::
to

:::
the

:::::
error

::::::
metric

::::
used

:::
and

::::
this

::
is

::::::::
discussed

::::::
below.

::::::
Dense

:::::::
variables

:::::
show

:::::
some

::::::::::
differences

::
in

::
the

::::::::::
distribution

::
of

::::::
errors

::::::::
compared

::
to

::::::
sparse

::::::::
variables;

:::::
errors

::::::::::
normalized by the standard deviation (or mean ) of the original

values within the thin slice
:::::
appear

:::::::
smaller

:::
and

:::
the

::::::
errors

:::::::::
normalized

:::
by

:::
the

:::::
mean

::::::
appear

:::::
larger.

::::
This

::
is
:::::::

because
:::::
many

:::
of

:::
the

:::::
sparse

::::::::
variables

:::
are

::::
zero

::
at

::::
most

::::::
points,

::::
and

::
in

:::::
many

:::::
cases

:::
this

:::::
tends

::
to

::::::
reduce

:::
the

:::::
mean

:::
and

:::::::
increase

:::
the

::::::::
standard

::::::::
deviation

:::::::::
(compared

::
to

:::::::::
examining

::::
only

:::
the

:::::::
non-zero

::::::
values).10

The choice of error metric will highlight different aspects of the performance of each method. When normalizing the errors

by the standard deviation of the original values, the
::
is

:::::::::
ambiguous

:::
and

:::::
leads

::
to

::::::
slightly

::::::::
different

:::::::
different

::::::
results.

::::
Four

::::::::
different

:::::::::::
normalization

::::::
factors

:::
for

:::
the

::::::
RMSE

::::
were

::::::::::
considered

::::::
(shown

::
in

::::::
Figure

::
1

::
of

:::
the

:::::
online

:::::::::::::
supplementary

:::::::
section).

::
It

:::
can

:::
be

::::
seen

:::
that

:::
the

:::::::::
comments

:::::
about

:::
the

:
bit-grooming methods appear to perform relatively poorly for fields where the baseline value is

large relative to the within-slice standard deviation (e.g. temperatures stored with units of K, concentrations of well-mixed15

atmospheric trace gases such as CO2 or CH4) . In these cases, the first few significant figures may be constant across the slice

and all variation is recorded in the last few significant figures. Arguably such fields should be stored with
:::
and

::::
LAY

::::::::
methods

::
in

:::
the

::::::::
preceding

:::::::::
paragraph

::::
hold

::::::::
regardless

:::
of

:::
the

:::::::::::
normalization

:::::::
method,

::::::::
whereas

::::
LIN

:::::
shows

:::::
much

::::::
higher

:::::::::
standarized

::::::
errors

:
if
::::::
errors

:::
are

:::::::::
normalized

::::::
within

:::::::::
thin-slices

::::
and

::::
then

::::::::
averaged

::::
(due

::
to

:::
the

:::::::
reasons

:::::::::
explained

::
in

:::
the

:::
last

::::
part

:::
of

::::::
Section

:::::
2.2).

:::::::::::
Bit-grooming

:::::
keeps

::::::::
precision

::::
loss

::
to

::::::
known

::::::
bounds

:::
for

::::
each

:::::::::
individual

::::::
datum,

:::::
LAY

::::
leads

:::
to

::::::
roughly

::::::::
constant

:::::
errors

::::::
within20

:::::::::
thin-slices,

:::
and

::::
LIN

:::::
results

::
in
:::::::
roughly

:::::::
constant

:::::
errors

:::
for

:::
the

:::::
whole

::::::::
variable.

::::
This

:::
last

::::
point

::
is

:::::::::
illustrated

::
in

:::::
Figure

::
4

:::::::::
(especially

:::::
panels

:::
A,

::
B,

::
C

::::
and

::
E)

::
of

:::
the

:::::::::::::
Supplementary

::::::::
Material,

:::::
which

::::::
shows

:::::::::
horizontal

::::::
profiles

:::
of

:::
the

::::::::::::::
(non-normalized)

::::::
RMSE

:::
for

::
a

::::::
sample

::
of

:::
six

::::::::
variables

:::::
from

::::::
among

:::
the

::::
255

:::::::::
considered;

::::::
Figure

::
5
::
in

:::
the

:::::::::::::
Supplementary

::::::::
Material

:::::
shows

::::
the

::::::::::::
corresponding

::::::
relative

::::::
errors.

:::
The

:::::::
pairwise

:::::::::::
relationship

:::::::
between

::::::::::
compression

::::
and

::::
error

::
is
::::::
shown

::
in

::::::
Figure

::
2,

::::
with

:::
the

::::::::::
distribution

::::::
shown

:::::
based

::::
only

:::
on25

:::::
dense

::::::::
variables;

:::
the

::::
error

::::::
metric

::::
used

::
is
:::

the
:::::::

RMSE
:::::::::
normalized

:::
by

:::
the

:::::::
standard

::::::::
deviation

:::
for

:::
the

::::::
whole

:::::::
variable

::::::
(rather

::::
than

::::::::
calculated

::::::::::
normalizing

:::::::::
separately

:::
per

::::
thin

:::::
slice),

:::::
which

:::::
tends

::
to

:::::
mask

::::
large

:::::::
relative

:::::
errors

::
in

::::::
certain

:::::::
sections

::
of

:::
the

::::
data

:::::
array

::
for

:::::
LIN.

:::
We

:::
see

::::
that

:::
the

:::::::::::
bit-grooming

::::
and

::::
LAY

:::::::
methods

:::::
form

:::::::::
something

::
of

::
a

:::::::::
continuum,

:::::
with

::::
LAY

::::::
falling

:::::::
between

::::::
NSD3

:::
and

::::::
NSD4.

::::
The

:::::
linear

:::::
slope

:::
on

:
a
:::::::
log-log

::::
plot

::
is

:::::::::
suggestive

::
of

:
a larger number of significant digits, however for simplicity

with have used the same number of significant digits for all variables
::::::::
power-law

:::::::::::
relationship,

:::::
which

::::::
would

::
be

:::::::::
consistent

::::
with30

::::::::::
fundamental

:::::::::
constraints

:::
on

::::::::::
compression

::::::::
potential

::::::::
consistent

::::
with

::::::::::::
rate-distortion

::::::
theory

:::::::::::::
(Berger, 2003) .

