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Abstract. The three-dimensional (3-D) modelling of water systems involving double-diffusive pro-

cesses is challenging due to the large computation times required to solve the flow and transport of

constituents. In 3-D systems that approach axisymmetry around a central location, computation times

can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-

averaged Navier-Stokes equations described in cylindrical coordinates, and integrates them to guar-5

antee mass and momentum conservation. The discretized equations are presented in a way that a

Cartesian finite volume model can be easily extended to the developed framework, which is demon-

strated by the implementation into a non-hydrostatic free-surface flow model. This model employs

temperature and salinity dependent densities, molecular diffusivities, and kinematic viscosity. One

quantitative case study, based on an analytical solution derived for the radial expansion of a dense10

water layer, and two qualitative case studies demonstrate a good behaviour of the model for seep-

age inflows with contrasting salinities and temperatures. Four case studies with respect to double-

diffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly

modelled near the interfaces, and that an advanced turbulence model is required.

1 Introduction15

Over the past decades, numerical salt and heat transport models have increased their capability to

capture patterns of double-diffusion on scales varying from laboratory set-ups to the ocean (Yoshida

and Nagashima, 2003; Kunze, 2003). Despite the advance in computation power and parallel com-

puting, the requirement of dense grids for the three-dimensional (3-D) modelling of salt and heat

transport often yields unacceptable computation times. In this article, we present a framework for20
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a finite volume approach that allows free-surface flow modelling in a 2-D axisymmetric grid. The

model framework is intended for a shallow water body where salinity and temperature gradients

potentially induce double-diffusive processes. As such, the model intends to simulate larger-scale

features of double-diffusion (i.e., interface locations in a stratified system and heat and salt trans-

port).25

Kunze (2003) stresses that numerical and analytical methods to model double-diffusion often only

apply at specific scales. For example in oceans, internal wave-shear and strain enhance salt-finger

growth, leading to higher salt and heat fluxes over stratified interfaces. Traxler et al. (2011) addresses

the issue of scale by describing four modes of instability in salt-fingering systems, which play a role

on different scales. Their 3-D simulations of large-scale instability in salt-fingering systems are the30

first known successful direct numerical simulations (DNS). Carpenter et al. (2012) were among

the first to model systems in the double-diffusive convection regime with 3-D DNS. Their detailed

simulations showed that, in this regime, the salt and heat fluxes across the interface are largely

governed by molecular diffusion and that these salt and heat diffusion rates control the thickness

of the salt and heat interface, respectively. Kimura and Smyth (2007) used 3-D DNS to model salt35

sheets for a double-diffusively stratified flow interacting with inflectional shear.

Yoshida and Nagashima (2003) have shown that 2-D numerical models are already well able to

simulate small-scale processes in laboratory set-ups. On a larger scale, Sommer et al. (2014) confirm

the findings of Carpenter et al. (2012) with 2-D DNS and high-resolution measurements of a double-

diffusive staircase in Lake Kivu for density ratios larger than 3, noting that in these systems external40

turbulence by shear or internal waves should be absent to maintain diffusion as the main driver

for salt and heat transport. Noguchi and Niino (2010a, b) used 2-D DNS to study the spontaneous

layer formation in the double-diffusive convection regime and explores the layer formation from the

non-linear evolution of disturbances.

Most numerical modelling studies of double-diffusive processes calculate interfaces and salt and45

heat fluxes at oceanic scale (Stommel and Fedorov, 1967; Stern, 1967; Ruddick and Gargett, 2003;

Kelley et al., 2003; Kunze, 2003; Kimura et al., 2011). This can be explained by the ubiquity of these

systems in oceans (Huppert and Turner, 1981), and by the potential of oceanic thermohaline strati-

fication as an energy source (Stommel et al., 1956; Vega, 2002). These larger-scale simulations are

commonly performed with Reynolds-averaged Navier-Stokes (RANS) models. For example, Radko50

et al. (2014a, b) successfully applied a 3-D RANS model to an oceanic scale salt-finger staircase.

Recently, modelling of these phenomena in smaller-scale water bodies has started to be developed.

For example, double-diffusive processes like thermohaline staircasing have been successfully mod-

elled in lakes (Schmid et al., 2003), although these systems are generally modelled with analytical

or empirical formulations (Kelley et al., 2003; Schmid et al., 2004; Arnon et al., 2014). Other known55

numerical modelling studies consider double-diffusive convection in monitoring wells (Berthold and

Börner, 2008), and the collection of thermal energy in solar ponds (Cathcart and Wheaton, 1987; Gi-
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estas et al., 2009; Suárez et al., 2010, 2014). However, modelling these complex physical processes

in shallow waters still imposes a major scientific and computational challenge (Dias and Lopes,

2006).60

Axisymmetric CFD models are applied in a wide variety of fields. Examples of applications in-

clude the modelling of flow of gas past a gravitating body in astronomy (Shima et al., 1985), radia-

tive heat transfer in cylindrical enclosures (Menguc and Viskanta, 1986), the heating of air flowing

through a combustion burner (Galletti et al., 2007), and acoustic axisymmetric waves in elastic media

(Schubert et al., 1998). The similarity between these examples is that a model calculating in two spa-65

tial dimensions models 3-D processes due to axisymmetry. In geohydrology, axisymmetric models

are often applied for groundwater flow around injection and abstraction wells (Bennett et al., 1990).

Groundwater modelling software often offers code extensions that adjust several input parameters to

allow such modelling approaches (Reilly and Harbaugh, 1993; Langevin, 2008).

