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Abstract.

Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified

representations of complex dynamical interactions, which are described by many (≈ 10−≈ 100) parameters. The values of

many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for

a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to5

determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for

their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible

environmental changes.

We here present a framework for the calibration of global biogeochemical ocean models on short and long time scales. The

framework combines an offline approach for transport of biogeochemical tracers with an Estimation of Distribution Algorithm10

(Covariance Matrix Adaption Evolution Strategy, CMA-ES). We explore the performance and capability of this framework by

five different optimizations of six biogeochemical parameters of a global biogeochemical model, simulated over 3000 years.

First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of observations

of annual mean dissolved nutrients and oxygen determine the extent, to which different setups of the optimization influence

model fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of inorganic15

biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the least

spread. Parameters more closely tied to surface biology, which act on shorter time scales, are more difficult to determine. In

particular the search for optimum zooplankton parameters can benefit from a sound knowledge of maximum and minimum

parameter values, leading to a more efficient optimization. It is encouraging that, although the misfit function does not contain

any direct information about biogeochemical turnover, the optimized models nevertheless provide a better fit to observed global20

biogeochemical fluxes.

1 Introduction

Global ocean models that simulate biogeochemical interactions are subject to many uncertainties, among them those related to

initial conditions, forcing, and parameterizations of physical and biological processes, as well as the adequacy of the chosen
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model complexity with respect to the scientific problem under investigation. It is generally assumed that all these ’input’ factors

affect the simulation results in ways that may be different for different models, but a thorough understanding of how uncer-

tainties in input map onto model output (residuals, i.e., deviations from the true state) is still lacking. Quantitative estimates

of the effect of model uncertainty on model residuals are generally obtained from individual sensitivity studies, model inter-

comparison or model ensemble studies, where the spread of model results is regarded as a measure of model uncertainty. This5

procedure is, for example, followed in the assessment reports of the Intergovernmental Project of Climate Change (IPCC). The

Ocean Carbon Model Intercomparison Project (OCMIP) applied a strict protocol regarding the description of biogeochemical

processes to a suite of different ocean circulation models to show that the effect of uncertainties in the simulated circulation on

biogeochemical tracer distributions and their residuals can be considerable (Orr et al., 2001; Najjar et al., 2007). However, the

effect of uncertainties in the formulation of biogeochemical models on simulated biogeochemical tracers and fluxes can be of10

similar magnitude (Kriest et al., 2010) and is often difficult to disentangle from other sources of uncertainty (e.g., Cabre et al.,

2015; Seferian et al., 2016). One reason for diverging results of global biogeochemical models can be related to the uncertainty

with respect to biological constants and equations. In addition to often poorly constrained parameters, it is, so far, not even

clear how complex a biogeochemical model should be (e.g. what state variables it should contain) in order to realistically

reproduce observed global tracer distributions (Kriest et al., 2012). As a consequence, the diversity of biogeochemical models15

ranges from simple, “nutrient-only” models to far more complex ones, comprising different elemental cycles and biological

components.

Uncertainties in biogeochemical model setup partly arise from sparse observations, particularly in the open ocean and during

winter season in the high latitudes (Kriest et al., 2010). Further, the combined effects of shallow and deep biogeochemistry and

ocean circulation introduce a variety of timescales, from minutes to millennia, hampering a complete and thorough investigation20

of the combined effects of the different process parameterizations. Finally, even quite simple biogeochemical models are often

characterized by non-linear interactions, complicating the a posteriori analysis of model results. By performing a relatively

“coarse sweep“ of the multidimensional model parameter space, Kriest et al. (2010, 2012) illustrated the impact of different

model complexities and parameter sets on simulated tracers and their fit to observations. This first attempt to systematically

explore the impacts of biogeochemical parameter uncertainty in global models may well have missed optimal regions in25

parameter space, making it difficult to decide whether a model performs badly due to ill-chosen parameters, or due to an

inappropriate model structure. The development of automatic optimization of global ocean biogeochemical models that is the

goal of this study should enable a more thorough search for “best” parameters, and thus facilitate inter-model comparison.

An under-sampled ocean, together with a large variety of time and space scales and a high level of structural model com-

plexity, poses a challenge for optimization, and for a full, and dense enough, scan of the parameter space on a global scale.30

Therefore, optimization of marine biogeochemical models has mostly been carried out in a local, 0- or 1-dimensional setting

(e.g., Fasham and Evans, 1995; Athias et al., 2000; Rückelt et al., 2010; Ward et al., 2010). The variability of biogeochemical

processes has been addressed by simultaneous optimization at different sites (and physical forcings) in the North Atlantic by

Schartau and Oschlies (2003a, b). Given the high computational demands, and the sparsity of biogeochemical data on a global

scale, attempts to address the indeterminacy of global simulations of ocean biogeochemistry via optimization have resorted to35
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rather simple biogeochemical systems (Kwon and Primeau, 2006, 2008) or to rather coarse physical model resolution (Tjiputra

et al., 2007). To constrain parameters related to dissolved organic matter production and decay on short and long time scales,

Letscher et al. (2015) alternated between a simplified biogeochemical system and a more complex model, which is limited in

terms of spin-up time. Recent attempts begin to combine complex, local models and a detailed three-dimensional global envi-

ronment for optimization (Hemmings et al., 2014). To our knowledge, however, the experiments presented here are the first one5

that, for a state-of-the-art global biogeochemical ocean model, carry out a parameter optimization that targets at parameters

relevant for biogeochemical processes on both large and small scales in the full spatio-temporal domain.

In this paper we first test the global biogeochemical model optimization against synthetic data, derived from a previous

model experiment with perturbed model parameters in so-called twin experiments. We then present four optimizations against

a global, synoptic data set of observed phosphate, nitrate, and oxygen.10

2 Methods

2.1 Biogeochemical ocean model

2.1.1 Circulation framework

For easy and generic coupling between different biogeochemical models and circulation fields, as well as fast and efficient

computation we use the “Transport Matrix Method” (TMM), developed by Samar Khatiwala (Khatiwala, 2007), and available15

via Github (https://github.com/samarkhatiwala/tmm). This efficient “offline” method for ocean passive tracer

transport represents advection and mixing in the form of transport matrices that have been calculated from an ocean circulation

model simulation prior to the biogeochemical simulations performed here.

For optimization, we use the TMM with monthly mean transport matrices derived from a 2.8◦ global configuration of the

MIT ocean model with 15 levels in the vertical (Marshall et al., 1997). Using this rather coarse spatial grid, a time step length of20

1/2 day for tracer transport and 1/16 day for biogeochemical interactions, each biogeochemical model setup with seven tracers

has been simulated for 3000 years, after which most of the tracers approach steady state.

2.1.2 Biogeochemical model

The biogeochemical model employed as representative of current state-of-the-art models is the same as presented by Kriest

and Oschlies (2015, hereafter called MOPS - Model of Oceanic Pelagic Stoichiometry), and we only describe it briefly here.25

Based on phosphorus, it consists of seven tracers, namely phosphate, dissolved inorganic nitrogen (hereafter termed and com-

pared to nitrate), phytoplankton, zooplankton, detritus, dissolved organic matter (DOM) and oxygen. For conversion between

the different elements we apply a constant global stoichiometry of R−O2:P =170 mmol O2:mmol P for the ratio between

O2:P, and 16 mmol N:mmol P for the N:P ratio of particular and dissolved organic matter. The stoichiometry of aerobic and

anaerobic remineralization is based on Paulmier et al. (2009). Remineralization of detritus and DOM is parameterized via a30

constant nominal remineralization rate, r = 0.05 [d−1]. However, aerobic remineralization is restricted to regions with suffi-
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cient oxygen. If oxygen declines, nitrate is used as electron acceptor, thereby mimicking denitrification. If both oxygen and

nitrate are depleted, remineralization of organic matter is suppressed in the model. Aerobic and anaerobic remineralization

are parameterized as saturation (Monod-type) curves that regulate the rates of these processes using either oxidant, as well

as the inhibition of denitrification by oxygen. Thus, the actual remineralization rate may differ from r, depending on oxidant

availability. Temperature dependent nitrogen fixation resupplies fixed nitrogen lost through denitrification via relaxation at the5

sea surface to the stoichiometric ratio of 16. Thus, while total phosphate inventory is conserved, oxygen and fixed nitrogen

inventory may change during the course of the simulation, with the long-term, steady state inventory depending on physics and

biogeochemistry (Kriest and Oschlies, 2015).

Sinking of detritus is simulated using a sinking speed increasing with depth w = az [d−1]. Assuming constant remineral-

ization rate r, equilibrium conditions and absence of horizontal or vertical advection, this would result in a particle flux profile10

defined by F (z)∝ z−b , where b= r/a (see also Kriest and Oschlies, 2008). For better comparison to observed particle flux

profiles (e.g., Martin et al., 1987), in the following we express the sinking speed via the parameter b= r/a (see Kriest and

Oschlies, 2008). The model also includes burial of particulate organic phosphorus and nitrogen arriving at the sea floor, which

is resupplied globally as phosphate and nitrate via river runoff (Kriest and Oschlies, 2013).

Simulating both surface (primary production, grazing, egestion and excretion by zooplankton) as well as deep (sinking and15

decay of organic matter) processes before the background of ocean circulation and seasonally varying forcing, the model thus

encompasses processes that act on a variety of time scales, from the order of hours to days (surface) to months and years.

