
We would like to express our sincere thanks to both referees for their reviews, and their 
very helpful suggestions. Below are our detailed, point-by-point replies to both referees.

Reply to referee 1

We thank Referee 1 for his/her helpful and detailed comments. Below is our detailed reply 
to the reviewer’s suggestions. (Reviewer’s comments in blue italics.)

Try this: write out the method as if you were writing it for an audience that understands all 
of the mathematics, using both words and equations and fully integrating the mathematics 
into the prose, but avoiding jargon as much as possible. Then go through it and look for 
points where the language could be made more accessible, without leaving the intended 
meaning vague and without changing the overall structure (much).
We rewrote the section about the optimization methodology. The test now contains more 
information about the weighting scheme and the relevant information about the 
backgrounds of the algorithm details. Having removed the “bell” analogy and the “rolling a 
dice” analogy, it is in a form we would offer to a mathematical audience but also appears 
generally accessible to us, now. However, as readers who are mainly interested in the 
application results of the paper might get deterred by the algorithm details, we included a 
sentence that sections 2.2.2 to 2.3 are for the sake of completeness.

The weighting scheme expressed by w_i could be better explained. From Table 1,
Section 2.2.4 and the algorithm schematic (p. 9) we can conclude the following: (a)
The w’s do not change over the course of the optimization; (b) there is some sort of a
priori ranking that allows these weights to be defined us a function of the index i; and
(c) the basis for the latter is not explained. Section 2.2.4 states that samples should get
more reliable for larger lambda, via a regression-to-the-mean argument. But this logic
does not really tell the reader why w_1>w_2>w_3, when in fact everything presented
here is, or could be, for a single value of lambda. As the text is currently written, the
rolling a dice (sic) analogy is fatuous. Obviously the sample mean will on average
be closer to the population mean for larger samples. But the present text seems to
imply that a sample of e.g., n=5 will be more reliable than a sample of the same size
if you draw more of them. I don’t doubt that the methodology is valid, but the present
description is confusing and incomplete.
We agree with this point. So far, we only mention that the weights are chosen to give 
samples a rank dependent influence in the distribution update. The extreme cases would 
be equal weights of 1/mu for all mu better samples and only one weight w1=1 (meaning 
that only the very best sample is used), respectively. But we skipped the justification for 
the exact choice of the weights so far. The tutorial of Nikolaus Hansen derives the term 
“mueff” (see Table 1, first column, last row in our paper) from the weights, with 
mueff=lambda/4 to indicate an appropriate choice. Indeed, the defined weights 
approximately satisfy that “target equality”. The equality mueff=lambda/4 is actually based 
on a history of rather complex theoretical considerations (Nikolaus Hansen, pers. comm.). 
For a candidate fitness function (the “infinite-dimensional sphere function”) and equal 
weights, it has been shown that using the mu=0.27*lambda best samples is “optimal” in 
the sense that the “expected progress per sample” towards the global optimum is 
maximized. Hansen considers mueff to be the appropriate equivalent to mu, if rank 
dependent weights are used and therefore suggests the similar target setting 
mueff=lambda/4. The optimal weights on the infinite sphere function and hence the optimal 
value for mueff are also known with non-equal recombination weights. These include non-
zero weights for all lambda samples but negative weights for the worse half (hence 



doubling the value of mueff), while in practice Hansen does not consider negative weights 
for updating the mean to be a robust enough choice.
Including literature references we added this brief discussion about the weighting scheme 
to Section 2.3.1 to which we refer forward from Section 2.2.4 (where the weights are 
initially introduced). We further added the formulas of the unbiased empirical estimates of 
the mean vector and the covariance matrix and removed the “rolling a dice analogy”. 

The captions to Figures 1 and 2 are not very informative. Figure 1 caption does not
explain the meanings of the symbols that appear within the shapes or of the shapes
themselves (circles vs rectangles). 
The caption now starts with a sentence about the meaning of the shapes and font colors
(red font for operations that involve random decisions). There are also some changes in 
the figure layout to better indicate the difference between EA and EDA. Since the 
randomness of the EDA belongs to the sampling of the distribution rather than to the 
distribution itself, we changed the font colors accordingly. We also removed the function 
plot symbol from the “fitness evaluation operation” since it does not add much information.

Figure 2 does not have axis labels. It is difficult to guess what is meant by "fitness values 
are shown as dots" when these dots fall directly on the function they are sampled from. Is 
fitness the x or the y axis? I have a hard time envisioning it as either.
We now added axis labels. For the Griewank function example the scales apply to both, 
the graph of the Griewank function and the graph of the probability distribution. Therefore, 
the Griewank function we use is actually a scaled version of the standard Griewank 
function, so we wrote “Griewank type function” in the caption, now. The phrase “fitness 
values are shown as dots” is indeed insufficient. In the left example each dot marks a pair 
(x,f(x)) with the sample and its function value as components. By contrast, the dots in the 
right example mark the actual (two-dimensional) samples while the counter lines indicate 
their function/fitness values. We changed the caption accordingly.

(1) The Conclusion is unfocused, meanders among topics, and repeats points already 
stated in the Discussion. I think it could be cut to about half its current length, if it were 
clearly focused on what are the key take-home messages of this work.
We have shortened and rewritten the conclusion, and hope that it appears more focused 
now.

(2) The sinking model could be better explained, given its significance to the main points of 
this work. I understand that it is fully explicated in the previous publication cited, but one or 
two sentences spelling out exactly what are the assumptions and functional relationships 
used will make it easier on the reader. I would also advise to state what the primary 
currency of the model is (in section 2.1.2), i.e., are the biological compartments 
denominated in N or P units (see Figure 9).
We now explain the relation between b and r/a in more detail, and also give the basic 
currency of the model (phosphorus).

(3) The experiment codes in Section 2.6 should be explained, and not just in the sense 
that the abbreviations are defined. This paragraph should be expanded to include an 
explanation of what the purposes of the different experiments are, in a conceptual sense. 
For example, WIDE appears to indicate broad limits on what values the parameters can 
take in the optimization (vs narrow a priori imposed limits). The reader will eventually figure 
this out, but it is good practice to clearly state it up front.
We have rewritten this subsection to better explain what the different experiments have 
been designed for, and how they were set up.



(4) Section 3.1 emphasizes the reasons for slow convergence of K_PO4, but glosses over 
the fact that convergence of the zooplankton growth and death rates is not much faster 
(Figure 3). It is clear that all 3 of these parameters are quite strongly correlated with each 
other (Figure 5), so the slow convergence is not very surprising, as the misfit function 
surface will be more or less flat over a large area of the parameter space. This correlation 
is also apparent in the subsequent sections (e.g., 13/11-12, 15/3, Table 3).
We agree, that correlation among the parameters may also play a role in the difficulties to 
constrain K_PO4, and comment on this now in several places (end of sections 3.1, 3.2, 
3.2.2; last paragraph of section 4.2).

(5) Figure 6 is not adequately explained. The caption simply states that what is shown 
here is “a region ±2% around the average parameter value of the last generation” while the 
text states it shows a region of parameter space “close to the optimum”. The most 
plausible interpretation I can think of here is that “the last generation” represents the one 
prior to convergence having been declared and the optimization terminated. But this could 
be spelled out more clearly in the caption.
The "best" parameter is the average parameter of the last generation. +- 2% means all 
parameters that lie within 2\% of that parameter value, regardless of generation and 
associated misfit. These parameters can have even occurred early in the optimization, and 
even be associated with a large misfit (that would arise from at least one of the other 
parameters causing a large misfit). We have changed the caption and text accordingly.

(6) Figure 16 could use some summary statistics. In some cases it looks as if the 
optimized parameters are worse than the reference case, but there is a lot of regional 
variation. It would be good if the global integrals of the misfit function were stated in each 
case. It would also be a very good idea to include some statement of what defines the 
’best’ individual.
We added the values of the misfit functions of the different generations to the figure 
caption.

