
Compression-error trade-off for large gridded datasets
Jeremy D. Silver1 and Charles S. Zender2

1School of Earth Sciences, University of Melbourne, Australia
2Departments of Earth System Science and of Computer Science, University of California, Irvine, USA

Correspondence to: J. D. Silver (jeremy.silver@unimelb.edu.au)

Abstract. The netCDF-4 format is widely used for large gridded scientific datasets, and includes several compression methods:

lossy linear scaling and the non-lossy deflate and shuffle algorithms. Many multidimensional geoscientific datasets exhibit

considerable variation over one or several spatial dimensions (e.g. vertically) with less variation in the remaining dimensions

(e.g. horizontally). On such datasets, linear scaling with a single pair of scale and offset parameters often entails considerable

loss of precision. We introduce an alternative compression method called “layer-packing” that simultaneously exploits lossy5

linear scaling and lossless compression. layer-packing stores arrays (instead of a scalar pair) of scale and offset parameters. An

implementation of this method is compared with lossless compression, storing data at fixed relative precision (bit-grooming)

and scalar linear packing in terms of compression ratio, accuracy and speed.

When viewed as a trade-off between compression and error, layer packing yields similar results to bit-grooming (storing

between 3 and 4 significant figures). Bit grooming and layer-packing offer significantly better control of precision than scalar10

linear packing. Relative performance, in terms of compression and errors, of bit-groomed and layer-packed data were most

strongly predicted by the entropy of the exponent array, and lossless compression was well predicted by entropy of the original

data array. Layer-packed data files must be “unpacked” to be readily usable. The compression and precision characteristics

make layer-packing a competitive archive format for many scientific datasets.

Keywords. netCDF-4; HDF5; Lossy compression; Data storage format15

1 Introduction

The volume of both computational and observational geophysical data has grown dramatically in recent decades, and this trend

is likely to continue. While disk storage costs have fallen, constraints remain on data storage. Hence, in practice, compression

of large datasets continues to be important for efficient use of storage resources.

Two important sources of large volumes of data are computational modelling and remote-sensing (principally from satel-20

lites). These data often have a “hypercube” structure, and are stored in formats such as HDF5 (http://www.hdfgroup.org),

netCDF-4 (http://www.unidata.ucar.edu/netcdf) and GRIB2 (http://rda.ucar.edu/docs/formats/grib2/grib2doc/). Each of these

has their own built-in compression techniques, allowing data to be stored in a compressed format, while simultaneously allow-

ing access to the data (i.e. incorporating the compression/decompression algorithms into the format’s API). These compression

methods are either “lossless” (i.e. no precision is lost) or “lossy” (i.e. some accuracy is lost).25

1

http://www.hdfgroup.org
http://www.unidata.ucar.edu/netcdf
http://rda.ucar.edu/docs/formats/grib2/grib2doc/

In this study, we examine the advantages and trade-offs of in allowing for different treatment of dimensions in the compres-

sion process. One motivation for this work is improving the lossy compression ratios typically achieved with HDF5/netCDF4,

so they are more comparable with impressive compression achieved by GRIB2. Records in GRIB2 are strictly two-dimensional

and this format allows for only a limited set of predefined metadata. However GRIB2 offers excellent compression efficiency

(Caron, 2014), built upon the JPEG image compression methods; it is therefore well-suited for operational environments. By5

contrast, HDF5/netCDF4 provide a highly flexible framework, allowing for attributes, groups, and user-defined data types.

This format is well suited for more experimental environments and allows introduction of user-defined parameters to guide

and improve compression. We use this flexibility to develop a lossy compression algorithm, termed “layer-packing”, which

combines desirable features from both GRIB2 and HDF5/netCDF4.

Layer-packing is a variant of compression via linear scaling that exploits the clustering of data values along dimensional10

axes. We contrast this with other compression methods (rounding to fixed precision, and simple linear scaling) that are readily

available within the netCDF4/HDF5 framework. The performance is quantified in terms of the resultant loss of precision and

compression ratio. We also examine various statistical properties of datasets that are predictive for their overall compressibility

and the relative performance of layer-packing or rounding to fixed precision.

2 Methods15

This section outlines the implementation of the layer-packing and -unpacking methods, the storage format (in the implemen-

tation described), the test data sets, evaluation metrics and the performance of the compression methods on the test cases

considered.

2.1 Compression algorithms

2.1.1 Deflate and shuffle20

The “deflate” algorithm (Deutsch, 2008) is a widely-used, lossless compression method, available within most modern instal-

lations of the netCDF4 or HDF5 API. The deflate algorithm breaks the data into blocks, which are compressed via the LZ77

algorithm (Ziv and Lempel, 1977, 1978) combined with Huffman encoding (Huffman, 1952). The LZ77 algorithm searches

for duplicated patterns of bytes within the block. The Huffman coding step involves substituting frequently used “symbols”

with shorter bit-sequence and rarer symbols with longer bit-sequence.25

When used in the netCDF4/HDF5 framework, the deflate algorithm is often applied together with the shuffle filter (HDF5 Group,

2002). The shuffle filter does not compress data as such, but instead changes the byte ordering of the data; the first byte of each

value is stored in the first chunk of the data stream, the second byte in the second chunk, and so on. This tends to improve the

compressibility of the data, particularly if there is autocorrelation in the data stream (i.e. data that are close in value tend to

appear close together).30

2

In all of the following work, we have used the deflate algorithm and the shuffle filter together, and are henceforth referred

to collectively as DEFLATE for brevity. In the results presented below, compression via DEFLATE was performed with the

ncks tool of the NCO bundle (Zender, 2008). The compression level (set taking values between 1 & 9, where 1 means fastest

and 9 means greatest compression) dictates the amount of searching for duplicated patterns that is performed within the LZ77

step. For all applications (either as an independent method or in combination with the methods outlined below), the same5

compression level was used within DEFLATE (namely, level 4).

When using the netCDF4 framework to compress a variable, the user must define the size of the “chunk” within which

compression occurs. In all the results presented here (both for DEFLATE and for the other compression methods), the chunk

size was equal to the layers packed using layer-packing (see Section 2.1.3). The same analyses were performed setting the

chunk sizes to encompass the whole variable, and the conclusions reached in this article were essentially the same.10

2.1.2 Scalar linear packing

One can compress a field using a lower-precision value (e.g. as two-byte integers rather than four-byte floating point numbers)

and a linear transformation between the original and compressed representations; this process is termed “packing”. In the

common case of representing four-byte floats as two-byte integers, there is already a saving of 50% relative to its original

representation (ignoring the small overhead due to storing parameters involved in the transformation). In this case, a range of15

transformations are readily available. We call this “scalar linear packing” (or LIN, for short) and it is the standard method of

packing in the geoscience community. Its attributes are defined in the netCDF User Guide (Unidata, 2016) and it has a long

and wide tradition of support, including automatic interpretation in a range of netCDF readers.

Scalar linear packing to convert floating-point data to an unsigned two-byte integer representation is outlined below:

maxPackedV alue = 216− 1 = 6553520

vMin = minimum value of data

vMax = maximum value of data

add_offset = vMin

scale_factor = (vMax− vMin)/maxPackedV alue

packed = uint16((data− add_offset)/scale_factor)25

where vMin, vMax, add_offset and scale_factor are scalar floating point values, data is a floating point array and packed

is an unsigned two-byte integer array of the same dimension as data, and the function uint16(·) converts from floating point to

two-byte integer. Care must be taken in handling infinite, not-a-number or undefined values (such details are omitted here). The

value of maxPackedV alue listed uses all values in the two-byte integer range to represent floats; one can choose a different

value of of maxPackedV alue, leaving some two-byte values for the special floating-point values. The values of add_offset30

and scale_factor must be stored along with packed to enable the reverse transformation:

unpacked = float(packed)× scale_factor+ add_offset

3

Data packed with this method often can be compressed substantially more than the 50% noted above. This is done by

applying DEFLATE to the packed data; this was done for all datasets compressed with LIN here. In this study, compression

via DEFLATE was performed with the ncpdq tool of the NCO bundle (Zender, 2008).

2.1.3 Layer-packing

In many applications in the geophysical sciences, a multidimensional gridded variable varies dramatically across one dimension5

while exhibiting a limited range of within slices of this variable. Examples include:

– variation in atmospheric density and water vapour mixing ratio with respect to height

– variation in ocean temperature and current velocity with respect to depth

– variation in atmospheric concentrations of nitrogen dioxide with respect to height and time

We will use the term “thick dimensions” to denote those dimensions that account for the majority of the variation in such10

variables, “thin dimensions” to denote the remaining dimensions; in the case of the first example above (assuming a global

grid and a geographic coordinate system), the vertical dimension (pressure or height) is thick, and the horizontal dimensions

(latitude, longitude) and time are thin. We will use the term “thin slice” to describe a slice through the hypercube for fixed

values of the thick dimensions. Note that there are cases with multiple thick dimensions, such as the third example noted

above.15

Scalar linear packing applied to such gridded variables will result in a considerable loss of accuracy. This is because in order

to cover the scale of variation spanned by the thick dimensions, few discrete values will be spanned by the individual thin slices.

To reduce loss of precision within the thin slice, one can store for each variable arrays of scale-offset pairs, with size corre-

sponding to the thick dimensions only. This is the key innovation of the layer-packing technique (or LAY for brevity). Layer-

packing, as discussed here, was implemented via the following algorithm (described here in pseudocode):20

for var in vars do

if (var in splitV ars) and intersection(dimensions[var],splitDims) is not None then

theseSplitDims = intersection(dimensions[var],splitDims)

theseDimLens = lengths of theseSplitDims

iSplitDim = indices of theseSplitDims in dimensions[var]25

splitDimIdxs = all possible index combinations for theseSplitDims

nSplits = number of combinations given in splitDimIdxs

nDim = length of dimensions[var]

indices = list of length nDim, with each element equal to Ellipsis

data = the data array30

packed = array of zeros, type is uint16, with the same shape as data

add_offset = array of zeros, type is float, with dimensions given by theseDimLens

4

scale_factor = same as add_offset

for iSplit in range(0,nSplits) do

indices[iSplitDim] = splitDimIdxs[iSplit]

thinSlice = Data[indices]

vMin = minimum value of thinSlice5

vMax = maximum value of thinSlice

add_offset[splitDimIdxs[iSplit]] = vMin

scale_factor[splitDimIdxs[iSplit]] = (vMax− vMin)/maxPackedV alue

packed[indices] = uint16((thinSlice− add_offset)/scale_factor)

end for10

write packed, add_offset, scale_factor to file

else

write the data array to file

end if

end for15

The two-byte representation halves the storage cost of the array itself, however arrays of scale factors and linear offsets must

also be stored and this adds to the total space required. Compression is generally significantly improved by applying DEFLATE

and this was done for all datasets presented here.

Further details about the implementation are given in the Supplementary Material document. The code to perform layer-

packing described in this article was written as stand-alone command-line tools in Python (v. 2.7.6). These are freely available20

on https://github.com/JeremySilver/layerpack. Beyond the standard Python installation, it requires the numpy and netCDF-4

modules be installed.

2.1.4 Bit grooming

One can store the data at a fixed precision (i.e. a chosen number of significant digits, or NSD). This method is known as “bit-

grooming” and is detailed by Zender (2016) and implemented in the NCO package (Zender, 2008). If bit-groomed data remain25

uncompressed in floating-point format this coarsening will not affect the file size, however the application of the deflate/shuffle

algorithms will in general improve the compressibility of the coarsened data, as they will be represented by a smaller number of

discrete values. For further explanation, we must briefly summarize how floating-point numbers are represented by computers.

Single-precision floating-point numbers occupy 32 bits within memory. Floating-point numbers are represented as the prod-

uct of a sign, significand and an exponential term:30

datum = sign · significand ·baseexponent

5

https://github.com/JeremySilver/layerpack

The IEEE standard specifies that the sign accounts for 1 bit, the significand (also known as the mantissa) 23 bits and the

exponent 8 bits. The base is 2 by convention. The sign is an integer from the set {−1,1}, the significand is a real number in the

range [0.0,1.0) and the exponent is an integer between -128 and +127; see, for example, (Goldberg, 1991) for further details.

Bit grooming quantizes1 data to a fixed number of significant digits (NSD) using bitmasks, not floating point math. The

NSD bitmasks alter the IEEE floating point mantissa by changing to 1 (bit setting) or 0 (bit shaving) the least significant5

bits that are superfluous to the specified precision. Sequential values of the data are alternately shaved and set, which nearly

eliminates any mean bias due to quantization (Zender, 2016). To guarantee preserving 1–6 digits of precision, bit grooming

retains 5,8,11,15,18 and 21 explicit mantissa bits, respectively, and retains all exponent bits.

In the following we compared storing 2, 3, 4 and 5 significant digits; these are denoted NSD2, NSD3, NSD4 and NSD5,

respectively. Similar to LIN and LAY, DEFLATE was applied together with rounding. In this study, compression via bit-10

grooming was performed using the ncks tool within the NCO package (Zender, 2008).

2.2 Datasets

In the following tests, we compared a total of 255 variables from six datasets. Each variable was extracted individually to

file as uncompressed netCDF, and the file was then compressed using the methods described, allowing for computation of

compression and error metrics described below. The datasets are summarised in Table 1. Further details are provided in the15

online Supplementary Material section.

The variables chosen from these datasets were those with the largest number of data-points overall. For example in datasets

2-5, variables without a vertical coordinate were not considered in the analysis, since these account for only a small fraction of

the total data. A small number of the variables that would otherwise be included (based on the dimensions alone) were excluded

due to the occurrence in seemingly random data (i.e. of all magnitudes) in regions of the array where values were not defined20

(in the sense of sea-surface temperatures over land points), which we believe should have been masked with a fill-value; the

rationale for excluding these variables is first, that these regions did not appear to contain meaningful data and that the extreme

range of the seemingly-random data led to gross outliers in the distribution of error statistics for LIN and LAY in particular.