2.2 The optimization algorithm CMA-ES

2.2.1 Population-based search heuristics

The TMM as described above is fast enough to be used together with meta-heuristic methods for parameter optimization, such20

as Evolutionary Algorithms (EAs) or Estimation of Distribution Algorithms (EDAs). Although these methods require more

function evaluations to converge to some local optimum than gradient-based methods, they are of advantage in complicated,

irregular “search landscapes” with local optima (which might be far worse than the global optimum), or discontinuities.

The common goal of such population-based meta heuristics is to strike a good balance of both search properties, exploration

(search for promising solutions in a wide area of the search space) and exploitation (search within small regions around good25

solutions to fast reach local optima). Classical evolutionary algorithms as depicted on the left of Fig. 1 mimic principles

of natural evolution to pursue that goal. They use randomized procedures to select, combine, mutate and reinsert candidate

solutions (individuals) from/into a given solution set (population). In each iteration, these mechanisms (red operations in

Fig. 1) indirectly imply a probability distribution on the search space with respect to which individuals are likely to appear in

the next “generation”. The implied probability distribution changes in each generation, tending to increase the probabilities of30

good solutions and to decrease the probabilities of poor solutions due to the survival-of-the-fittest principle.

In contrast to classical EAs, estimation of distribution algorithms (sketched on the right of Fig. 1) use an explicit (pa-

rameterized) probability distribution from which candidate solutions are sampled, directly. In each iteration, the probability
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distribution is also updated directly by utilizing good solutions of the current iteration. Good solutions of preceding iterations

are (optionally) considered by involving preceding probability distributions into the update process using auxiliary variables.

Evolutionary frameworks use operators (EAs) and probability distributions (EDAs) that are appropriate for the search space

under consideration. For example, so called quantum inspired evolutionary algorithms (QiEA) have shown to be very suitable

EDAs for binary problems (e.g. Kliemann et al., 2013; Patvardhan et al., 2015, 2016). QiEA versions for continuous problems5

have also been investigated in the literature (Babu et al., 2009).

Here we use a state-of-the-art EDA for optimization of (firstly) six parameters. Our task can be classified as a continuous

optimization problem with bound-constraints, i.e. boundaries for the parameters. One appropriate EA/EDA tool is the Covari-

ance Matrix Adaption Evolution Strategy (CMA-ES; Hansen and Ostermeier, 2001; Hansen, 2006), which has shown good

performance with respect to quality and efficiency (in terms of function evaluations) in similar applications. Hansen et al.10

(2010) compare 31 algorithms on a test bed of 24 continuous benchmark functions presented in Hansen et al. (2009a), finding

CMA-ES versions to perform well, particularly on multi-modal test functions. CMA-ES is invariant regarding both order pre-

serving transformations of the objective function and rotations and translations of the search space. Invariances of a strategy

justify generalizations of empirical results, which encouraged us to choose CMA-ES for our application.

We essentially follow the description of the (µ/µw,λ)-CMA-ES in Hansen (2016). In Subsubsection 2.2.2, we illustrate15

how the distribution is sampled and modified. For the sake of completeness, we present the guiding ideas behind the exact

procedures in Subsubsections 2.2.3 - 2.2.6. The algorithm outline can be found in 2.3. This basic version does not consider

bound constraints. We therefore use a penalty function based boundary handling (Hansen et al., 2009b) which we will briefly

explain in Subsubsection 2.2.7

2.2.2 Normal distributions20

In CMA-ES the distribution from which candidate solutions (BGC parameter vectors in our application) are sampled is a

multi-variate normal-distribution. It generalizes the usual normal distribution, also known as Gaussian distribution, from R

to the vector space Rn with arbitrary dimension n, given by the number of biogeochemical parameters to be estimated. The

position and the shape of the one-dimensional normal distribution (more precisely, its density function) is uniquely defined by

its mean and its variance, respectively.25

A measure of “diversity” of a probability distribution is the so called (differential) entropy. For a given variance, the normal

distribution has the maximum entropy amongst all distributions with the same variance (Cover and Thomas, 2006; Hansen,

2016). Entropy is used as an index of diversity, though it does not directly mean the same as diversity (Jost, 2006).

An EDA that works with Gaussian distributions is supposed to carefully update both defining distribution parameters mean

and variance, in order to balance its exploration and exploitation ability. This update process is illustrated in Fig. 2. The left30

side shows a run of the CMA-ES algorithm on a uni-variate test function ( a misuse to some degree, as CMA-ES is actually

not suggested to be applied with problem dimensions less than 5). The test function has many local optima in which a gradient

based search might get stuck. From the distributions (the blue density functions), we draw 10 samples per iteration
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(some samples more than the suggested default number, which depends on the problem dimension, cf. Subsubsection 2.3.1).

Each sample together with its function value is marked with a dot. The distribution is updated by involving the better half

(CMA-ES default portion) of the samples (blue dots). Drawing more samples per iteration generally improves the exploration

capability of the algorithm but requires correspondingly more function evaluations. We can observe that the mean of the

distribution is attracted towards the good samples, then. Also, the distribution shape widens, after good samples had some5

distance to each other and/or some distance to the current mean. Vice versa, if all good samples are close to the mean, the

shape will narrow, again. Now, the mean of the distribution is supposed to drift towards the global optimum and should then

start to narrow more and more. This behavior is observed in iterations 16, 22 and 28. So, when necessary, the procedure is

supposed to become less exploring but more exploiting.

Similarly to the definition of the uni-variate Gaussian distribution by mean and variance, a multi-variate normal-distribution10

can be uniquely identified by a mean vector x and a positive definite matrix C of covariances, respectively, and is denoted by

N (x,C). Again, the mean defines the center of the distribution while the covariance matrix defines its shape. The area of one

standard deviation which is an interval [x−σ,x+σ] in the one-dimensional case becomes an n-dimensional ellipsoid, now

(cf. the ellipses on the right side of Fig. 2 for n= 2). It can be shown that the principal axes of the ellipsoid correspond to C’s

eigenvalues and eigenvectors, respectively. More precisely, an eigenvector defines the orientation of a principal axis and the15

square root of the corresponding eigenvalue defines the length of that principal axis.

2.2.3 Sampling the distribution

Sampling a multi-variate normal distribution N (x,C) can be practically implemented using an eigendecomposition C=

BD2BT, where D2 is a diagonal matrix of eigenvalues of C and B is a matrix of corresponding orthonormal eigenvectors of

C. One sample x ∈ Rn of N (x,C) can be realized by drawing n independent random numbers from the uni-variate standard20

normal distribution N (0,1) to be the components of a random vector z ∈ Rn and setting x= x+BDz.

Note, that for our problem there are bound constraints on the parameters such that samples of a normal distribution might

be infeasible, regardless of whether the distribution mean is feasible or not. However, a boundary handling procedure (see

Subsubsection 2.2.7) will ensure that the optimization result of CMA-ES is feasible.

2.2.4 Updating the distribution: basic principle25

Empirical (re)estimates xemp and Cemp of the distribution parameters can be calculated from a set S = {x1, . . . ,xλ} of λ

samples, such that the expectation of xemp is x and the expectation of Cemp is C:

xemp =
1

λ

λ∑
i=1

xi

Cemp =
1

λ− 1

λ∑
i=1

(xi−xemp)(xi−xemp)
T.
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Note, that each vector v is this work is a column vector and its transposed vector vT is a row vector. The products under the30

sum in the second formula are therefore n-by-n matrices.

Clearly, the estimates become the more reliable the larger λ is. We may assume that the population S is increasingly ordered

(ranked) with respect to the considered objective function f : Rn −→ R, that is f(x1)≤ f(x2) · · · ≤ f(xλ). Now, by involving

only the better half of µ= bλ2 c samples, their distribution estimateN (xµ,Cµ) with corresponding parameters xµ and Cµ will

be biased towards reproducing that µ samples with higher probability than the other λ−µ samples. CMA-ES uses positive5

values w1 ≥ w2 ≥ ·· · ≥ wµ with
∑n
i=1wi = 1 to give solutions a rank dependent weight in the updating process of both, xµ

and Cµ. The exact CMA-ES formula for the w-values and information about its background is found in Subsubsection 2.3.1.

The new mean is, thus, calculated as xµ =
∑µ
i=1wixi. A subtlety is the choice of the reference mean value used for estimating

Cµ. Instead of the new empirical mean xµ, the mean x of the former distribution is chosen and yields

Cµ =

µ∑
i=1

wi(xi−x)(xi−x)T. (1)10

It has the effect that the new distribution is elongated into directions of descent (see iteration 2 in the right example of Fig. 2).

2.2.5 Updating the distribution: reliability with small populations

As mentioned above, reliable distribution estimates require a sufficiently large number of samples. But, for a competitive com-

putational performance we must get along with a rather small number of samples. CMA-ES therefore involves the information

of former populations by updating the covariance matrix C to be a (convex) combination of both the current C and its estimate15

Cµ, that is

C ← (1− cµ)C+ cµCµ. (2)

Using this formula, it can be shown that 37% of the current matrix C’s information dates back at least b 1
cµ
c generations, that is,

the choice of the smoothing factor cµ decides about the backward time horizon of the update procedure. The smaller the factor

cµ in (2) is the more former samples contribute to the current distribution estimate, slowing down learning but being more20

reliable with less samples per iteration. For example, the experiments in this paper use n= 6 parameters and λ= 10 samples

per generation. Using (2) to update C and the (compromise) cµ value defined for CMA-ES (see Table 1), the samples of the

last 23 iterations would contribute roughly 63% of the over all information in C.