(7) I don’t think Figure 17 is necessary. If this material is really necessary I think it would 
be better to format it as text, similar to the algorithm schematic on p. 9.
We agree, and moved Fig. 17 to the supplement, for those people interested in the code 
layout.

Details:

1/14 change "model’s" to "model" - Corrected.

2/6-8 Move Orr ref to the end in same parenthesis as Najjar. Current wording confuses 
OCMIP1 and OCMIP2, i.e., refers to protocols for OCMIP1 and then cites results from 
OCMIP2. - Corrected.

2/9 delete "global" - Corrected.

2/19 delete "rather sluggish" - Corrected.

2/26 change "insufficient" to "inappropriate" - Corrected.



2/26-28 "The establishment of an automatic optimization of global biogeochemical ocean 
models is aimed for in this current study that should enable ..." The development of 
automatic optimization of global ocean biogeochemical models that is the goal of this 
study should enable ...  - Corrected.

3/1 change "environments" to "resolution" - Corrected.

3/16-18 "This efficient “offline” method for ocean passive tracer transport represents the 
advective and diffusive components of an ocean circulation model in form of trans- port 
matrices, that have been extracted prior to the biogeochemical simulations per- formed 
here from a physical global circulation model." This efficient “offline” method for ocean 
passive tracer transport represents advection and mixing in the form of transport matrices 
that have been calculated from an ocean circulation model simulation prior to the 
biogeochemical simulations performed here. - Corrected.

3/20-23 I don’t think the "see also" or the multiple references to the same paper within the 
same sentence are necessary. - Corrected.

3/26 MOPS should be defined at first use - Corrected.

4/2-4 "Both aerobic and anaerobic remineralization are parameterized as a saturation 
curve, using half-saturation constants to regulate the affinity of these processes to either 
oxidant, as well as the inhibition of denitrification through oxygen." Aerobic and anaerobic 
remineralization are parameterized as saturation (Monod-type) curves that regulate the 
rates of these processes using either oxidant, as well as the inhibition of denitrification by 
oxygen. - Corrected.

4/4 delete "accomplished" or change it to "actual" - Corrected.

4/12 via a parameterization of river runoff? I doubt that this model has explicit river inputs. 
- In the model river runoff resupplies buried phosphorus and nitrogen via the volumetric 
flow rates (Perry et al., 1996) of the world's largest rivers as phosphate and nitrate, as 
described in Kriest and Oschlies (2013)

4/17 and elsewhere CMAES is sometimes hyphenated, sometimes not  - We now spell 
CMA-ES hyphenated throughout the paper.

4/29 change "opposite" to "contrast" - Corrected.

4/33 "searchspace" should be "search space" ("eigenvalue", "eigenvector", and "uni- 
variate", by contrast, are actual words (see 6/4-9)) - Corrected.

5/2-3 "QiEA versions for continuous problems have also been investigated in the 
literature." Could use a literature reference - Corrected

5/13 "therefor" (this misspelling appears repeatedly throughout the text) - Corrected.

5/12 "pseudo code" I assume this refers to the algorithm outline, which is useful, but I don’t 
think this term is appropriate here. - We now write “algorithm outline” instead of “pseudo 
code”.



5/17-18 "Gaussian bell" I don’t think this term is useful or necessary. A Gaussian 
distribution is sometimes colloquially referred to as "bell curve", but the term is not 
normally used in the scientific literature. You have defined the distribution as Gaussian, so 
most subsequent references to "the bell" could just refer to the "the distribution". You might 
have to finesse the wording in a few places, but I would prefer if this term were not used. 
"the mean of the bell is attracted towards the good samples" is a good example of the kind 
of writing I critiqued in my general comments: it tries too hard to be accessible and ends 
up just being vague. - We agree, and dispense with “the bell” and refer to “the distribution”, 
instead.

6/22 I think I understand what sort of vector multiplication is implied here but I’m not sure 
the terminology is correct (see http://mathworld.wolfram.com/VectorDirectProduct.html). If 
you multiply x*y’ in Matlab for example, it represents a scalar product, which is clearly not 
what is meant here (see also algorithm outline on p. 9, 3rd to last line of while loop). - For 
column vectors x=(x_1,…,x_n)’ and y=(y_1,…,y_n)’ the product x*y’ is the matrix A with 
entries a_i_j = x_i*y_j. We added a sentence on this in the manuscript, after the definiton 
C_emp.

6/23 change descend to descent (this misspelling appears several times, in the text and 
Figure 2 caption). - Corrected.

7/28-29 "the minimum of the penalized fitness function lies within the feasible box" 
Shouldn’t this penalty function be 0 for points inside the boundaries? - Yes, it is. We say 
so, now. With “penalized fitness function” we mean “the sum of the actual fitness function 
and the penalty function” . We rewrote this accordingly.

11/12 "different random selection of the parameters from the distribution" A different 
random selection of parameter values; the parameters sampled are fixed. - Corrected.

9/6 Why not state what the "termination criterion" is? (see also "stopping criterion" in 
algorithm outline above, 11/17, 13/4) - This was “hidden” in the last sentence (8/32-33) of 
Section 2.3.1. As the reader might first resort to the algorithm outline, we placed an 
additional footnote comment in there.

11/31 delete "and large ocean volumes" - Corrected.

12/6 "do not decrease monotonously" monotonically - Corrected.

12/9 delete "obviously" - Corrected.

13/26 Change "a phenomenon that does not occur in the real ocean" to something like "a 
statistically optimal but physically meaningless solution"? - Done, but we chose 
"biologically" instead of "physically"

14/6 "a closer fit to biogeochemical fluxes" based on what? There are no fluxes in the 
misfit function. Perhaps Table 4 provides support for this assertion but it is not cited. - We 
now refer to table 4.

14/15 "organic tracer concentrations" I think this refers to biological tracers like 
zooplankton, as opposed to "inorganic" tracers like nitrate (15/12-14). These are 
sometimes referred to as "abiotic" tracers (15/1). I would suggest just referring to "tracers" 
generically and "biological" tracers where appropriate, perhaps with "(e.g., phytoplankton)" 

http://mathworld.wolfram.com/VectorDirectProduct.html
http://mathworld.wolfram.com/VectorDirectProduct.html


at first occurrence for clarification. Choose your wording but I strongly recommend that 
"abiotic" not be used. - We would prefer to stick with "organic" (plankton, DOM, detritus) 
and "inorganic" (O2, NO3 and PO4) tracers , and replace  "abiotic" with "inorganic".

14/27 "for some parameters it is quite insensitive to changes" changes in what? -  
Changed to "that it is quite insensitive to changes in some parameters"

15/15 "not improved on cost of any other tracer" not improved at the cost of any other 
tracer (see also 16/21) - Corrected.

16/30 change "resembles" to "represents" - Corrected.

17/11 "Another possibility to avoid undesired effects like nearly extinct zooplankton is to 
bring in further objectives which consider that issues." Another possible way to avoid 
undesired effects like nearly extinct zooplankton is to introduce further criteria that take 
account of this issue. - Corrected.

17/12 "the cost function" This term appears out of the blue and is not defined until much 
later. I don’t care if you say cost function or misfit function but be consistent.  - Changed 
``cost function'' to ``misfit function'' throughout the text.

17/19 "The topic of multi-objective optimization is intensively regarded" I can’t tell what this 
means. - We changed it to “Multi-objective optimization is essentially addressed with ...”

17/25 "It remains to be investigated, whether this is related to the lack of temporal solution, 
or to phosphate not being too tightly related to dissolved or particular organic matter." It 
remains to be investigated whether this is related to the lack of seasonal data, or to 
phosphate concentration being weakly dependent on dissolved or particular organic matter 
concentration. - Corrected.

18/5 change "cure for" to "solution to" - Corrected.

20/12-14 "However, it is also related to the biogeochemical model structure itself, as the 
mapping of simulated to observed tracers and diagnostics can depend strongly on the 
biogeochemical model structure." If one is looking for opportunities to shorten the text this 
would seem to be a good place to start. We have restructured the appendix about model 
description.