In some cases, axisymmetric grid set-ups can also be preferential for hydrodynamic surface water70

models. Examples of such cases are close-to-circular water bodies with uniform boundaries, and the

flow around a central point (e.g., a local inflow from a pipe or groundwater seepage). The occur-

rence of local saline seepage inflows into shallow water bodies of contrasting temperatures has been

described by De Louw et al. (2013). Hilgersom et al. (2016) has shown how these local inflows can

induce thermohaline stratification in the shallow surface water bodies above these inflows.75

This article derives a framework for an axisymmetric free-surface RANS model, which is imple-

mented in SWASH. SWASH is an open source non-hydrostatic modelling code for the simulation

of coastal flows including baroclinic forcing (SWASH source code, 2011). It is suitable for the sim-

ulation of flows and transport in varying density fields, because 1) the staggered grid allows a mo-

mentum and mass conservative solution of the governing equations, which is required for accurate80

salt and heat transport modelling, and 2) the non-hydrostatic pressure terms aid the simulation of

flows in fields with large density variations. Another major advantage of SWASH is the flexible and

easily extendible code, which can be applied for free under the GNU GPL license. Other properties

of SWASH are the opportunity to apply terrain-following σ-layers for the definition of cell depths

and the user-friendly pre- and post-processing.85

The development of an axisymmetric variation of SWASH falls in line with our research to lo-

calized saline water seepage in Dutch polders. To simulate the effect of a local seepage inflow on

the temperature profile of the surface water body, a numerical model is required that accounts for

sharp density gradients, a free surface and potential double-diffusive processes. The axisymmetric

grid set-up aids in correctly representing the volumetric inflow and modelling the flow processes90

around the local inflow.

In this article, we present the resulting numerical framework to extend a 2-D finite volume model

into a 2-D axisymmetric model by adding few terms to the solution of the governing Navier-Stokes

and transport equations. These terms are implemented in the SWASH code. The model code is
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further extended with a new transport module calculating salt and heat transfer. Although the model95

generally calculates with a mesh size that is larger than the size required to solve small-scale double-

diffusive instabilities, the aim is to allow the model to approximate interface locations and salt and

heat fluxes. The functioning of the code is validated with case studies involving different salinity and

temperature gradients.

2 Method100

2.1 Governing equations

The governing equations in this study are the Reynolds-averaged Navier-Stokes equations for the

flow of an incompressible fluid, derived in cylindrical coordinates (r, α, z) (Batchelor, 1967). Due

to point symmetry, the gradients in tangential direction (α) are set to zero, which leaves the solution

of the equations in one horizontal and one vertical dimension (i.e., 2-DV):105
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In these equations, r represents the horizontal axis in radial direction and z the vertical axis, with

u and w the velocities along these axes, respectively. The density ρ is calculated from the local

temperature and salinity states by the updated Eckart formula (Eckart, 1958; Wright, 1997), which

is based on the UNESCO IES80 formula (Unesco, 1981).

This RANS model allows turbulence modelling with the standard k-ε model (Launder and Spald-115

ing, 1974). This article presents cases that are modelled with and without this turbulence model.

In case of the former, the modelled eddy viscosity is added to the molecular viscosity, yielding a

non-uniform vertical viscosity νv . For all the calculations, the horizontal kinematic viscosity νh is

set uniform to its molecular value (~ 10−6 m2s−1).

The pressure terms are split into hydrostatic and hydrodynamic terms, according to Casulli and120

Stelling (1998):

1

ρ

∂p

∂r
=
g

ρ

∂ ∫ ζz′=z ρ(r,z′, t)dz′

∂r
+
∂q

∂r
(4)

1

ρ

∂p

∂z
+ g ≡ ∂q

∂z
(5)

4



d

plane of reference H

ζ

Figure 1. Definition of the free surface level ζ and the bottom level d (Zijlema and Stelling, 2005).

where q denotes the hydrodynamic pressure component and ζ the local free surface level relative to125

the reference plane (Fig. 1). Horizontal variations in atmospheric pressure are neglected. The first

right-hand side term of Eq. 4 is split into baroclinic and barotropic components when the equations

are integrated over the cell depth in Section 2.3. In the vertical, the baroclinic pressure gradient

and the gravitational acceleration cancel each other out, leaving the hydrodynamic pressure gradient

(Equation 5).130

The free surface is calculated according to Zijlema and Stelling (2008), by integrating Eq. 1 over

the depth of the water column and applying the free surface condition w|z=ζ = ∂ζ/∂t+u∂ζ/∂r:

∂ζ
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+

1

r
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Q̄≡ UH =

ς∫
−d

udz (6)

where U is the depth-averaged velocity, and d is the local bottom depth (Fig. 1). Q̄ represents the

radial discharge per unit tangential width.135

Transport of mass and heat is calculated with the convection-diffusion equation:
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where the concentration c represents either the salinity S or temperature T .

In the case that turbulence is modelled, the vertical turbulent diffusion,Dv , is calculated by adding

the molecular diffusivity and turbulent diffusivity: Dv =Dmol +Dturb. The turbulent diffusivity is140
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calculated by dividing the eddy viscosity νturb by the turbulent Prandtl number (Pr = 0.85) in the

case of heat transport, or by the turbulent Schmidt number (Sc= 0.7) in the case of salt transport:

Dturb;T =
νturb
Pr

=
νturb
0.85

(8)

Dturb;S =
νturb
Sc

=
νturb
0.7

(9)

withDturb;T andDturb;S being the thermal and solutal turbulent diffusivities in m2s−1, respectively.145

In non-turbulent thermohaline systems, stability largely depends on density gradients and molec-

ular heat and salt diffusion rates, which in turn are highly dependent on temperature and salinity.