2.3 Error and compression metrics

The methods are compared with two metrics. The first relates to the compression efficiency. Compression ratios are defined as25

(uncompressed size)/(compressed size), and as such larger values indicate greater compression. The second metric relates to the

accuracy (or, seen another way, the error) of the compressed data relative to the original data. The error of UNCOMPRESSED

is zero (as it is the reference data), as is DEFLATE since it ensures lossless compression. The remaining methods cause some

loss of precision.

Error was quantified by the root mean-square difference between the original and the compressed variables. However in order30

to compare results across variables with different scales and units, the errors must be normalized somehow. We considered four

1The process of quantization means mapping, in this case via a process similar to rounding, from a large set of possible inputs (in this case the full set of

real numbers representable as floating point values) to a smaller set (in this case those floating points defined to reduced precision desired by the user).

6

ID Description Grid type Dims TS Dims # vars

1 Global 3-D NWP reanalyses Rectangular (nx,ny,nz,nt) = 240× 121× 37× 16 (nx,ny) = 240× 121 14

2 3-D CTM output Rectangular (nx,ny,nz,nt) = 9× 10× 56× 172 (nx,ny) = 9× 10 77

3 3-D NWP model output Rectangular (nx,ny,nz) = 165× 140× 32 (nx,ny) = 165× 140 20

4 Global 3-D NWP reanalyses Rectangular (nx,ny,nz,nt) = 288× 144× 42× 8 (nx,ny) = 288× 144 11

5 Dust transport-dispersion model Rectangular (nx,ny,nz) = 192× 94× 28 (nx,ny) = 192× 94 15

6 3-D coupled NWP-CTM output Irregular (nx′ ,nz) = 48602× 30 nx′ = 48602 118

Table 1. Summary of the datasets used in this study. Abbreviations: ID = index, NWP = numerical weather prediction, CTM = chemistry-

transport model, Dims = Dimensions of the variable, TS Dims = Dimensions of the thin slice, # vars = number of variables per dataset.

The dimension sizes are indicated as: nx = length of the east-west dimension, ny = length of the north-south dimension, nz = length of the

vertical dimension, nt = length of the time dimension and nx′ = length of the generalized horizontal coordinate dimension (used for the

unstructured grid in last dataset only).

different normalization methods, which emphasized different aspects of the error profile. The errors were normalized either by

the standard deviation or the mean of the original data, and these were either calculated separately per thin slice or across the

entire variable – the rationale is as follows.

When normalizing by the mean (of the entire variable, or of the thin-slice), variables with a low mean-to-standard-deviation

ratio (e.g. potential vorticity) will show larger errors using the layer-packing compression. Whereas when normalizing by5

the standard deviation, variables with a high mean-to-standard-deviation ratio will show larger errors using the bit-grooming

compression (e.g. atmospheric temperatures stored with units of K, concentrations of well-mixed atmospheric trace gases such

as CO2 or CH4).

If we calculate the ratio of the RMSE to normalization factor (i.e. the mean or standard deviation) per thin slice, and

then average across the normalized errors (n.b. there is thus one per thin slice) the resulting metric will be more sensitive to10

large relative errors within subsections of the data array. The alternative is to calculate the normalization factor across the

whole variable, and the resulting metric will be more reflective of relative errors across the entire data array. This may be

understood in the context of a hypothetical thee-dimensional array, with values ranging from O(104) to O(100) across the

vertical dimension and a mean value of O(103), and errors roughly uniform of O(10−1); if relative errors (normalizing by the

mean) are calculated for the whole array then they will be O(10−4), whereas if calculated across each thin slice separately they15

will range from O(10−1) to O(10−5), and may have a mean of O(10−2). The case of uniform errors is most likely to arise for

LIN, whereas bit-grooming guarantees precision for each individual datum and layer-packing for each thin slice.

2.4 Complexity statistics

In order to make sense of which variables compress well or poorly with different methods, a range of statistics were calculated

for each variable. Most of these statistics were calculated over two-dimensional hyperslices of the original data arrays and then20

7

the value for an individual variable was taken as the average over these hyperslices. A full list of the statistics calculated is

given in the Supplementary Material document.

The two most informative statistics that arose from this analysis were based on the entropy of either the original data field

or the corresponding exponent field (i.e. the decomposing the data array into significand and exponent, and then calculating

the entropy of the exponent array). The entropy is a measure of statistical dispersion, based on the frequency with which each5

value appeared in each dataset. Let us denote as P(xi) the proportion of the array occupied by each unique value xi. For an

array containing discrete values X = {xi}ki=1, the entropy was defined as

H(X) = E[− log2(P(X))] =−
k∑

i=1

P(xi) log2(P(xi)) (1)

For an array of k, the entropy has a maximum value of log2(k), which will arise if all values are unique. For single-precision

arrays of size 232 ≈ 4.29× 109 or larger, the maximum entropy is equal to 32.10

In order to normalize for these limitations to the entropy of a finite dataset, for each case the entropy will be normalized by

the maximum theoretical value attainable for that dataset, which was taken to be log2(K), where K is the number of elements

in the thin slice (in each case K << 232). In the case of the entropy of the exponent array, the normalization was based on the

min(log2(K),8), since the maximum entropy of an 8-bit field (recall, 8 bits are used for the exponent of a floating point) is 8.

It was found that some of the datasets compressed significantly using DEFLATE only. This was often due to a high proportion15

of zero or “missing” values. Variables were classified as either “sparse” (highly compressible or otherwise relatively simple)

or “dense” (all other variables). Sparse variables were chosen to be those satisfying any one of the following conditions: the

compression ratio is greater than 5.0 using DEFLATE, the fraction of values equal to the most common value in the entire

variable is greater than 0.2, and the fraction of hyperslices where all values were identical is great than 0.2. These definitions

were somewhat arbitrary and other classifications may be optimal, but it is seen (e.g. in Figures 1C, 3A and 3B) that sparse20

variables do not always follow the same pattern as dense variables. Of the 255 variables in total, 181 were classified as dense.

The breakdown among the different categories is given in Table 1 in the Supplementary Material document.

2.5 Compression and error results

Figure 1A shows the distribution of compression ratios, normalized errors and timing statistics for the different methods. In

the case of the compression ratios and normalized errors, results are presented separately for the dense and sparse variables.25

For dense variables, the median compression ratios were 1.3 (DEFLATE), 3.2 (NSD2), 2.4 (NSD3), 2.0 (NSD4), 1.6 (NSD5),

4.2 (LIN) and 2.6 (LAY). For sparse variables, the median compression ratios were 2.0 (DEFLATE), 4.3 (NSD2), 3.3 (NSD3),

2.8 (NSD4), 2.3 (NSD5), 7.4 (LIN) and 5.2 (LAY). It can be seen that LIN gave the greatest compression, and the LAY

compression ratios were comparable with those of NSD2 or NSD3.

The median compression times (Figure 1B) normalized relative to the DEFLATE compression time were 0.82 (NSD2), 0.9130

(NSD3), 0.79 (NSD4), 0.91 (NSD5), 0.57 (LIN), 3.45 (LAY compression) and 1.84 (LAY extraction). Differences between the

bit-grooming methods were relatively small and slightly faster than DEFLATE alone, whereas the LIN compression was nearly

twice as fast as DEFLATE. These values are consistent with DEFLATE compressing twice as much data for bit-grooming

8

●
●●

●
●●●●

●

●
●●
●●
●●
●
●

●

●
●

●

●

●

●●

●

●●

●

●

●●●

●
●
●

●

●●●

●

●●●
●

●●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●
●
●

●

●

●

●●●

●●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●
●

●●●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●●●●●
●

●

●

●
●
●
●●
●●●

●
●

●

●

●

●●

●

●●

●

●

●

●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●●●

●
●●
●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●
●

●
1

2
5

10
20

50
10

0
20

0

Method

C
om

pr
es

si
on

 r
at

io

DEFLATE NSD2 NSD3 NSD4 NSD5 LIN LAY

A

●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●
●
●
●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

Method

(T
im

e
of

 m
et

ho
d)

/(
T

im
e

of
 D

E
F

LA
T

E
)

NSD2 NSD3 NSD4 NSD5 LIN LAY LAY

compress extract

B

●●

●

●●
●

●

●●●
●

●
●

●

●●
●

●
●
●
●●
●●●

●

●●●●

●

●

●

●

●

●
●
●

●
●●

●

●●
●

●

●●●
●

●
●

●

●●
●

●
●
●
●●
●●●

●

●●●●

●

●

●

●

●

●
●
●

●

●●

●

●●
●

●

●●●
●

●
●

●

●●
●

●
●
●
●●
●●●

●

●●●
●

●

●

●

●

●

●
●
●

●
●●

●

●●
●

●

●●●
●

●
●

●

●●
●

●
●
●
●●
●●●

●●●●

●

●

●

●

●

●
●
●

●

●●●●●
●●

●

●
●●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●
●

●

●●●
●●

Method

M
ea

n
er

ro
r

(n
or

m
al

iz
ed

 b
y

S
D

, p
er

 la
ye

r)

NSD2 NSD3 NSD4 NSD5 LIN LAY

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

C

●
●

●

●
●

●

● ●
●

● ●

●

●

●

●●

●●

●●
●
●●
●● ●●●
●
●●●●
●●●

●

●

●
●

●●
●●

●

●

●
●
●

●

●●●
●

●●
●
●●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●
●●
●

●

●
●
●

●
●●

●

●
●●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●●

●●●●●

●
●

●

●

●●

●●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●●

●● ●
●●

●

●●

●
●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●

●

●
●

●●

●

●

●●●
●●

●
●●●
●●●●

●●

●●
●●●●

●●●

●●●

●●●

●●

●

●

●●

●

●●

●

●●

●●
●

●●
●●

●● ●●●

0.0 0.2 0.4 0.6 0.8 1.0

1
2

5
10

20
50

10
0

Entropy as a predictor of lossless compression

Normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

)
●

●

Dense variables
Sparse variables

D

Figure 1. A: Distribution of compression ratios (original file size divided by compressed file size) measured for seven methods, applied

to six test datasets (higher is better), plotted separately by dense variables and sparse variables (white and grey boxes, respectively). The

box-plots (in panels A, B and C) were defined as follows: the thick line and the center of the box denotes the median, the bottom and top of

the box show q0.25 and q0.75 (respectively) or the 0.25 and 0.75 quantiles of the distribution, the whiskers extend from q0.25 − 1.5 · IQR to

q0.25+1.5 ·IQR, where IQR is the inter-quartile range (q0.75−q0.25) and the points shown are all outliers beyond this range. B: Distribution

of scaled compression/decompression times for each method (lower is better), with LAY represented twice (for compression and extraction).

These times are normalized by the compression time from DEFLATE. C: Distribution of errors, normalized by the per-layer standard

deviation. D: The achieved lossless compression ratios (i.e. from DEFLATE) as a function of the normalized entropy (1.0 corresponding to

the maximum theoretical for the data).

9

Error vs. compression ratio

Compression Ratio

E
rr

or
s

(R
M

S
E

/S
D

),
 p

er
 la

ye
r

1 2 5 10

10−6

10−5

10−4

10−3

10−2

10−1 NSD2
NSD3
NSD4
NSD5
LIN
LAY

Error vs. compression ratio

Compression Ratio

E
rr

or
s

(R
M

S
E

/S
D

),
 w

ho
le

 v
ar

ia
bl

e

1 2 5 10

10−6

10−5

10−4

10−3

10−2

10−1 NSD2
NSD3
NSD4
NSD5
LIN
LAY

Figure 2. The relationship between normalized errors and compression ratio for the lossy compression methods considered. The three

contours for each method show the bounds within which the two-dimensional kernel-smoothed distribution integrates to 0.25, 0.5 and 0.75,

respectively. Only dense variables were used to produce this plot.

as for LIN, which store four and two bytes per value, respectively. The LAY times (both compression and decompression)

were significantly slower than for the other methods, particularly for compression; this is most likely due to differences in

implementation, as this LAY was programmed in Python while the other methods used compiled C/C++ utilities. We believe

that the overhead from loading some of the python libraries used in the implementation of LAY may cause this method to

be relatively slower for smaller files; we note that most of the variables considered are relatively small, with uncompressed5

file sizes ranging from 1.9 MB to 65.6 MB. This hypothesis was supported by a test case where the suite of compression

methods were applied to a much larger array2 of size 1.5GB, the compression times were 103 s (DEFLATE), 89 s (NSD2),

107 s (NSD3), 97 s (NSD4), 109 s (NSD5), 69 s (LIN) and 70 s (LAY), while the unpacking time for LAY was 133 s.