20/20 add "in" before "the appendix" - Corrected.

20/21 "refer the reader to that website" Doesn’t this refer to a published paper? If it doesn’t 
then we need a lot more detail, because the reader is referred to KO15 for all of the details 
of the biogeochemical model. - Indeed, a reference to that paper and its supplement is 
sufficient. We have changed the text accordingly.

20/28 delete "vectors of" - Corrected.

23/17 Something is wrong here. Why is "reprint of" necessary? - Corrected.

24/12 why is a Discussion paper from 2014 cited? Was the final paper not accepted? (see 
also Seferian et al) - This reference somehow survived from very early version of this 
paper. Changed to reference to final paper.



26/20 Srokosz misspelled - Corrected.

In Table 2 the term used to define the upper boundary differs between the caption (and the 
footnote) and the table headers. - Corrected.

In Table 3 caption change "brackets" to "parentheses" and delete first comma. - Corrected.

In Table 4 the depth for export is given as 120 m in the caption and 130 in the column 
header - Corrected.

In Figure 2 caption change "then" to "than" and "standard derivation" to "standard 
deviation" - Corrected.

In Figure 4 caption specify log10 or ln  - Corrected.



We would like to express our sincere thanks to both referees for their reviews, and their 
very helpful suggestions. Below are our detailed, point-by-point replies to both referees.

Reply to referee 2

We thank Momme Butenschön for his encouraging and constructive comments. Below is 
our detailed reply to his suggestions. (Reviewer’s comments in blue italics.)

1.1.1 Main points

It would be nice to see a test of the optimisation against standard test cases (e.g. Lennart-
Jones clusters or similar) in terms of convergence and efficiency with respect to other 
optimisation methods? The test cases given serve well as an illustration of the procedure, 
but not as a benchmark. (Maybe some more benchmarks are given in the cited literature 
that can be referred to?)
We now also refer to the report (Hansen et al. 2009a) that describes the testbed of 24 
benchmark functions which have been considered in the comparison study of 31 
algorithms in Hansen et al., 2010. We also mention its message concerning CMA-ES but 
would prefer to go without our own additional benchmark function studies, here.

Page 5, line 21 f.: While the normale distribution is a sensible choice, I wonder if “. . . is 
considered to provide the best search diversity...” reflects the authors oppinion (in which 
case this should be made clearer by rephrasing) or general consensus (in that case: are 
there any references?). In addition, a lot of biogeochemical parameters will not be valid for 
negative values, so a truely symmetric probability density function is unlikely. The 
Gaussian assumption may still be good enough for the “relevant part” of the parameter 
space, i.e. the area within the bounding constraints, but maybe this point deserves some 
consideration.
Actually, the normal distribution “maximizes” an index of diversity, the so called entropy.
Including references, we rephrased the “diversity sentence”. We also mention the “invalid 
samples issue” at the and of the section about sampling (2.2.3), referring forward to the 
boundary handling procedure (section 2.2.7) of the algorithm, now.

Page 5, line 26 f.: How are the total number of samples and the number of samples to be 
replaced chosen? How do these choices affect the performance?
We add (in parentheses) that the number deviates from the suggested CMA-ES default 
setting referring to the algorithm outline section. As drawing more samples increases the 
exploration capability of the algorithm (the chance that it does not miss good regions of the 
search space) but also the computational costs, we state so now at this place.

Page 6, line 18 f.: Again, what is the choice for the weight factors and how does it affect 
performance?
This is indeed a fair question since, so far, we only mention that the weights are chosen to 
give samples a rank dependent influence in the distribution update. The extreme cases 
would be equal weights of 1/mu for all mu better samples and one weight w1=1 only 
(meaning that only the very best sample is used), respectively. But what is the background 
for the exact choice of weights in CMA-ES? The tutorial of Nikolaus Hansen derives the 
term “mueff” (see Table 1, first column, last row in our paper) from the weights and states 
that mueff=lambda/4 is considered to indicate an appropriate choice. Indeed, the defined 
weights approximately satisfy that “target equality”. 



The equality mueff=lambda/4 is actually based on a history of rather complex theoretical 
considerations (Nikolaus Hansen, pers. comm.). For a candidate fitness function (the 
“infinite-dimensional sphere function”) and equal weights, it has been shown that using the 
mu=0.27*lambda best samples is “optimal” in the sense that the “expected progress per 
individual” towards the global optimum is maximized. Hansen considers mueff to be the 
appropriate equivalent to mu, if rank dependent weights are used and therefore suggests 
the similar target setting mueff=lambda/4. The optimal weights on the infinite sphere 
function and hence the optimal value for mueff are also known for non-equal 
recombination weights. These include non-zero weights for all lambda samples but 
negative weights for the worse half (hence doubling the value of mueff), while in practice 
Hansen does not consider negative weights for updating the mean to be a robust enough 
choice.
A discussion of these aspects is included into the paper now, referring to corresponding 
publications.

Page 7, line 1 f.: What does the c_mu factor mean for the performance? I’d expect it to 
slow convergence down. In that case, a discussion of trade-offs between using more 
samples or a higher c_mu would be interesting.
Yes, the intention is that the information of earlier samples fades out slowly such that the 
current distribution estimate cumulates information of several iterations samples in order to 
be more reliable with a small number of samples per iteration. The smaller the factor c_mu 
is the more former samples contribute to the current distribution estimate, slowing down 
learning but being more reliable with less samples per iteration. E.g., for our parameter 
optimization experiments (n=6 and lambda=10) and the given c_mu setting (Table 1), the 
samples of 23 iterations contribute 63% of the over all information n C, if only Eq. (1) is 
used to update C. We therefore add the two sentences after introducing the backward time 
horizon of floor( 1 / c_mu ).

Section 2.5: How is the choice of parameters to be optimised motivated? Especially with 
respect to surface vs. deep processes and the focus of optimisation on the deep 
reservoire.
We aimed to consider six parameters for optimization, that encompass a large range of 
time  scales, as well as different trophic levels, vertical domains and dependencies 
between internal (interactions between compartments) and external (dependence on light) 
factors . We further aimed to avoid simultaneous optimization of parameters that are 
obviously related to each other, such as maximum growth rates and half-saturation 
constants, or sinking speed and remineralization rate. We have added a few sentences to 
clarify our choice of parameters.

Page 11, lines 1-5: Might be worth loosing a couple of words on what kind of configuration/
set-up MOPS-RemHigh is. Do I understand this well that the TWIN ex- periments 
evualates TMM+MOPS against nutrients fields from a MOPS-RemHigh?
RemHigh refers to a high affinity of oxic and suboxic remineraliztion to oxidants. We have 
added this to the text.

Page 11, line 21: Until this point I wasn’t sure if the simulations actually did run the full 
3000 years for each parameter set candidate or if they used a “collective” spin-up. I’m glad 
the former is the case, but it might be worth making this point clearer before (section 2.2).
This is mentioned in section 2.1.1, but we now also mention it in the abstract. 

Page 12, line 14 f.: Also the global mean of phosphorus in the model is unconstrained, as 
there’s is no constraint on the total amount of biomass in the current optimisation 



framework as far as I can gather. It is true that there are no global sources or sinks for 
phoshorus in the model, but that doens’t mean that there’s no error in the total amount. It 
just doesn’t change during the optimisation (as long as the total phosphorus initial 
condition isn’t included in the optimisation parameters).
Because the global model is mass-converving with respect to sources and sinks of 
phosphorus (any gain or loss in biomass=organic P is accounted for in the loss/gain of 
phosphate; buried P will be resupplied by river runoff in the following year), and each 
simulation starts with the same initial condition, the total global phosphorus mass is 
constrained.  In contrast, there is an unlimited source/sink of oxygen and nitrogen in the 
atmosphere, which may exchange with the ocean via air-sea gas exchange or nitrogen 
fixation, respecively. 