The heat and salt diffusivities are related to temperature T (oC) and salinity S (weight−%) by

a quadratic regression on data presented in the International Critical Tables of Numerical Data,

Physics, Chemistry and Technology (Washburn and West, 1933):150

Dmol;T = 1.31721 + 4.26657 · 10−3 ·T − 1.09237 · 10−6 · T 2 + 1.74051 · 10−2 · S−

3.17759 · 10−4 · S2 (10)

Dmol;S = 7.66025 + 2.33023 · 10−1 · T + 3.21974 · 10−3 · T 2− 2.18290 · 10−1 · S+

1.34431 · 10−2 · S2 (11)

2.2 Boundary conditions

At the free surface, we assume no wind and q|z=ζ = 0. At the bottom boundary, the vertical velocity

is calculated by imposing the kinematic condition w|z=−d =−u∂d/∂r. The presented case studies155

(Section 3) include a local seepage inflow at the bottom boundary, for which the seepage velocity

is added to the kinematic condition. For horizontal momentum, the bottom friction is imposed by

applying a constant friction coefficient to the bottom layer, or by the logarithmic wall law in case the

standard k-ε model is employed, applying a Nikuradse roughness height to determine the amount of

friction (Launder and Spalding, 1974).160

A special case is the inner boundary, where symmetry occurs: for all variables, the gradient is

set to zero, except for horizontal momentum: u|r=0 = 0. For the presented case studies, we define

a Dirichlet boundary condition for u momentum at the outer boundary, where the total outflow is

equated to the instantaneous seepage inflow.

For the transport equation, a homogeneous Neumann boundary condition is defined at each bound-165

ary (∂cr∂r = 0 and ∂c
∂z = 0), except at a defined seepage inflow of known temperature and salt concen-

tration, where a Dirichlet boundary condition is imposed.
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2.3 Numerical framework and implementation

The physical domain is discretized with a fixed cell width in radial direction. The width of the cells

in the tangential direction increases by a fixed angle α, which allows us to consider the horizontal170

grid as a pie slice (Fig. 3). In the model, α could be assigned any value (i.e., also 2π for a completely

circular grid). However, to allow a simple presentation of the integration step in this subsection, we

consider α as a small angle.

For the vertical grid, sigma layering is employed, although part of the layers can be defined by

a fixed cell depth (Fig. 2). A classical staggered grid is applied with velocities defined at the cell175

boundaries and the other states in the cell centre.

For reasons of momentum and mass conservation, Zijlema and Stelling (2005) integrated the

governing equations over the cell depth using the Leibniz integral rule (Appendix A). In our case,

the cell width in tangential direction varies as well. Therefore, the equations are integrated over the

cell depth and the width in tangential direction, which is in this case defined as the y-dimension. For180

the continuity equation, this yields (cf. Fig. 2 and 3):

z
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with φk = uk · hk is the cell depth integrated velocity and the relative vertical velocity ω as defined

in Eq. 16 of Zijlema and Stelling (2005).
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The momentum equations and the transport equation are integrated in a similar fashion:185
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where overlined variables denote spatially averaged values for these variables in r or z directions,

and arrows denote the use of values from downstream cells. The boxes mark the alpha terms, which

are the additional angular terms compared to the 2-DV solutions for the momentum equations in

Cartesian coordinates. In the integrated transport equation (Eq. 15), the latter three terms on the left-

hand side are the so-called anti-creepage terms, which should be incorporated for the calculation of195

transport when large gradients in water depth occur.

Since u and w are the primitive variables in the momentum equations, and not uh and wh as in

Eq. 13 and 14, we further rewrite the momentum equations according to Zijlema and Stelling (2008).

In order to do this for the u momentum equation, we first spatially discretize the continuity equation

in point i+ 1
2 :200
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We then spatially discretize the u momentum equation and expand ∂ukhk/∂t to hk∂uk/∂t+

uk∂hk/∂t. The latter term falls out by subtracting Eq. 16 multiplied by uk from Eq. 13:
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Again, the alpha terms are marked with boxes. Another addition compared to the Cartesian 2-DV205

solution are the y-factors throughout the equation, which serve as width compensation factors. For

w momentum, a similar procedure is applied.

The governing equations are spatially discretized with a central differences approach, except for

the advective terms. The advective terms are discretized with higher-order flux limiters (Fringer

et al., 2005), namely MINMOD flux limiters in the case of the momentum equations, and MUSCL210

flux limiters in the case of the transport equation.

The horizontal time integration of the momentum and transport equations is Euler explicit. The

horizontal advective terms in the momentum equations are solved with the predictor-corrector scheme

of MacCormack (Hirsch, 1988). The vertical time integration is semi-implicit, applying the θ-scheme.

The global continuity equation (Eq. 6) and barotropic forcing are solved semi-implicitly (Casulli and215

Cheng, 1992). The case studies (Section 2.4) apply an implicitness factor θ = 1 (i.e., the Euler im-

plicit scheme) for the vertical momentum and transport equations, the global continuity equation,

and the barotropic forcing. The non-hydrostatic pressure is standard solved with the Euler implicit

scheme. The complete discretizations are shown in Appendix B.

The numerical framework largely follows the SWASH solution procedure (Zijlema et al., 2011).220

The code was extended by adding the alpha terms and factors accounting for the varying cell width
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Table 1. The dimensions, properties, and consequent stability parameters applied in the case studies. Up and

Down refer to the upper and lower layer of the dual layered system (in Case 5 to 7, the lower temperatures and

salinities are properties of the central inflow).