Another feature that facilitates small population sizes λ is to calculate and update a vector pc that represents iteration

averaged changes of the distribution mean and to use pc for a so called rank-one estimate C1 = pcp
T
c of the covariance matrix.25

The idea behind this approach is that, using Cµ, distribution elongations into directions of descent do not distinguish for

the sign of the directions. The use of the vector pc (called evolution path) mitigates this effect. Consecutive changes of the

distribution mean into opposite directions would cancel out each other. Similar to the smoothing with factor cµ in the update

of C, above, the update of pc is done with a smoothing factor cc. With a further smoothing factor c1 for the rank-one estimate

C1, the combined covariance matrix update reads30

C ← (1− cµ− c1)C+ cµCµ+ c1C1.
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While Cµ efficiently involves information from the current population into the update process, C1 exploits correlations be-

tween generations. The former is important in large populations, the latter is particularly important in small populations.

2.2.6 Step size control

Finally, there is an additional explicit adaption of the over all scale (the step size) of the distribution by adapting a scaling

factor σ, actually using N (x,σ2C) instead of N (x,C). Similar to the evolution path pc for the rank-one covariance matrix

estimates above, the adaption of the scale σ involves an evolution path pσ that mirrors cumulative changes of the mean. The5

difference between the update formulas of both evolution paths pσ and pc is that for pσ each change is re-scaled (normalized)

with respect to the isotropic normal distribution N (0,I). Since covariances are always re-estimated with respect to the mean

of the former iteration (cf. equation (1)) the expected normalized change of the distribution mean per iteration is therefore the

expected length of a sample of N (0,I), which is

χ := E
(
‖N (0,I)‖

)
≈
√
n(1− 1

4n
+

1

21n2
).10

Now, a rather small length ‖pσ‖ compared to χ indicates that consecutive normalized moves of the mean canceled each other

out, meaning that the overall scale of the distribution should be reduced with σ. Vice versa, an evolution path pσ longer than χ

indicates consecutive distribution drifts into correlated directions which justifies a larger overall scale of the distribution.

2.2.7 Boundary handling

In order to consider boundary constraints we use the procedure proposed in Hansen et al. (2009b, Section IV B) for CMA-ES.15

It applies if the distribution mean runs out of bounds. In this case, the fitness of an infeasible sample x becomes the sum of the

fitness of its closest feasible point xfeas and a weighted quadratic penalty function of its distance ‖x−xfeas‖ to the feasible

box (to xfeas). Feasible samples are not penalized, i.e., the penalty function is 0 within the feasible box. Thus, the minimum of

the sum of the actual fitness function and the penalty function is taken inside the feasible box or on its boundary. The quadratic

penalty function has coordinate-wise weights γi
ξi

, where ξi scales the out of bounds distance in the i-th coordinate with regard20

to the shape of the current distribution. The γi are suitably initialized with the range of former (unpenalized) objective function

values and is multiplied with a constant > 1 in every iteration in which xi is more than 3 standard deviations off its bounds.

In our implementation of CMA-ES, the feasible box we operate on is the unit cube [0,1]n ⊆ Rn. The samples are then

linearly transformed (encoded) with respect to the actual bound constraints before evaluating the objective (misfit) function.

2.3 Implementation of the optimization algorithm25

2.3.1 Algorithm outline

The CMA-ES approach described in Subsection 2.2 allows for reliable covariance matrix estimates with a relatively small

population size. The default population size of λ= 4+3log(n) individuals and all further operational constants are successively

derived from the problem dimension n as outlined in Table 1.
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Here, µ counts the good portion of individuals that are selected from the λ samples in each iteration and used to update30

the probability distribution. As mentioned in Subsubsection 2.2.4, sampled individuals are always sorted with respect to their

function values (f(x1)≤ ·· · ≤ f(xλ)).

The µ recombination weights wi sum up to 1 and are monotonically decreasing in order to give better selected samples a

higher weight in the updating formulas. Hansen (2016) suggest to use the value µeff as a quality measure for the weights and

states that5

µeff =
λ

4
(3)

indicates a good choice. Indeed, equation (3) is approximately satisfied by the given weighting scheme. We can only briefly

sketch the history behind the suggestion: With equal weights 1
µ in the distribution update, all the best µ independent samples

would count with the same influence. For this case it has been shown with an exemplary uni-modal function (the infinite-

dimensional sphere function) that the setting µ= 0.27·λ is optimal in the sense that the “expected progress per sample” towards10

the global optimum is maximized (Hansen et al., 2015, Section 4.2.2)(cf. Beyer, 2001, Chapters 3.1.1 & 3.2.1.2). Hansen

considers the value µeff to be a generalization of the number of selected independent samples that influence the distribution,

consequently using the similar equation (3) for the case of rank dependent weights. Note that µeff takes its maximum µ with

equal weights and its minimum 1, if all but one weight are zero. Actually, theoretically optimal non-equal weights and, thus, the

optimal value for µeff are also known for the infinite-dimensional sphere function (Arnold, 2006, 3.2). These include non-zero15

weights for all λ samples and negative weights for the worse λ
2 samples (hence doubling the value of µeff ). However, negative

weights are not considered to be a robust enough practical choice.

Together with the problem dimension n, the generalized number of independent selected samples µeff appears in the calcu-

lation of the four smoothing constants cσ, cc, cµ, c1 used in the update formulas of both the evolution paths and the covariance

matrix. Their dependence on n and µeff have been derived empirically. The constant χ (cf. Subsubsection 2.2.6) is approxi-20

mately the expected norm of the n-dimensional standard normal distribution N (0,I).

The algorithm details are summarized in Algorithm 1. It starts with the identity matrix I for the covariances, that is, with

an isotropic distribution. Assuming the optimum solution to reside within the unit cube [0,1]n ⊆ Rn, the mean x and the over

all scale σ are initialized according to Hansen (2016). Actually, having bound constraints (cf. Subsubsection 2.2.7) we operate

on the unit cube and shift and scale obtained samples into their real bounds before calculating their objective function values.25

New samples are drawn as described in Subsubsection 2.2.3. The yk correspond to the xk −x considered there, divided

by the step size σ. The new x is calculated according to xµ in Subsubsection 2.2.4. Note that y is the σ-adjusted move of

the mean while y∗ adjusts the move of the mean with respect to the (isotropic) standard normal distribution. The evolution

paths which cumulate the drifts of the distribution mean (adjusted with regard to the overall scale and with regard to isotropy,

respectively) are updated using the corresponding smoothing factors. Here, the factors before y and y∗ act as normalization30

constants (Hansen, 2016). Finally, the overall step size and the covariances are updated as described in Subsubsections 2.2.6

and 2.2.5, respectively. For the given weighsw the factor cσ
1+cσ

in the update formula of σ is equal to a more general formulation

used, e.g., in the CMA-ES tutorial (Hansen, 2016). We stop either after the predefined number of iterations or if the current
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Algorithm 1 The (µ/µw,λ)-CMA-ES

Initialization:

Set λ, µ, w, µeff , χ, cσ, cc, cµ, c1 according to Table 1

Set x= ( 1
2
, . . . , 1

2
)T

Set pσ = pc = 0, C=B=D= I and σ = 0.5

while stopping criterion∗) is not met do

Sample probability distribution:

for k = 1, . . . ,λ do

Sample zk ∈ Rn fromN (0,I) by sampling its entries fromN (0,1)

Set yk =BDzk and xk = x+σyk

end for

Update probability distribution:

Update mean:

x ←
∑µ
k=1wkxk

Set y =
∑µ
k=1wkyk and y∗ =BD−1BTy

Update evolution paths:

pσ ← (1− cσ)pσ +
√
cσ(2− cσ)µeff y∗

pc ← (1− cc)pc+
√
cc(2− cc)µeff y

Update covariances and scaling:

σ ← σ · exp
(

cσ
1+cσ

(
‖pσ‖
χ
− 1
))

Set Cµ =
∑µ
k=1wkyky

T
k and C1 = pcp

T
c

C ← (1− cµ− c1)C+ c1C1 + cµCµ

Determine B and D from eigendecomposition C=BD2BT

end while
∗) our stopping criterion is that either a predefined number of iterations is reached or the fitness distribution is flat (see text)

population shows a flat misfit distribution, i.e., if the fitness of the better 70% of the individuals deviate less than ε= 10−5

from the very best one.

2.3.2 Algorithm parallelization

Our current technical implementation of the parallel framework can be easily transferred to other EAs/EDAs. The iterative

optimization process is carried out via a series of chain jobs, where short serial jobs (the actual optimizer) that update the

population of model evaluations (“individuals”; i.e. parameter sets for biogeochemistry) alternate with parallel jobs of function5

evaluations (“generations”), i.e. forward integrations of the coupled ocean model with different parameter sets. Parameters of

the optimizer are population size λ and the termination criterion for convergence, additionally a maximum number of iterations.
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As noted above, the framework presented here is set up such that a serial script serial.job calls the optimization routine

(in our case CMA-ES), which computes a population of size = λ of parameter vectors, stored in ASCII files. The same script

then calls a parallel script parallel.job, which starts λmodel simulations. During these simulations, the parameter files are

read, and a spinup is carried out for each individual setup. The individual model runs then output the misfit function to specified

files. When all jobs are finished, script parallel.job invokes script serial.job again, etc.. Thus, communication

between both alternating steps (creation of parameter vectors and computation of resulting misfit function) is carried out by5

these parameter and misfit files. In addition, file nIter.txt keeps track of the progress of optimization, and provides the

information which generation is to be computed; it also contains the runtime parameters for the optimizer, CMA-ES. See

the information in supplement for more details on how this setup works, and how to specify biogeochemical and optimizer

parameters used, e.g., in the work presented here.