Page 15, line 30: I thought that the main aspect of the issue of OBS-WIDE was not so 
much that it was trapped in a local minimum, but that it ended up in an area of the pa- 
rameter space that yielded unfeasible results on the base of observational constraints not 
used in the optimisation (e.g. the grazing rates). So in principle, the minumum found may 
even be global (even if in this case it is not, looking at the misfit values achieved), but the 
resulting biogeochemical fields and fluxes are unreasonable. 
Indeed, the minimum misfit of OBS-WIDE was  about 6% larger than any misfit of the other 
optimizations against observations (see table 3); thus we concluded that this is a local 
minimum. 
To me that is in an important difference, highlighting the fact that the automated 
optimisation process is not guaranteed to deliver acceptable results, but may still require 
expert judgement as additional validation, as long as the observations used in the 
optimisation process are not sufficient to fully constrain the ecosystem functions modelled. 
(In fact the misbehaviour might in principle fall into a part of the modelled food-web that is 
not sufficiently constrained to demonstrate misbehaviour quantitatively, in particular for 
more complex models).
We agree, and this is exactly what we meant to say. Further, a local (or global) minimum 
always relates to a particular misfit function; the occurrence of local minima with regard to 
certain observations may point towards an unconstrained parameter. This is one of the 
reasons why we aim to extend the data sets (if we want to constrain zooplankton) or apply 
tools such as multi-objective optimization.

Page 16, line 6 f.: “Increasing the population size . . . .” Resiterating the previous com- 
ment, it is not guaranteed that an optimal solution that is judged unfeasible on the base of 
data or knowledge that is not used in the optimisation process, represents only a local 
minimum and not a global one. Specifically, there is no reason why this minimum should 
have higher misfit values than any other minimum within the set of other optimal solutions 
that deliver reasonable results. So there’s actually no guarantee that increasing the 
population size would help.
See above: the misfit of OBS-WIDE is indeed relatively large, and most of the parameters 
differ from those experiments with narrower boundaries, or a larger population size. We 
agree, that this does not guarantee that the latter optimizations have found a global 
minimum; but it is more likely, increasing our confidence in either of these setups (larger 
population size or narrower boundaries). 
We would like to note that, when plotting the PDF of the “best” parameters (i.e., all 
individuals with a misfit not higher than 1% of the minimum misfit) we find bimodal 
distributions of kappa_zoo (the quadratic mortality rate). One of the modes vanishes if we 
decrease the deviation from minimum misfit further (i.e., account for all individuals with 
misfits not higher than 1.001 times minimum misfit). This raises several questions about 



the parameter identifiability for zooplankton parameters, and is discussed in detail in 
Schartau et al. (2016; section 9 and Fig. 8).

Figure 1: This figure is hard to understand and needs to be explained better in the caption 
in order to be useful, e.g. what are the letters? what do the different box shapes (circles vs. 
squares) represent?
The caption now starts with a sentence about the meaning of the shapes and font colors
(red font for operations that involve random decisions). There are also some changes in 
the figure layout to better indicate the difference between EA and EDA. Since the 
randomness of the EDA belongs to the sampling of the distribution rather than to the 
distribution itself, we changed the font colors accordingly. We also removed the function 
plot symbol from the “fitness evaluation operation” since it does not add much information.

1.1.2 Minor Comments

Page 4, lines 22 ff.: Might be worth explaining exploitation vs exploration for readers less 
familiar with the subject of optimasation. We added explanations in parentheses.

Page 5, line 4: Here we use ...  Corrected.

Page 5, line 13: therefore Corrected.

Page 5, line 24: “. . . a some what misuse. . . ”, please rephrase to “a misuse to some 
degree” or similar. Corrected.

Page 5, line 30: towards Corrected.

Page 8, line 15: What is mu_eff? We refer to Table 1 once more. The meaning of mu_eff 
as a quality measure for the chosen weights (see above) is now shortly introduced with 
corresponding references.

Page 8, line 18: Where does this damping parameter appear from? The factor was also 
defined in Table1. As it is simply “1+c_sigma” for the selected weights we now prefer to 
substitute that parameter by “1+c_sigma” in the corresponding place in the algorithm 
outline. 

Page 10, line 4: See the information. . . Corrected.

Page 10, line 5: ..., e.g. Corrected.

Page 11, lines 2-5: dissolved inorganic oxygen Changed this, but added in parentheses: 
"(herafter termed as and compared to nitrate)"

Page 11, lines 8-13: How are the parameter bounds chosen? We have now added two 
paragraphs on the choice on boundaries in subsection 2.5.

Page 14, line 27: What is “it”? Replaced by "the misfit"

Table 2 heading: I can’t find lambda in the table, so non need to specify it here. Corrected.

Additional Note



We changed the first sentence in Section 2.3.1 from “The CMA-ES approach described in 
Subsection 2.2.1 ...” appropriately to “The CMA-ES approach described in Subsecion 
2.2 ...”. Therefore the headline of Section 2.2 changed from “Optimization” to “The 
optimization algorithm CMA-ES” and the headline of Section 2.2.1 from “The optimization 
algorithm CMA-ES” to “Population-based search heuristics”
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Abstract.

Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified

representations of complex dynamical interactions, which are described by many (⇡ 10�⇡ 100) parameters. The values of

many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for

a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to5

determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for

their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible

environmental changes.

We here present a framework for the calibration of global biogeochemical ocean models on short and long time scales.

The framework combines an offline approach for transport of biogeochemical tracers with an Estimation of Distribution Al-10

gorithm (Covariance Matrix Adaption Evolution Strategy, CMAES
::::::::
CMA-ES). We explore the performance and capability of

this framework by five different optimizations of six biogeochemical parameters of a global biogeochemical model,
:::::::::
simulated

:::
over

:::::
3000

:::::
years. First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of

observations of annual mean dissolved nutrients and oxygen determine the extent, to which different setups of the optimization

influence model’s fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of15

inorganic biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the

least spread. Parameters more closely tied to surface biology, which act on shorter time scales, are more difficult to determine.

In particular the search for optimum zooplankton parameters can benefit from a sound knowledge of maximum and minimum

parameter values, leading to a more efficient optimization. It is encouraging that, although the misfit function does not contain

any direct information about biogeochemical turnover, the optimized models nevertheless provide a better fit to observed global20

biogeochemical fluxes.

1 Introduction

Global ocean models that simulate biogeochemical interactions are subject to many uncertainties, among them those related

to initial conditions, forcing, and parameterizations of physical and biological processes, as well as the adequacy of the cho-
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sen model complexity with respect to the scientific problem under investigation. It is generally assumed that all these ’input’

factors affect the simulation results in ways that may be different for different models, but a thorough understanding of how

uncertainties in input map onto model output (residuals, i.e., deviations from the true state) is still lacking. Quantitative esti-

mates of the effect of model uncertainty on model residuals are generally obtained from individual sensitivity studies, model

intercomparison or model ensemble studies, where the spread of model results is regarded as a measure of model uncer-5

tainty. This procedure is, for example, followed in the assessment reports of the Intergovernmental Project of Climate Change

(IPCC). The Ocean Carbon Model Intercomparison Project (OCMIP, Orr et al., 2001)
:::::::
(OCMIP)applied a strict protocol re-

garding the description of biogeochemical processes to a suite of different ocean circulation models to show that the effect

of uncertainties in the simulated circulation on biogeochemical tracer distributions and their residuals can be considerable

(Najjar et al., 2007)
:::::::::::::::::::::::::::::
(Orr et al., 2001; Najjar et al., 2007). However, the effect of uncertainties in the formulation of biogeo-10

chemical models on simulated global biogeochemical tracers and fluxes can be of similar magnitude (Kriest et al., 2010) and is

often difficult to disentangle from other sources of uncertainty (e.g., Cabre et al., 2015; ?)
::::::::::::::::::::::::::::::::::::
(e.g., Cabre et al., 2015; Seferian et al., 2016).