Case
Dimension (m) T (oC) S (weight−‰)

win (ms−1) Tu (o) Rρ −
Depth Radial Up Down Up Down

1 0.7 3.0 10 20 0 15 - -53.3 0.15

2 0.7 3.0 10 34 0 15 - -71.6 0.50

3 0.7 3.0 20 10 1 0 - 71.2 2.04

4 0.7 3.0 20 15 1 0 - 85.0 1.19

5 0.4 3.0 30 5 0 10 5 · 10−4 -13.2 -0.62

6 0.5 1.5 20 25 1 3 1 · 10−3 -82.5 0.77

7 0.5 1.5 20 26 1 2.5 1 · 10−3 -96.4 1.25

in tangential direction. The density and transport calculation modules were replaced by new modules

based on the selected density equation (Wright, 1997), and the presented diffusivity equations.

2.4 Verification and validation

This article validates the model qualitatively and quantitatively. The behaviour of a local seepage225

inflow setting on double-diffusive layering is verified qualitatively (Section 2.4.3). The quantitative

validation tests the model results against:

1. documented properties of systems of double-diffusive convection and salt-fingering (Section

2.4.1);

2. the expected expansion of an unconditionally stable layer near a bottom seepage inflow, for230

which an analytical solution is derived in Section 2.4.2.

In all the case studies (Table 1), we applied a time step of 2 ms and a horizontal mesh size of

5 mm in radial direction. The vertical mesh size in Case 1 to Case 4 was set uniformly to 10 mm.

In the Cases 5 to 7, the vertical mesh size varied over depth. Because the processes of most interest

occurred near the bottom, the mesh size was decreasing towards the bottom (Fig. 4).235

2.4.1 Validation for double-diffusive characteristics

This subsection lists several common metrics, which we applied to quantitatively validate our sim-

ulations of double-diffusive systems with varying density gradients (Cases 1 to 4). To validate the

applicability of the standard k-ε model, we present model simulations for each of these cases both

with and without the use of the turbulence model (Sections 3.1 and 3.2).240

10



0 0.005 0.01 0.015 0.02 0.025 0.03

Cell depth (m)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

R
e

la
ti

v
e

 w
a

te
r 

d
e

p
th

 (
-)

De�ned cell depths

Cases 1 to 4 

Cases 6 and 7

Case 5

Fixed cell depth
Relative cell depth

Figure 4. Defined cell depths for the Cases 1 to 7. For plotting reasons, the vertical axis displays the depth from

the water surface relative to the local water depth. The cell depths that are defined relative to the local water

depth (as marked by *) are displayed for the average water depth in each case study.

The stability of a double-diffusive system is commonly expressed by its Turner angle Tu (Rud-

dick, 1983):

Tu= arctan

(
N2
T −N2

S

N2
T +N2

S

)
(18)

where the four quadrant arctangent function preserves the sign of the density gradients, N2
T =

−g · αV · ∂T/∂z, and N2
S = g · βV · ∂S/∂z. αV (oC−1) and βV (103 kg kg−1) are the volumet-245

ric expansion coefficients for temperature and salinity, respectively, and the z-axis is in downward

direction. A stable system occurs for |Tu|< 45o, whereas |Tu|> 90o yields a gravitationally un-

stable system. Double-diffusive convection occurs for −90o< Tu <−45o, and salt-fingering for

45o< Tu < 90o.

The expansion coefficients αV and βV are varying with temperature and salinity itself, and are250

calculated for the average salinity and temperature on the interface. We stress, however, that the

calculation of density gradients is highly sensitive to the assumed values of αV and βV . The de-

pendencies of the expansion coefficients on temperature and salinity (T (oC) and S (10−3 kg kg−1),

respectively) are derived from a linear regression to the density derivatives to T and S, where the

density is calculated according to Wright (1997):255

αV (T,S) =−2.289087 · 10−5 + 1.324960 · 10−5 · T − 9.289557 · 10−8 · T 2+

1.563400 · 10−6 · S (19)

βV (T,S) = 7.999302 · 10−4− 2.777361 · 10−6 · T + 3.190719 · 10−8 · T 2−

4.156012 · 10−7 · S (20)
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The Cases 1 and 2 concern a system with two layers of equal depth, where a cold and fresh

water layer is overlying a warm and saline water layer (Table 1). Based on the Turner angle, double-

diffusive convection is expected to occur. The onset of convection and salt and heat transport across260

the interface is induced by applying a few very small perturbations of order 10−6 oC throughout

the temperature field. Case 1 has a smaller density ratio Rρ =−N2
T /N

2
S than Case 2. Note that

articles concerning double-diffusive convection commonly define Rρ as its reciprocal, in contrast to

the common density gradient calculations for salt-finger systems. For the sake of consistency, this

article employs one definition of the density ratio (i.e., the thermal density gradient over the saline265

density gradient).

Based on the Turner angles of Case 3 and Case 4, where warm and saline water is overlying

cold and fresh water, salt-fingers are expected to occur (Table 1). Similar to the previous cases, we

slightly perturbed the temperature field on a few locations. Case 3 has a larger density ratio than

Case 4, yielding a lower salt flux over the interface (Kunze, 2003).270

An effective transport of heat and salt over the interface while maintaining a sharp interface is

expected as this is a known property of double-diffusive salt-fingers (Turner, 1965). Care should

be taken that these salt-fingers are calculated in a 2-D radial grid. Yoshida and Nagashima (2003)

pointed out that there is still a lack of knowledge about the 2-D and 3-D structures of salt-fingers

and its implications for the interpretation of 2-D numerical results.275

A clear definition of the interface location is relevant for the determination of the boundary prop-

erties and the heat and salt flux across the boundary. In each simulation, the interface location zint

is defined for each depth profile of S and T as the location of the isoscalar. The isoscalar is constant

and defined as the average value of S and T across the initial interface. Fig. 5 marks the interface

locations for Case 3 and Case 4 as the locations of the isoscalars for times t= 0 h and t= 6 h.280

The vertical saline and thermal density fluxes across the interface, Fc, are calculated on each grid

location by time differentiating the salt and heat volumes above the interface according to Carpenter

et al. (2012):

Fc =
d

d t

zint
∫
0
ρc (z)dz (21)

where ρc is the converted value of S or T to density units (i.e., ρ0βS or ρ0αT , ρ0 being the reference285

density for the average salinity and temperature at the interface).