2.4 Misfit function10

As a first approach to optimization, we have calculated the root-mean-square error RMSE between simulated and observed

(or twin) annual mean phosphate, nitrate, and oxygen concentrations on a global scale, weighted by the volume Vi of each

individual grid box, expressed as fraction of total ocean volume, VT. To sum the three different components of the misfit

function we have to divide them by some typical value. Here we use the global mean concentration of observed tracers. The

resulting misfit function J thus reads:15

J =

3∑
j=1

1

oj

√√√√ N∑
i=1

(mi,j − oi,j)2
Vi
VT

(4)

for the annual mean concentrations of three tracers phosphate (j = 1), nitrate (j = 2) and oxygen (j = 3), at N = 52749

locations (model grid boxes) of the model domain. oj is the global average observed (or twin) concentration of the respective

tracer. mi,j and oi,j are model and observations (or twin results), respectively. By weighting the model mismatch with volume,

we put some emphasis on the deep ocean, down-weighting deviations in surface grid boxes relative to those of deep boxes.20

Thus, our misfit function serves more as a long time-scale geochemical estimator, in contrast to a function that focuses on

(rather fast) turnover in the surface layer.

2.5 Parameters to be estimated

Although the model contains more than 20 parameters (even more, if we consider the empirically derived parameters for

benthic burial, nitrogen fixation, denitrification and air-sea gas exchange; see Kriest and Oschlies, 2013, 2015), for this first25

approach we only consider six parameters for optimization. As a stringent test for the framework we chose parameters that

encompass a large range of time and space scales, reflect different trophic levels and dependencies between internal (inter-

actions between compartments) and external (dependence on light) factors. We aimed to avoid simultaneous optimization of
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parameters that are obviously related to each other, such as maximum growth rates and half-saturation constants, or sinking

speed and remineralization rate.

Four parameters are more relevant for biological interactions at the sea surface. Phytoplankton growth is controlled by the

half-saturation for light (Ic, in W m−2) and phosphate (KPHY, in mmol P m−3). For optimization of zooplankton parameters we

chose its maximum grazing rate (µZOO, in d−1) and quadratic mortality rate (κZOO, in (mmol P m−3)−1 d−1). Two parameters

are of importance for the transport and decay of particulate organic matter to/in the deep ocean, namely the ratio of oxygen5

consumption to phosphate release during aerobic remineralization (R−O2:P, mmol O2:mmol P), and the parameter for vertical

increase of sinking speed of organic matter, a (d−1). Note that as stated above, in the following, and during optimization, we

express this last parameter through b= r/a, with r held constant at r = 0.05 d−1.

For each parameter we initially chose a rather wide range of possible parameter values (Table 2). The lower value ofR−O2:P

was set to 150 mmol O2:mmol P (Anderson, 1995), while its upper value is at the upper end of observed values (Boulahdid and10

Minster, 1989), and closer to value used in previous model studies (Paulmier et al., 2009). b is allowed to vary between low

values observed mainly in oxygen minimum zones (Van Mooy et al., 2002), and twice the global open ocean composite derived

by Martin et al. (1987); its range is slightly larger than the range applied in previous modeling studies (Kwon and Primeau,

2006; Kriest and Oschlies, 2008; Kriest et al., 2012), or the range of b determined from in situ observations (e.g., Martin et al.,

1987; Buesseler et al., 2007). It agrees with the range of b derived from indirect estimates of b (Henson et al., 2012; Marsay15

et al., 2015).

Ranges for parameters of parameters related to surface processes were more difficult to assign. Due to the highly aggregated

form of the organic biological components in the model these parameters are supposed to reflect a variety of processes such

as species shift and adaptation (e.g., half-saturation constants for nitrate uptake may vary over several orders of magnitude;

see Collos et al., 2005). We therefore initially assigned very wide boundaries for Ic, KPHY, µZOO and κZOO, which allow the20

optimization to pick parameters that virtually may shut down certain biological fluxes and processes. The choice of these wide

boundaries, its consequences for optimization and model performance and the effects of narrower boundaries will be examined

and discussed below.

2.6 Setup and performance of optimization

Using the combined framework described above, i.e. TMM+MOPS+CMA-ES, we carried out five different, full optimizations,25

with the aim to determine the four parameters related to surface biology and two parameters more closely tied to deep biogeo-

chemistry mentioned above. The experiments differ with respect to the observations used for the misfit function (model output,

climatologies of observations), population size λ of CMA-ES (10 or 20 individuals per generation), parameter boundaries, and

the sampling strategy of CMA-ES. They are explained in detail below.

2.6.1 Twin experiment30

First we tested the ability of CMA-ES to recover known parameters of a model simulation that applied the same biogeochemical

parameters as MOPS-RemHigh of Kriest and Oschlies (2015, setup “base”, i.e., with a particle flux described by b= 0.858, or
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a= 0.058275, and a high affinity of oxic and suboxic remineralization to oxidants). This is done by optimization against its

simulated annual average phosphate, nitrate and oxygen of year 3000. We refer to this experiment as “TWIN”. TWIN applies

rather wide boundaries for all parameters (see table 2), and a population size for CMA-ES of λ= 10, which was deemed

sufficient for six parameters, given the default configuration of the CMA-ES (see above).

2.6.2 Optimizations against observed tracers

Four further optimizations were carried out against observations of annual mean phosphate, nitrate, and oxygen (Garcia et al.,5

2006a, b), gridded onto the model geometry. These are referred to as OBS-WIDE, OBS-WIDE-20, OBS-NARR and OBS-

NARR-R. To investigate the robustness of CMA-ES with respect to different setups of the algorithm itself, the experiments

differ in the upper and lower boundaries of the search space for zooplankton parameters, the population size λ of CMA-ES and

its sampling strategy. This is done in a stepwise fashion.

Experiment “OBS-WIDE” differs from TWIN only with respect to the observations that enter the misfit function. In OBS-10

WIDE we encountered an unlikely (with respect to biological tracer concentrations) solution, pointing towards a potential local

minimum in the misfit function. We therefore set up two experiments to investigate strategies to improve the performance of

CMA-ES with respect to more plausible solutions. The experiments both increase the search density in the parameter space

with respect to OBS-WIDE. In experiment “OBS-WIDE-20” search density is increased by doubling the population size of

CMA-ES to λ= 20. Otherwise, its setup is the same as OBS-WIDE. In experiment “OBS-NARR” we keep λ= 10 of OBS-15

WIDE, but restrict the boundaries for zooplankton parameters to ±50% of the value of the reference run of MOPS.

Because optimization OBS-NARR showed the best results with respect to misfit function, biogeochemical fluxes and op-

timization performance (see below; tables 3 and 4), in experiment “OBS-NARR-R” we finally evaluate the robustness of

optimization OBS-NARR by repeating this optimization with a different random selection of the parameter values from the

distribution calculated by CMA-ES.20

2.6.3 Performance

The internal termination criterion of CMA-ES was reached after 95, 173, 182 and 140 generations for OBS-WIDE, OBS-

WIDE-20, OBS-NARR and OBS-NARR-R, respectively. For the twin experiment, we restricted the maximum number of

generations to 200, at which TWIN had approached the target parameters, the misfit declined to < 0.0004 (i.e., on average less

that 0.2‰ of global mean tracer concentrations; see Eqn. 4) and fitness variance declined to < 10−9. As presented above, in25

each “generation” we computed 10 (20) different “individuals” (model simulations over 3000 years) in parallel. One simulation

of each generation on average took≈ 1.25 hours, on 40 (80) nodes of Intel Xeon IvyBridge or Intel Xeon Haswell at the North-

German Supercomputing Alliance (HLRN). We note that tests on either hardware (two iterations of the coupled code, started

from generation 80 and 160 of experiment TWIN) did not reveal any differences in the estimated fitness. The CMA-ES - which,

due to its very short runtime, is not parallelized - was always computed on one core of Intel Xeon IvyBridge.30
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3 Results

3.1 Twin experiment (TWIN)

The optimization starts with a wide range of potential parameters (see Fig. 3), with individual parameters sometimes even

exceeding the prescribed boundaries. This results in high maximum and minimum misfit (Fig. 4), and this high variability

is maintained over about 10-20 generations. The trajectory of transient average parameter values and their variance depend

strongly on the parameter itself: while the two parameters associated with rather long time scales namely the stoichiometric5

ratio R−O2:P and exponent b describing particle sinking, approach their target values quite early (about generation 20-40),

parameters associated with surface biogeochemistry stay far away from their target value for ≈ 80 generations (Ic, KPHY,

κZOO), or oscillate around it (µZOO). After≈ 160 generations, most of the parameters reached their target value, the exception

being the half-saturation constant of phytoplankton for phosphate uptake, KPHY (Table 3). This parameter still shows consid-

erable variability at the end of the optimization (generation 200), although by that time is it quite close to the - rather low -10

target value.

The misfit function, its variance and the parameter variance do not decrease monotonically throughout the optimization

trajectory. In particular, after an initial decline over ca. 60 generations, parameter and misfit variance increase again. Further

increases in variance can be seen around generation 100, and at the end, when the algorithm widens its search area again,

probably in search for an optimal KPHY. It seems encouraging that the algorithm does not get stuck in a local minimum, but,15

at the expense of deterioration of the misfit, continues to search for an even better parameter set.