When normalizing the errors by the mean of the original values (or in this case, by the absolute value of the mean of the

original values), the layer-packing will appear to perform poorly for fields where the variation is large relative to
:::
The

::::::::
question

::
of

:::::
when

::::
LAY

::
is
:::::::::

preferable
:::

to
:::::
NSD3

:::
or

:::::
NSD4

::::
can

:::
be

::::::::
addressed

:::::
with

::::::::
reference

::
to

:::
the

::::::::::
complexity

::::::::
statistics.

:::::::
Among

:::::
those

:::::::::
complexity

:::::::
metrics

:::::::::
considered,

:
the baseline value (e.g.

:::::::::
normalized

::::::
entropy

:::
of

:::
the

::::
data

::::
field

::::::
proved

::
to

:::
be

:::
the

::::
best

::::::::
predictor35
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::
of

::::::::::
compression

:::
in

:::
the

:::::::
lossless

::::
case

:::::::::::
(DEFLATE).

:::
By

::::::::
contrast,

:::
the

::::
best

:::::::
predictor

:::
of

:::
the

:::::::
relative

::::::::::
performance

:::
of

::::
LAY

:::
to

:::
the

:::
two

:::::::::::
bit-grooming

:::::::
methods

::::
was

:::
the

:::::::::
normalized

:::::::
entropy

::
of

:::
the

::::::::
exponent

::::
field

:::::::
(NEEF).

:::
By

:::::
“best

:::::::::
predictor”,

:::
we

:::::
mean

:::
that

:::::
these

::::
were,

:::::::::::
respectively,

:::
the

::::
most

:::::::
strongly

:::::::::
correlated

::::::
among

:::
the

::::::
metrics

:::::::::
considered

:::::
with

:::
the

:::::::::
DEFLATE

::::::::::
compression

:::::
ratios

::::
and

:::
the

::::::
relative

::::
error

:::
or

::::::::::
compressed

:::
file

::::
size.

::
In

:::
the

::::
case

:::
of

::::::
lossless

::::::::::::
compression,

:::
the

:::::::::
correlation

::
of

:::
the

:::
log

:::
of

:::
the

::::::::::
compression

:::::
ratio

::::
with

:::
the

:::::::::
normalized

:::::::
entropy

:::
was

:::::
over

:::
0.9

:::
(the

::::
next

:::::::
highest

:::::::::
correlation

:::
was

::::::
below

:::
0.8,

:::
all

::::::::
variables

::::
were

:::::::::
included),

:::::
while

:::
for5

:::::::::::
differentiating

::::::::::::
bit-grooming

:::
and

:::::
LAY,

:::
the

:::::::
absolute

::::::::::
correlations

:::::::
between

:::
the

::::::
NEEF

:::
and

:::
the

:::
log

::
of

:::
the

::::
file

:::
size

::::
ratio

:::
or

:::
the

:::
log

::
of

:::
the

::::::
RMSE

::::
ratio

::
as

::::::
shown

::
in

:::::
Figure

::
3
::::
were

::::
both

::::
over

:::
0.8

::::
(c.f. mass of snow, concentrations of short-lived atmospheric trace

gases with few emission sources). In light of such considerations, the distributions of errors are presented for both normalization

methods (figures ?? and ??
::
the

::::
next

::::::
highest

::::::::::
correlations

:::::
were

::::::
around

:::
0.6,

::::
only

:::::
dense

::::::::
variables

::::
were

::::::::
included).

The median standardized errors (across all variables and all datasets, normalised by the standard deviation) for the lossy10

methods were 2.09 · 10−2 (NSD2), 2.56 · 10−3 (NSD3), 1.77 · 10−5 (
:::
The

:::::::
trade-off

:::::::
between

:::::
error

:::
and

:::::::::::
compression

::
is

:::::::
evident:

::
as

:::
the

:::::
NEEF

:::::::::
increases,

:::
the

:::::::::::
bit-groomed

:::::::
file-sizes

:::::::
become

::::::
larger

::::
than

:::
the

::::::::::::
corresponding

:::::
LAY

::::::::
file-sizes,

:::::
while

:::
the

:::::
errors

:::
of

:::::::
resulting

::::
from

:::::
LAY

:::::
grow

::::::
relative

::
to

:::::
those

::
of

:::::::::::
bit-grooming

:::::::
(Figure

:::
3).

:::
The

:::::
LAY

:::
file

::::
sizes

:::::
were

:::::
larger

::::
than

:::::
those

::
of

:::::
NSD3

:::
or

NSD4 ), 2.14 · 10−6 (NSD5), 2.84 · 10−2 (LSSCALAR)
::::
when

:::
the

::::::
NEEF

::::::
greater

::::
than

::::
0.25

::
or

:::
0.1,

::::::::::
respectively

:::::::
(Figure

::
3,

:::::
upper

::::
row).

::::::
Errors

::
of

::::
LAY

:::::
were

::::::::
generally

:::
less

::::
than

:::::
those

::
of

::::::
NSD3,

:::::
while

:::
the

:::::
errors

:::
for

::::::
NSD4

::::
were

:::::::
smaller

::
for

::::::
values

::
of

:::
the

::::::
NEEF15

::::::
greater

::::
than

::::
0.15

::::::
(Figure

::
3,
::::::

lower
::::
row).

:::
In

:::
the

::::
case

:::::
when

:::
the

::::::::::
normalised

::::::
entropy

:::
of

:::
the

::::::::
exponent

::::
field

::
is

::::::
greater

::::
than

:::::
0.25,

::::
LAY

:::::
yields

::::
both

:::::::
smaller

::::
files

:::
and

:::::
lower

::::::
errors

::::
than

::::::
NSD3,

:::::
while

:::
for

::
all

:::::
other

:::::
cases

:::
the

:::::
choice

::::::::
between

::::
LAY

::::
and

:::::
NSD3

:
and

9.48 · 10−5 (LSARRAY). When normalised by the mean, the median standardized errors remained similar for the
:::::
NSD4

::::::
means

:::::::
deciding

:::::::
between

::::::
smaller

:::
file

:::::
sizes

::
or

::::::
smaller

::::::
errors.