For all methods considered except DEFLATE, the compression comes at the expense of precision; the distribution of resultant

errors is shown in Figure 1C (and Figure 1 of the online supplementary section). For dense variables, the median relative errors10

shown in Figure 1C are 1.8·10−3 (NSD2), 2.3·10−4 (NSD3), 1.4·10−5 (NSD4), 1.8·10−6 (NSD5), 5.3·10−2 (LIN), 1.2·10−4

(LAY). Unsurprisingly, with each additional significant digit of precision requested of bit-grooming, the normalized errors fall

2The ERA-Interim (Dee et al., 2011) east-west wind component at 241 latitude, 480 longitudes, 60 vertical levels and 124 times, spanning 2015-07-01

00:00 UTC to 2015-07-31 18:00 UTC at 6-hourly intervals, converted from its original GRIB format. This dataset can be accessed through the ECMWF’s

public dataset portal (http://apps.ecmwf.int/datasets/)

10

http://apps.ecmwf.int/datasets/

●

● ●

●
●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●● ●●

●

●

●

●

●
●

●
●

●

● ●

●

●
●
●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●●
●

●

●●

●
●

●
●

●

●

●
●
●

●

●●

●
●

●●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●
●

●

●
●

●●

●

● ●●

●

●

●

●

●
●●

●

●●
●

●

●
●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1
2

3
4

5
NSD3 vs LP: compression

Normalised entropy of exponent field

R
el

at
iv

e
co

m
pr

es
si

on
 e

rr
or

: (
si

ze
 N

S
D

3)
/(

si
ze

 L
P

)

●

●

Dense variables
Sparse variables
LOWESS fit

A

●

● ●

● ●

●

●● ●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●● ●●

●

●

●

●

● ●
●

●

●

● ●

●

●
●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●●
●

●

●
●

●

●

●●
●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●●

●
● ●●

●

●

●

●

●
●●

●

●●
●

●

●
●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●●●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1
2

3
4

5

NSD4 vs LP: compression

Normalised entropy of exponent field
R

el
at

iv
e

co
m

pr
es

si
on

 e
rr

or
: (

si
ze

 N
S

D
4)

/(
si

ze
 L

P
)

●

●

Dense variables
Sparse variables
LOWESS fit

B

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●
●

● ●

●
●

●●
● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●● ●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

● ●●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

NSD3 vs LP: error

Normalised entropy of exponent field

R
el

at
iv

e
co

m
pr

es
si

on
 s

iz
e:

 (
R

M
S

E
 N

S
D

3)
/(

R
M

S
E

 L
P

)

2 ⋅ 10−2

5 ⋅ 10−2

10−1

2 ⋅ 10−1

5 ⋅ 10−1

100

2 ⋅ 100

5 ⋅ 100

101

2 ⋅ 101

5 ⋅ 101

102

2 ⋅ 102
●

●

Dense variables
Sparse variables
LOWESS fit

C

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●
●

● ●

●
●

●●
● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●
●● ●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

● ●

● ●●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

NSD4 vs LP: error

Normalised entropy of exponent field

R
el

at
iv

e
co

m
pr

es
si

on
 s

iz
e:

 (
R

M
S

E
 N

S
D

4)
/(

R
M

S
E

 L
P

)

2 ⋅ 10−2

5 ⋅ 10−2

10−1

2 ⋅ 10−1

5 ⋅ 10−1

100

2 ⋅ 100

5 ⋅ 100

101

2 ⋅ 101

5 ⋅ 101

102

2 ⋅ 102
●

●

Dense variables
Sparse variables
LOWESS fit

D

Figure 3. Relative performance of LAY compared with NSD3 (left column) or NSD4 (right column), in terms of compression (top row) and

errors (bottom row). The grey dashed line indicates values of 1.0 on the y-axis. The LOWESS fit was based on the dense variables alone.

11

by a factor of 10. The errors of LAY are comparable to those of NSD3 or NSD4 while for the metric shown in Figure 1C

(RMSE/SD, calculated separately per thin slice, then averaging the ratios), LIN displays much larger errors than the other

methods – the errors for LIN are, more than for the other lossy compression methods in this comparison, sensitive to the error

metric used and this is discussed below. Dense variables show some differences in the distribution of errors compared to sparse

variables; errors normalized by the standard deviation appear smaller and the errors normalized by the mean appear larger. This5

is because many of the sparse variables are zero at most points, and in many cases this tends to reduce the mean and increase

the standard deviation (compared to examining only the non-zero values).

The choice of error metric is ambiguous and leads to slightly different different results. Four different normalization factors

for the RMSE were considered (shown in Figure 1 of the online supplementary section). It can be seen that the comments

about the bit-grooming and LAY methods in the preceding paragraph hold regardless of the normalization method, whereas10

LIN shows much higher standarized errors if errors are normalized within thin-slices and then averaged (due to the reasons

explained in the last part of Section 2.3). Bit-grooming keeps precision loss to known bounds for each individual datum, LAY

leads to roughly constant errors within thin-slices, and LIN results in roughly constant errors for the whole variable. This last

point is illustrated in Figure 4 (especially panels A, B, C and E) of the Supplementary Material, which shows horizontal profiles

of the (non-normalized) RMSE for a sample of six variables from among the 255 considered; Figure 5 in the Supplementary15

Material shows the corresponding relative errors.

The pairwise relationship between compression and error is shown in Figure 2, with the distribution shown based only on

dense variables; the error metric used is the RMSE normalized by the standard deviation for the whole variable (rather than

calculated normalizing separately per thin slice), which tends to mask large relative errors in certain sections of the data array

for LIN. We see that the bit-grooming and LAY methods form something of a continuum, with LAY falling between NSD3 and20

NSD4. The linear slope on a log-log plot is suggestive of a power-law relationship, which would be consistent with fundamental

constraints on compression potential consistent with rate-distortion theory (Berger, 2003).

The question of when LAY is preferable to NSD3 or NSD4 can be addressed with reference to the complexity statis-

tics. Among those complexity metrics considered, the normalized entropy of the data field proved to be the best predictor of

compression in the lossless case (DEFLATE). By contrast, the best predictor of the relative performance of LAY to the two25

bit-grooming methods was the normalized entropy of the exponent field (NEEF). By “best predictor”, we mean that these

were, respectively, the most strongly correlated among the metrics considered with the DEFLATE compression ratios and the

relative error or compressed file size. In the case of lossless compression, the correlation of the log of the compression ratio

with the normalized entropy was over 0.9 (the next highest correlation was below 0.8, all variables were included), while for

differentiating bit-grooming and LAY, the absolute correlations between the NEEF and the log of the file size ratio or the log30

of the RMSE ratio as shown in Figure 3 were both over 0.8 (c.f. the next highest correlations were around 0.6, only dense

variables were included).

The trade-off between error and compression is evident: as the NEEF increases, the bit-groomed file-sizes become larger

than the corresponding LAY file-sizes, while the errors of resulting from LAY grow relative to those of bit-grooming (Figure 3).

The LAY file sizes were larger than those of NSD3 or NSD4 when the NEEF greater than 0.25 or 0.1, respectively (Figure 3,35

12

upper row). Errors of LAY were generally less than those of NSD3, while the errors for NSD4 were smaller for values of the

NEEF greater than 0.15 (Figure 3, lower row). In the case when the normalised entropy of the exponent field is greater than

0.25, LAY yields both smaller files and lower errors than NSD3, while for all other cases the choice between LAY and NSD3

and NSD4 means deciding between smaller file sizes or smaller errors.

The reason that the NEEF differentiates the relative performance between bit-grooming and LAY can be understood by the5

nature of the errors induced by the two techniques. Bit-grooming guarantees constant relative errors for each individual datum,

whereas LAY results in errors that are roughly constant in absolute magnitude across a thin-slice. Assuming that the variable

is dense, if the data within each thin-slice vary little (corresponding to a low NEEF), then LAY will achieve relatively small

errors and since the compressed field contains more information, the resultant file size will be larger.

One interesting aspect of these results is that the entropy is defined independent of the values in the distribution (Figure 1),10

based solely on the frequencies of values in the array, yet the NEEF proved to be more informative regarding relative perfor-

mance than other metrics that accounted for range in magnitude (e.g. the range or standard deviation of the exponent field, the

logarithm of the largest non-zero value divided by the smallest non-zero value). This is likely due to the fact that the RMSE

summarises the error distribution, weighting both by size and frequency, and the entropy is a measure of statistical dispersion.

Given the clear relationship between the normalized entropy of the data field (NEDF) and the compression ratios achieved15

by DEFLATE alone (figure 1D), it leads to the question of whether the NEDF is predictive of compression ratios achieved

by the lossy methods. The NEDF is indeed highly predictive of the compression ratio of the reduced-precision fields as well

(Figure 2 of the supplementary section), with the absolute correlation exceeding 0.85 in each case. This may be expected, given

the already clear relationship between these two parameters. Furthermore, the reduction in the NEDF is seen to be predictive

of the “compression improvement”, which we define as the DEFLATE-compressed file-size divided by the file-size achieved20

by the lossy compression method; this relationship is most apparent for those methods with the highest compression ratios,

namely LIN, LAY and NSD2 (see Figure 3 of the supplementary section). The linear relationship, however, offers only a partial

explanation (the correlation is over 0.8 for LIN and LAY, and over 0.6 for NSD2 and NSD3), however it appears to explain

most of the variation when the lossy method achieves two-fold or greater compression relative to that obtained by DEFLATE.

3 Discussion25

Layer-packing was compared with scalar linear packing, bit-grooming and lossless compression via the DEFLATE algorithm.

The lossy methods form a continuum when one compares the resultant compression ratios and normalized errors. The trade-off

between error and compression has been shown elsewhere (e.g. Berger, 2003). Despite the fact that LAY and LIN represented

the data as two-byte integer arrays, which occupy half the storage of four-byte floating point numbers (ignoring the relatively

minor contribution to LAY from the much smaller accompanying scale and offset arrays), it can be seen that both methods30

effectively fit into the continuum spanned by bit-grooming, which represents data as four-byte floats (Figure 2).

In this study, we have effectively separated the precision-reduction from the compression itself. This is because the bit-

grooming, LAY and LIN methods can be thought of as preconditioners for the same lossless compression algorithm (namely

13

DEFLATE). The reduction in entropy due to these preconditioners explains a large part of the improved compression above

lossless compression. This concept could be extended to develop methods for automatically determining the right precision to

retain in a dataset.

This study did not extend to the comparison with other lossless filters for compression of the precision-reduced fields, nor

did it compare the results with other lossy compression techniques. While it is possible that the findings presented here extend5

beyond the deflate and shuffle technique, other lossy and non-lossy compression algorithms operate in fundamentally different

ways. Such an extension to this study may be considered in future, for example, by taking advantage of the fact that the HDF5

API allows for a range of alternative compression filters to be loaded dynamically (HDF5 Group, 2016), to provide faster or

more efficient compression than the default algorithms.

A number of such compression filters (both lossy and lossless) have been developed specifically for geophysical datasets,10

which have different properties compared to plain text, for example. They tend to be multi-dimensional, stored as floating-

point numbers and in many cases are relatively smooth (Hübbe et al., 2013). Specialised compression algorithms exist for

such datasets that rely on the smoothness properties to confer a certain degree of predictability, which reduces the number

of effective degrees of freedom in the dataset. For example, Hübbe et al. (2013) present a lossless algorithm termed MAFISC

(Multidimensional Adaptive Filtering Improved Scientific data Compression) that incorporates a series of filters (some of which15

are adaptive), which in cases present gave stronger compression than the other lossless algorithms under consideration. In a

similar spirit, Di and Cappello (2016) use a lossy, adaptive, curve-fitting technique that gives highly competitive compression

performance while simultaneously constraining relative and/or absolute errors (as defined by the user).

Other authors have shown impressive data-compression rates using methods originally developed for image processing.

For example, the GRIB2 format allows for compression using the JPEG-2000 algorithm and format (based on wavelet trans-20

forms) to store numerical fields (Skodras et al., 2001). Woodring et al. (2011) describe a work-flow based around JPEG-2000

compression in order to overcome bandwidth-limited connections while quantifying the ensuing reduction in precision. They

demonstrate the same compression-error trade-off as illustrated in this work. Robinson et al. (2016) compare lossy compression

via JPEG-2000, PNG (another graphics standard) and three video codecs; the video codecs showed very high relative errors

(in the order of 0.1 to 1.0), but also very high compression rates (around 300-fold compression).25

A number of studies have assessed a range of compression methods on a variety of datasets (Baker et al., 2014; Di and

Cappello, 2016, e.g.). They show, amongst other things, that no one method provides the most effective compression for all

datasets considered. Also apparent is that lossy methods tend to result in higher compression ratios than lossless techniques,

and that methods designed specifically for scientific data (e.g. exploiting smoothness when it is present) are often highly

competitive.30

Layer-packing achieves compression and error results roughly in between bit-grooming storing three or four significant

figures. Layer-packing and bit-grooming control error in different ways, with bit-grooming guaranteeing fixed relative errors

for every individual datum while layer-packing results in roughly constant relative errors within the hyper-slice across which

the packing is applied.

14

The idea itself behind layer-packing is not new, and forms the basis of compression within the GRIB format, in which each

field is a two-dimensional array and compression is performed on fields individually. In one sense layer-packing is more general

than that used in GRIB, in that thin-slices are not restricted to being two-dimensional. Our preliminary results (not shown)

showed that the JPEG2000 algorithm yields greater compression compared to the methods presented here for the same level of

error; this echoes the findings of Caron (2014), which describe the efficient compression achieved. However like scalar linear5

packing, JPEG2000 does not offer clear controls about the resultant errors and thus some experimentation (in setting the number

of bits per value) is needed to avoid excessive loss of precision. More limiting, perhaps, are the technical procedures required to

convert generic netCDF data into GRIB2 format, including meeting constraints on variable and dimension names. The GRIB

format only allows storing meta-data that match predefined tables, and is thus nowhere near as general or self-describing as

HDF5 (or its derivatives such as netCDF-4). This, combined with the software requirements (e.g. the JPEG library) beyond10

netCDF for decompression render GRIB-compression unattractive for general purpose usage. Outside of organisations with

strong technical support for modelling operations (e.g. operational weather prediction centres), its suitability may be limited to

special purposes and expert users.

Although the methods described here are used only on netCDF data files, they apply equally to other data formats (e.g.

HDF4, HDF5). These results are presented as a proof-of-concept only.15

The timing information is presented mainly for completeness and a caveat should be raised. As noted above, the compression

via DEFLATE, NSD2, NSD3, NSD4, NSD5 and LIN were performed using tools from the NCO bundle (written in C and C++),

whereas the LAY compression was implemented in Python. The code is presented as a demonstration of layer-packing rather

than production code.

Both the scalar linear packing and the layer-packing use the same representation of the data (i.e. two-byte integers), however20

large differences in the compression and relative errors were found. This is because the compressibility of a packed field is

related to the distribution of values within the scaling range. Across a given thin slice, layer-packing will represent values

using the full range of two-byte integers, whereas scalar linear packing will typically use a smaller portion of that range. This

increases the loss of precision resulting from layer-packing but also entails greater compression.