The largest fraction of the misfit function is related to oxygen, followed by the misfit to nitrate, and then phosphate. The

dominance of oxygen and nitrate is not surprising, as these tracers are not conservative; i.e., their global inventory might change

due to air-sea gas exchange, denitrification and nitrogen fixation (see also Kriest and Oschlies, 2015), so that the model may

not only err with respect to the spatial distribution of these tracers, but also with respect to their global mean concentration.20

In Fig. 5 we finally exploit the shape of the misfit function, shown on a color scale for each two pairs of parameters. As can

be seen from misfit plotted against R−O2:P and b (upper right corner), these two parameters are quite well constrained, with a

very well defined minimum around the target value. All other parameters show more or less elongated search “canyons”. Much

of the algorithm search starts away from the target value; however, the algorithm finally manages to approach the target value

even when the search path is not straight, but curved in the two-dimensional projections of the parameter space. Further, even25

when the algorithm exceeds the target value (e.g., for the maximum growth rate of zooplankton, µZOO; lower right corner),

despite of the already low misfit function the algorithm finally returns to the somewhat lower value (compare also to Fig. 3,

lower left panel).

Summarizing, CMA-ES seems capable to deal even with our irregular search landscape, when iterated for a long enough

time and with a sufficiently large population size. Some problem remains with regards to the half-saturation constant of phy-30

toplankton for phosphate uptake: zooming into the scatter plot presented in Fig. 5 reveals that for this parameter the search

landscape becomes quite uninformative (Fig. 6), with similar misfits around ±2% of its last value. Thus, a low misfit can be

achieved within over a wide range of this parameter.
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One reason for this low sensitivity of the misfit function toKPHY may be found in the fact, that in the twin, against which the

model is optimized, only very few (1%) phosphate values are at or below the target value of KPHY = 0.03125 mmol P m−3.

Therefore, besides the dominance of oxygen in the misfit function (Fig. 4) the misfit function is further dominated by phosphate

concentrations outside the oligotrophic surface regions, rendering it quite insensitive to changes in the half-saturation constant

at low values. In addition, a closer look at the misfit topography (Fig. 5) points towards a potential correlation of µZOO and

κZOO, which may complicate the algorithm’s search for an optimum set of parameters, thereby slowing down its convergence.5

3.2 Optimization against observed nutrients and oxygen distributions

3.2.1 Wide boundary constraints for zooplankton (OBS-WIDE, OBS-WIDE-20)

When optimizing the model against observed concentrations with exactly the same setup as for experiment TWIN, optimization

OBS-WIDE reaches the internal termination criterion of the CMA-ES at generation 95. Instead of declining exponentially

towards zero, the misfit only declines from an average initial value of ≈ 0.8 to 0.477 (Fig. 7, Table 3), i.e. only slightly less10

than the misfit of the reference run (0.529). Also, the variance of misfit, as well as that of the parameters show a more or

less gradual decline, without any intermittent increase (see supplement). Another notable difference to TWIN is the higher

contribution of phosphate to the misfit function (Fig. 7).

Some parameters diverge strongly from those of there reference run. In particular, the phytoplankton’s half-saturation con-

stant for light, Ic, increases strongly up to its upper boundary (Fig. 8; Table 3; see also supplement for a plot of topography15

of the misfit function). However, the stronger light-limitation of phytoplankton growth is counteracted by a strong decrease

in zooplankton growth rate, µZOO, and a strong increase in its quadratic mortality rate, κZOO. As a consequence, average

and maximum zooplankton concentrations are < 25% and < 50% of that of the reference run in the surface layer (Fig. 9),

while phytoplankton is strongly increased, when compared to the reference run. Most likely because the zooplankton-detritus

pathway is nearly shut off, DOM concentrations are strongly increased. The reorganization of the pelagic food web in this20

optimized model scenario is reflected in the global annual biogeochemical fluxes: primary production is enhanced by almost

14%, but loss through grazing is reduced to about 1/3 of that of the reference run (Table 4). As a consequence, the largest

fraction of recycling is through remineralization of detritus and DOM (> 95% of annual production), and only 4% through

zooplankton excretion, while in the reference run zooplankton recycles almost 15% of annual production. Due to the reduced

particle sinking speed shallow (130 m) and deep (2030 m) particle flux are reduced, as is benthic burial. While some of the25

simulated fluxes are within the observed estimates, too low zooplankton concentration, as well as resulting low zooplankton

grazing are far outside observed estimates (see Table 4).

Therefore, although optimization OBS-WIDE against observations has decreased the misfit to observations to≈ 90% of that

of the (subjectively tuned) reference run, the outcome is not overly satisfying with respect to the optimized parameters and

the resulting dynamical behavior of the model. Obviously, the very wide boundary constraints we chose for the zooplankton30

parameters led to a solution where zooplankton is almost dead - a statistically optimal but biologically meaningless solution.
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To examine if this optimization became trapped in a local minimum, in experiment OBS-WIDE-20 we increased the popula-

tion size of CMA-ES from λ= 10 to λ= 20. Due to a larger population, in this optimization the variability of fitness (Fig. 10)

and parameter values (Fig. 11) is maintained over a longer period, again, as for optimization TWIN, with intermittent increases

of variance during the course of the optimization. Most importantly, using the setup of OBS-WIDE-20 the optimization finds

very different parameters for many of the biogeochemical components:

R−O2:P is now closer to the a priori value of 170, while optimal b has increased considerably to b= 1.34 (Table 3). The5

largest difference to both the reference run as well as optimization OBS-WIDE occurs for the four biogeochemical parameters

that are more closely tied to surface processes: Ic decreases to less than 50% of its a priori value, while KPHY is at its upper

boundary of 0.5 mmol P m−3. Encouragingly, zooplankton parameters are now such that zooplankton is viable (Fig 9). Its

maximum growth rate is very close to the a priori value of 2 d−1. Its mortality rate is still quite high; however, because of its

high growth rate zooplankton plays a considerable role in the pelagic nitrogen budget , with global fluxes much closer to the10

observed ones than for optimization OBS-WIDE (Table 4). The topography of the - rather dense - scan of the parameter space

of OBS-WIDE-20 (Fig. 12) points towards a potential correlation between KPHY, µZOO and κZOO. In this projection, low

misfit values occur along a concomitant increase of KPHY with either µZOO or κZOO. This is also reflected in the high level

of parametric uncertainty, as revealed by a large range of parameter values in the vicinity of the optimum (Table 3).

Summarizing, using a larger population size and thus a denser scan of the parameter space (see Fig. 12), CMA-ES has found15

a better solution, with respect to the misfit function (see Table 3) as well as a closer fit to biogeochemical fluxes and more

plausible biological patterns.

3.2.2 Narrow boundary constraints for zooplankton (OBS-NARR and OBS-NARR-R)

Optimizations with a population size of λ= 20, as for OBS-WIDE-20, are computationally quite expensive, especially when

iterated over a large number of generations (Table 3). Via the quite wide boundary constraints for zooplankton parameters,20

we have assumed to have almost no knowledge about zooplankton. In the following two sensitivity experiments we examine

the impact of this assumption on optimization performance, by restricting zooplankton parameters to a narrower range. These

experiments are again carried out with a population size of λ= 10.

To enforce live zooplankton, we restricted the range of zooplankton parameters to±50% of their reference value. This results

indeed in a solution with organic tracer concentrations close to that of the reference run or OBS-WIDE-20 (Fig. 9). After 18225

generations, the algorithm terminates with a misfit of 0.45 (Fig. 13), i.e. better than experiment OBS-WIDE, but the same

as for optimization OBS-WIDE-20 (Table 3). As in TWIN and OBS-WIDE-20, misfit variance shows intermittent increases,

and the contribution of nitrate to the misfit function dominates over that of phosphate. Likewise, resulting optimal parameter

values are quite close to those of OBS-WIDE-20 (Table 3). Thus, OBS-NARROW is more similar to OBS-WIDE-20 than to

OBS-WIDE, demonstrating the importance of good a priori knowledge about parameter values.30

As for OBS-WIDE-20, the quadratic mortality of zooplankton, κZOO and the half-saturation constant of phosphate uptake

for phytoplankton,KPHY show a strong increase; the latter up to its upper prescribed boundary, which may be interpreted as an

attempt of the algorithm to force the model towards higher surface nutrient concentrations in the subtropical gyres. A reduced
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half-saturation constant for light, on the other hand, counteracts the grazing pressure exerted by zooplankton, particularly in

the high latitudes. Most likely because of increased detritus production by zooplankton - and thus increased export from the

surface layer (Table 4) - particle flux to the deep ocean is reduced by an increase in b, i.e. relatively slow particle sinking speed.

A closer look at the topography of the misfit function shows that the misfit is quite insensitive to changes in some parameters

(Fig. 15; see supplement for a detailed plot of misfit topography around ±2% of the optimal parameters). While again the

parameters R−O2:P and b, that tend to exert an influence on large temporal and spatial scales, are quite well constrained, many5

of the surface-related parameters, that act on smaller time scales, such as KPHY, show a wide scatter across the parameter

space (see also Table 3), with very little differences in the misfit function.

However, variations in parameters after ≈40 generations do not strongly improve the model fit to observations (Figures

13 and 14). The rather constant misfit after generation 40 is quite surprising, given that some parameters still show some

significant excursions after that time, indicating that - as already shown before - the misfit function is quite uninformative about10

these parameters. This insensitivity of inorganic tracers is also illustrated in Fig. 16, which shows the deviation of vertically

integrated tracers from observations, plotted for individuals of three different generations of OBS-NARR (see also blue vertical

lines in Fig. 14) The parameters of these individuals differ mainly with respect to their combination of KPHY and κZOO.