:

:::
The

::::::
reason

:::
that

:::
the

:::::
NEEF

:::::::::::
differentiates

:::
the

::::::
relative

:::::::::::
performance

:::::::
between bit-grooming methods, and approximately doubled20

for the other methods (to 5.55 · 10−2 for LSSCALAR and 1.80 · 10−4 for LSARRAY). One clear result is that LSSCALAR

caused a dramatic loss of accuracy in many cases, much more than one might expect given the nominal precision of roughly

1/65535≈ 1.53 · 10−5 times the range.
:::
and

::::
LAY

::::
can

::
be

:::::::::
understood

:::
by

:::
the

:::::
nature

::
of

:::
the

:::::
errors

:::::::
induced

:::
by

:::
the

:::
two

::::::::::
techniques.

:::::::::::
Bit-grooming

:::::::::
guarantees

:::::::
constant

:::::::
relative

:::::
errors

:::
for

::::
each

:::::::::
individual

::::::
datum,

:::::::
whereas

:::::
LAY

:::::
results

:::
in

:::::
errors

::::
that

:::
are

:::::::
roughly

:::::::
constant

::
in

:::::::
absolute

::::::::
magnitude

::::::
across

:
a
:::::::::
thin-slice.

::::::::
Assuming

::::
that

:::
the

:::::::
variable

::
is

:::::
dense,

::
if

:::
the

::::
data

:::::
within

:::::
each

::::::::
thin-slice

::::
vary25

::::
little

::::::::::::
(corresponding

:::
to

:
a
::::
low

::::::
NEEF),

:::::
then

::::
LAY

::::
will

::::::
achieve

:::::::::
relatively

:::::
small

:::::
errors

:::
and

:::::
since

:::
the

::::::::::
compressed

::::
field

::::::::
contains

::::
more

:::::::::::
information,

::
the

::::::::
resultant

:::
file

::::
size

:::
will

:::
be

:::::
larger.

:

:::
One

:::::::::
interesting

::::::
aspect

::
of

:::::
these

:::::
results

::
is
::::
that

:::
the

::::::
entropy

::
is
:::::::
defined

::::::::::
independent

:
of

:::
the

::::::
values

::
in

:::
the

::::::::::
distribution

::::::
(Figure

:::
1),

:::::
based

:::::
solely

::
on

:::
the

::::::::::
frequencies

::
of

:::::
values

::
in

:::
the

:::::
array,

::
yet

:::
the

::::::
NEEF

::::::
proved

:
to
:::
be

::::
more

::::::::::
informative

::::::::
regarding

::::::
relative

:::::::::::
performance

:::
than

:::::
other

:::::::
metrics

::::
that

:::::::::
accounted

:::
for

:::::
range

::
in
::::::::::

magnitude
::::
(e.g.

::
the

::::::
range

::
or

::::::::
standard

::::::::
deviation

::
of

::::
the

::::::::
exponent

::::
field,

::::
the30

::::::::
logarithm

::
of

:::
the

::::::
largest

::::::::
non-zero

:::::
value

::::::
divided

:::
by

:::
the

:::::::
smallest

::::::::
non-zero

::::::
value).

::::
This

::
is

:::::
likely

:::
due

::
to
:::

the
::::

fact
::::
that

:::
the

::::::
RMSE

:::::::::
summarises

:::
the

:::::
error

::::::::::
distribution,

::::::::
weighting

::::
both

:::
by

:::
size

::::
and

:::::::::
frequency,

:::
and

:::
the

:::::::
entropy

:
is
::
a
:::::::
measure

::
of

::::::::
statistical

:::::::::
dispersion.

:

:::::
Given

:::
the

::::
clear

::::::::::
relationship

:::::::
between

:::
the

::::::::::
normalized

:::::::
entropy

::
of

:::
the

::::
data

::::
field

:::::::
(NEDF)

:::
and

:::
the

:::::::::::
compression

:::::
ratios

::::::::
achieved

::
by

:::::::::
DEFLATE

:::::
alone

::::::
(figure

:::::
1D),

:
it
:::::

leads
::
to

:::
the

::::::::
question

::
of

:::::::
whether

:::
the

::::::
NEDF

::
is
:::::::::
predictive

::
of

:::::::::::
compression

:::::
ratios

::::::::
achieved

::
by

:::
the

:::::
lossy

::::::::
methods.

:::
The

::::::
NEDF

::
is

::::::
indeed

::::::
highly

::::::::
predictive

::
of

:::
the

:::::::::::
compression

::::
ratio

:::
of

:::
the

:::::::::::::::
reduced-precision

::::
fields

:::
as

::::
well35
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::::::
(Figure

:
2
::
of

:::
the

:::::::::::::
supplementary

:::::::
section),

::::
with

:::
the

:::::::
absolute

:::::::::
correlation

::::::::
exceeding

::::
0.85

::
in

::::
each

:::::
case.

::::
This

::::
may

::
be

::::::::
expected,

:::::
given

::
the

:::::::
already

::::
clear

::::::::::
relationship

::::::::
between

::::
these

::::
two

::::::::::
parameters.

:::::::::::
Furthermore,

:::
the

::::::::
reduction

::
in

:::
the

::::::
NEDF

::
is

::::
seen

::
to

::
be

:::::::::
predictive

::
of

:::
the

:::::::::::
“compression

:::::::::::::
improvement”,

:::::
which

:::
we

::::::
define

::
as

:::
the

:::::::::::::::::::
DEFLATE-compressed

:::::::
file-size

:::::::
divided

::
by

:::
the

:::::::
file-size

::::::::
achieved

::
by

:::
the

:::::
lossy

:::::::::::
compression

:::::::
method;

:::
this

::::::::::
relationship

::
is
:::::

most
:::::::
apparent

:::
for

:::::
those

::::::::
methods

::::
with

:::
the

::::::
highest

:::::::::::
compression

::::::
ratios,

::::::
namely

::::
LIN,

::::
LAY

::::
and

:::::
NSD2

::::
(see

::::::
Figure

:
3
::
of

:::
the

::::::::::::
supplementary

:::::::
section).