When considering which compression method to use for an individual dataset, one needs to consider several factors. First,25

space constraints and the size of the datasets in question will vary considerably for different applications. Second, the degree

of precision required will also depend on the application, and may differ between variables within a dataset. The bit-grooming

(storing at least three significant digits) and layer-packing techniques achieved average normalized errors of 0.05% or better,

which in many geoscientific applications is much less than the model or measurement errors. Third, datasets vary considerably

in their inherent compressibility, which in the cases considered appeared strongly related to the normalized entropy of the30

data array. Fourth, how data are stored should also reflect how it will be used (e.g. active use versus archiving). A major

disadvantage of the layer-packing as described here is that it is essentially an archive format, and needs to be unpacked by

a custom application before it can be easily interpreted. Scalar linear packing is similarly dependent on unpacking (although

many netCDF readers will automatically unpack such data, from two-byte integers to four-byte floating point, by default),

15

whereas bit-grooming requires no additional software. Finally, other issues relating to portability, the availability of libraries

and consistency within a community also play a role in determining the most appropriate storage format.

4 Conclusions

This paper considers layer-packing, scalar linear packing and bit-grooming as a basis for compressing large gridded datasets.

When viewed in terms of the compression-error trade-off, layer-packing was found to fit within the continuum of bit-grooming5

(i.e. when varying the number of significant digits to store), roughly in between storing three and four significant digits. The

relative performance of layer-packing and bit-grooming was strongly related to the normalized entropy of the exponent array,

and again highlighted the trade-off between compression and errors. Given the variation in compression and accuracy achieved

for the different datasets considered, the results highlight the importance of testing compression methods on a realistic sample

of the data.10

If space is limited and a large dataset must be stored, then we recommend that the standard deflate and shuffle methods

be applied. If this does not save enough space, then careful thought should be given to precisely which variables and which

subsets of individual variables will be required in future; it often arises that despite a wealth of model output, only a limited

portion will ever be examined. Many tools exist for sub-setting such datasets. Beyond this, if further savings are required and

if the data need not be stored in full precision, then the appropriate relative precision for each variable should be selected and15

applied via bit-grooming. Layer-packing should be considered when choosing a compression technique for specialist archive

applications.

5 Code availability

The python-based command line utilities used for the layer-packing, unpacking and relative-error analysis are available freely

at https://github.com/JeremySilver/layerpack.20

6 Data availability

Of the datasets used in the tests (listed in Section 2.2), datasets 2–6 are available online at https://figshare.com/projects/Layer_

Packing_Tests/14480 along with a brief description of each file. Dataset 1 could not be distributed with the other files due to

licensing restrictions but can be accessed through the ECMWF’s public dataset portal (http://apps.ecmwf.int/datasets/), using

the following set of inputs: stream = synoptic monthly means, vertical levels = pressure levels (all 37 layers), parameters = all25

14 variables, dataset = interim_mnth, step = 0, version = 1, time = 00:00:00, 06:00:00, 12:00:00, 18:00:00, date = 20080901 to

20081201, grid = 1.5◦× 1.5◦, type = analysis, class = ERA Interim.

16

https://github.com/JeremySilver/layerpack
https://figshare.com/projects/Layer_Packing_Tests/14480
https://figshare.com/projects/Layer_Packing_Tests/14480
https://figshare.com/projects/Layer_Packing_Tests/14480
http://apps.ecmwf.int/datasets/

Author contributions. J. D. Silver wrote the layer-packing python software, performed the compression experiments and wrote most of the

manuscript. C. S. Zender contributed to the design of the study, provided some of the test datasets used in the experiments and contributed to

the text.

7 Competing interests

The authors declare that they have no conflict of interest.5

Acknowledgements. The work of J. D. Silver was funded by the University of Melbourne’s McKenzie Postdoctoral Fellowship programme.

The work of C. S. Zender was funded by NASA ACCESS NNX12AF48A and NNX14AH55A and by DOE ACME DE-SC0012998. We

thank Peter J. Rayner (University of Melbourne) for useful discussions.

17

References

Baker, A. H., Xu, H., Dennis, J. M., Levy, M. N., Nychka, D., Mickelson, S. A., Edwards, J., Vertenstein, M., and Wegener, A. (2014).

A methodology for evaluating the impact of data compression on climate simulation data. In Proceedings of the 23rd International

Symposium on High-performance Parallel and Distributed Computing, pages 203–214. ACM.

Berger, T. (2003). Rate-distortion theory. In Wiley Encyclopedia of Telecommunications. John Wiley & Sons, Inc.5

Caron, J. (2014). Converting GRIB to netCDF-4: Compression studies. www.ecmwf.int/sites/default/files/elibrary/2014/

13711-converting-grib-netcdf-4.pdf, Last accessed: 2016-06-17. Presentation to the workshop “Closing the GRIB/netCDF gap”, held

at European Centre for Medium Range Weather Forecasts (ECMWF) at Reading, UK, 24-25 September 2014.

Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., and Bechtold,

P. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal10

Meteorological Society, 137(656):553–597.

Deutsch, L. P. (2008). DEFLATE compressed data format specification version 1.3. Technical Report Tech. Rep. IETF RFC1951, Internet

Engineering Task Force.

Di, S. and Cappello, F. (2016). Fast error-bounded lossy HPC data compression with SZ. Proc. IPDPS. IEEE.

Goldberg, D. (1991). What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys (CSUR),15

23(1):5–48.

HDF5 Group (2002). Performance evaluation report: gzip, bzip2 compression with and without shuffling algorithm. https://support.hdfgroup.

org/HDF5/doc_resource/H5Shuffle_Perf.pdf.

HDF5 Group (2016). Filters. www.hdfgroup.org/services/filters.html, Last accessed: 2016-06-17.

Hübbe, N., Wegener, A., Kunkel, J. M., Ling, Y., and Ludwig, T. (2013). Evaluating lossy compression on climate data. In International20

Supercomputing Conference, pages 343–356. Springer.

Huffman, D. (1952). A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9):1098–1101.

Robinson, N. H., Prudden, R., and Arribas, A. A. (2016). A practical approach to spatiotemporal data compression. arXiv preprint

arXiv:1604.03688.

Skodras, A., Christopoulos, C., and Ebrahimi, T. (2001). The JPEG 2000 still image compression standard. IEEE Signal processing magazine,25

18(5):36–58.

Unidata (2016). The netCDF User’s Guide. Technical report, Unidata, UCAR, Boulder, CO, USA. www.unidata.ucar.edu/software/netcdf/

docs/user_guide.html, Last accessed: 2016-06-17.

Woodring, J., Mniszewski, S., Brislawn, C., DeMarle, D., and Ahrens, J. (2011). Revisiting wavelet compression for large-scale climate data

using JPEG 2000 and ensuring data precision. In IEEE Symposium on Large Data Analysis and Visualization, pages 31–38. IEEE.30

Zender, C. S. (2008). Analysis of self-describing gridded geoscience data with netCDF Operators (NCO). Environmental Modelling &

Software, 23(10):1338–1342.

Zender, C. S. (2016). Bit Grooming: Statistically accurate precision-preserving quantization with compression, evaluated in the netCDF

Operators (NCO, v4.4.8+). Geoscientific Model Development Discussions, 2016:1–18.

Ziv, J. and Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE Trans. on Information Theory, 23(3):337–343.35

Ziv, J. and Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE Trans. on Information Theory, 24(5):530–

536.

18

www.ecmwf.int/sites/default/files/elibrary/2014/13711-converting-grib-netcdf-4.pdf
www.ecmwf.int/sites/default/files/elibrary/2014/13711-converting-grib-netcdf-4.pdf
www.ecmwf.int/sites/default/files/elibrary/2014/13711-converting-grib-netcdf-4.pdf
https://support.hdfgroup.org/HDF5/doc_resource/H5Shuffle_Perf.pdf
https://support.hdfgroup.org/HDF5/doc_resource/H5Shuffle_Perf.pdf
https://support.hdfgroup.org/HDF5/doc_resource/H5Shuffle_Perf.pdf
www.hdfgroup.org/services/filters.html
www.unidata.ucar.edu/software/netcdf/docs/user_guide.html
www.unidata.ucar.edu/software/netcdf/docs/user_guide.html
www.unidata.ucar.edu/software/netcdf/docs/user_guide.html

Supplementary material for “Compression-error trade-off for large

gridded datasets”

Jeremy D. Silver Charles S. Zender

October 28, 2016

1 Compression methods

1.1 Command-line calls used

The compression methods compared were realized using the commands listed below. For each method apart
from LAY, command-line tools from the NCO bundle (Zender, 2008) were used.

1. DEFLATE: Deflate compression (level 4) with shuffle filter

ncks -4 -L4 in.nc out.nc

2. NSD2, NSD3, NSD4, NSD5: Deflate compression (level 4) with shuffle filter, and bit grooming storing 2,
3, 4, or 5 significant figures (respectively). The following yields three significant digits (NSD3).

ncks -4 -L4 --ppc $var=3 in.nc out.nc

3. LIN: Deflate compression (level 4) with shuffle filter, scalar linear packing for each variable

ncpdq -4 -L4 in.nc out.nc

4. LAY: Deflate compression (level 4) with shuffle filter, layer packing for selected dimensions

ncpacklayer -L4 -v $var -d $dims in.nc out.nc

In the above, $var is a Linux/Unix shell variable giving the name of the sole variable contained within the
input file.

We note that the above omits details of how the handling of chunking of variables was controlled. This was
done by repeating, for each thick dimension, the argument --cnk dmn $dim,1 with the shell variable $dim set
to the name of the dimension.

1.2 Further details about ncpacklayer

The compression is performed as follows:

ncpacklayer -d thickdim1,thickdim2 -v var1,var2,var3 original.nc packed.nc

Other optional flags allow for increased verbosity (-V), over-writing existing output files (-O) and defining the
DEFLATE compression level (-L).

The mandatory -d flag is followed by a comma-separated list of the thick dimensions. The optional -v flag
is followed by a comma-separated list of variables to pack. The default is to pack all variables defined along
any of the thick dimensions listed. In the output file (in this example packed.nc) each variable that is packed
(e.g. var1) is replaced by a trio of variables containing the arrays of packed values, scale factors and offsets.
In this example, these are termed var1 short, var1 scale and var1 offset, with data type unsigned short
(i.e. two-byte) integer, floating-point and floating-point, respectively. Suppose the original definition of var1 is
(following output format for the command line utility ncdump, which is provided when the netCDF API rather
than the NCO bundle):

float var1(thindim1, thickdim1, thickdim2, thindim2) ;

then the corresponding trio will have dimensions as follows:

ushort var1__short(thindim1, thickdim1, thickdim2, thindim2) ;

float var1__scale(thickdim1, thickdim2) ;

float var1__offset(thickdim1, thickdim2) ;

1

In other words, the scale and offset arrays have one element per thin slice. Data remain in netCDF format in
this packed format and retain all their attributes. Data can be unpacked as follows:

ncunpacklayer packed.nc unpacked.nc

The -d and -v flags are not used, since this information is contained in the trios of packed arrays.

2 Datasets

The tests described above were applied to the following datasets. In each case, we have provided the full list of
variables in the analysis since in some cases not all variables provided in the files were featured in the analysis.
We have not gone so far as to describe each of variables listed below, since this would take up much more space
and because this information can generally be found within the metadata of each data set (links are provided
in each case).

1. ERA-Interim reanalysis data (Dee et al., 2011)

• Filename: ei mnth an pl 15x15 90N0E90S3585E 20080901 20081201

• Horizontal domain: a regular latitude-longitude grid covering the globe at 1.5◦ resolution. Latitude
dimension of length 121, longitude dimension of length 240.

• Vertical dimension: 37 pressure levels ranging from 1000 hPa to 1 hPa

• Time dimension: 16 six-hourly snap-shots ranging from 2008-01-09 00:00 UTC to 2008-01-12 18:00
UTC

• Notes: Converted from GRIB format prior to the analysis.

• Layer packing: Thick dimensions chosen to be the time and vertical level.

• What do the variables describe: atmospheric dynamics, temperature, ozone mixing ratio, cloud
properties, humidity

• Variables: 14 variables were included in the analysis. These were: PV GDS0 ISBL S123, Z GDS0 ISBL S123,
T GDS0 ISBL S123, U GDS0 ISBL S123, V GDS0 ISBL S123, Q GDS0 ISBL S123, W GDS0 ISBL S123,
VO GDS0 ISBL S123, D GDS0 ISBL S123, R GDS0 ISBL S123, O3 GDS0 ISBL S123, CLWC GDS0 ISBL S123,
CIWC GDS0 ISBL S123, CC GDS0 ISBL S123

• Availability: This dataset could not be distributed with the other files due to licensing restrictions but
can be accessed through the ECMWF’s public dataset portal (http://apps.ecmwf.int/datasets/),
using the following set of inputs: stream = synoptic monthly means, vertical levels = pressure levels
(all 37 layers), parameters = all 14 variables, dataset = interim mnth, step = 0, version = 1, time
= 00:00:00, 06:00:00, 12:00:00, 18:00:00, date = 20080901 to 20081201, grid = 1.5◦ × 1.5◦, type =
analysis, class = ERA Interim.

A limited area subset from global MOZART model output (Brasseur et al., 1998). Dimensions: 9 × 10
grid-points in the horizontal, 56 vertical levels, 172 time-points. 77 variables with these four dimensions.

• Filename: mozart4geos5 2011-02-01 2011-03-16.nc

• Horizontal domain: a limited area subset of a global domain covering Australia. The global domain
appears to have 95 × 144 gridpoints, while only 9 × 10 grid-points (lon × lat) in the horizontal are
covered in this file. The grid spacing is regular at 2.5◦ resolution in the latitude dimension and 1.895◦

resolution in the longitude dimension.

• Vertical dimension: fixed pressure levels ranging with mid-points ranging from 992.5 Pa to 1.868 Pa.

• Time dimension: 172 temporal snapshots at six-hourly resolution ranging from 2011-02-01 06:00
UTC to 2011-02-01 12:00 UTC.

• Notes: Originally downloaded through through the web-page http://www.acom.ucar.edu/wrf-chem/
mozart.shtml. This file contained smaller variables (other than coordinate variables) that were not
included in the analysis due to their relatively small size.

• Layer packing: Thick dimension chosen to be the vertical level.