While the reference run applies very low KPHY = 0.03125 mmol P m−3 and moderate κZOO = 3.2 (mmol P m−3)−1 d−1,

individuals of the optimization are characterized by medium (generation 61) to high (generations 110 and 182) KPHY, and15

moderate (generations 61 and 110) and high (generation 182) κZOO (see also blue vertical lines in Fig. 14). All individuals

differ from the reference run; yet the difference among them is almost not visible in the simulated tracer distributions. Thus,

annual mean tracer concentrations on a global scale do not seem to suffice in constraining some of the parameters related to

the very dynamic biological turnover at the sea surface, leading to a large parametric uncertainty (Table 3), possibly amplified

by correlation among these three parameters.20

Except for deep particle fluxes, all biogeochemical fluxes are increased compared to the reference run or experiment OBS-

WIDE, but similar to that of OBS-WIDE-20 (Table 4). Therefore, although the misfit function so far only optimized towards

inorganic constituents, the optimized model with narrow zooplankton parameter boundaries shows a much better fit to observed

global fluxes to primary production, zooplankton grazing, shallow and deep particle flux, and benthic burial. The seemingly

better dynamical biogeochemical behavior of this model setup gives some confidence that the model’s fit to inorganic tracers25

is not improved at the cost of any other tracer.

Repeating optimization OBS-NARR with a different random selection of parameters from the parameter distribution in each

generation (OBS-NARR-R) yields the same, or very similar, best values for most of the parameters (see Table 2), the exception

being the two zooplankton parameters, µZOO and κZOO. These two parameters of OBS-NARR-R are 7% (µZOO) and 16%

(κZOO) lower than in OBS-NARR; however, the misfit of both optimizations is the same (0.45). The low sensitivity of the30

misfit function to zooplankton parameters is mirrored in similar nutrient and oxygen distributions (see supplement) and almost

identical biogeochemical fluxes (see Table 4).
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4 Discussion

4.1 Computational performance

Our results suggest that the CMA-ES optimization algorithm performs well, particularly for the twin experiment, even though

the parameters to be estimated involve diverse temporal and spatial scales. CMA-ES manages to set up curved search paths in

parameter space, and therefore is capable to approach an optimum within a rather complex topography of the misfit function.

Its sometimes elongated and/or curved shape resembles many of those resulting from earlier 1D (Athias et al., 2000; Schartau5

et al., 2001; Schartau and Oschlies, 2003a; Ward, 2009) or 3D (Kwon and Primeau, 2006, 2008) optimizations of marine bio-

geochemical models. However, when imposing wide boundary constraints for zooplankton parameters, OBS-WIDE becomes

trapped in a local minimum; only with a larger population size or narrower parameter boundaries we find a solution that results

in realistic concentrations and fluxes of all components. Clearly, the number of experiments conducted here is too small to

make statistically significant statements about the optimizers’ exploration capability with respect to the population size. But10

similar to other population based heuristics, examinations with multimodal test functions have given evidence that larger pop-

ulations increase CMA-ES’ chance to find good local optima (or even a global optimum; Hansen and Kern, 2004). It remains

to be investigated, whether different configurations of the CMA-ES, or a different optimization algorithm, e.g., gradient-based

methods or evolutionary algorithms, perform better or worse with respect to the number of model evaluations required, or their

ability to avoid local minima (see also Athias et al., 2000). However, there is some indication that genetic algorithms perform15

better with respect to a rough topography of the misfit function, when compared to a variational adjoint method, with otherwise

equally good fit to marine biogeochemical observations (Ward et al., 2010).

As the computational effort remains a challenge in parameter optimization of global ocean BGC models, further possibilities

to accelerate model evaluations within the optimization process are desirable. Surrogate-assisted approaches use meta-models

to approximate model evaluations within optimization (Priess et al., 2013). They are becoming practice within evolutionary20

frameworks coping with computational expensive model functions (Jin, 2011). It should be worth considering surrogate ap-

proaches with CMA-ES as investigated in Kern et al. (2006), Auger et al. (2013) and Loshchilov et al. (2012). A general

approach with EA and EDA frameworks is to prematurely abort the fitness calculation after detecting that the corresponding

individual will not be better than the worst member of the current population. We can benefit from such short-cut fitness com-

putation if the optimizers’ implementation supports asynchronous communication. An example for this approach is dealt with25

in Kliemann et al. (2013). There, aborting fitness calculations reduces the computational effort by orders of magnitude, since

the considered combinatorial problem is of minimax-type. However, short-cut fitness computation concerning ocean models

requires a more elaborated method and is not expected to reach similar savings.

4.2 Misfit function and parameter identifiability

In our study we chose annual means of dissolved nutrients and oxygen on a rather coarse spatial grid as a measure for model30

skill. By doing so, we avoid problems associated with time lags (e.g., in phytoplankton blooms, which would result in time

lags of nutrient depletion) or meso- and submesoscale spatial structures (see, e.g., Wallhead et al., 2006), obviously at the cost
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of precisely resolving parameters related to the biological system in surface layers. Possibly as a consequence of this particular

misfit function, the parameters that could be fitted best are parameters that are mostly influential in determining the nutrient

or oxygen distribution on large spatial and temporal scales, such as the stoichiometric ratio between oxygen and phosphorus,

R−O2:P, or the parameter that determines particle sinking speed, b (see also Kriest et al., 2012). Our model optimizations

against observations so far confirm a stoichiometry of R−O2:P ≈ 170 mmol O2:mmol P, in agreement with observational

estimates (Takahashi et al., 1985; Anderson and Sarmiento, 1994), but suggest an increase of b towards ≈ 1.3. The latter is to5

some extent in agreement with results obtained by Kwon and Primeau (2006, 2008), who found an optimal b of 1, when fitting

a simple global model against observed inorganic tracers. It should be kept in mind, however, that the b obtained in our study

represents not only particle sinking speed, but also accounts for the effect of numerical diffusion in our rather coarse vertical

grid (Kriest and Oschlies, 2011). Accordingly, the “true” b can be regarded as being about 10-20% smaller than obtained by

our study. Also, as has been shown earlier (Kriest and Oschlies, 2013), the lower boundary condition simulated by benthic10

exchange can be very important for the ability of phosphate and oxygen to constrain particle sinking; therefore, the results

obtained in our study should be regarded as specific to this particular biogeochemical model.

Our optimizations against observations with wide and narrow boundaries for zooplankton parameters produced two solutions

with quite similar misfit, but with very different biological parameters, and consequently different fluxes and concentrations of

organic components in the surface layers. Using wide boundary constraints for zooplankton parameters resulted in a solution15

where zooplankton is almost extinct, while phytoplankton and DOM concentration are far too high. Solutions of optimizations

with unrealistic parameter values or concentrations for zooplankton have been observed earlier (Schartau et al., 2001; Ward

et al., 2010), and point towards a necessity to better constrain this compartment. Increasing the population size λ of CMA-ES

in optimization OBS-WIDE-20 could cure this problem, but at the cost of a high computational demand. Restricting the range

of zooplankton parameters resulted in a better fit to nutrient and oxygen; more importantly, concentrations and fluxes in the20

latter solution are much more realistic, confirming in the latter parameter set. This illustrates the potential benefit of a sound a

priori knowledge of parameter ranges, both in terms of biogeochemical and computational performance.

Another possibility to avoid undesired effects like nearly extinct zooplankton is to introduce further criteria that take account

of this issue. A technically easy approach would be to add further objective terms to the misfit function. But facing complex

model interactions, it can become difficult to find suitable weights for the different terms in order to force solutions to become25

a desired compromise of objectives. An alternative is to deal with more than one objective function, say f1,f2, . . . ,fk. For

example, we can define the deviation of zooplankton mass from observed values as a second objective. Now, two solutions

x 6= y are said to be incomparable if fi(x)> fi(y) but fj(x)< fj(y) for some i 6= j. Multi-objective optimization algorithms

aim to find (a limited number of) good incomparable solutions, from which the user can make a final choice that is a good

compromise in his/her opinion. The topic of multi-objective optimization is intensively regarded with EAs (Deb, 2001) and30

EDAs (Hauschild and Pelikan, 2011), including CMA-ES (Igel et al., 2007).

Nevertheless, even for the more realistic optimizations OBS-WIDE-20, OBS-NARR and OBS-NARR-R we find similar mis-

fits for a rather wide range of some phyto- and zooplankton parameters, pointing towards an indeterminacy of these parameters

when using the current misfit function. While it cannot be ruled out that this arises from a correlation among these parameters,
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even simpler biogeochemical models with less degrees of freedom might be difficult to constrain from nutrient data alone:35

problems were also encountered by Kwon and Primeau (2006), when optimizing b, DOP production and its decay rate against

phosphate on a global scale. They found that phosphate data alone were not sufficient to resolve parameters associated with

DOP, but several equally good fits could be obtained with different sets of parameters. It remains to be investigated whether this

is related to the lack of seasonal data, or to phosphate concentration being weakly dependent on dissolved or particular organic

matter concentration. Subsequent studies with different misfit functions, that for example resolve monthly changes, target at5

the representation of surface nutrients (e.g., by using a weighted, relative misfit; Kriest et al., 2010) or add additional tracers to

the misfit function (e.g., combining chlorophyll derived from remote sensing with nitrate observations; see also Tjiputra et al.,

2007) will reveal the effect of the assumptions made for the misfit function with respect to constraining these parameters.

4.3 Future directions

Even the use of observations more closely related to surface biology may not resolve the problem of indeterminacy, as shown10

by Ward et al. (2010) in optimizations of two different, 0D-biogeochemical models. As in earlier, 0D and 3D studies (e.g.,

Friedrichs, 2001; Schartau et al., 2001; Kwon and Primeau, 2006, 2008), they found almost identical misfits for a wide range

of parameters, an indication that these models are underdetermined, particularly when attempting to estimate more than about

10 parameters. In our study we have chosen to tune a rather moderate number of six parameters, but already noted some

difficulty in constraining two of these. A potential solution could be to fix certain parameters to prior values, and thereby15

decrease the dimension of the parameter space to be estimated. However, as pointed out by Ward et al. (2010), this may lead to

an underestimate of model uncertainty, and therefore not be the ultimate solution to this problem. Future studies will address

these problems by testing different combinations of parameters, in conjunction with different misfit functions.