One reason for diverging results of global biogeochemical models can be related to the uncertainty with respect to biological

constants and equations. In addition to often poorly constrained parameters, it is, so far, not even clear how complex a biogeo-

chemical model should be (e.g. what state variables it should contain) in order to realistically reproduce observed global tracer15

distributions (Kriest et al., 2012). As a consequence, the diversity of biogeochemical models ranges from simple, “nutrient-

only” models to far more complex ones, comprising different elemental cycles and biological components.

Uncertainties in biogeochemical model setup partly arise from sparse observations, particularly in the open ocean and during

winter season in the high latitudes (Kriest et al., 2010). Further, the combined effects of shallow and deep biogeochemistry and

the rather sluggish ocean circulation introduce a variety of timescales, from minutes to millennia, hampering a complete and20

thorough investigation of the combined effects of the different process parameterizations. Finally, even quite simple biogeo-

chemical models are often characterized by non-linear interactions, complicating the a posteriori analysis of model results. By

performing a relatively “coarse sweep“ of the multidimensional model parameter space, Kriest et al. (2010, 2012) illustrated

the impact of different model complexities and parameter sets on simulated tracers and their fit to observations. This first at-

tempt to systematically explore the impacts of biogeochemical parameter uncertainty in global models may well have missed25

optimal regions in parameter space, making it difficult to decide whether a model performs badly due to ill-chosen parameters,

or due to an insufficient
:::::::::::
inappropriate

:
model structure. The establishment of an

:::
The

::::::::::
development

:::
of automatic optimization of

global biogeochemical ocean models is aimed for in this current study that
:::::
ocean

:::::::::::::
biogeochemical

:::::::
models

:::
that

::
is
:::
the

::::
goal

:::
of

:::
this

:::::
study should enable a more thorough search for “best” parameters, and thus facilitate inter-model comparison.

An under-sampled ocean, together with a large variety of time and space scales and a high level of structural model com-30

plexity, poses a challenge for optimization, and for a full, and dense enough, scan of the parameter space on a global scale.

Therefore, optimization of marine biogeochemical models has mostly been carried out in a local, 0- or 1-dimensional setting

(e.g., Fasham and Evans, 1995; Athias et al., 2000; Rückelt et al., 2010; Ward et al., 2010). The variability of biogeochemical

processes has been addressed by simultaneous optimization at different sites (and physical forcings) in the North Atlantic by

Schartau and Oschlies (2003a, b). Given the high computational demands, and the sparsity of biogeochemical data on a global35
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scale, attempts to address the indeterminacy of global simulations of ocean biogeochemistry via optimization have resorted

to rather simple biogeochemical systems (Kwon and Primeau, 2006, 2008) or to rather coarse physical model environments

::::::::
resolution

:
(Tjiputra et al., 2007). To constrain parameters related to dissolved organic matter production and decay on short

and long time scales, Letscher et al. (2015) alternated between a simplified biogeochemical system and a more complex

model, which is limited in terms of spin-up time. Recent attempts begin to combine complex, local models and a detailed5

three-dimensional global environment for optimization (Hemmings et al., 2014). To our knowledge, however, the experiments

presented here are the first one that, for a state-of-the-art global biogeochemical ocean model, carry out a parameter optimiza-

tion that targets at parameters relevant for biogeochemical processes on both large and small scales in the full spatio-temporal

domain.

In this paper we first test the global biogeochemical model optimization against synthetic data, derived from a previous10

model experiment with perturbed model parameters in so-called twin experiments. We then present four optimizations against

a global, synoptic data set of observed phosphate, nitrate, and oxygen.

2 Methods

2.1 Biogeochemical ocean model

2.1.1 Circulation framework15

For easy and generic coupling between different biogeochemical models and circulation fields, as well as fast and efficient

computation we use the “Transport Matrix Method” (TMM), developed by Samar Khatiwala (Khatiwala, 2007), and available

via Github (https://github.com/samarkhatiwala/tmm). This efficient “offline” method for ocean passive tracer

transport represents the advective and diffusive components of an ocean circulation model in
::::::::
represents

::::::::
advection

::::
and

::::::
mixing

::
in

:::
the form of transport matrices , that have been extracted

::::::::
calculated

::::
from

::
an

::::::
ocean

:::::::::
circulation

:::::
model

:::::::::
simulation

:
prior to the20

biogeochemical simulations performed herefrom a physical global circulation model.

For optimization, we use the TMM with monthly mean transport matrices derived from a 2.8� global configuration of

the MIT ocean model with 15 levels in the vertical (Marshall et al., 1997). Using this rather coarse spatial grid, a time step

length of 1/2 day for tracer transport and 1/16 day for biogeochemical interactions, each biogeochemical model setup with

seven tracers (Kriest and Oschlies, 2015) has been simulated for 3000 years, after which most of the tracers approach steady25

state(see also Kriest and Oschlies, 2015).
:
.

2.1.2 Biogeochemical model

The biogeochemical model employed as representative of current state-of-the-art models is the same as presented by Kriest and Oschlies (2015, hereafter called MOPS)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Kriest and Oschlies (2015, hereafter called MOPS - Model of Oceanic Pelagic Stoichiometry),

and we only describe it briefly here. It
:::::
Based

::
on

::::::::::
phosphorus,

::
it
:
consists of seven tracers, namely phosphate, nitrate

::::::::
dissolved

::::::::
inorganic

:::::::
nitrogen

::::::::
(hereafter

::::::
termed

::::
and

::::::::
compared

::
to

::::::
nitrate), phytoplankton, zooplankton, detritus, dissolved organic matter30

(DOM) and oxygen. For conversion between the different elements we apply a constant global stoichiometry of R�O2:P =170 mmol O2:mmol P
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for the ratio between O2:P, and 16 mmol N:mmol P for the N:P ratio of particular and dissolved organic matter. The stoichiom-

etry of aerobic and anaerobic remineralization is based on Paulmier et al. (2009). Remineralization of detritus and DOM is

parameterized via a constant nominal remineralization rate, r = 0.05 [d�1]. However, aerobic remineralization is restricted

to regions with sufficient oxygen. If oxygen declines, nitrate is used as electron acceptor, thereby mimicking denitrification.

If both oxygen and nitrate are depleted, remineralization of organic matter is suppressed in the model. Both aerobic
:::::::
Aerobic5

and anaerobic remineralization are parameterized as a saturation curve, using half-saturation constants to regulate the affinity

::::::::
saturation

::::::::::::
(Monod-type)

::::::
curves

:::
that

:::::::
regulate

:::
the

:::::
rates of these processes to

::::
using

:
either oxidant, as well as the inhibition of

denitrification through
::
by

:
oxygen. Thus, the accomplished

::::
actual

:
remineralization rate may differ from r, depending on oxidant

availability. Temperature dependent nitrogen fixation resupplies fixed nitrogen lost through denitrification via relaxation at the

sea surface to the stoichiometric ratio of 16. Thus, while total phosphate inventory is conserved, oxygen and fixed nitrogen10

inventory may change during the course of the simulation, with the long-term, steady state inventory depending on physics and

biogeochemistry (Kriest and Oschlies, 2015).

Sinking of detritus is simulated using a sinking speed increasing with depth w = az [d�1].
:::::::::
Assuming

:::::::
constant

:::::::::::::
remineralization

:::
rate

::
r,

::::::::::
equilibrium

:::::::::
conditions

:::
and

:::::::
absence

::
of

::::::::
horizontal

::
or
:::::::
vertical

:::::::::
advection,

:::
this

:::::
would

:::::
result

::
in

::
a

::::::
particle

::::
flux

:::::
profile

:::::::
defined

::
by

::::::::::
F (z)/ z

�b
:
,
::::::
where

:::::::
b= r/a

::::::::::::::::::::::::::::::
(see also Kriest and Oschlies, 2008). For better comparison to observed particle flux profiles15

(e.g., Martin et al., 1987), in the following we express the sinking speed via the parameter b= r/a (see Kriest and Oschlies,

2008). The model also includes burial of organic matter
::::::::
particulate

:::::::
organic

:::::::::
phosphorus

::::
and

:::::::
nitrogen

:
arriving at the sea floor,

which is resupplied globally
::
as

::::::::
phosphate

::::
and

:::::
nitrate

:
via river runoff

::::::::::::::::::::::
(Kriest and Oschlies, 2013).