• What do the variables describe: volume mixing ratios of many trace gases, mass mixing ratios of
some aerosol classes, atmospheric dynamics, temperature, photolytic reaction rates

2

http://apps.ecmwf.int/datasets/
http://www.acom.ucar.edu/wrf-chem/mozart.shtml
http://www.acom.ucar.edu/wrf-chem/mozart.shtml

• Variables: 77 variables were included in the analysis. Their names were: BIGALD VMR inst,
BIGALK VMR inst, BIGENE VMR inst, C10H16 VMR inst, C2H2 VMR inst, C2H4 VMR inst,
C2H5OH VMR inst, C2H6 VMR inst, C3H6 VMR inst, C3H8 VMR inst, CB1 VMR inst, CB2 VMR inst,
CH2O VMR inst, CH3CHO VMR inst, CH3CN VMR inst, CH3COCH3 VMR inst, CH3COCHO VMR inst,
CH3COOH VMR inst, CH3COOOH VMR inst, CH3O2 VMR inst, CH3OH VMR inst, CH3OOH VMR inst,
CH4 VMR inst, CO VMR inst, CRESOL VMR inst, DMS VMR inst, DUST1, DUST2, DUST3,
DUST4, GLYALD VMR inst, H2O, H2O2 VMR inst, HCN VMR inst, HCOOH VMR inst, HNO3 VMR inst,
HO2NO2 VMR inst, HO2 VMR inst, HYAC VMR inst, HYDRALD VMR inst, ISOPNO3 VMR inst,
ISOP VMR inst, MACR VMR inst, MEK VMR inst, MPAN VMR inst, MVK VMR inst, N2O5 VMR inst,
N2O VMR inst, NH3 VMR inst, NH4NO3 VMR inst, NH4 VMR inst, NO2 VMR inst, NO3 VMR inst,
NOX, NOY, NO VMR inst, O3 VMR inst, OC1 VMR inst, OC2 VMR inst, OH VMR inst, ONITR VMR inst,
ONIT VMR inst, PAN VMR inst, Q, SA1 VMR inst, SA2 VMR inst, SA3 VMR inst, SA4 VMR inst,
SO2 VMR inst, SO4 VMR inst, SOA VMR inst, T, TOLUENE VMR inst, U, V, jno2 rcon inst,
jo1d rcon inst

• Availability: available online at https://figshare.com/projects/Layer_Packing_Tests/14480

2. Model output from the Weather Research and Forecasting (WRF) model (Skamarock et al., 2005).

• Filename: wrfout d03 2013-01-24 07:00:00

• Horizontal domain: A limited area domain over the city of Sydney and surrounding areas (Australia),
including a portion over the sea. A Lambert Conformal map projection was used and the horizontal
resolution was 1 km in the east-west and north-south dimensions. There were 165 grid-points in the
east-west dimension and 140 in the north-south dimension.

• Vertical dimension: 32 levels using a terrain-following, hydrostatic pressure coordinate from the
surface to 5 hPa.

• Time dimension: A single time snaps-hot (2013-01-24 07:00 UTC)

• Notes: Model output from simulations by J. Silver. This file contained smaller variables (other than
coordinate variables) that were not included in the analysis due to their relatively small size.

• Layer packing: Thick dimension chosen to be the vertical level.

• What do the variables describe: atmospheric dynamics, temperature, cloud properties, humidity

• Variables: 20 variables were included in the analysis. Their names were: U, V, W, PH, PHB, T,
P, PB, QVAPOR, QCLOUD, QRAIN, QICE, QSNOW, QNICE, QNSNOW, QNRAIN, QNDROP,
TKE PBL, EL PBL, CLDFRA

• Availability: available online at https://figshare.com/projects/Layer_Packing_Tests/14480

3. MERRA reanalysis product (Rienecker et al., 2011).

• Filename: MERRA300.prod.assim.inst3 3d asm Cp.20130601.nc

• Horizontal domain: a regular latitude-longitude grid covering the globe at 1.25◦ resolution. Latitude
dimension of length 144, longitude dimension of length 288.

• Vertical dimension: 37 pressure levels ranging from 1000 hPa to 0.1 hPa

• Time dimension: 8 temporal snapshots at three-hourly frequency, ranging from 2013-06-01 00:00
UTC to 2013-06-01 21:00 UTC

• Notes: This file contained smaller variables (other than coordinate variables) that were not included
in the analysis due to their relatively small size.

• Layer packing: Thick dimension chosen to be the vertical level.

• What do the variables describe: atmospheric dynamics, temperature, cloud properties, humidity,
ozone mixing ratio

• Variables: 11 variables were included in the analysis. Their names were: EPV, H, O3, OMEGA, QI,
QL, QV, RH, T, U, V

• Availability: available online at https://figshare.com/projects/Layer_Packing_Tests/14480

4. Output of the mineral Dust Entrainment And Deposition (DEAD) model (Zender et al., 2003).

• Filename: dstmch90 clm.nc

• Horizontal domain: a regular latitude-longitude grid covering the globe at 1.875◦ resolution in the
longitude dimension and 1.904◦ resolution in the latitude dimension. Latitude dimension of length
94, longitude dimension of length 192.

3

https://figshare.com/projects/Layer_Packing_Tests/14480
https://figshare.com/projects/Layer_Packing_Tests/14480
https://figshare.com/projects/Layer_Packing_Tests/14480

• Vertical dimension: a hybrid vertical coordinate system with 28 levels ranging from 1000 hPa to
2.7 hPa.

• Time dimension: one time-point

• Notes: This file contained smaller variables (other than coordinate variables) that were not included
in the analysis due to their relatively small size.

• Layer packing: Thick dimension chosen to be the vertical level.

• What do the variables describe: atmospheric dynamics, temperature, cloud properties, humidity,
mass and mass flux rates for dust (either total or in size different bins)

• Variables: 15 variables were included in the analysis. Their names were: U, V, T, Q, RELHUM,
CLOUD, CWAT, DSTQ, DSTQ01, DSTQ02, DSTQ03, DSTQ04, DSTSSPCP, DSTSSEVP, DSTSS-
DRY

• Availability: available at the DEAD model homepage (http://dust.ess.uci.edu/dead/) and also
at https://figshare.com/projects/Layer_Packing_Tests/14480

5. Model output from the coupled numerical weather prediction and chemistry transport model CAM-SE
(Dennis et al., 2012).

• Filename: famipc5 ne30 v0.3 00003.cam.h0.1979-01-L5.nc

• Horizontal domain: A non-rectangular cube-sphere mesh, ordered as a single array of 48602

• Vertical dimension: a hybrid vertical coordinate system with 30 levels ranging from 992 hPa to
3.6 hPa.

• Time dimension: Only a single time-point is represented

• Notes: This file contained smaller variables (other than coordinate variables) that were not included
in the analysis due to their relatively small size.

• What do the variables describe: aerosol and trace-gas concentrations, atmospheric dynamics, tem-
perature, cloud properties

• Variables: 118 variables were included in the analysis. Their names were: AQRAIN, AQSNOW,
AREI, AREL, AWNC, AWNI, CCN3, CLDICE, CLDLIQ, CLOUD, DCQ, DMS, DTCOND, DTV,
FICE, FREQI, FREQL, FREQR, FREQS, H2O2, H2SO4, ICIMR, ICWMR, IWC, LIQCLDF, NU-
MICE, NUMLIQ, OMEGA, OMEGAT, Q, QRL, QRS, RELHUM, SO2, SO2 XFRC, SOAG, T, U,
UU, V, VD01, VQ, VT, VU, VV, Vbc a1, Vdst a1, Vdst a3, V ncl a1, Vncl a2, Vncl a3, Vpom a1,
Vso4 a1, Vso4 a2, Vso4 a3, Vsoa a1, Vsoa a2, WSUB, XPH LWC, Z3, bc a1, bc a1 2, bc a1 XFRC,
bc c1, dgnd a01, dgnd a02, dgnd a03, dgnumwet1, dgnumwet2, dgnumwet3, dgnw a01, dgnw a02,
dgnw a03, dst a1, dst a1 2, dst a3, dst a3 2, dst c1, dst c3, ncl a1, ncl a1 2, ncl a2, ncl a2 2,
ncl a3, ncl a3 2, ncl c1, ncl c2, ncl c3, num a1, num a2, num a3, num c1, num c2, num c3, pom a1,
pom a1 2, pom a1 XFRC, pom c1, so4 a1, so4 a1 2, so4 a1 XFRC, so4 a2, so4 a2 2, so4 a2 XFRC,
so4 a3, so4 a3 2, so4 c1, so4 c2, so4 c3, soa a1, soa a1 2, soa a2, soa a2 2, soa c1, soa c2, w at a1,
wat a2, wat a3

• Availability: available online at https://figshare.com/projects/Layer_Packing_Tests/14480

As described in the manuscript (under the heading “Complexity statistics”), the variables were classified as
“sparse” or “dense”. Sparse variables were highly compressible, which was often due their non-trivial components
being limited to a fraction of the data array. Sparse variables were chosen to be those satisfying any one of the
following conditions: the compression ratio is greater than 5.0 using DEFLATE, the fraction of values equal
to the most common value in the entire variable is greater than 0.2, and the fraction of hyperslices where all
values were identical is great than 0.2. The breakdown among the different categories is given in Table 1.

4

http://dust.ess.uci.edu/dead/
https://figshare.com/projects/Layer_Packing_Tests/14480
https://figshare.com/projects/Layer_Packing_Tests/14480

CompRatio > 5 globalMaxP > 0.2 propUniform > 0.2 # vars
T T T 19
T T F 0
T F T 0
T F F 0
F T T 16
F T F 39
F F T 0
F F F 181

Table 1: Number of variables fitting different “sparsity” criteria. Abbreviations: CompRatio = compression
ratio using DEFLATE (level 4), globalMaxP = the fraction of values equal to the most common value in the
entire variable, propUniform = the fraction of hyperslices where all values were identical, # vars = number of
variables.

3 Normalization errors

Figure 1C of the main manuscript shows the distribution of normalized errors for the six lossy compression
methods. In the main manuscript (under the heading “Error and compression metrics”), four different methods
are described for normalizing the root mean-squared error. These were:

A. calculating the RMSE and standard deviation (SD) separately for each thin slice, and averaging the ratio
RMSE/SD across thin slices;

B. taking the average across the per-slice RMSE and SD values, and then taking the ratio of these averages
– that is, mean(RMSE)/mean(SD);

C. the same as A, except normalizing by the per-slice mean rather than the per-slice SD;

D. the same as B, except normalizing by the average of the per-slice means.

Figure 1C of the main manuscript shows the distribution of errors for normalization method A, and this is
repeated in panel A of Figure 1 (this document); similarly, the distribution of methods B, C and D appear in
their respectively-named panels of the same figure.

5

●●

●

●●
●

●

●●●
●

●
●

●

●●
●

●
●
●
●●
●●●

●

●●●●

●

●

●

●

●

●
●
●

●
●●

●

●●
●

●

●●●
●

●
●

●

●●
●

●
●
●
●●
●●●

●

●●●●

●

●

●

●

●

●
●
●

●

●●

●

●●
●

●

●●●
●

●
●

●

●●
●

●
●
●
●●
●●●

●

●●●
●

●

●

●

●

●

●
●
●

●
●●

●

●●
●

●

●●●
●

●
●

●

●●
●

●
●
●
●●
●●●

●●●●

●

●

●

●

●

●
●
●

●

●●●●●
●●

●

●
●●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●
●

●

●●●
●●

Method

M
ea

n
er

ro
r

(n
or

m
al

iz
ed

 b
y

S
D

, p
er

 la
ye

r)

NSD2 NSD3 NSD4 NSD5 LIN LAY

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

A

●●

●●

●

●●
●
●

●

●●
●

●
●
●
●●
●

●

●●●

●●●
●
●●

●
●
●

●

●

●

●

●
●

●
●●

●●

●

●●
●
●

●

●●
●

●
●
●
●●
●

●

●●●

●●●
●
●●

●
●●

●

●

●

●
●

●●

●●

●

●●
●
●

●

●●
●

●
●
●
●●
●

●

●●●

●●●
●
●●

●
●●

●

●

●

●
● ●●

●●

●

●●
●
●

●

●●
●

●
●
●
●
●●

●

●●●

●●●
●
●●

●
●
●

●

●

●

●
●

●●
●●
●●

●
●●●
●

●

●●
●●

●

●

●

●

●●

●

●

●●●●

●●●●
●
●

●●●
●
●
●
●
● ●

●●●●

Method

M
ea

n
er

ro
r

(n
or

m
al

iz
ed

 b
y

S
D

, w
ho

le
 v

ar
ia

bl
e)

NSD2 NSD3 NSD4 NSD5 LIN LAY

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

B

●

●

●

●

●

●
●●

●●●
●●
●
●●●

●
●●●

●●

●

●●
●

●

●●

●

●

●

●

●

●
●●

●●●
●●
●
●●●

●
●●●

●●

●

●●
●

●

●●●

●

●

●

●

●

●
●●

●●●
●●
●
●●●

●
●●●

●●

●

●●
●

●

●●●●

●

●

●

●

●

●
●
●

●●●
●●
●
●●●

●
●●●

●●

●

●●
●

●

●●

●●●●●●
●●●●●●●

●
●

●
●

●●●
●●

●

●●

●

●

●●
●
●
●

●

●
●
●
●●●
●
●
●●

●

●

●
●
●

●

●

●●
●
●

●
●
●

Method

M
ea

n
er

ro
r

(n
or

m
al

iz
ed

 b
y

m
ea

n,
 p

er
 la

ye
r)

NSD2 NSD3 NSD4 NSD5 LIN LAY

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

C

●
●
●●
●
●
●

●●
●●●
●

●

●

●

●

●

●

●
●
●

●
● ●

●

●●

●
●
●
●●
●
●
●
●
●

●

●
●
●●
●
●
●

●●
●●●
●

●

●

●

●

●

●

●
●
●

●
● ●

●

●
●

●●●
●
●
●
●

●

●
●●●
●
●

●●
●●●
●

●

●

●

●

●

●

●
●●

●
● ●●

●●

●
●●
●
●
●●

●

●
●
●●
●
●
●

●●
●●●
●

●

●

●

●

●

●

●
●
●

●
● ●●

●●

●●
●
●
●

●

●

●●●●●●

●

●
●
●
●

●

●

●
●

●●
●

●

●
●

●●

●

●

●

●●

●
●

●

●

●●
●
●

●
●

●
●

●
●
●
●

●

●
●
●

●
●

●●

●

●

●

●
●
●

●
●●●

●

●
●●
●
●
●
●●

●

●

Method

M
ea

n
er

ro
r

(n
or

m
al

iz
ed

 b
y

m
ea

n,
 w

ho
le

 v
ar

ia
bl

e)

NSD2 NSD3 NSD4 NSD5 LIN LAY

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

D

Figure 1: Distribution of errors with different normalization methods, plotted separately by dense variables and
sparse variables (white and grey boxes, respectively). Top-left: normalized by the per-layer standard deviation.
Top-right: normalized by the average of the per-layer standard deviations. Bottom-left: normalized by the
per-layer mean. Bottom-right: normalized by the whole-variable mean.