::::
The

:::::
linear

::::::::::
relationship,

::::::::
however,

:::::
offers

::::
only

:
a
::::::
partial5

:::::::::
explanation

::::
(the

:::::::::
correlation

::
is
::::
over

:::
0.8

:::
for

::::
LIN

::::
and

:::::
LAY,

:::
and

::::
over

:::
0.6

:::
for

::::::
NSD2

:::
and

:::::::
NSD3),

::::::::
however

:
it
:::::::
appears

::
to

:::::::
explain

::::
most

::
of

:::
the

::::::::
variation

::::
when

:::
the

:::::
lossy

::::::
method

::::::::
achieves

:::::::
two-fold

::
or

::::::
greater

:::::::::::
compression

::::::
relative

::
to

::::
that

:::::::
obtained

:::
by

:::::::::
DEFLATE.

:

The NSD5 method was consistently the most accurate, followed by NSD4, LSARRAY, NSD3, NSD2 and LSSCALAR.

The NSD3, NSD4, NSD5 and LSARRAY methods were each accurate to 0.05or better (of the standard deviation or mean). In

many applications this is much smaller than the uncertainty of the modelled or observed data. The trade-off between error and10

compression is illustrated in figure ??

3
:::::::::
Discussion

::::::::::::
Layer-packing

:::
was

:::::::::
compared

::::
with

:::::
scalar

:::::
linear

:::::::
packing,

:::::::::::
bit-grooming

::::
and

::::::
lossless

:::::::::::
compression

:::
via

:::
the

:::::::::
DEFLATE

::::::::
algorithm.

The lossy methods show something of a continuous gradient when considering both these aspects. In terms of the errors, the

LSARRAY method falls in between NSD3 and NSD4, with compression ratios between NSD2 and NSD3 for half of these15

datasets and close to NSD4 for the remaining files
::::
form

::
a
:::::::::
continuum

:::::
when

:::
one

::::::::
compares

:::
the

::::::::
resultant

::::::::::
compression

:::::
ratios

::::
and

:::::::::
normalized

::::::
errors.

::::
The

:::::::
trade-off

:::::::
between

:::::
error

:::
and

:::::::::::
compression

:::
has

:::::
been

::::::
shown

::::::::
elsewhere

:::::::::::::::::
(e.g. Berger, 2003) .

:::::::
Despite

:::
the

:::
fact

:::
that

:::::
LAY

:::
and

::::
LIN

:::::::::
represented

:::
the

::::
data

::
as

::::::::
two-byte

::::::
integer

::::::
arrays,

:::::
which

::::::
occupy

::::
half

::
the

:::::::
storage

::
of

::::::::
four-byte

::::::
floating

:::::
point

:::::::
numbers

::::::::
(ignoring

:::
the

::::::::
relatively

:::::
minor

:::::::::::
contribution

::
to

::::
LAY

:::::
from

:::
the

:::::
much

::::::
smaller

::::::::::::
accompanying

:::::
scale

:::
and

:::::
offset

:::::::
arrays),

::
it

:::
can

::
be

::::
seen

::::
that

::::
both

:::::::
methods

:::::::::
effectively

:::
fit

:::
into

:::
the

:::::::::
continuum

:::::::
spanned

:::
by

::::::::::::
bit-grooming,

:::::
which

:::::::::
represents

::::
data

::
as

::::::::
four-byte20

::::
floats

:::::::
(Figure

::
2).

The data-points in figure ?? appear at first glance roughly linear on the log-log scales. Using linear regression models,

we found that the intercepts were significantly different (p≈ 10−5) , but that there was no significant difference between the

slopes (p≈ 0.4) ; these comparisons were based on analysis of variance (ANOVA)F -statistics. In these models one outlier

data-point was excluded (LSSCALAR for dataset 4)
:
In

::::
this

:::::
study,

:::
we

::::
have

:::::::::
effectively

::::::::
separated

:::
the

::::::::::::::::
precision-reduction

:::::
from25

::
the

:::::::::::
compression

:::::
itself.

::::
This

::
is
:::::::
because

:::
the

::::::::::::
bit-grooming,

::::
LAY

::::
and

::::
LIN

:::::::
methods

:::
can

:::
be

::::::
thought

:::
of

::
as

:::::::::::::
preconditioners

:::
for

:::
the

::::
same

:::::::
lossless

:::::::::::
compression

::::::::
algorithm

:::::::
(namely

:::::::::::
DEFLATE).

:::
The

:::::::::
reduction

::
in

::::::
entropy

::::
due

::
to

:::::
these

:::::::::::::
preconditioners

:::::::
explains

::
a

::::
large

::::
part

::
of

:::
the

::::::::
improved

:::::::::::
compression

:::::
above

:::::::
lossless

:::::::::::
compression.

::::
This

:::::::
concept

:::::
could

:::
be

:::::::
extended

:::
to

::::::
develop

::::::::
methods

:::
for

:::::::::::
automatically

::::::::::
determining

:::
the

::::
right

::::::::
precision

::
to

:::::
retain

::
in

::
a

::::::
dataset.

:

::::
This

::::
study

::::
did

:::
not

::::::
extend

::
to

:::
the

::::::::::
comparison

::::
with

::::
other

:::::::
lossless

:::::
filters

:::
for

:::::::::::
compression

::
of

:::
the

:::::::::::::::
precision-reduced

:::::
fields,

::::
nor30

:::
did

:
it
::::::::
compare

::
the

::::::
results

::::
with

:::::
other

::::
lossy

:::::::::::
compression

::::::::::
techniques.

:::::
While

::
it

:
is
:::::::
possible

::::
that

:::
the

:::::::
findings

::::::::
presented

::::
here

::::::
extend

::::::
beyond

:::
the

::::::
deflate

:::
and

::::::
shuffle

:::::::::
technique,

::::
other

:::::
lossy

:::
and

::::::::
non-lossy

:::::::::::
compression

:::::::::
algorithms

::::::
operate

::
in
::::::::::::
fundamentally

::::::::
different

:::::
ways.