Simulating both surface (primary production, grazing, egestion and excretion by zooplankton) as well as deep (sinking and

decay of organic matter) processes before the background of ocean circulation and seasonally varying forcing, the model thus20

encompasses processes that act on a variety of time scales, from the order of hours to days (surface) to months and years.

2.2 Optimization The optimization algorithm CMA-ES

2.2.1
:::::::::::::::
Population-based

::::::
search

:::::::::
heuristics

The TMM as described above is fast enough to be used together with meta-heuristic methods for parameter optimization, such

as Evolutionary Algorithms (EAs) or Estimation of Distribution Algorithms (EDAs). Although these methods require more25

function evaluations to converge to some local optimum than gradient-based methods, they are of advantage in complicated,

irregular “search landscapes” with local optima (which might be far worse than the global optimum), or discontinuities.

The common goal of such population-based meta heuristics is to strike a good balance of both search properties, exploration

and exploitation.
::::::
(search

:::
for

:::::::::
promising

::::::::
solutions

::
in

::
a
::::
wide

::::
area

:::
of

:::
the

::::::
search

::::::
space)

:::
and

::::::::::
exploitation

:::::::
(search

::::::
within

:::::
small

::::::
regions

::::::
around

:::::
good

:::::::
solutions

:::
to

:::
fast

:::::
reach

:::::
local

:::::::
optima). Classical evolutionary algorithms as depicted on the left of Fig. 130

mimic principles of natural evolution to pursue that goal. They use randomized procedures to select, combine, mutate and

reinsert candidate solutions (individuals) from/into a given solution set (population). In each iteration, these mechanisms (red

operations in Fig. 1) indirectly imply a probability distribution on the search space with respect to which individuals are
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likely to appear in the next generation
::::::::::
“generation”. The implied probability distribution changes in each generation, tending to

increase the probabilities of good solutions and to decrease the probabilities of poor solutions due to the survival-of-the-fittest

principle.

In opposite
::::::
contrast

:
to classical EAs, estimation of distribution algorithms (sketched on the right of Fig. 1) use an explicit

(parameterized) probability distribution from which candidate solutions are sampled, directly. In each iteration, the probability5

distribution is also updated directly by utilizing good solutions of the current iteration. Good solutions of preceding iterations

are (optionally) considered by involving preceding probability distributions into the update process using auxiliary variables.

Evolutionary frameworks use operators (EAs) and probability distributions (EDAs) that are appropriate for the searchspace

:::::
search

:::::
space

:
under consideration. For example, so called quantum inspired evolutionary algorithms (QiEA) have shown to

be very suitable EDAs for binary problems (e.g. Kliemann et al., 2013; Patvardhan et al., 2015, 2016). QiEA versions for10

continuous problems have also been investigated in the literature
:::::::::::::::
(Babu et al., 2009).

We here
::::
Here

:::
we

:
use a state-of-the-art EDA for optimization of (firstly) six parameters. Our task can be classified as a

continuous optimization problem with bound-constraints, i.e. boundaries for the parameters. One appropriate EA/EDA tool

is the Covariance Matrix Adaption Evolution Strategy (CMA-ES; Hansen and Ostermeier, 2001; Hansen, 2006), which

has shown good performance with respect to quality and efficiency (in terms of function evaluations) in similar applica-15

tions(Hansen et al., 2010). ) The algorithm
:
.
::::::::::::::::::::::::
Hansen et al. (2010) compare

::
31

:::::::::
algorithms

::
on

::
a

:::
test

:::
bed

::
of

::
24

::::::::::
continuous

:::::::::
benchmark

:::::::
functions

:::::::::
presented

::
in

:::::::::::::::::::
Hansen et al. (2009a),

::::::
finding

:::::::::
CMA-ES

:::::::
versions

::
to
::::::::

perform
:::::
well,

::::::::::
particularly

::
on

:::::::::::
multi-modal

::::
test

::::::::
functions.

::::::::
CMA-ES

:
is invariant regarding both order preserving transformations of the objective function and rotations and

translations of the search space. Invariances of a strategy justify generalizations of empirical results, which encouraged us to

choose CMA-ES for our application.20

We essentially follow the description of the (µ/µw,�)-CMA-ES in Hansen (2016). We present the guiding ideas in Subsubsections

2.2.2- 2.2.6
::
In

::::::::::::
Subsubsection

:::::
2.2.2,

::
we

::::::::
illustrate

::::
how

::
the

::::::::::
distribution

::
is

:::::::
sampled

:::
and

::::::::
modified. For the sake of completeness, the

pseudo code
::
we

::::::
present

:::
the

:::::::
guiding

:::::
ideas

::::::
behind

:::
the

::::
exact

::::::::::
procedures

::
in

:::::::::::::
Subsubsections

::::
2.2.3

::
-
:::::
2.2.6.

:::
The

:::::::::
algorithm

::::::
outline

can be found in 2.3. This basic version does not consider bound constraints. We therefor
:::::::
therefore use a penalty function based

boundary handling (Hansen et al., 2009b) which we will briefly explain in Subsubsection 2.2.725

2.2.2 Normal distributions

In CMA-ES the distribution from which candidate solutions (BGC parameter vectors in our application) are sampled is a multi-

variate normal-distribution. It generalizes the usual normal distribution, also known as Gaussian distributionor Gaussian bell,
:
,

from R to the vector space Rn with arbitrary dimension n, given by the number of biogeochemical parameters to be estimated.

The position and the (bell)shape of the one-dimensional normal distribution (more precisely, its density function) is uniquely30

defined by its mean (the position of its top) and its variance, respectively. With respect to a

:
A
::::::::
measure

::
of

:::::::::
“diversity”

::
of

::
a

:::::::::
probability

:::::::::
distribution

::
is
:::
the

:::
so

:::::
called

::::::::::
(differential)

:::::::
entropy.

::::
For

:
a
:
given variance, the normal

distribution is considered to provide the best search diversity
:::
has

:::
the

:::::::::
maximum

::::::
entropy

:
amongst all distributions having

::::
with

5



the same variance.
:::::::::::::::::::::::::::::::::::
(Cover and Thomas, 2006; Hansen, 2016).

:::::::
Entropy

::
is

::::
used

:::
as

::
an

::::::
index

::
of

::::::::
diversity,

::::::
though

::
it
::::
does

::::
not

::::::
directly

:::::
mean

:::
the

::::
same

:::
as

:::::::
diversity

:::::::::::
(Jost, 2006).

An EDA that works with Gaussian distributions is supposed to carefully update both defining distribution parameters mean

and variance, in order to balance its exploration and exploitation ability. This update process is illustrated in Fig. 2. The left side

shows a run of the CMA-ES algorithm on a uni-variate test function (a somewhat misuse
:
a

::::::
misuse

::
to

::::
some

:::::::
degree, as CMA-ES5

is actually not suggested to be applied with problem dimensions less than 5). The test function has many local optima in which

a gradient based search might get stuck. From the Gaussian bells
::::::::::
distributions (the blue density functions), we draw 10 samples

per iteration with function values shown as dots and update the distribution
:::::
(some

:::::::
samples

:::::
more

::::
than

:::
the

:::::::::
suggested

::::::
default

:::::::
number,

:::::
which

:::::::
depends

:::
on

:::
the

:::::::
problem

:::::::::
dimension,

:::
cf.

::::::::::::
Subsubsection

::::::
2.3.1).

:::::
Each

::::::
sample

:::::::
together

::::
with

:::
its

:::::::
function

:::::
value

::
is

::::::
marked

::::
with

::
a

:::
dot.