The above mentioned problems may even increase if we move towards more sparsely sampled, biased, or noisy data. So far,

for the twin experiment as well as for the optimization against observations we assume perfect data coverage. However, sparse20

data sets (as usually available from cruises or time series stations) as well as the influence of noise have been shown to be very

influential for the ability of an optimization to recover results from 0D (Friedrichs, 2001; Schartau et al., 2001; Löptien and

Dietze, 2015) and 3D (Tjiputra et al., 2007) twin experiments. The presence of noise or measurement errors should be reflected

in the termination criterion for optimization; this will, for some parameters, influence the estimates optimum values (see Fig. 8

of Schartau et al., 2016). Future studies will have to address to what extent noise will affect the 3D optimizations presented25

here and how this parameter uncertainty will map onto model fluxes, or even transient scenarios.

While we found a decrease of the twin experiment’s misfit to almost zero, the misfit of the optimization against observa-

tions remained relatively high (on average, about 15% of global mean tracer concentrations). Potential reasons for this are an

inappropriate biogeochemical model structure, wrong choice of parameters to be optimized, or flaws in the physical model.

For example, it is well known that coarse resolution models do not resolve physical processes of the Equatorial Pacific current30

system (Dietze and Loeptien, 2013), which may result in an attempt of the optimization to “cure” deficient physics by changing

biogeochemical parameters. This feature might also explain some of the sensitivities - or lack of - found by Kwon and Primeau
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(2006). Solutions to this potential flaw could be to exclude regions from the misfit, that are known to be not well represented

by the physical model, or to weigh biogeochemical misfits by the model’s fit to observations of physical data.

To summarize, any global model study that aims to inversely determine parameters of a global biogeochemical ocean model

in an attempt to find the model setup “best” suited for a particular application (and circulation), has to consider five tasks: (1)

investigate model solutions on the appropriate (depending on tunable parameters) time scales, possibly including long, millen-

nial simulations; (2) address the potential of local minima (depending on the topography of the misfit function); (3) investigate5

different parameter combinations and boundaries, including the misfit function’s sensitivity to them; (4) disentangle the effects

of physical and biogeochemical model on model-data misfit; and (5) investigate the effect of misfit function, including data

distribution and availability on model assessment. This last point also includes decisions about weights applied to different

data sets, or for a particular form of misfit function, which may be very influential for the optimal parameter choice (Evans,

2003). It also depends on the desired application of the model, and the scientific question it is supposed to address.10

5 Conclusions

We have presented a framework for the optimization of global biogeochemical ocean models, that combines an offline approach

for transport of biogeochemical tracers with an Estimation of Distribution Algorithm (Covariance Matrix Adaption Evolution

Strategy, CMA-ES). A twin experiment revealed a good performance of this algorithm with respect to recovering six param-

eters, that are associated with various time and space scales. Optimizations against observations of annual mean nutrients and15

oxygen could reduce the misfit of the model to some extent; however, even for the “best” model solution the remaining misfit

is still ≈ 15% of global mean tracer concentrations, which might be related to inappropriate physics. Tests with different cir-

culation (which is easy to exchange with the current framework) will provide more insight into the impact of physical forcing

on the ability of the biogeochemical model to fit the observations.

Encouragingly, parameter sets associated with the lowest misfit to dissolved inorganic tracers also show the best fit to20

global mean tracer fluxes not considered during optimization. This increases our confidence in the method presented here.

Some parameter estimates are associated with a rather high level of uncertainty. Incorporating different or additional data

sets, that more closely relate to the parameters to be optimized, can help to improve estimates for these parameters. Likewise,

observations that provide information about the upper and lower bounds of biological parameters - such as zooplankton grazing

and mortality rates - will provide a good guidance for future optimization studies, and lower their computational demand.25

6 Code availability

The source code of MOPS coupled to TMM, as well as the optimization framework are available as supplement. The most

recent TMM source code, forcing, etc. are available under

https://github.com/samarkhatiwala/tmm.
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Appendix A: Source code30

As research questions may diverge strongly (and therefore, also the different user groups, hardware, biogeochemical models

and circulations), we aimed to construct a tool that is as generic and universally applicable as possible, with a high level of

portability among different architectures. The model-optimization framework of TMM comprises new subroutines for data

assimilation and misfit function evaluation, as well as monitor routines to facilitate run-time checks of model state, and a more

generic coupling interface for biogeochemistry. It can thus easily be applied within an optimization framework. While we here5

focus on the coarse resolution model, we note that the generic structure of the TMM framework allows the user to easily switch

between transport matrices, once these are available. Likewise, coupling different biogeochemical models to the framework

only requires editing of a (few) interface subroutines. Finally, in principle it should be possible to exchange the optimization

algorithm by any other algorithm, that requires only model misfit as input, and provides a set of parameter files as output.

A1 MOPS-2.0 biogeochemical subroutines10

Besides the stand-alone, forward integration of a global biogeochemical model two additional tasks are required for opti-

mization: computation and output of misfit, and input of trial sets of parameters passed to the model by the optimizer. In the

following, files relevant for input of parameter vectors and computation of misfit that have been added or changed (with respect

to MOPS-1.0; see Kriest and Oschlies, 2015) are shown in bold face. An overview of the model structure and layout, with

emphasis on those parts that affect computation of biogeochemical fluxes and tracers, optimization and parameter handling is15

given in the supplement.

As noted in Kriest and Oschlies (2015), the code consists of two files with outer routines, that connect to the main driver

code tmm_main.c, and inner routines that contain the local biogeochemical sources and sinks, and define the biogeochemical

parameters. These routines communicate via common blocks in header files.

(1) external_forcing_mops_biogeochem.c is the first interface between MOPS and the TMM. Besides in- and20

output of files and runtime parameters it determines from runtime options whether a parameter file should be read, as well

as its name. It assembles model equivalents for the misfit function and passes it to the main driver code, tmm_main.c.

It calls the following subroutines:

(1.2) mops_biogeochem_ini.F: interface between (1) and (1.2.1). It calls

(1.2.1) BGC_INI.F assigns biogeochemical parameters. The routine distinguishes between parameters that stay25

fixed, and derived parameters that depend on parameters read during runtime. For example, the stoichiometric

ratio O2:P determines the stoichiometry for nitrate loss during denitrification (Paulmier et al., 2009). Thus,

if the former changes, the latter will have to be recalculated. The routine is called every time after a new

parameter vector has been read.

(1.3) mops_biogeochem_set_params.F maps vector of parameters read by (1) to symbolic names used by30

MOPS. Each call to (1.3) is followed by a call to (1.2) and (1.2.1), to recalculate dependent parameters.
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(1.1) mops_biogeochem_copy_data.F: interface between (1) and (1.2) and (1.4).

(1.4) mops_biogeochem_model.F: interface between (1) and (1.4.1). It calls

(1.4.1) BGC_MODEL.F calculates biogeochemical sources and sinks. It now also assigns state variables to arrays that

will be passed to the misfit function.

(1.5) mops_biogeochem_diagnostics.F: interface (for diagnostic output) between (1) and (1.4.1).

(1.6) mops_biogeochem_misfit.F: interface for misfit computation between (1) and (1.4.1).5

(2) tmm_misfit.c initializes and carries out misfit computation. Writes misfit to either binary or ASCII files. It commu-

nicates with the biogeochemical model in (1) via (b).

Communication between the different modules is carried out mainly via several header files:

(a) mops_biogeochem.h introduces subroutines to (1).

(b) mops_biogeochem_misfit_data.h passes information related to misfit computation between (1) and (2).10

(c) BGC_PARAMS.h passes biogeochemical parameters and profiles of tracers between all different modules called by (1).

(d) BGC_DIAGNOSTICS.h passes diagnostic variables from (1.4.1) to (1.5).

(e) BGC_MISFIT.h passes misfit variables from (1.4.1) to (1.6).

(f) BGC_CONTROL.h passes time step and geometry between (1.2) and (1.2.1), (1.4) and (1.4.1),

(g) tmm_external_forcing.h introduces subroutines in (1) to tmm_main.c.15

(h) tmm_misfit.h introduces subroutines in (2) to tmm_main.c.

Finally, one may want to prevent computation of a simulation if during spinup some parameter values or concentrations

lead to erroneous (e.g., negative) tracer concentrations. Routine tmm_monitor.c may serve as a module to monitor state

variables, or other model properties (not used in the current setup presented here).

A2 Optimization20

As noted above, the framework presented here is set up such that a serial script serial.job calls the optimization routine (in

our case CMA-ES), which computes a population of size = λ of parameter vectors, stored in ASCII files. The same script then

calls a parallel script parallel.job, which starts λ model simulations. During these simulations, the parameter files are

read, and a spinup is carried out for each individual setup. The individual model runs then output the misfit function to specified

files. When all jobs are finished, script parallel.job invokes script serial.job again, etc.. Thus, communication25

between both alternating steps (creation of parameter vectors and computation of resulting misfit function) is carried out
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by these parameter and misfit files. In addition, file nIter.txt keeps track of the progress of optimization, and provides

the information which generation is to be computed; it also contains the runtime parameters for the optimizer, CMA-ES.

See information in supplement for more details on how this setup works, and how to specify biogeochemical and optimizer

parameters used e.g., in the work presented here.
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Table 1. Operational constants of the CMA-ES algorithm (cf. Initialization in Algorithm 1).