::::
Such

::
an

:::::::::
extension

::
to

:::
this

:::::
study

::::
may

::
be

:::::::::
considered

::
in
::::::
future,

:::
for

::::::::
example,

::
by

::::::
taking

::::::::
advantage

::
of

:::
the

::::
fact

:::
that

:::
the

::::::
HDF5
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:::
API

::::::
allows

:::
for

:
a
:::::
range

:::
of

::::::::
alternative

:::::::::::
compression

:::::
filters

::
to
:::
be

::::::
loaded

::::::::::
dynamically

:::::::::::::::::::
(HDF5 Group, 2016) ,

::
to

:::::::
provide

::::
faster

:::
or

::::
more

:::::::
efficient

:::::::::::
compression

::::
than

:::
the

::::::
default

:::::::::
algorithms.

:

:
A
:::::::

number
::
of

:::::
such

::::::::::
compression

::::::
filters

::::
(both

:::::
lossy

::::
and

:::::::
lossless)

::::
have

:::::
been

::::::::
developed

::::::::::
specifically

:::
for

::::::::::
geophysical

::::::::
datasets,

:::::
which

::::
have

:::::::
different

:::::::::
properties

::::::::
compared

::
to

::::
plain

::::
text,

:::
for

::::::::
example.

::::
They

::::
tend

::
to

::
be

::::::::::::::::
multi-dimensional,

:::::
stored

::
as

::::::::::::
floating-point

:::::::
numbers

::::
and

::
in

:::::
many

:::::
cases

:::
are

::::::::
relatively

:::::::
smooth

::::::::::::::::::
(Hübbe et al., 2013) .

::::::::::
Specialised

::::::::::
compression

::::::::::
algorithms

::::
exist

:::
for

:::::
such5

::::::
datasets

::::
that

::::
rely

:::
on

:::
the

::::::::::
smoothness

:::::::::
properties

::
to

::::::
confer

::
a
::::::
certain

::::::
degree

:::
of

::::::::::::
predictability,

:::::
which

:::::::
reduces

:::
the

:::::::
number

:::
of

:::::::
effective

:::::::
degrees

::
of

:::::::
freedom

:::
in

:::
the

:::::::
dataset.

:::
For

::::::::
example,

::::::::::::::::::::::
Hübbe et al. (2013) present

::
a
:::::::
lossless

::::::::
algorithm

:::::::
termed

::::::::
MAFISC

:::::::::::::::
(Multidimensional

::::::::
Adaptive

:::::::
Filtering

::::::::
Improved

::::::::
Scientific

::::
data

:::::::::::
Compression)

::::
that

::::::::::
incorporates

:
a
:::::
series

::
of

:::::
filters

:::::
(some

::
of

::::::
which

::
are

:::::::::
adaptive),

:::::
which

:::
in

::::
cases

:::::::
present

::::
gave

:::::::
stronger

:::::::::::
compression

::::
than

:::
the

:::::
other

:::::::
lossless

:::::::::
algorithms

:::::
under

::::::::::::
consideration.

::
In

::
a

::::::
similar

:::::
spirit,

::::::::::::::::::::::
Di and Cappello (2016) use

::
a
:::::
lossy,

::::::::
adaptive,

::::::::::
curve-fitting

::::::::
technique

::::
that

:::::
gives

:::::
highly

::::::::::
competitive

:::::::::::
compression10

::::::::::
performance

:::::
while

:::::::::::::
simultaneously

::::::::::
constraining

::::::
relative

::::::
and/or

:::::::
absolute

:::::
errors

:::
(as

:::::::
defined

::
by

:::
the

:::::
user).

:

:::::
Other

::::::
authors

::::
have

::::::
shown

:::::::::
impressive

::::::::::::::
data-compression

:::::
rates

:::::
using

:::::::
methods

::::::::
originally

:::::::::
developed

:::
for

:::::
image

:::::::::
processing.

::::
For

:::::::
example,

:::
the

::::::
GRIB2

::::::
format

::::::
allows

:::
for

::::::::::
compression

:::::
using

:::
the

::::::::::
JPEG-2000

::::::::
algorithm

:::
and

::::::
format

::::::
(based

::
on

:::::::
wavelet

::::::::::
transforms)

::
to

::::
store

::::::::
numerical

:::::
fields

::::::::::::::::::
(Skodras et al., 2001) .

::::::::::::::::::::::::::
Woodring et al. (2011) describe

:
a
:::::::::
work-flow

:::::
based

::::::
around

::::::::::
JPEG-2000

::::::::::
compression

in order to satisfy the assumptions of the linear models. The linear slope on a log-log plot is suggestive of a power-law15

relationship, which would be consistent with fundamental constraints on compression potential consistent with rate-distortion

theory (Berger, 2003)
::::::::
overcome

:::::::::::::::
bandwidth-limited

:::::::::::
connections

:::::
while

::::::::::
quantifying

:::
the

:::::::
ensuing

::::::::
reduction

::
in
:::::::::

precision.
:::::
They

::::::::::
demonstrate

:::
the

::::
same

:::::::::::::::
compression-error

:::::::
trade-off

:::
as

::::::::
illustrated

::
in

:::
this

:::::
work.

::::::::::::::::::::::::::
Robinson et al. (2016) compare

::::
lossy

:::::::::::
compression

::
via

:::::::::::
JPEG-2000,

::::
PNG

::::::::
(another

:::::::
graphics

::::::::
standard)

::::
and

::::
three

:::::
video

:::::::
codecs;

:::
the

:::::
video

::::::
codecs

:::::::
showed

::::
very

::::
high

::::::
relative

::::::
errors

::
(in

:::
the

:::::
order

::
of

:::
0.1

::
to

::::
1.0),

:::
but

::::
also

::::
very

::::
high

:::::::::::
compression

::::
rates

:::::::
(around

:::::::
300-fold

::::::::::::
compression).20

:
A
:::::::
number

::
of

::::::
studies

::::
have

:::::::
assessed

:
a
:::::
range

::
of

:::::::::::
compression

:::::::
methods

::
on

::
a

:::::
variety

:::
of

::::::
datasets

::::::::::::::::::::::::::::::::::::::::
(Baker et al., 2014; Di and Cappello, 2016, e.g.) .