The simulated salt and heat fluxes are compared with theoretical fluxes based on molecular diffu-

sivities and double-diffusion specific eddy diffusivities according to the equation (Carpenter et al.,

2012):

Fc;theoretical =D
dρc

dz

∣∣∣∣
zint

(22)290
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with the derivative taken at each location of the isoscalar. Since this location is usually not located

on the horizontal cell boundary, the derivative is determined by applying a weighted average to

the derivatives at the neighbouring cell boundaries. D can be either the molecular diffusivity Dmol

(Eq. 10 and Eq. 11) or an eddy diffusivity. In this article, the eddy diffusivities are only calculated

for salt diffusion by applying the following relationship with the molecular thermal diffusivity:295

Deddy;S =Dmol;T
Rρ
γ

(23)

with γ = FT / FS being ratio of the heat and salt fluxes. A large variety of theoretical equations have

been proposed for the flux ratio γ, both for salt-fingers (e.g., Stern, 1975):

γStern =Rρ− (Rρ (Rρ− 1))
1
2 (24)

and for double-diffusive convection (e.g., Kelley , 1990; Fernando, 1989):300

γKelley =

R−1ρ + 1.4
(
R−1ρ − 1

) 3
2

1 + 14
(
R−1ρ − 1

) 3
2

−1 (25)

γFernando = τ
1
2 Rρ (26)
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where the Lewis number τ =Dmol;T / Dmol;S is the ratio of the molecular thermal and saline dif-

fusivities.

For double-diffusive convection, we compare the heat fluxes also with theoretical heat fluxes as305

predicted by Kelley (1990) and Linden and Shirtcliffe (1978):

FKelleyT = 0.0032 exp
(

4.8

R−0.72ρ

) (
gD2

mol;T

ρ0ν

)1/3

ρ
4/3
T (27)

FLinden& Shirtcliffe
T =

1

(πRac)
1
3

(
1− τ− 1

2R−1ρ

) 4
3

(
1− τ− 1

2

) 1
3

(
gD2

mol;T

ρ0ν

)1/3

ρ
4/3
T (28)

with the critical Rayleigh number set to Rac = 103. In line with the common practice in this field of

study, the heat fluxes are presented as a ratio to the heat flux through a solid plane (Turner, 1973):310

FSPT = 0.085

(
gD2

mol;T

ρ0ν

)1/3

ρ
4/3
T (29)

For systems of double-diffusive convection, we calculate the evolution of the boundary layer thick-

nesses hc according to Carpenter et al. (2012):

hc =
∆ρc

∂ρc
∂z

∣∣∣
zint

(30)

where the density difference between the upper and lower layer, ∆ρc, is determined for averaged val-315

ues of c over the upper and lower quarter of its depth profile. The ratio of boundary layer thicknesses

r scales to τ by the relation r∼τ
1
5 and is expected to approach 2.5 for salt-heat systems (Carpenter

et al., 2012).

As a last validation metric for the salt-finger cases, we employ the Stern number (Stern, 1969):

St=
FT −FS

ν
(
∂ρT
∂z −

∂ρS
∂z

) (31)320

Stern suggested that the growth of salt-fingers is arrested when St reaches O(1). However, Stern

numbers have been reported varying from O(10−3) to O(102) for finger systems. Recently, Traxler

et al. (2011) reported Stern numbers St= 9.4 and St= 76 for DNS simulations with density ratios

Rρ = 2.0 and Rρ = 1.2. These density ratios are comparable to Case 3 and Case 4, allowing to

compare our results with these DNS simulations.325

2.4.2 Analytical validation of a stable inflow

The quantitative validation of an unconditionally stable bottom layer is based on an analytical so-

lution for the radial expansion this dense layer from a central inflow under laminar flow conditions
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(Case 5; Table 1). The interface expansion is described by its increasing interface radius rint over

time. When the inflow is colder and more saline than the overlying water body, the developing layer330

has different growth rates for the salinity and temperature interface (Fig. 6). This is a consequence

of the molecular heat diffusion, which is approximately 100 times larger than the diffusion of salt.

In laminar flow conditions, molecular diffusion is the main driver of heat and salt exchange in stable

layered systems.

In this quantitative case study, the central inflow has an outer radius of 0.2 m. To allow a slow335

development of the bottom layer, the inflow is placed slightly deeper compared to the rest of the

bottom, and the inflow velocity linearly increases over the first 20 minutes. The discharge over the

right outflow boundary is set equal to the inflow discharge:

Qout =Qin = win · Ain (32)

To derive the growth rates of the temperature and salinity interfaces, we consider the similarity340

solution of the heat equation for a fixed boundary concentration (Bergman et al., 2011):

c(x,t) = cin +4c · erfc

(
x√

4 · D · t

)
(33)
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where x is the distance from the interface.4c= c0−cin is the difference in concentrations (salin-

ity or temperature) between the upper water body, represented by its initial concentration, and the

inflow. The total mass M that has crossed the interface is found by integration of Equation 33 over345

x= 0→∞, and multiplication the growing interface surface Aint:

M(t) =Aint ·
∞
∫
0

(c− cin)dx=Aint · ∆c ·
∞
∫
0

erfc

(
x√

4 · D · t

)
dx=Aint · ∆c ·

√
4 · D · t
π

(34)

Derivation over time results in the time dependent mass flux over the interface:

Φint (t) =
dM

dt
=4c ·

√
D · t
π
·
(

2 · dAint
dt

+
Aint
t

)
(35)

With Aint = πr2int, and assuming that the interface surface increases linearly with time at a con-350

stant inflow, we can rewrite:

rint (t) =

√
Φint

3 · 4c
·
√

t

D · π
(36)

We assume that no mass is stored in the lower layer. Consequently, the mass flux that crosses the

interface is equal to the net mass flux into the domain Φin−Φout ≈ win · Ain · (cin− c0):

rint (t) =

√
win · Ain

3
·
√

t

D · π
(37)355

This equation can be used to validate the interface growth of both the salinity and temperature

interface in the case of laminar flow.