::::
The

::::::::::
distribution

::
is

::::::
updated

:
by involving the 5 better

:::::
better

::::
half

::::::::
(CMA-ES

::::::
default

:::::::
portion)

:::
of

:::
the samples10

(blue dots).
:::::::
Drawing

:::::
more

:::::::
samples

:::
per

:::::::
iteration

::::::::
generally

::::::::
improves

:::
the

::::::::::
exploration

:::::::::
capability

::
of

:::
the

::::::::
algorithm

::::
but

:::::::
requires

:::::::::::::
correspondingly

:::::
more

:::::::
function

::::::::::
evaluations. We can observe that the mean of the bell

:::::::::
distribution

:
is attracted towards the good

samples, then. Also, the distribution shape widens, after good samples had some distance to each other and/or some distance

to the current mean. Vice versa, if all good samples are close to the mean, the shape will narrow, again. Now, the mean of the

bell
:::::::::
distribution is supposed to drift toward

:::::::
towards the global optimum and should then start to narrow more and more. This15

behavior is observed in iterations 16, 22 and 28. So, when necessary, the procedure is supposed to become less exploring but

more exploiting.

Similarly to the definition of the uni-variate Gaussian distribution by mean and variance, a multi-variate normal-distribution

can be uniquely identified by a mean vector x and a positive definite matrix C of covariances, respectively, and is denoted

by N (x,C). Again, the mean defines the position of the bell
:::::
center

::
of

:::
the

::::::::::
distribution

:
while the covariance matrix defines20

its shape. The area of one standard deviation which is an interval [x��,x+�] in the one-dimensional case becomes an n-

dimensional ellipsoid, now (cf. the ellipses on the right side of Fig. 2 for n= 2). It can be shown that the principle
:::::::
principal axes

of the ellipsoid correspond to C’s Eigen values and Eigen vectors
::::::::::
eigenvalues

:::
and

:::::::::::
eigenvectors, respectively. More precisely,

an Eigen vector
:::::::::
eigenvector

:
defines the orientation of a principle

:::::::
principal

:
axis and the square root of the corresponding Eigen

value
::::::::
eigenvalue

:
defines the length of that principle

:::::::
principal axis.25

2.2.3 Sampling the distribution

Sampling a multi-variate normal distribution N (x,C) can be practically implemented using an Eigen decomposition
:::::::::::::::::
eigendecomposition

C=BD2BT, where D2 is a diagonal matrix of Eigen values
::::::::::
eigenvalues of C and B is a matrix of corresponding orthonor-

mal Eigen vectors
::::::::::
eigenvectors of C. One sample x 2 Rn of N (x,C) can be realized by drawing n real

::::::::::
independent

:::::::
random

numbers from the uni-variate standard normal distribution N (0,1) to be the components of a random vector z 2 Rn and setting30

x= x+BDz.

::::
Note,

::::
that

:::
for

:::
our

:::::::
problem

:::::
there

:::
are

::::::
bound

:::::::::
constraints

::
on

:::
the

::::::::::
parameters

::::
such

::::
that

:::::::
samples

::
of

:
a
:::::::

normal
:::::::::
distribution

::::::
might

::
be

:::::::::
infeasible,

:::::::::
regardless

::
of

:::::::
whether

:::
the

::::::::::
distribution

:::::
mean

::
is
:::::::
feasible

:::
or

:::
not.

:::::::::
However,

:
a
::::::::
boundary

::::::::
handling

:::::::::
procedure

::::
(see

::::::::::::
Subsubsection

:::::
2.2.7)

:::
will

::::::
ensure

::::
that

::
the

:::::::::::
optimization

:::::
result

::
of

::::::::
CMA-ES

::
is

:::::::
feasible.

:
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2.2.4 Updating the distribution: basic principle

Empirical (re)estimates xemp and Cemp of the distribution parameters can be calculated from a set S = {x1, . . . ,x�} of �

samples, such that the expectation of xemp is x and the expectation of Cemp is C.
:
:

xemp
::::

=

1

�

�X

i=1

xi

::::::::

Cemp
::::

=

1

�� 1

�X

i=1

(xi �xemp)(xi �xemp)
T
.

:::::::::::::::::::::::::::::::

5

::::
Note,

::::
that

::::
each

::::::
vector

:
v

::
is
::::
this

:::::
work

:
is
::
a
::::::
column

::::::
vector

:::
and

:::
its

:::::::::
transposed

::::::
vector

:::
v

T
:
is
::

a
::::
row

:::::
vector.

::::
The

::::::::
products

:::::
under

:::
the

:::
sum

::
in
:::
the

::::::
second

:::::::
formula

:::
are

::::::::
therefore

::::::
n-by-n

::::::::
matrices.

Clearly, the estimates become the more reliable the larger � is(like for the average score when rolling a dice many times).

:
. We may assume that the population S is increasingly ordered (ranked) with respect to the considered objective function

f : Rn �! R, that is f(x1) f(x2) · · · f(x�). Now, by involving only the better half of µ= b�
2 c samples, their distribution10

estimate N (xµ,Cµ) with corresponding parameters xµ and Cµ will be biased towards reproducing that µ samples with

higher probability than the other ��µ samples. CMA-ES uses
::::::
positive

:
values w1 � w2 � · · ·� wµ with

Pn
i=1wi = 1 to give

solutions a rank dependent weight in the updating process of both, xµ and Cµ(a more general version allows to involve all

solutions, applying negative weights for the poor ranks).
:::
The

:::::
exact

:::::::
CMA-ES

:::::::
formula

:::
for

:::
the

:::::::
w-values

::::
and

::::::::::
information

::::
about

:::
its

:::::::::
background

::
is
:::::
found

::
in
::::::::::::
Subsubsection

:::::
2.3.1.

:
The new mean is, thus, calculated as xµ =

Pµ
i=1wixi. A subtlety is the choice of15

the reference mean value used for estimating Cµ. Instead of the new empirical mean xµ, the mean x of the former distribution

is chosen and yields

Cµ =

µX

i=1

wi(xi �x)(xi �x)

T
.

Cµ =

µX

i=1

wi(xi �x)(xi �x)

T
.

::::::::::::::::::::::::::

(1)20

It has the effect that the new distribution is elongated into directions of descend
::::::
descent (see iteration 2 in the right example of

Fig. 2).

2.2.5 Updating the distribution: reliability with small populations

As mentioned above, reliable distribution estimates require a sufficiently large number of samples. But, for a competitive

computational performance we must get along with a rather small number of samples. CMA-ES therefor
:::::::
therefore involves the25

information of former populations by updating the covariance matrix C to be a (convex) combination of both the current C
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and its estimate Cµ, that is

C  (1� cµ)C+ cµCµ. (2)

Using this formula, it can be shown that 37% of the current matrix C’s information dates back at least b 1
cµ
c generations, that is,

the choice of the smoothing factor cµ decides about the backward time horizon of the update procedure.
:::
The

:::::::
smaller

:::
the

:::::
factor

::
cµ::

in
:::
(2)

::
is
:::
the

:::::
more

::::::
former

:::::::
samples

:::::::::
contribute

::
to

:::
the

:::::::
current

::::::::::
distribution

:::::::
estimate,

:::::::
slowing

:::::
down

::::::::
learning

:::
but

:::::
being

:::::
more5

::::::
reliable

::::
with

::::
less

:::::::
samples

:::
per

:::::::
iteration.

::::
For

::::::::
example,

:::
the

::::::::::
experiments

::
in

:::
this

:::::
paper

::::
use

:::::
n= 6

:::::::::
parameters

::::
and

::::::
�= 10

:::::::
samples

:::
per

:::::::::
generation.

:::::
Using

:::
(2)

:::
to

:::::
update

:::
C

:::
and

:::
the

::::::::::::
(compromise)

::
cµ:::::

value
:::::::
defined

:::
for

::::::::
CMA-ES

::::
(see

:::::
Table

::
1),

:::
the

:::::::
samples

:::
of

:::
the

:::
last

::
23

::::::::
iterations

::::::
would

::::::::
contribute

:::::::
roughly

::::
63%

::
of

:::
the

::::
over

:::
all

::::::::::
information

::
in

::
C.