::::
They

:::::
show,

:::::::
amongst

:::::
other

::::::
things,

:::
that

:::
no

:::
one

::::::
method

::::::::
provides

:::
the

::::
most

:::::::
effective

:::::::::::
compression

:::
for

::
all

:::::::
datasets

:::::::::
considered.

:::::
Also

:::::::
apparent

::
is

:::
that

:::::
lossy

:::::::
methods

::::
tend

::
to

:::::
result

::
in
::::::
higher

:::::::::::
compression

:::::
ratios

::::
than

::::::
lossless

::::::::::
techniques,

:::
and

::::
that

:::::::
methods

::::::::
designed

:::::::::
specifically

:::
for

::::::::
scientific

:::
data

:::::
(e.g.

::::::::
exploiting

::::::::::
smoothness

:::::
when

:
it
::
is
:::::::
present)

:::
are

:::::
often

:::::
highly

::::::::::
competitive.

Left panel: Compression ratios (compressed file size divided by original file size) measured for six methods, applied to six25

test datasets (lower is better). The DEFLATE method serves as the benchmark and all values are equal to 1.0 by definition.

Right panel: Scaled compression/decompression times for each method (lower is better), with LSARRAY represented twice

(for compression and extraction). These times are normalized by the compression time from DEFLATE. The median values

(shown at the right of each panel) are calculated across all datasets.

The distribution of standardized errors (lower is better) of the four lossy compression methods, applied to six test datasets.30

Each data-point behind the box-whisker plot corresponds to one variable in a given dataset, based on the mean standardized

error per variable normalized by the standard deviation (left panel) or the mean absolute value (right panel) of the original data.

Whiskers indicate the minimum and maximum values in the sample, box edges correspond to the 25and 75quantiles, and the

center-line indicates the sample median. Methods are shaded with the same color as in Figure 1. The median values (shown at

the right of each panel) are calculated across all variables within these datasets.35
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The median error per file (from figure ??) plotted against the corresponding compression ratio for that file (from the left

panel of figure 1). Errors are normalized by the standard deviation (left panel) or the mean (right panel) of the original values

within each thin slice.

4 Discussion

This paper introduces5

::::::::::::
Layer-packing

:::::::
achieves

:::::::::::
compression

::::
and

::::
error

::::::
results

:::::::
roughly

::
in
::::::::

between
:::::::::::
bit-grooming

::::::
storing

:::::
three

:::
or

::::
four

:::::::::
significant

::::::
figures.

::::::::::::
Layer-packing

::::
and

:::::::::::
bit-grooming

::::::
control

::::
error

:::
in

:::::::
different

:::::
ways,

::::
with

::::::::::::
bit-grooming

::::::::::
guaranteeing

:::::
fixed

::::::
relative

::::::
errors

::
for

:::::
every

:::::::::
individual

:::::
datum

:::::
while layer-packing as a variant of the linear scaling technique for data compression , and compares

the results to this and other lossless and lossy compression techniques.
::::::
results

::
in

:::::::
roughly

:::::::
constant

:::::::
relative

:::::
errors

::::::
within

:::
the

:::::::::
hyper-slice

:::::
across

::::::
which

:::
the

::::::
packing

::
is
:::::::
applied.

:
10

The idea itself
::::::
behind

:::::::::::
layer-packing

:
is not new,

:
and forms the basis of compression within the GRIB format, in that

:::::
which

each field is a two-dimensional array , and compression is performed on fields individually. Although the methods described

are used only on netCDF data files, they apply equally to other data formats (e.g.HDF4, HDF5). These results are presented as

a proof-of-concept only.

The comparison with GRIB (especially GRIB2, which compresses via JPEG-2000, based on wavelet approximation) is15

especially relevant. The procedure described here
:
In

::::
one

:::::
sense

::::::::::::
layer-packing

:
is more general than that used in GRIB, in

that thin-slices are not restricted to being two-dimensional.
:::
Our

::::::::::
preliminary

::::::
results

::::
(not

::::::
shown)

:::::::
showed

:::
that

::::
the

:::::::::
JPEG2000

::::::::
algorithm

:::::
yields

:::::::
greater

::::::::::
compression

:::::::::
compared

::
to

:::
the

::::::::
methods

::::::::
presented

:::::
here

:::
for

:::
the

:::::
same

::::
level

:::
of

:::::
error;

:::
this

:::::::
echoes

:::
the

::::::
findings

:::
of

::::::::::::
Caron (2014) ,

:::::
which

::::::::
describe

:::
the

:::::::
efficient

::::::::::
compression

:::::::::
achieved.

:::::::
However

::::
like

:::::
scalar

:::::
linear

::::::::
packing,

:::::::::
JPEG2000

::::
does

:::
not

:::::
offer

::::
clear

::::::::
controls

:::::
about

:::
the

::::::::
resultant

:::::
errors

::::
and

::::
thus

:::::
some

::::::::::::::
experimentation

:::
(in

::::::
setting

:::
the

:::::::
number

:::
of

:::
bits

::::
per20

:::::
value)

::
is

::::::
needed

::
to

:::::
avoid

::::::::
excessive

::::
loss

::
of

::::::::
precision.

:::::
More

::::::::
limiting,

:::::::
perhaps,

:::
are

:::
the

::::::::
technical

:::::::::
procedures

:::::::
required

::
to

:::::::
convert

::::::
generic

:::::::
netCDF

::::
data

::::
into

::::::
GRIB2

:::::::
format,

::::::::
including

:::::::
meeting

::::::::::
constraints

:::
on

:::::::
variable

:::
and

:::::::::
dimension

:::::::
names. The GRIB for-

mat is rather restrictive in terms of
::::
only

::::::
allows

::::::
storing meta-data

:::
that

:::::
match

::::::::::
predefined

:::::
tables, and is

::::
thus nowhere near as

general or self-describing as HDF5 (or
::
its

:
derivatives such as netCDF-4). On the other hand GRIB2 is very space efficient;

Caron (2014) estimated that GRIB2 files are on average 44of the size of the equivalent deflate-compressed netCDF-4 files25

(n.b
::::
This,

::::::::
combined

::::
with

:::
the

:::::::
software

:::::::::::
requirements

::::
(e.g.