2.4.3 Validation for double-diffusive characteristics

The Cases 6 and 7 represent seepage inflows similar to the ones for which this modelling approach

is developed. A dual-layered system is built up by a central inflow through the bottom with an outer360

radius of 0.25 m (Table 1). The inflow velocity win is built up linearly over the first 10 minutes to

prevent a sudden pressure wave at t= 0. Like Case 5, the average water level is kept constant by a

uniform outflow with the same discharge over the right, outer boundary. Based on the Turner angle, a

system with double-diffusive convection is expected to build up in Case 6, whereas a gravitationally

unstable system is expected to develop in Case 7.365
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saline water (t = 4500 s since the start), with density ratios of a)Rρ = 0.15 (Case 1), and b)Rρ = 0.50 (Case 2).

All figures represent simulations without the use of a turbulence model.

3 Results and discussion

The performance of the numerical framework was tested in several case studies subject to double-

diffusive processes. The numerical results of these case studies and the extended SWASH code are

presented in Hilgersom et al. (2017).

3.1 Case 1 and 2: Double-diffusive convection370

The temperature and salinity gradients in the Cases 1 and 2 yield a theoretical onset of double-

diffusive convection, with respective Turner angles of -53.3o and -71.6o. The numerical results con-

firm that a layered system is maintained, bordered by a thin boundary layer from which unstable

plumes emerge (Fig. 7). These are clear characteristics of double-diffusive convection.

The boundary layer thickness ratio r is expected to be ∼2.5. Fig. 8 shows that none of the simula-375

tions for Case 1 and 2 reach this value of r. For Case 1, the simulation without the aid of a turbulence

model reaches the highest value of r, although this ratio starts to decrease again 3.5 h after the start.

The fact that the expected values of r are not reached during the simulations seems in line, though,

with Carpenter et al. (2012), who presented the evolution of r in 3-D DNS simulations of a salt-heat
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turbulence model. The filled arrows mark clear drops of r, and the open arrow marks the moment that r starts

its further increase in the direction of the theoretical interface ratio r ≈ 2.5 in the simulation of Case 1 without

a turbulence model.

system. They found that the salinity field in their simulation was not well resolved over the first380

14 h. Only after this first period of high turbulence, the boundary layer thickness ratio approaches

and remains its expected value.

Regarding the tendency to reach a steady state step by step by building up a system with a stable

boundary layer, our findings for Case 1 with a turbulence model seem more alarming. Here, r falls

back to a value of 1.18 after its first increase and remains this value afterwards. The fact that the385

simulation does not tend to a system with a higher value of r afterwards, might indicate that the

standard k-ε model does not function for systems with high density gradients.

The simulations for Cases 2 also show an initial increase of r, followed by one or more drops.

The density ratio Rρ = 0.50 indicates a mere turbulent system. In this sense, it is expected that

the boundary layers do not develop easily. Here, the simulation with a turbulence model seems390

to develop r as expected over the first 1.5 h. However, the ratio drops to values below r = 1.2

afterwards.

The poor performance of the standard k-ε model also appears from the exaggerated salt and heat

fluxes for Case 1 (Figure 9b) compared to the simulation without the turbulence model (Figure 9a).

In the latter simulation, the heat transport over the interface appears to follow the theoretical heat395

transport as predicted from the molecular heat diffusion. Based on the flux ratio equations by Kelley

(1990) and Fernando (1989) (Eq. 25 and Eq. 26), we expect that the salt transport across the interface

is lower than the heat transport. Initially, this is not the case (Figure 9a), but the salt flux approaches

the values predicted by Fernando (1989) after 110 (min). This moment coincides with the moment
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Figure 9. Time evolution of the salt (red) and temperature fluxes (blue) over the interface forRρ = 0.15 (Case 1,

left) andRρ = 0.50 (Case 2, right), and for a) the simulations without a turbulence model and b) the simulations

with a turbulence model. The fluxes represent horizontal averages throughout the complete domain. The figures

also present theoretical fluxes over the interface, which were calculated from molecular and double-diffusive

diffusivities, as well as their uncertainty bounds for horizontal variations in density gradients at the interface.

that r starts a sharp increase in Fig. 8. In general, the salt flux has expected lower values than the400

heat flux over the period that the ratio r is highest.

The ratio of the simulated heat fluxes to the 4/3 flux law (Eq. 27 to 29), shows a similar jump after

110 min (Fig. 10). From this moment, the simulated heat flux in Case 1 without a turbulence model

temporarily approaches the predicted heat flux of Kelley (1990) and Linden and Shirtcliffe (1978).

Again, a similar tendency is not visible for the simulation with a turbulence model, confirming that405

the standard k-ε model suppresses the onset of double-diffusive convection.