4 Entropy and compression for reduced-precision fields

For the reduced-precision fields, we assessed relationship between the normalized entropy of the data field
(NEDF) and the compression ratios. Figure 2 shows the compression ratios relative to the uncompressed file
sizes whereas Figure 3 displays the compression ratios relative to the DEFLATE-compressed file sizes. Figure 2
presents the NEDF for each variable whereas Figure 3 plots the reduction in the NEDF due to the lossy filters.

6

●

●●

●
●

●

●●●

●

●

●

●
●

●●
●●

●● ●

●
● ●●

●
●
●

●

●
●
●●●●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●
●

●●●●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●●

●

●

●●●

●

●●

●

●
●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●● ●●

●
●

●
●●

●

●

●●

●●

●

●●●
●

● ●
●

●

●
●

●
●

●

●
●

●● ●●●
●

●●

●

●●
●

●

●

●

●

●●
●

●

●●●
●

●● ●●●●●●●●●●

●

●

●

●
●

●

●

●●
●

●●●
●

●

●

●
●●●

●●
●

●
●

●
●●

●●●●●
●

●●● ●
●

●

●
●

●

●

●
●

●

●
●

●●●

●
●

●
●

●●
●●●

0.0 0.2 0.4 0.6 0.8 1.0

5
10

20
50

10
0

Entropy vs compression: NSD2

Normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

)
●

●

Dense variables
Sparse variablesA

●

●
●

●
●

●

● ●
●

●
●

●

●
●

●●
●●

●● ●

●
● ●●

●
●●

●

●
●●●
●●●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●●
●

●
●●●●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●●
●●

●

●

●●
●

●

●●

●

●
●●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●●● ●●●●●

●●
●

●

●●

●●

●

●
●● ●

●
●

●
●

●

●

●
●

●

●●

●● ● ●●
●

●●

●

●●● ●

●

●

●

●●
●

●

●●●
●

●●●●●●●●●●●●

●

●

●

●
●

●

●
●●●

●●
● ●●

●

●
●●●

●●

● ●
● ●

●●

●●●
●●

●
●●●

●
●

●

●

● ●

●

●
●

●

● ●

●●●

● ●
●

●

●● ●●●

0.0 0.2 0.4 0.6 0.8 1.0

2
5

10
20

50
10

0

Entropy vs compression: NSD3

Normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

)

●

●

Dense variables
Sparse variablesB

●

●●

●
●

●

● ●●

● ●

●

●
●

●●
●●

●● ●
●●
●●
●●●
●
●
●●●
●●●

●

●

●
●

●●
●●

●

●

●

●

●

●

●●●
●

●●
●●●
●

●

●

●

●

●●
●

●

●
●

●

●
●
●

●
●●
●

●

●●
●

●

●●

●

●
●●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●● ●●●●●
●●

●

●

●●

●●

●

●
●● ●

●
●

●
●

●

●

●
●

●

●●

●● ● ●●
●

●●

●
●●●●

●

●

●

●●●

●

●●●
●
●●●●●●●●●●●●

●

●
●

●●

●

● ●●●
●●

● ●●●

●●●●

●●

●●
●●●●

●●●

●●
●

●●●

●●

●

●

●●

●

●●

●

●●

●●●

●●
●●

●● ●●●

0.0 0.2 0.4 0.6 0.8 1.0

2
5

10
20

50
10

0

Entropy vs compression: NSD4

Normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

)

●

●

Dense variables
Sparse variablesC

●
●
●

●
●

●

● ●●

● ●

●

●
●

●●
●●

●● ●
●●
●● ●●●
●
●●●●●●
●

●

●

●
●

●●
●●

●

●

●
●
●

●

●●●
●

●●
●

●●
●

●

●

●

●

●●
●

●

●
●

●

● ●
●

●
●●
●

●

●●
●

●
●●

●

●
●●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●●

●●●●●
●●

●

●

●●

●●

●

●

●● ●

●
●

●
●

●

●

●
●

●

●●

●● ● ●●
●

●●

●
●●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●

●

● ●

●●

●

●
●●●
●●

●
●●●
●●●●

●●

●●●●●●

●●●

●●●

●●●

●●

●

●

●●

●

●●

●

●●

●●●

●●
●●

●● ●●●

0.0 0.2 0.4 0.6 0.8 1.0

2
5

10
20

50
10

0

Entropy vs compression: NSD5

Normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

)
●

●

Dense variables
Sparse variablesD

●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
● ●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●● ●

●
●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●

● ●
●

●
●

●

●●
●● ●

●

●

●

●

●
●

●● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

2
5

10
20

50
10

0
20

0

Entropy vs compression: LIN

Normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

)

●

●

Dense variables
Sparse variablesE

● ●●
●●

●
● ●● ● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●●●
●

●

●●●●●

●● ●

●

●●
●●

●
●

●●●

●

●● ●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●
●●●

●

●●

●●

●●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●●
● ●●●

●
●●

●

●

●

●

●
●

●

●

●
●

●
● ●●●●

●

●●

●

●●

●
●

●

●

●
●

●●
●●●●

●

●

●

●
●

●●

●

●●●●
●●

●

●
●●●

●
●

●
●●

●●

●
●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

2
5

10
20

50
10

0
20

0

Entropy vs compression: LAY

Normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

)

●

●

Dense variables
Sparse variablesF

Figure 2: Compression ratios for each of the lossy compression methods compared to the respective normalized
entropy of each variable’s data field; this accounts for quantization of the data field.

7

●

●

●

●●

●

● ●
●

●

●

●
●

●

●●

●●

●
●●

●

●
● ●

●

●
●

●

●
●●
●●●●

●

●

●
●

●

●

●
●

●

● ●

●

●● ●●
● ●

●●
●
●● ●●

●

●

●
●

● ●●

●

●
●

●

●

●
●

●●

●

● ● ●
●●

● ●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●●

●●
●

●
●

●●

●

●● ●
●●

●

●

●
●

●
●

●
●

●

●
●
●●●

●
●

●●● ●● ●
●●

●

●●
●

●

●

●

●

● ●
●

●

●●●
●

●●● ●●● ● ●●●●●

●

●

●

●
●

●

●

●
●
●

● ●

●

●
●

●

●
●●

●

●●

●
●

●
●

●●

●●●

●●

●

●●●

●
●

●

●

●
●

●

●
●

●

●
●
●●

●

●
●

●
●

●●

●●●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1
2

3
4

5
6

7

Entropy vs compression: NSD2

Reduction in normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

/N
S

D
2)

●

●

Dense variables
Sparse variablesA

●

●
●

●●

●

● ●
● ●

●

●●
●

●●

●●

●
●●

●

●
● ●

●
●
●

●

●
●
●●●
●●

●

●

●
●

●

●

●
●

●

● ●

●

●
● ●●

● ●
●●
●

●● ●●

●

●

●
●

● ●●

●

●
●

●

●

●
●●●

●

● ● ●
●●

● ●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●
●

●●

●
●● ●
●●

●

●

●●

●
●

●
●

●

●
●
●● ●

●
●

●●● ● ● ●
●●

●

●●
●

●

●

●

●

● ●
●

●

●●●
●

●●● ●●●●●●●●●

●

●

●

●
●

●

●

●
●
●

● ●

●

●
●

●

●
●●●

●●

●
●

●
●

●●

●●●

●●
●

●●●

●
●

●

●

●
●

●

●
●

●

●
● ● ●

●

●
●

●
●

●●

●●●

0.0 0.1 0.2 0.3 0.4

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Entropy vs compression: NSD3

Reduction in normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

/N
S

D
3)

●

●

Dense variables
Sparse variablesB

●

●●

●

●
●

●
●

●

● ●

●●
●

●●
●●

● ●●

●

●
● ●

●
●
●

●

●
●●
●●
●●

●

●

●
●

●
●

●
●

●

● ●

●

●
● ●●

● ●
●●
●

●● ●●

●

●

●
●

● ●●

●

●
●

●

●

●
●●●

●

● ● ●
●●

●●

●

●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●● ●
●

●

●
●

●

●
●

●●

●●●
●
●

●●

●

●●
●
●●
●

●

●
●

●
●

●
●
●

●
●
●

● ●

●
●

●●●●
● ●

●●

●

●●
●

●

●

●

●

●●
●

●

●●●
●

●●●●●●●●●●●●

●

●

●

●
●

●

●

● ●●

● ●

●

● ●

●

●
●●

●

●●

●
●

●
●

●
●

●●●

●●
●

●●●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●●

●●●

−0.05 0.00 0.05 0.10 0.15 0.20 0.25

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Entropy vs compression: NSD4

Reduction in normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

/N
S

D
4)

●

●

Dense variables
Sparse variablesC

●
●
●

●●●● ●●
●●

●
●

●

●●

●
●

● ●●● ●●
●

●
●●
●
●●●●●●●

●

● ●
●

●
●

●●
●● ●

●

●● ●●● ●

●●

●
●

● ●
●

●

●

●

●

● ●●

●

●● ●
●

● ●●●
●
●

● ●
●●

●
●

●

●●●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●●●
●●

●
●

●

●
●

●●

●●●●
●

●●

●

●●
●
●●●

●

●●

●
●

●
●
●

●
●
●

● ●

●
●

●●●●
● ●

●●

●

●●
●

●

●

●

●

●●
●

●

●●●
●
●●●●●●●●●●●●

●

●

●

●
●

●

●

●●
●

●●

●

●●

●

●
●●●

●●

●
●

●
●

●●

●●●

●●
●

●●●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●●

●●●

−0.05 0.00 0.05 0.10 0.15 0.20 0.25

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

1.
30

Entropy vs compression: NSD5

Reduction in normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

/N
S

D
5)

●

●

Dense variables
Sparse variablesD

●

●

●

●●

●
●

● ●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●●

● ●
● ●

●

●

●

●●

●

●
● ●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●● ●

●
●

●

●

●

●

●●

●

●

●● ● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●
● ●

●●
●

●

●

●

● ●

●
●

●
●●

●

●
●●

●

●

● ●

●●●

●●
●

●
●

●

●

●
●●

●

●

●
●●

●

●

●

●

●●
●

●
●

●

●●

●
● ●

●

●

● ●

●
●

●●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

−0.2 0.0 0.2 0.4 0.6 0.8

0.
5

1.
0

2.
0

5.
0

10
.0

50
.0

Entropy vs compression: LIN

Reduction in normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

/L
IN

)

●

●

Dense variables
Sparse variablesE

●

●●

●
●

●

●
●
●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●●●

●

●

●

●

●●
●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●
●

●

●

●●
●
●

●●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●
●

●

● ●

●●

●
●● ●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●

●
● ●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1
2

5

Entropy vs compression: LAY

Reduction in normalised entropy

C
om

pr
es

si
on

 r
at

io
 (

D
E

F
LA

T
E

/L
AY

)

●

●

Dense variables
Sparse variablesF

Figure 3: Compression ratios relative to DEFLATE for each of the lossy compression methods compared to the
reduction in the normalized entropy due to the lossy compression.

8

5 Vertical profiles of errors for selected variables

Figures 4 and 5 illustrate, for six selected variables among the 255 considered, vertical profiles of the RMSE
for each of the lossy compression methods. Figure 4 shows the absolute RMSE whereas Figure 5 displays the
RMSE normalized by the corresponding per-level standard deviation. The six variables presented are:

1. U GDS0 ISBL S123: East-west wind velocity (units = m s−1)

2. T: temperature (units = K)

3. P: perturbation pressure (units = Pa)

4. O3: Ozone mixing ratio (units = Kg·Kg−1)

5. DSTQ: Total dust tendency due to settling and turbulence (units = Kg·Kg−1·s−1, positive when a sink
to the gridcell))

6. dgnumwet1: Aerosol mode wet diameter (units = m)

9

1e−05 5e−05 5e−04 5e−03 5e−02

0
5

10
15

20
25

30
35

Dataset 1, variable = U_GDS0_ISBL_S123

V
er

tic
al

 le
ve

l

RMSE: NSD2
RMSE: NSD3
RMSE: NSD4
RMSE: NSD5
RMSE: LIN
RMSE: LAY
Mean
SD

RMSE

5 10 15 20 25
Mean or SD

A

5e−05 5e−04 5e−03 5e−02 5e−01

0
10

20
30

40
50

Dataset 2, variable = T

V
er

tic
al

 le
ve

l

RMSE: NSD2
RMSE: NSD3
RMSE: NSD4
RMSE: NSD5
RMSE: LIN
RMSE: LAY
Mean
SD

RMSE

200 220 240 260 280 300

B

1e−05 1e−03 1e−01

0
5

10
15

20
25

30

Dataset 3, variable = P

V
er

tic
al

 le
ve

l

RMSE: NSD2
RMSE: NSD3
RMSE: NSD4
RMSE: NSD5
RMSE: LIN
RMSE: LAY
Mean
SD

RMSE

10 20 50 100 200 500 1000

C

1e−13 1e−11 1e−09 1e−07 1e−05

0
10

20
30

40

Dataset 4, variable = O3

V
er

tic
al

 le
ve

l

RMSE: NSD2
RMSE: NSD3
RMSE: NSD4
RMSE: NSD5
RMSE: LIN
RMSE: LAY
Mean
SD

RMSE

5e−08 2e−07 5e−07 2e−06 5e−06

D

1e−23 1e−21 1e−19 1e−17 1e−15

0
5

10
15

20
25

Dataset 5, variable = DSTSSDRY

V
er

tic
al

 le
ve

l

RMSE: NSD2
RMSE: NSD3
RMSE: NSD4
RMSE: NSD5
RMSE: LIN
RMSE: LAY
Mean
SD

RMSE

1e−17 1e−16 1e−15 1e−14 1e−13
Mean or SD

E

1e−13 5e−13 5e−12 5e−11 5e−10

0
5

10
15

20
25

30

Dataset 6, variable = dgnumwet1

V
er

tic
al

 le
ve

l

RMSE: NSD2
RMSE: NSD3
RMSE: NSD4
RMSE: NSD5
RMSE: LIN
RMSE: LAY
Mean
SD

RMSE

1.0e−07 1.5e−07 2.5e−07

F

Figure 4: Errors from the six lossy compression methods are shown as a function of vertical level for six
variables (one from each dataset included). Also shown are the corresponding mean (of the absolute values)
and standard deviation for the given variable. The errors were not normalized. Note that two scales are shown
on the horizontal axis (at the bottom of each panel), the upper of which pertains to the errors and the lower
scale to the mean and standard deviation. Also note the logarithmic scale on the x-axis.