::
the

:::::
JPEG

::::::
library)

:::::::
beyond

::::::
netCDF

:::
for

::::::::::::
decompression

::::::
render

::::::::::::::::
GRIB-compression

:::::::::
unattractive

:::
for

:::::::
general

:::::::
purpose

:::::
usage.

:::::::
Outside

:::
of

:::::::::::
organisations

::::
with

::::::
strong

:::::::
technical

:::::::
support

:::
for

:::::::::
modelling

:::::::::
operations

:::
(e.g.

relative errors were not reported, which limits the comparison)
:::::::::
operational

:::::::
weather

:::::::::
prediction

:::::::
centres),

:::
its

::::::::
suitability

::::
may

:::
be

::::::
limited

::
to

::::::
special

:::::::
purposes

::::
and

:::::
expert

:::::
users.

The deflate/shuffle algorithms we tested are the only two lossless filters accessible through both the HDF5 and netCDF-430

APIs, which makes their performance of the greatest interest and widest applicability.We also note that the

::::::::
Although

:::
the

:::::::
methods

:::::::::
described

::::
here

:::
are

::::
used

::::
only

:::
on

:::::::
netCDF

::::
data

:::::
files,

::::
they

:::::
apply

:::::::
equally

::
to

:::::
other

::::
data

::::::
formats

:::::
(e.g.

::::::
HDF4, HDF5format allows for other filters to be used for lossless compression, not just the deflate/shuffle algorithms used
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here. A range of other lossless compression filters can be loaded dynamically (HDF5 Group, 2016) , many of which offer faster

or more efficient compression than the default algorithms (Hübbe and Kunkel, 2013, e.g. as discussed by) . The compression

performance of the different lossy (packing or bit-grooming)filters when combined with these other lossless filters was not

explored within this study but is likely to be similar to that observed for the deflate/shuffle algorithms applied here.
:
).
::::::
These

:::::
results

:::
are

::::::::
presented

::
as
::
a
::::::::::::::
proof-of-concept

::::
only.

:
5

Both
:::
The

::::::
timing

::::::::::
information

::
is

::::::::
presented

:::::::
mainly

:::
for

:::::::::::
completeness

::::
and

::
a
::::::
caveat

::::::
should

::
be

::::::
raised.

:::
As

::::::
noted

::::::
above, the

linear scaling and the layer packing
::::::::::
compression

:::
via

::::::::::
DEFLATE,

::::::
NSD2,

::::::
NSD3,

::::::
NSD4,

:::::
NSD5

::::
and

::::
LIN

::::
were

:::::::::
performed

:::::
using

::::
tools

::::
from

:::
the

:::::
NCO

::::::
bundle

:::::::
(written

::
in

::
C

::::
and

:::::
C++),

:::::::
whereas

:::
the

:::::
LAY

::::::::::
compression

::::
was

:::::::::::
implemented

::
in

:::::::
Python.

:::
The

:::::
code

::
is

::::::::
presented

::
as

:
a
::::::::::::
demonstration

::
of

::::::::::::
layer-packing

:::::
rather

::::
than

:::::::::
production

:::::
code.

::::
Both

:::
the

:::::
scalar

:::::
linear

:::::::
packing

:::
and

:::
the

:::::::::::
layer-packing

:
use the same representation of the data (i.e. two-byte integers), however10

large differences in the compression and
::::::
relative errors were found. This is because the compressibility of a packed field is

related to the distribution of values within the scaling range. This can be illustrated by the following example. Consider a

three-dimensional field that ranges over three orders of magnitude in the vertical dimension, taking values of O(103) at bottom

and values of O(100) at the top. Suppose the range across the entire field is 0.0 to 5000.0 (ignoring units), and thus the smallest

increment when recorded at single precision (with linear scaling) is roughly 5000.0/65536≈ 0.08 across the entire field. The15

upper levels will be much more heavily quantized, relative to their values , compared to the lower levels, and thus will be

subject to both higher compression and higher relative errors. Compressing the same field using layer packing may yield, for

the sake of example, a range of 2000.0 at the bottom level and 5.0 in the top level, and in both cases the precision will be greater,

and hence more values will be taken within each vertical level. As such, the more variable the field, the less compression will

be obtained from the combination of the deflate and shuffle filters. Hence linear scaling gives a lower precision, less spatial20

variation within the thin slice and hence is more compressible. Another factor that makes layer packing less compressible is

that the accompanying scale-offset parameter arrays must be stored.

Using the lossless deflate and shuffle algorithms, the compressed files were less than 50of the original uncompressed size.

Beyond this, the lossy compression methods achieved further space savings, although to varying degrees for the individual

datasets. There was a general trade-off between precision-loss and compression efficiency (figure ??). When considered along25

both these axes, layer-packing has errors between those of NSD3 and NSD4. For half the datasets considered (1, 3, and 4) it

yielded compressed sizes in between those of NSD2 and NSD3 and in the other half it yielded file sizes comparable to those of

NSD4. In other words, in three of the cases considered
::::::
Across

:
a
:::::
given

::::
thin

::::
slice,

::::::::::::
layer-packing

::::
will

:::::::
represent

::::::
values

:::::
using

:::
the

:::
full

:::::
range

::
of

::::::::
two-byte

:::::::
integers,

:::::::
whereas

:::::
scalar

:::::
linear

:::::::
packing

::::
will

:::::::
typically

:::
use

::
a
::::::
smaller

:::::::
portion

::
of

:::
that

::::::
range.