In line with the expectations for turbulent flows, the simulations for Case 2 show a large variation

in heat and salt transport (Fig. 9). The simulations with and without a turbulence model both display

a heat flux that is variably higher and lower than the salt flux, but displays the same pattern. Theoret-
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ically, the ratio of the turbulent heat and salt fluxes across the boundary approaches τ
1
2 (Fernando,410

1989) as Rρ approaches unity.

The dissimilar behaviour of our simulation with a turbulence model can be explained by the em-

ployed eddy diffusivities which have similar values for salt and heat diffusion (note that the turbulent

Prandtl and Schmidt number have similar values). These eddy diffusivities were not employed in the

simulation without a turbulence model, which indicates that the similar heat and salt transport across415

the interface is caused by turbulent mixing through this interface. We refer to Section 3.6 for a further

discussion on this in light of the employed standard k-ε model.

3.2 Case 3 and 4: Salt-fingers

The numerical results for Case 3 (Tu= 71.2o) and Case 4 (Tu= 85.0o) confirm that salt-fingers

are formed over the interface (Fig. 11). Based on the difference in density ratios, the salt-fingers420

in Case 4 are expected to transport more salt and heat than Case 3 (Section 2.4). Fig. 5 shows an

interface rise of about 0.04 m in Case 3 and 0.13 m in Case 4 over a numerical model run of 6 h.

Given the system of closed boundaries, we therefore find a significantly larger transport over the

interface in Case 4.
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Figure 11. Salt-fingering in a layered system with a warm and saline water on top of a cold and fresh layer (t

= 4500 s since the start), with density ratios of a) Rρ = 2.04 (Case 3), and b) Rρ = 1.19 (Case 4). All figures

represent simulations without the use of a turbulence model.

Similar to the Cases 1 and 2 (Fig. 9), we calculated the salt and heat fluxes across the interface425

for Case 3 and Case 4. For these cases, however, we only report the simulated flux ratios γsim of

the heat and salt fluxes (Fig. 12). For salt-fingers, flux ratios lower than unity are expected from

Eq. 24. From our simulations, however, we find flux ratios higher than unity. These flux ratios are

more in line with oceanic values where turbulent values of γ can approach 1.6 (Kunze, 2003). Over

the simulated 6 hours, the flux ratios show a decreasing tendency. However, particularly for the mere430

turbulent Case 3, we observe sudden upward jumps in the flux ratios, preventing the flux ratios to

reach consistent values below unity over the course of the simulations. Based on these results, we

hypothesize a settling of the system with more constant low flux ratios on the long run.

Based on a 3-D DNS model, Traxler et al. (2011) found Stern numbers St= 9.4 and St= 76

for Rρ = 2.0 and Rρ = 1.2, respectively. Our simulations for Rρ = 2.04 (Case 3) and Rρ = 1.19435

(Case 4) yield lower Stern numbers: on average approximately 0.73 and 1.95, respectively (Fig. 13).

One reason for the lower values could be found in the fact that our model simulates salt and heat

transport in two dimensions: Traxler et al. (2011) reported a Stern number of approximately 3.5 in

2-DV simulations for Rρ = 2.0. Although our simulations yield even lower Stern numbers, values

around St= 1 are not uncommon for salt-finger systems.440
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Figure 12. The evolution of flux ratios over time forRρ = 2.04 (Case 3, green) andRρ = 1.19 (Case 4, brown).

Continuous lines mark the simulations without a turbulence model, and dotted lines marks the simulations with

a turbulence model. The black lines mark the temporal averages for each simulation.

3.3 Case 5: Radial expansion of a dense water layer

The analytical solution for the radial expansion of inflowing cold and saline water (Equation 37)

holds for a situation with laminar flow. Given the geometric properties of the conceptualized situ-

ation and the initially very thin layer of dense water, it is difficult to define the inflow properties

so that the flow near the inflow is immediately laminar. For the selected inflow parameters (Ta-445

ble 1), laminarisation of the flow appears to occur after approximately 1700 s (Fig. 14). From that

moment, the numerical results show significant differences between the salinity and temperature in-

terface growth. The analytical results are therefore shifted in time to match the interface radii with

the numerical results at the moment that the flow becomes laminar.

Accounting for a purely molecular diffusion, the numerical results show a fair agreement with the450

analytical results. As we found some small occasional eddies occurring after t = 1700 s, we also

plotted results analytical results assuming the diffusivity was on average for 0.2 % influenced by

turbulent diffusion. Here, the turbulent diffusion was calculated by dividing an assumed kinematic

viscosity ν = 10−6 m2s−1 by the Prandtl-Schmidt number (Equations 8 and 9. The assumption of a

slight influence of turbulence diffusion shows a better agreement with the numerical results.455

One critical note here is the sensitivity of the interface growth to the definition of the interface

location. Similar to the previous cases, we defined the interface location halfway the step change
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Figure 13. The evolution of the Stern numbers over time forRρ = 2.04 (Case 3, green) andRρ = 1.19 (Case 4,

brown). Continuous lines mark the simulations without a turbulence model, and dotted lines marks the simula-

tions with a turbulence model. The black lines mark the temporal averages for each simulation.

between the inflow concentration (Tin and Sin) and the concentration of the water body (T0 and

S0), because this matches our visual interpretation of the interface in the numerical results. However,

selecting the interface at a larger percentage of the step change significantly increases the growth,460

and makes the numerical and analytical results incomparable.

3.4 Case 6: Inflow yielding double-diffusive convection

The temperature and salinity gradients in Case 6 yield the onset of double-diffusive convection.

Like the Cases 1 to 4, a sharp interface develops over which salt and heat is transported by diffusion.

Fig. 15 confirms the development of a salt-heat interface and a convective layer above the boil. Other465

convective cells further transport the salt and heat above the interface. Fig. 15 shows that already a

considerable amount of heat and salt was conveyed to the upper layer over the first 1.5 h. The lower

convective layer slowly builds up, and local eddies clearly counteract the development when the

lower convective layer is still thin.