10

2e−06 1e−05 5e−05 2e−04 1e−03

0
5

10
15

20
25

30
35

Dataset 1, variable = U_GDS0_ISBL_S123

RMSE/SD

V
er

tic
al

 le
ve

l

NSD2
NSD3
NSD4
NSD5
LIN
LAY

A

5e−05 5e−04 5e−03 5e−02

0
10

20
30

40
50

Dataset 2, variable = T

RMSE/SD

V
er

tic
al

 le
ve

l

NSD2
NSD3
NSD4
NSD5
LIN
LAY

B

2e−05 1e−04 5e−04 2e−03 1e−02 5e−02

0
5

10
15

20
25

30

Dataset 3, variable = P

RMSE/SD

V
er

tic
al

 le
ve

l

NSD2
NSD3
NSD4
NSD5
LIN
LAY

C

1e−05 1e−03 1e−01

0
10

20
30

40

Dataset 4, variable = O3

RMSE/SD

V
er

tic
al

 le
ve

l

NSD2
NSD3
NSD4
NSD5
LIN
LAY

D

1e−06 1e−04 1e−02 1e+00

0
5

10
15

20
25

Dataset 5, variable = DSTSSDRY

RMSE/SD

V
er

tic
al

 le
ve

l

NSD2
NSD3
NSD4
NSD5
LIN
LAY

E

5e−06 5e−05 5e−04 5e−03

0
5

10
15

20
25

30

Dataset 6, variable = dgnumwet1

RMSE/SD

V
er

tic
al

 le
ve

l

NSD2
NSD3
NSD4
NSD5
LIN
LAY

F

Figure 5: Relative errors (normalizing by the per-layer standard deviation) from the six lossy compression
methods are shown as a function of vertical level for six variables (the same variables as shown in Figure 4).
Note the logarithmic scale on the x-axis.

11

6 Details of the complexity statistics calculated

As described in the manuscript, a range of statistics were calculated for every variable in the analysis. The
following presents details of each of these. The statistics calculated were:

1. the normalized entropy of the floating point array,

2. the normalized entropy of the exponent array,

3. the normalized entropy of the mantissa array,

4. the fraction of values equal to the mode (i.e. the most common value in the hyperslice),

5. statistics representing the decay rate of singular values,

This was calculated by calculating the singular-value decomposition of the two-dimensional slice,
then finding the points at which the cumulative sum exceeded 0.5, 0.75, 0.9 or 0.95 times the total
sum of the singular values; this was then represented as the fraction of the total number of singular
values at which these points were reached (i.e. this yielded four separate statistics).

Similar to the above, except searching for the fraction of the singular value beyond which the singular
values fall below or 0.05, 0.1, 0.25, or 0.5 times the largest singular value (i.e. this also yields four
statistics).

6. the spatial autocorrelation at fixed separation distances,

This was calculated by estimating, for each separation distance up to 0.66 of the smaller array
dimension in the two-dimensional slice, the correlation between a random sample of points separated
by this distance (calculating distances by the Cartesian distance metric in terms of grid-spacing,
rather than physical space). This then formed a scatter-plot of correlation versus distance, through
which a locally-weighted scatter-plot smoother (LOWESS) curve was fitted (Cleveland, 1981). The
points at which this curve fell below 0.95, 0.9, 0.75 or 0.5 were noted and these were represented as
the fraction along the length of the smaller axis (i.e. this yielded four statistics).

The above was done for separations in only the rows or columns, in which case the points at which the
curve fell below the threshold were represented as the fraction along the length of the corresponding
axis (i.e. this yielded eight statistics in total).

7. the mean (or mean of absolute values) divided by the standard deviation,

8. same as above, except for non-zero values only,

9. the range of the exponent field,

10. the standard deviation of the exponent field, and

11. the logarithm of the largest non-zero value divided by the smallest non-zero value.

As well as these, two global statistics were calculated:

1. the fraction of values equal to the mode (i.e. the most common value) in the entire variable and

2. the fraction of hyperslices where all values were identical.

References

Brasseur, G., Hauglustaine, D., Walters, S., Rasch, P., Müller, J.-F., Granier, C., and Tie, X. (1998). MOZART,
a global chemical transport model for ozone and related chemical tracers: 1. Model description. Journal of
Geophysical Research: Atmospheres, 103(D21):28265–28289.

Cleveland, W. S. (1981). LOWESS: A program for smoothing scatterplots by robust locally weighted regression.
The. The American Statistician, 35:54.

Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo,
G., Bauer, P., and Bechtold, P. (2011). The ERA-Interim reanalysis: Configuration and performance of the
data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656):553–597.

12

Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., Taylor, M. A., and
Worley, P. H. (2012). CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere
Model. Int. J. High Perform. Comput. Appl., 26:74–89.

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert,
S. D., Takacs, L., Kim, G.-K., et al. (2011). MERRA: NASA’s modern-era retrospective analysis for research
and applications. Journal of Climate, 24(14):3624–3648.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G. (2005).
A description of the advanced research WRF version 2. Technical Report NCAR/TN-468 STR, National
Center For Atmospheric Research, Boulder, Colarado, USA.

Zender, C. S. (2008). Analysis of self-describing gridded geoscience data with netCDF Operators (NCO).
Environmental Modelling & Software, 23(10):1338–1342.

Zender, C. S., Bian, H., and Newman, D. (2003). Mineral Dust Entrainment And Deposition (DEAD) model:
Description and 1990s dust climatology. J. Geophys. Res., 108(D14):4416.

13

Reply to reviewers: “Finding the Goldilocks zone:
Compression-error trade-off for large gridded datasets”

Jeremy Silver, Charlie Zender

October 28, 2016

We wish to thank the reviewers to taking the time to read the manuscript and provide
feedback. We note that we have taken the challenge of major revision seriously and reworked
the analysis to a much more fine-grained level, included a range of new and interesting results,
remade all the figures, and restructured and rewritten much of the text. We believe that the
reviewers’ comments have helped to improve the manuscript and strengthen our findings.

Main changes

• Compression, errors and complexity are assessed at the variable-level, rather than the
dataset-level (i.e. for a number of variables combined).

• We calculated a range of statistics on the individual variables, in order to improve our
understanding of why certain variables compress well with one method or another.

• Some material was moved to a supplementary document.

• The introduction has been abbreviated as recommended.

• The Methods section was expanded to provide a clearer description of the layer-packing
method.

• The discussion includes a brief review of related work.

• Additional description of the deflate and shuffle compression algorithms were added to
the Methods section.

• All figures have been reworked.

Minor changes

• Variables are now chunked in a consistent manner for the different methods to improve
comparability across compression methods.

• A minor error was found and corrected in the calculation of file sizes. The differences
would have been very minor for the results in the original manuscript, since the file
sizes were much larger than when doing the analysis on individual variables, but became
apparent when working with the single-variable data files. The error was that the results
were calculated based on “resident” rather than “actual” file size.

1

• Minor improvements were made to the layer-packing code, resulting in more stable treat-
ment of non-finite values, avoiding rare cases of floating-point overflow, and more stable
handling of dimensions.

• We ran the test suite on a variable of size 1.5 GB to examine the performance of the
methods on larger datasets. This was included as an example referenced in the timing
results, rather than adding it to the suite of variables presented in all results. This was
mainly because, in the process of setting it up, the test suite was run many dozens of
times; to accelerate the testing the variables considered were kept relatively small (the
largest was about 65 MB).

1 Reviewer 1

1.1 General comments

1. This paper addresses an important issue because data compression is very much needed to
mitigate large data volumes in geophysical data. Treating the dimensions differently when
applying lossy compression to gridded data makes a lot of sense.

We agree.

2. Section 1 and 2 need some rearranging and improvement (more details are given below in
“specific comments”) in terms of introducing the ideas and terminology. It could be better
to shorten the introduction and then really explain the methods well in section 2.

We have rearranged material in these sections given the feedback provided.

3. The audience for this work may not be too familiar with compression techniques other than
just using defaults in netCDF, so improving the explanations for the techniques would be
helpful. (For example, defining a “deflate and shuffle” algorithm).

We have provided additional details as suggested.

4. The paper’s contribution should be clarified in the introduction (section 1). It is not clear
to me whether “layer packing” is a new idea that is first presented here. (It is mentioned
a bit more clearly in section 3).

Layer packing per say is not a new idea, and is the foundation for compression in the
GRIB data format. However the idea of layer-packing is generalised here beyond two-
dimensional slices. The work presented here is a test-of-concept for combining some of
the better aspects of both GRIB and netCDF/HDF5 formats.
The introduction and discussion reiterate these points.

5. For this paper to really impact the broader geophysical data community, I feel that more
details on the compression approaches need to be provided.

We have provided more details as recommended.

6. More details on the datasets are needed to be able to understand why compression effects
the each differently. Perhaps look at variables instead of multi-variable datasets?

This is an excellent suggestion and one that we have adopted. One of the main changes
to the manuscript between the initial submission and this revision is that we examine
compression in a variable-by-variable approach rather than as a whole-dataset approach.

2

This allows us to look at individual variables in terms of their compressibility, the “com-
plexity” of the variable and error resulting from the lossy compression; this fine-grained
approach allows for greater insight and a much larger sample size. As such the results
section has been heavily revised.

1.2 Specific comments

1. page 2, par. 1: For this audience, please give more explanation of the techniques. For
example, please provide more explanation of how “deflate and shuffle” works (rather than
just pointing to a reference).

We have introduced additional detail about these methods as recommended.

2. page 2, line 22: “Linear packing with a single scale-offset parameter” – is discussed here
but not well-defined. Note that “packing” is later defined in line 32. Then “scalar linear
packing” on p.3. line 2. In general, the terminology used and defined in this paragraph is
hard to follow in that it is sometimes defined after being used. (Also, is “linear packing
with a single scale-offset parameter” the same as “scalar linear packing”?)

We have reviewed how the notation is introduced in order to improve readability.

3. p.2, line 29: I’m not sure the audience will be familiar with “quantization” (like the
audience for a CS publication would).

This has been clarified

4. section 2.1.1 (“Layer packing”) Here I would suggest providing more detail (maybe an
example) – particularly if this approach is the main contribution of the paper. Rather
than providing syntax details, consider defining/explaining the parameters (the reader
may not be familiar with what these are) here.

In hindsight we agree that details about the algorithm itself are required, rather than
syntax. We have moved the syntax to a supplementary section. The algorithm itself is
outlined in the methods section.

5. section 2.1.2, line 15: Explain what “level” means in the algorithm.

This has been explained.

6. section 2.1.2, line 17: Explain a shuffle filter.

We have added additional details.

7. section 2.3: Regarding the datasets listed, more information about the model source (other
than acronym and reference) would be helpful - especially in interpreting the results.
Without more details, I cannot really understand how the datasets differ and, therefore,
why/how they would respond to compression differently. For example, the number of grid
points are given - but does this number represent a domain on the entire globe for all
datasets? The number of vertical levels is listed, but do all models simulate to the same
height? What is the time dimension? Hourly? Monthly averages? Is the time dimension
the same for each data set?

3

The original description of these datasets was deliberately kept short, as this was not the
main focus of the paper. We have compromised by abbreviating the description of the
datasets to a table and moving the full descriptions of these datasets to the Supplementary
Material section.
Regarding the question about why variables respond differently to compression, we believe
that this has been solidly addressed in the analysis of the entropy of the data and exponent
fields, which was made possibly by following the suggestion to shift the focus of the paper
from compressing entire datasets to compressing individual variables.

8. Fig 1: For compression results, I think it would be more intuitive/standard to compare
to the uncompressed size (and have all ratios below 1.0). Also I don’t understand the
meaning of the comp./decomp. time in the left panel for uncompressed data.

The compression ratios are now defined in terms of the uncompressed size as suggested,
and we have also moved to a more standard definition of the compression ratio (i.e.
uncompressed size / compressed size, so that larger values represent greater compression).
The compression times represent the time taken from the original data to the compressed
file, whereas the decompression time is to unpack the layer-packed data. This has been
clarified

9. page 6, line 30: The paper could be much stronger with specific examples of individual
variables and how affected by compression approach and choice of metric (e.g. by std. dev.
or mean normalization). Since all results are averaged across datasets, this information
is not available.

We agree and we have adopted the variable-level rather than dataset-level approach. We
included examples of six variables (among a total of 255) in the Supplementary Material
document as illustrations of the errors induced by the six lossy compression methods
considered.