::::
This

::::::::
increases

::
the

::::
loss

::
of

::::::::
precision

::::::::
resulting

::::
from

:
layer-packing gave a worse compression-error trade-off (with file-size close to NSD4 but30

larger errors) while in remaining three cases it performed better (with both smaller errors and smaller file size than NSD3)
:::
but

:::
also

::::::
entails

::::::
greater

:::::::::::
compression.

Two error metrics were employed. Each emphasized different aspects of the performance. When normalizing by the mean

(of the entire variable, or of the thin-slice), variables with a high standard deviation to mean ratio will show larger errors using

the layer-packing compression. Whereas when normalizing by the standard deviation, variables with a high mean to standard35
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deviation ratio will show larger errors using the bit-grooming compression. These considerations highlight the importance of

understanding the properties of lossy filters when selecting the most appropriate filter for a given application.

When considering which compression method
:
to
::::

use for an individual dataset, one needs to consider several factors. First,

space constraints and the size of the datasets in question will vary considerably for different applications. Second, the degree

of precision required will also depend on the application
:
,
:::
and

::::
may

:::::
differ

:::::::
between

::::::::
variables

:::::
within

::
a

::::::
dataset. The bit-grooming5

(storing at least three significant digits) and layer-packing techniques achieved average normalized errors of 0.05% or better,

which in many geoscientific applications is much less than the model or measurement errors. Third, datasets vary considerably

in their inherent compressibility.
:
,
:::::
which

::
in
:::
the

:::::
cases

::::::::::
considered

:::::::
appeared

::::::::
strongly

::::::
related

::
to

:::
the

::::::::::
normalized

::::::
entropy

:::
of

:::
the

:::
data

::::::
array. Fourth, how data are stored should also reflect how it will be used (e.g. active use versus archiving). A major

disadvantage of the layer-packing as described here is that it is essentially an archive format, and needs to be unpacked by10

a custom application before it can be easily interpreted. Scalar linear packing is similarly dependent on unpacking
::::::::
(although

::::
many

:::::::
netCDF

:::::::
readers

::::
will

:::::::::::
automatically

:::::::
unpack

::::
such

:::::
data,

::::
from

::::::::
two-byte

:::::::
integers

::
to
::::::::

four-byte
:::::::

floating
::::::

point,
::
by

:::::::
default),

whereas bit-grooming requires no additional software. Finally, other issues relating to portability, the availability of libraries

and consistency within a community also play a role in determining the most appropriate storage format.

4 Conclusions15

This paper considers different forms of linear-scaling
:::::::::::
layer-packing,

::::::
scalar

:::::
linear

:::::::
packing

::::
and

:::::::::::
bit-grooming

:
as a basis for

compressing large gridded datasets. Layer-packing, scalar linear packing and bit-grooming were compared. Layer-packing was

found to be a competitive format for archive purposes, with benefits (
::::
When

:::::::
viewed in terms of the compression-error trade-

off) for some datasets. In most cases, it was comparable to storing between 3 and 4 significant digitsper datum,
::::::::::::
layer-packing

:::
was

:::::
found

:::
to

::
fit

::::::
within

:::
the

:::::::::
continuum

::
of

:::::::::::
bit-grooming

::::
(i.e.

::::
when

:::::::
varying

:::
the

:::::::
number

::
of

:::::::::
significant

:::::
digits

::
to

::::::
store),

:::::::
roughly20

::
in

:::::::
between

::::::
storing

::::
three

::::
and

::::
four

:::::::::
significant

:::::
digits.

::::
The

::::::
relative

:::::::::::
performance

::
of

:::::::::::
layer-packing

::::
and

:::::::::::
bit-grooming

::::
was

:::::::
strongly

:::::
related

:::
to

:::
the

:::::::::
normalized

:::::::
entropy

::
of

:::
the

::::::::
exponent

:::::
array,

:::
and

:::::
again

::::::::::
highlighted

:::
the

::::::::
trade-off

:::::::
between

:::::::::::
compression

:::
and

:::::
errors.

Given the variation in compression and accuracy achieved for the different datasets considere
:::::::::
considered, the results highlight

the importance of testing compression methods on a realistic sample of the data.

If space is limited and a large dataset must be stored, then we recommend that the standard deflate and shuffle methods25

be applied. If this does not save enough space, then careful thought should be given to precisely which variables and which

subsets of individual variables will be required in future; it often arises that despite a wealth of model output, only a limited

portion will ever be examined. Many tools exist for sub-setting such datasets. Beyond this, if further savings are required and

if the data need not be stored in full precision, then the
:::::::::
appropriate

::::::
relative

::::::::
precision

:::
for

::::
each

:::::::
variable

::::::
should

::
be

:::::::
selected

::::
and

::::::
applied

:::
via bit-groomingmethods should be trialled. Layer-packing should be reserved for archive applications, and should be30

compared with bit-grooming.
:::::::::
considered

::::
when

::::::::
choosing

::
a

::::::::::
compression

::::::::
technique

:::
for

::::::::
specialist

:::::::
archive

::::::::::
applications.

:
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5 Code availability

The python-based command line utilities used for the layer-packing, unpacking and relative-error analysis are available freely

at https://github.com/JeremySilver/layerpack.

6 Data availability

Of the datasets used in the tests (listed in section
::::::
Section 2.1.1), datasets 2-6

:::
2–6

:
are available online at https://figshare.com/5

projects/Layer_Packing_Tests/14480 along with a brief description of each file. Dataset 1 could not be distributed with the

other files due to licensing restrictions but can be accessed through the ECMWF’s public dataset portal (http://apps.ecmwf.int/

datasets/), using the following set of inputs: stream = synoptic monthly means, vertical levels = pressure levels (all 37 layers),

parameters = all 14 variables, dataset = interim_mnth, step = 0, version = 1, time = 00:00:00, 06:00:00, 12:00:00, 18:00:00,

date = 20080901 to 20081201, grid = 1.5◦× 1.5◦, type = analysis, class = ERA Interim.10

Author contributions. J. D. Silver wrote the layer-packing python software, performed the compression experiments and wrote most of the

manuscript. C. S. Zender contributed to the design of the study, provided some of the test datasets used in the experiments and contributed to

the text.
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