3.5 Case 7: Gravitationally unstable inflow470

Compared to Case 6, a slightly altered inflow temperature and salinity in Case 7 theoretically makes

the developing layer gravitationally unstable (Table 1). In other words, the water body itself is denser
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Figure 16. Unstable system (Case 7) with denser cold and fresh water on top of a warm and saline inflow

(t= 5400 s since the start). The inflowing water flows upward through the centre, independent of the inflow

velocity.

than the inflowing water, which consequently flows upwards. The numerical results confirm the onset

of a central buoyant flow above the inflow (Fig. 16).

Interestingly, plumes develop from the upward flow. Downward plumes are also visible below the475

floating warm and saline water. Like the salt-fingers in Case 3 and 4, where warm and saline water

also overlaid cold and fresh water, this is a mechanism to dissipate the heat and salt gradients.

3.6 Turbulence model

In the previous subsections, we found that the standard k-ε model performed insufficiently accurate

for predicting production and dissipation of turbulence. This subsection briefly discusses the per-480

formances of the turbulence model and future prospects for a relatively simple improvement of the

model.

In Section 3.1, we found a similar heat and salt transport across the interface that was likely

caused by turbulent mixing at the interface. Following this hypothesis, the RANS model apparently

requires a turbulence model that suppresses the turbulence across the interface, but predicts the onset485

of turbulence in the unstable regions near the interface. This is a known defect of the standard k-ε

model, which does not account for buoyancy effects near strong density gradients. Section 3.3 also

stressed the importance of a right timing on which turbulence is modelled when flows are variably

laminar and turbulent.

More advanced turbulence models have been developed for systems with large density gradients490

(e.g., Venayagamoorthy, 2003; Paik et al., 2009). Toffolon et al. (2015) recently showed how a mini-

mal model with two parameters is already able to characterize differences in transport between sharp

interfaces and unstable regions in a thermohaline staircase. Extending the k-εmodel of SWASH with

a parametrization that accounts for these distinct regions could yield a large improvement in properly
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representing turbulence on proper locations and times. With such an advanced turbulence model, the495

largest improvements are expected when Rρ approaches unity, as a good turbulence model becomes

increasingly important for these density gradients.

4 Conclusions

This article reports the successful derivation of an axisymmetric framework for a hydrodynamic

model incorporating salt and heat transport. This model set-up allows to efficiently calculate salt and500

heat transport whenever a situation is modelled that can be approximated by axisymmetry around a

central location. The 2-D axisymmetric grid description demands approximately the same execution

time as a regular 2-DV description with the same dense mesh, and therefore avoids the need to solve

the equations over a dense mesh in the third spatial dimension.

For our purpose of studying shallow water bodies, three aspects were important: 1) the inclusion of505

a free surface, 2) the efficient solution of a circular seepage inflow, which makes the problem three-

dimensional, and 3) a proper simulation of density driven flow and double-diffusivity driven salt and

heat transport. The former aspect was already fulfilled by employing the SWASH framework.

The second aspect was solved by assuming axisymmetry for the Reynolds-averaged Navier-Stokes

equation in cylindrical coordinates. The derived numerical framework is presented as a Cartesian 2-510

DV description with few additional terms and width compensation factors. Our implementation of

these terms in the non-hydrostatic SWASH model demonstrates the opportunity to easily extend a

2-DV model towards the presented 2-D axisymmetric model.

The third aspect was fulfilled by extending SWASH with a new density and diffusivity module.

The case studies demonstrate explainable behaviour for density driven flow and double-diffusivity515

driven salt and heat transport. The formation of convective layers and salt-fingers themselves are in

accordance with the theory of double-diffusivity, as well as the enhanced salt and heat fluxes across

the interface for density gradients approaching unity. Other validation metrics show that the RANS

model does not meet the expected flux ratios and stability criteria in all cases, which is hypothesized

to be caused by a defective turbulence modelling for systems of large density gradients. Replacing520

the standard k-ε model by an advanced turbulence model might improve the results for these merely

turbulent cases.

An analytic validation method was presented to evaluate the model’s performance for a cold and

saline inflow developing a dense water layer near the bottom. For laminar flow conditions, the nu-

merical model showed a similar radial expansion of the bottom layer as expected from analytical525

results.

Although the model is already able to show expected behaviour in the double-diffusive regime, we

recommend a further exploration of its limitations and possibilities. For example, a grid convergence

study should indicate whether the selected mesh size yields a convergence of results for all diffusion
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and advection dominated cases. Further, a nearer comparison with DNS model results would support530

the validation of the model. In future applications, we stress that this model approach should be

employed as a RANS model that simulates thermohaline stratification processes on a larger scale.

As such, the model can be favourable in applications that allow an axisymmetric approach.

Data availability

The model data for the five case studies and the extended SWASH code are accessible on doi:10.4121/uuid:95227d5d-535

2cf0-44ec-ab2d-705a626dcdf4 (Hilgersom et al., 2017).

Appendix A: Cell depth integration with the Leibniz integral rule

When the continuity, momentum and transport equations are integrated over the cell depth, the Leib-

niz integral rule is applied to the time derivatives and the horizontal spatial derivatives. Here, we

show the cell depth integration of ∂u∂t and ∂uu
∂r :540
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The derivatives ∂ur∂r , ∂w∂t , ∂uw∂r , ∂p∂r , ∂c∂t , and ∂c
∂r in Equations 1, 2, 3, and 7 are integrated in a similar

fashion.
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Appendix B: Full discretizations545
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B3 Transport equation550
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