10. Section 3: This section contains some useful information (and examples) about linear
scaling and layer packing that would have been good to explain earlier in the paper when
the concepts/algorithms are first introduced (and before the results are given).

We have given additional details about linear scaling and layer packing in the Methods
section. Additional examples for illustrative variables appear in the Results section.

11. More related lossy compression work on geophysical data should be mentioned for bet-
ter context, for example: Hubbe, Wegener et al., ISC ’13 (http: // link. springer.
com/ chapter/ 10. 1007% 2F978-3-642-38750-0_ 26), Baker, et al., HPDC ’14 (http:
// dl. acm. org/ citation. cfm? id= 2600217), Woodring et al., LDAV ’11 (http: //
ieeexplore. ieee. org/ xpls/ abs_ all. jsp? arnumber= 6092314& tag= 1)

We have given more details about related lossy compression work in this field. We thank
the reviewer for the suggested citations and have included some in the manuscript.

12. Other competitive lossy compression algorithms for scientific data should probably be men-
tioned as many may be affected by differences in the variation across spatial dimensions
for gridded data – this could be really interesting. Also many lossy compression methods
for scientific data could eventually by incorporated into netCDF.

We have expanded the discussion to refer to other lossy compression algorithms for sci-
entific data, formats beyond netCDF (e.g. based on image- and video-compression).

4

http://link.springer.com/chapter/10.1007%2F978-3-642-38750-0_26
http://link.springer.com/chapter/10.1007%2F978-3-642-38750-0_26
http://dl.acm.org/citation.cfm?id=2600217
http://dl.acm.org/citation.cfm?id=2600217
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6092314&tag=1)
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6092314&tag=1)

13. Fig. 2: Because the differences between the datasets are not more thoroughly addressed,
then it’s unclear what conclusion to draw by comparing the SD and mean normalizations
in Figure 2 (e.g., what is the takeaway point?). Basically, it seems that the two plots are
quantitatively similar enough that both should be included only to illustrate a point, which
I am not seeing. Can you clarify?

Both plots were included in order avoid the perception of a biased interpretation of the
results. Normalization by the SD or the mean advantages one method or the other,
however the conclusions are the same regardless of the normalization. We agree that
including both plots does not add much value to the paper. We note that all the figures
have been completely reworked.

14. fig 3: Same comment as above, plus I am not sure what conclusion to draw given that
some datasets compress better than others without a more clear understanding of dataset
differences. I think looking at individual variables, rather than entire datasets would make
it easier for the reader to understand the differences in the approaches.

As noted previously, we agree with the reviewer’s comment and have redone the analysis
to examine variables separately, rather than groups of variables clustered together as
datasets.

1.3 Final thoughts

1. I like the idea of treating spatial dimensions differently with lossy compression, and I think
the authors could have really taken off with this concept and it explored it much more
thoroughly. I question whether the contributions in this particular version are significant
enough for a GMD paper.

The purpose of this study was to test the concept of layer-packing, in an attempt to
combine some of the best aspects of the GRIB and netCDF/HDF5 data formats. We
acknowledge that the results have not been conclusively in favour of the layer-packing
with respect to bit-grooming, however we would argue that this is worth publishing all
the same. This partly relates to the discussion of publishing “positive” versus “negative”
results; if only “positive” findings are published, this will result in a great deal of time and
effort being wasted within the scientific community in repeating superficially appealing
experiments. As such, transferring this knowledge to the public domain has value. The
geoscientific modelling and measurement community (e.g. the volume of data generated
by satellite retrievals) relies heavily on these data formats, and it is important that their
refinement is an ongoing process.
Regardless of any ambiguity between the choice of bit-grooming or layer-packing, one
clear result from this study is that simple linear packing typically results in much greater
loss of precision than either of the two lossy methods discussed here. This is despite its
widespread use.
Other useful contributions include the focus on the error-compression trade-off, the finding
that the normalized entropy of the exponent field can be used to help determine which
compression method is most appropriate, and the idea (introduced in the discussion) that
the changes in the normalized entropy of the data could be used to determine how many
significant figures should be retained.

5

2 Reviewer 2

2.1 General comments

1. This paper describes a variant of lossy encoding which leverages the multi-dimensional
nature of many scientific datasets that have greater data variances along different axes.
The axes with small variations in data values are labeled “thin dimensions” and the axes
with large variations in values are labeled “thick dimensions”. The datasets are then
“layer packed” with a linear scaling algorithm in the thin dimensions, recording a scale &
offset value for each coordinate in the thick dimension.
I think the insights into the “thick” and “thin” dimensions are the primary value of this
paper, with the actual compression algorithm and results being less important, overall.

Yes – one of the main things we are trying to do here is to assess whether treating different
dimensions differently during gives much benefit over and above other methods that can
be easily applied to such datasets. This is essentially trying to combine the best elements
of GRIB and netCDF/HDF5.

2.2 Specific comments

1. Applying the idea of thick & thin dimensions appropriately to other compression methods
(such as the JPEG-2000 algorithm used in GRIB2) would be more valuable than just the
idea of the simple scale & offset compression chosen.

We agree, and we spent a large amount of time trying to get this to work while preparing
these revisions.
In revising this work, we were able to run (after many technical hiccups) the same set of
tests for GRIB/JPEG2000 compression as well (using 8, 12, 16 and 20 bits to represent
the data). Our preliminary results showed that the JPEG2000 algorithm yields greater
compression compared to the methods presented here for the same level of error; this
echoes the findings of Caron (2014), which describe the efficient compression achieved.
However like bit-grooming or layer-packing, JPEG2000 does not offer clear controls about
the resultant errors and thus some experimentation (in setting the number of bits per
value) is needed to avoid excessive loss of precision. We found that there was a large
spread in the magnitude of the relative errors compared to the other methods considered.
However the technical challenges required to convert a general netCDF field into GRIB
format to be far in excess of what may be recommended to the average practitioner of
geoscientific modelling. For this reason, and for the large spread in the compression
and error result in the GRIB-compressed fields, and in order to keep the manuscript as
focussed as possible, we chose not to include these results.

2. Near the bottom of page 6, “for simplicity will have” should be corrected to “for simplicity
we have”.

Yes, well spotted. We have fixed this.

2.3 Reviewer 2’s comments to Review 1

1. Very nice review, much more detailed than mine. We seem to have homed in on the
same insights: the differences in dimensions are the valuable part of the paper, and they
aren’t explored in enough detail to warrant a lot of enthusiasm in the current state of the

6

paper. My current feeling is a very “weak” accept, and I would prefer to ask for further
exploration of the dimension ideas.

Following the suggestions from Reviewer 1, the analysis and results have been considerably
expanded and the revised manuscript offers further perspectives into the relationship
between lossy compression, the resulting error and underlying complexity of the data.

3 Reviewer 3

3.1 Summary

The paper introduces a “layer packing” lossy compression technique that takes advantage of
the minimal horizontal variations in geoscience data relative to the larger variations across
vertical dimensions. The layer packing technique is compared against many widely used lossless
and lossy compression techniques and evaluated based on accuracy and time to solution. Layer
packing is found to be beneficial in some cases while not in others, leading to the conclusion
that care must be taken to evaluate whether lossy compression is worth the risk.

3.2 General Comments

1. The paper makes a good first attempt to evaluate the layer packing technique, but the
paper would benefit from an additional revision. First, it’s not clear what the paper is
contributing. The authors state that the technique is used in GRIB (page 7, section 3)
but that the evaluation was not possible due to relative error not being reported. Since
the technique is not new, then the only contributions of the paper are the announcement
of the general availability of the new non-GRIB tools, as well as the modestly detailed
evaluation of the many compression techniques.

The geoscientific modelling and remote-sensing community has to deal with the ever-
growing volume of data generated. As such, it is important that the storage methods are
reviewed in terms of the trade-off between compression, error and read/write times.
We have tried to avoid debate about data formats. Both have an important roles; the
geoscientific community relies heavily on netCDF/HDF5, and GRIB remains the format
of choice in many operational meteorological centres. Despite its excellent compression
performance, GRIB can be regarded as less user-friendly.
The GRIB layer-packing is restricted to two-dimensional slices, whereas the layer-packing
described here can operate on arbitrary hyperslices. The work presented in this manuscript
aims to generate discussion about ways of incorporating the best of both methods.
With reference to the comment from Page 7, Section 3: “Caron (2014) estimated that
GRIB2 files are on average 44% of the size of the equivalent deflate-compressed netCDF-4
files (n.b. relative errors were not reported, which limits the comparison)”. The intended
meaning was that the study of Caron (2014) reported the compression ratio, but not the
relative errors, which makes it difficult to place the Caron (2014) results with those of
this study.
The revisions to the original manuscript, focusing the analysis on the compressibility, er-
rors and complexity of individual variables offers additional insights into these relationship
and we believe adds substantially to the value of the paper.

7

3.3 Specific Comments and Technical Corrections

1. The title, though catchy, is overloading the term “Goldilocks Zone” – the region around a
star where perhaps liquid water might be found on a planet’s surface. The title after the
colon is clear on its own.

We have abbreviated the title, which as already been through several iterations.

2. Page 2, line 3: “NetCDF” starts the last sentence on the line, though it should be
“netCDF” for consistency.

We have revised for consistency of this term.

3. Page 2, line 5: Why are three references necessary to describe the “deflate” compression
method? Throughout the paper, be consistent with terms. scale-offset vs scale and offset.
linear-packing vs linear packing.

Additional description of the deflate and shuffle algorithms has been added as suggested
by Reviewer 1. We have reconsidered the references in this section. We have also reviewed
the usage of the terms mentioned to improve the consistency of the manuscript.

4. Page 3, line 30: I would suggest adding that ncdump is a command-line utility from the
netCDF package because it might not be common knowledge. The paper introduces the “nc-
packlayer” program and also uses other “nc”-prefixed tools from the NCO suite. For exam-
ple, perhaps the following: “...(following the output format for the netCDF command-line
utility ncdump)...”

Yes, this is correct, thanks for pointing this out. We have clarified this point.

5. Page 3 (section 2 in general): More detail could be spent on the layer packing technique
itself; the many monospaced examples of section 2 don’t substantially add to the narrative
and instead come across like a tutorial or README.

We have expanded the description of the algorithm itself. To keep the article short and
concise, we have moved these details to an appendix.

6. Page 4, line 11: run-on sentence

Thanks for pointing this out. This has been corrected.

7. Page 4: The dollar symbol “$” is not explained, though I think you meant for it to refer
to a shell variable syntax.

Yes, this is correct. This has been clarified.

8. Page 5, Section 2.3: If I do the math correctly, the size of the datasets are (1) 962MB,
(2) 267MB, (3) 68MB, (4) 613MB, (5) 30MB, and (6) 717MB. The rationale for the
proposed compression is the growing volume of data in the geosciences, though none of
these datasets are over a gigabyte in size. Compression of a multi-gigabyte dataset would
make the argument more compelling, because datasets of such size will become more com-
monplace. Writing large datasets to disk as they are computed is a challenging problem
and it would be nice to evaluate whether compressing large datasets is a viable option as
they are generated. General comment about all Figures: Consider labeling the left and
right panes of each figure as (a) and (b). For example, page 6, paragraphs starting on
lines 9 and 17 sound too similar since Figure 1 is showing different things but is referred

8

to in the text in the same way. It would be more clear to say something like “Figure 1A
shows...” and “Figure 1B presents...”

The point about the magnitude of the file size is quite reasonable. We ran the test suite
on variable of size 1.5 GB to examine the performance of the methods on larger datasets.
This was included as an example referenced in the timing results, rather than adding it
to the suite of variables presented in all results. This was mainly because, in the process
of setting it up, the test suite was run many dozens of times; to accelerate the testing the
variables considered were kept relatively small (the largest was about 65 MB).
However by the same token, the analysis for the revised manuscript has been done on
individual variables alone, so the basic unit of study has become much smaller. While
this might not impress those working with terabyte-scale data, it allows for greater insight
into the methodology itself.
Regarding the figures, some of these have been moved to a supplementary material section.
All panel plots now have labels (a), (b), etc., as suggested.

9. Page 7: Starting on this page, for some reason all references to “figure 3” are lower case.

Thanks for pointing this out – it has been fixed.

10. Page 8: Figure 1: The red and orange colors are too similar, though their position is clear
from the legend.

All the figures have been thoroughly reworked. The color scheme in question no longer
appears.

11. Page 8, Figure 1, right panel: What does it mean to have the first column as “uncom-
pressed” time since everything is normalized to DEFLATE? Was it the time to generate
the data? Was it the time to copy the file?

Yes, in hindsight this wasn’t very clear. It was effectively the time to copy the data. This
bar is not included it in the revised manuscript. Thanks for drawing attention to it.

12. Page 8, line 4: The reference to the HDF Group is used as an in-text citation as “(Group,
2016)”. It would be best to fix your citation to not use HDF Group as a first/last name
pair. See also your references on page 13, line 17.

Thanks for pointing this out. The default behaviour of the reference manager should have
been over-ruled. This has been corrected.

13. Page 9, line 1: run-on sentence

Thanks for pointing this out. It has been corrected.

14. Page 10, Figure 3 caption: capitalize the Figure 1 and Figure 2 references.

This has been made more consistent.

15. Page 11, line 6: misspelled “considered” – please consider a full spell check.

This has been fixed and we will ensure to run the spell checker again before resubmitting.

9

References

Caron, J. (2014). Converting GRIB to netCDF-4: Compression studies. www.ecmwf.int/

sites/default/files/elibrary/2014/13711-converting-grib-netcdf-4.pdf, Last ac-
cessed: 2016-06-17. Presentation to the workshop “Closing the GRIB/netCDF gap”, held at
European Centre for Medium Range Weather Forecasts (ECMWF) at Reading, UK, 24-25
September 2014.

10

www.ecmwf.int/sites/default/files/elibrary/2014/13711-converting-grib-netcdf-4.pdf
www.ecmwf.int/sites/default/files/elibrary/2014/13711-converting-grib-netcdf-4.pdf