Selection and recombination Step size control Covariance matrix adaption
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Table 2. Experimental setup of optimization. “low” and “high” indicate boundary constraints of the optimizations, respectively.

Name R−O2:P Ic KPHY µZOO κZOO b§

low high low high low high low high low high low high

TWIN 150 200 4.0 48 0.0001 0.5 0.1 4.0 0.0 10.0 0.4 1.8

OBS-WIDE 150 200 4.0 48 0.0001 0.5 0.1 4.0 0.0 10.0 0.4 1.8

OBS-WIDE-20 150 200 4.0 48 0.0001 0.5 0.1 4.0 0.0 10.0 0.4 1.8

OBS-NARR 150 200 4.0 48 0.0001 0.5 1.0 3.0 1.6 4.8 0.4 1.8

OBS-NARR-R 150 200 4.0 48 0.0001 0.5 1.0 3.0 1.6 4.8 0.4 1.8

§ Note that from b (the optimized parameter) in the model we calculate the rate of vertical increase in sinking speed a, always assuming

nominal detrital remineralization of r = 0.05 d−1. The resulting values for a are: 0.058275 (Target (Twin)), 0.125 (high) and 0.027778 (low).
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Table 3. Optimization results (evaluations, i.e. number of individuals, λ, times number of generations,N ), best model misfitMopt, optimum

parameters and their uncertainties. For each model and parameter, the first line gives the optimum parameter, followed by pmin and maximum

pmax of all individuals, for which the misfitMi is (Mi−Mopt)/Mopt ≤ 0.001. The third line additionally present in parentheses the percent

of individuals for which this criterion holds, as well as the range of optimum parameters as percent of the average parameter of the last

generation. We also give misfit and parameters of the reference run, against which the twin experiment was optimized.

Experiment λ×N Mopt R−O2:P Ic KPHY µZOO κZOO b

Reference 1 0.529 170.0 24.0 0.03125 2.0 3.2 0.858

TWIN 2000 0.0003 170.0 24.0 0.034 2.0 3.20 0.858

170 24 0.033-0.035 2.0 3.19-3.20 0.858

(< 1) (< 1) (< 1) (5) (< 1) (< 1) (< 1)

OBS-WIDE 950 0.477 179.5 48.0 0.12 0.28 6.15 1.10

176-182 46-49 0.09-0.13 0.24-0.32 4.79-3.37 1.08-1.12

(31) (3) (6) (32) (28) (26) (4)

OBS-WIDE-20 3460 0.450 167.7 9.9 0.5 2.05 5.83 1.34

165-171 9.6-10.8 0.39-0.57 2.00-2.52 5.37-10.0 1.31-1.37

(64) (3) (12) (34) (25) (79) (5)

OBS-NARR 1820 0.450 167.0 9.7 0.5 1.89 4.57 1.34

165-170 9.0-10.3 0.39-0.53 1.57-2.02 2.95-4.66 1.30-1.36

(39) (3) (14) (28) (23) (37) (4)

OBS-NARR-R 1400 0.450 166.7 9.6 0.5 1.76 3.82 1.34

165-169 8.7-10.1 0.44-0.54 1.57-1.79 2.77-3.90 1.31-1.36

(50) (2) (14) (19) (13) (30) (3)
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Table 4. Global annual fluxes of primary production (PP), grazing (GRAZ), aerobic and anaerobic remineralization of detritus and DOM

to nutrients (REM), excretion by zooplankton (EXCR) export production (F120, flux through 120 m), flux through 2030 m (F2030), and

benthic burial (BUR), in Pg N y−1, for the reference experiment, OBS-WIDE, OBS-WIDE-20 and OBS-NARR (two repeated experiment

with different configurations of CMA-ES). We also show some globally derived, observed estimates. Conversion between different elements

was carried out via N:P=16, and C:P=122.

Experiment PP GRAZ REM EXCR F120 F2030 BUR

Reference 5.44 3.52 4.72 0.80 0.92 0.11 0.05

OBS-WIDE 6.20 1.24 5.94 0.25 0.81 0.06 0.02

OBS-WIDE-20 7.45 4.68 6.66 1.00 1.10 0.06 0.02

OBS-NARR 7.52 4.74 6.65 1.10 1.10 0.06 0.02

OBS-NARR-R 7.58 4.77 6.65 1.19 1.10 0.06 0.02

Observed§ 7.68-8.09 4.79, 5.71 - - 0.29-1.53 0.03-0.07 0.02

§ Observed fluxes are from Carr et al. (2006, primary production), Honjo et al. (2008, particle flux), Lutz et al. (2007, particle

flux), Dunne et al. (2007, particle flux), Schmoker et al. (2013, primary production, zooplankton grazing excluding/including

mesozooplankton grazing) and Wallmann (2010, burial; without shelf and slope region).
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Figure 1. A general EA (left) and EDA (right) schematic. Cycles represent sets of solutions (vectors of BGC parameters in our case) or an

explicit probability distribution from which new solutions can be drawn. Rectangle symbols depict operations. Operations displayed in red

font depend on random decisions. EA: A set of candidate solutions (population) is iteratively updated. In each generation, candidate solutions

compete to form a mating pool which is realized by a random selection operator. Offspring solutions are produced by recombining mates

and/or introducing some mutation. Finally, there is a fitness based insertion back into the population, which is usually trimmed to a predefined

population size. The random operators selection, recombination and mutation imply an implicit probability distribution on the search space

with respect to which solutions are likely to appear in the next generation. EDA: Candidate solutions of the current iteration’s population are

used to update an explicit probability distribution such that the likelihood to sample good solutions increases. New candidate solutions are

directly sampled from the probability distribution. Usually, the realization of the probability distribution update ensures that information of

former solutions fades out slowly, resisting for several iterations. Therefore, the population may be smaller as an EA population and even be

replaced with the entire set of new samples, which is the case for the CMA-ES algorithm we use.
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Figure 2. Iterations of the CMA-ES applied to test functions. Left: A uni-variate Griewank-type function f (grey curve). In each iteration we

draw λ= 10 samples from the normal distribution (blue curve). For each sample xi, the pair (xi,f(xi)) is marked with a dot. The µ= λ
2
= 5

better samples (blue dots) are involved into the normal distribution update for the next iteration. Right: Two-dimensional sphere function.

Here, samples are marked with dots while function values are indicated by the grey levels in the counter plots; the i-th grey level represents

the range
[
i−1

2
, i

2

)
. More samples (50) than necessary are used to update the distribution, which is indicated by its standard deviation ellipse

(black), here. Distributions tend to elongate into directions of descent (iteration 2). For the convex example function the algorithm converges

after few iterations.
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Figure 3. Optimization trajectory for six parameters of the twin experiment. Thick black line shows average parameter of all ten individuals

of a generation. Red lines indicate their maximum and minimum parameter value. Horizontal black lines indicate the target parameter. Note

that we restrict the y-axis to maximum and minimum boundary.
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Figure 4. Model misfit, its variance, calculated from individuals of each population (both transformed logarithmically by log10) and com-

ponents of the twin experiment. Left panel: Thick black line shows average misfit of all ten individuals of a generation. Red lines indicate

maximum and minimum misfit. Mid panel: Variance of misfit. Right panel: contribution of each component of the misfit Function. Blue:

oxygen. Red: nitrate. Black: phosphate.
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Figure 5. Model misfit, plotted for each pair of parameter combinations of the twin experiment. Color indicates misfit (see color bars on the

right). A cross indicates the target value, i.e. the value of the reference experiment. A circle indicates the parameter of one individual of the

last generation. Note that for better visibility we restrict the parameter range to its boundaries (see Table 2).
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Figure 6. As Fig. 5, but only plotted for a region ±2% around the average parameter value of the last generation, regardless of generation

and associated misfit. Note that these parameters can have occurred early in the optimization, and even be associated with a large misfit (that

would arise from at least one of the other parameters causing a large misfit). Note that the color scale is different than in Fig. 5.
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Figure 7. As Fig. 4, but for optimization OBS-WIDE. Note that in the left plot, we now show the raw value of the misfit function (not log

transformed). The optimization finished at generation 95.

Figure 8. As Fig. 3, but for optimization OBS-WIDE. The optimization finished at generation 95.
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Figure 9. Surface (first) layer concentrations (in mmol C m−3, converted via a C:P ratio of 122) for phytoplankton, zooplankton, detritus

and DOM for the reference run, optimizations OBS-WIDE, OBS-WIDE-20 and OBS-NARR.

40



Figure 10. As Fig. 7, but for optimization OBS-WIDE-20. The optimization finished at generation 173.

Figure 11. As Fig. 8, but for optimization OBS-WIDE-20. The optimization finished at generation 173.
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Figure 12. As Fig. 5, but for optimization OBS-WIDE-20. Note that the color scale differs from that of Fig. 5.

42



Figure 13. As Fig. 10, but for optimization OBS-NARR. The optimization finished at generation 182.
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Figure 14. As Fig. 11, but for optimization OBS-NARR. The optimization finished at generation 182. Vertical blue lines indicate generation,

for which we also present deviations from observation of vertically integrated nutrients and oxygen from in Fig. 16.
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Figure 15. As Fig. 12, but for OBS-NARR.
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Figure 16. Model deviations from observations of vertically integrated phosphate (top), nitrate (middle) and oxygen (bottom) for the refer-

ence run, and three generations (61, 110, 182) of OBS-NARR. See blue lines in Fig. 14 for parameter values in this generation. For each

generation, we chose the best (with respect to misfit) individual for plotting. Misfit is 0.451, 0.450 and 0.450 for generation 61, 110 and 182,

respectively.
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