:

Another feature that facilitates small population sizes � is to calculate and update a vector pc that represents iteration

averaged changes of the distribution mean and to use pc for a so called rank-one estimate C1 = pcp
T
c of the covariance matrix.10

The idea behind this approach is that, using Cµ, distribution elongations into directions of descend
::::::
descent do not distinguish

for the sign of the directions. The use of the vector pc (called evolution path) mitigates this effect. Consecutive changes of the

distribution mean into opposite directions would cancel out each other. Similar to the smoothing with factor cµ in the update

of C, above, the update of pc is done with a smoothing factor cc. With a further smoothing factor c1 for the rank-one estimate

C1, the combined covariance matrix update reads15

C  (1� cµ� c1)C+ cµCµ + c1C1.

While Cµ efficiently involves information from the current population into the update process, C1 exploits correlations be-

tween generations. The former is important in large populations, the latter is particularly important in small populations.

2.2.6 Step size control

Finally, there is an additional explicit adaption of the over all scale (the step size) of the distribution by adapting a scaling20

factor �, actually using N (x,�

2C) instead of N (x,C). Similar to the evolution path pc for the rank-one covariance matrix

estimates above, the adaption of the scale � involves an evolution path p� that mirrors cumulative changes of the mean. The

difference between the update formulas of both evolution paths p� and pc is that for p� all step sizes are
::::
each

::::::
change

::
is

:
re-

scaled
:::::::::::
(normalized) with respect to the isotropic normal distribution N (0,I). The expected step size between

::::
Since

::::::::::
covariances

::
are

:::::::
always

::::::::::
re-estimated

::::
with

::::::
respect

::
to
:::
the

:::::
mean

:::
of

:::
the

::::::
former

:::::::
iteration

:::
(cf.

::::::::
equation

:::
(1))

:::
the

::::::::
expected

:::::::::
normalized

::::::
change

:::
of25

the distribution mean of consecutive iterations is therefor
:::
per

:::::::
iteration

::
is

::::::::
therefore the expected length of a sample of N (0,I),

which is

� := E
�
kN (0,I)k

�
⇡
p
n(1� 1

4n

+

1

21n

2
).

Now, a rather small length kp�k compared to � indicates that consecutive normalized moves of the mean canceled each other

out, meaning that the overall scale of the distribution should be reduced with �. Vice versa, an evolution path p� longer than �30

indicates consecutive distribution drifts into correlated directions which justifies a larger overall scale of the distribution.
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2.2.7 Boundary handling

In order to consider boundary constraints we use the procedure proposed in Hansen et al. (2009b, Section IV B) for CMA-

ES. It applies if the distribution mean runs out of bounds. In this case, the objective function value
:::::
fitness

:
of an infeasible

sample x becomes the sum of the fitness of its closest feasible point xfeas and a weighted quadratic penalty function of its

distance kx�xfeask to the feasible box (to xfeas). Thus, feasible samples are never penalizedand the
::::::
Feasible

::::::::
samples

:::
are5

:::
not

::::::::
penalized,

::::
i.e.,

:::
the

::::::
penalty

::::::::
function

:
is
::
0

::::::
within

:::
the

::::::
feasible

:::::
box.

:::::
Thus,

:::
the minimum of the penalized fitness function lies

within the feasible box.
:::
sum

::
of

::::
the

:::::
actual

::::::
fitness

:::::::
function

:::
and

::::
the

::::::
penalty

:::::::
function

::
is
:::::
taken

::::::
inside

:::
the

:::::::
feasible

:::
box

:::
or

::
on

:::
its

::::::::
boundary.

:
The quadratic penalty function has coordinate-wise weights �i

⇠i
, where ⇠i scales the out of bounds distance in the

i-th coordinate with regard to the shape of the current distribution. The �i are suitably initialized with the range of former

(unpenalized) objective function values and is multiplied with a constant > 1 in every iteration in which xi is more than 310

standard deviations off its bounds.

In our implementation of CMA-ES, the feasible box we operate on is the unit cube [0,1]

n ✓ Rn. The samples are then

linearly transformed (encoded) with respect to the actual bound constraints before evaluating the objective (misfit) function.

2.3 Implementation of the optimization algorithm

2.3.1 Algorithm outline15

The CMA-ES approach described in Subsection 2.2 allows for reliable covariance matrix estimates with a relatively small

population size. The default population size of �= 4+3log(n) individuals and all further operational constants are successively

derived from the problem dimension n as outlined in Table 1.

Here, µ counts the good portion of individuals that are selected from the � samples in each iteration and used to update

the probability distribution. As mentioned in Subsubsection 2.2.4, sampled individuals are always sorted with respect to their20

function values (f(x1) · · · f(x�)).

The µ recombination weights wi sum up to 1 and are monotonically decreasing in order to give better selected samples a

higher weight in the updating formulas. Our present setting of the weights corresponds with the MATLAB example code in

Hansen (2016) but differs from the improved setting that has been newly introduced in that work. The value µe↵ depends on

the choice of
::::::::::::::::::
Hansen (2016) suggest

::
to

:::
use

:::
the

:::::
value

::::
µe↵ ::

as
:
a
::::::
quality

:::::::
measure

:::
for

:::
the

:::::::
weights

:::
and

:::::
states

::::
that25

µe↵ =

�

4

:::::::

(3)

:::::::
indicates

::
a

::::
good

:::::::
choice.

::::::
Indeed,

::::::::
equation

:::
(3)

:
is
:::::::::::::

approximately
:::::::
satisfied

::
by

:::
the

:::::
given

:::::::::
weighting

:::::::
scheme.

:::
We

::::
can

::::
only

::::::
briefly

:::::
sketch

:::
the

::::::
history

::::::
behind

:::
the

:::::::::
suggestion:

:::::
With

:::::
equal

::::::
weights

::

1
µ::

in
:
the weights and lies between

:::::::::
distribution

:::::::
update,

::
all

:::
the

::::
best

:
µ

:::::::::::
independent

:::::::
samples

:::::
would

:::::
count

:::::
with

:::
the

::::
same

:::::::::
influence.

:::
For

::::
this

::::
case

::
it

:::
has

::::
been

::::::
shown

::::
with

:::
an

:::::::::
exemplary

:::::::::
uni-modal

:::::::
function

::::
(the

::::::::::::::::
infinite-dimensional

::::::
sphere

:::::::::
function)

:::
that

::::
the

::::::
setting

::::::::::
µ= 0.27 ·�

::
is
:::::::

optimal
:::

in
:::
the

:::::
sense

::::
that

:::
the

:::::::::
“expected30

:::::::
progress

:::
per

:::::::
sample”

::::::
towards

:::
the

:::::
global

::::::::
optimum

::
is

:::::::::
maximized

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hansen et al., 2015, Section 4.2.2)(cf. Beyer, 2001, Chapters 3.1.1 & 3.2.1.2).
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::::::
Hansen

::::::::
considers

::::
the

:::::
value

::::
µe↵ ::

to
:::
be

:
a
::::::::::::

generalization
:::

of
:::
the

:::::::
number

::
of
::::::::

selected
::::::::::
independent

::::::::
samples

:::
that

::::::::
influence

::::
the

::::::::::
distribution,

:::::::::::
consequently

:::::
using

:::
the

:::::::
similar

::::::::
equation

:::
(3)

:::
for

:::
the

::::
case

:::
of

::::
rank

:::::::::
dependent

::::::::
weights.

::::
Note

::::
that

::::
µe↵:::::

takes
:::
its

::::::::
maximum

::
µ

::::
with

:::::
equal

:::::::
weights

:::
and

::
its

:::::::::
minimum 1and µ if the weights sum up to 1.

:
,
::
if

::
all

:::
but

::::
one

::::::
weight

::
are

:::::
zero.

::::::::
Actually,

::::::::::
theoretically

:::::::
optimal

::::::::
non-equal

:::::::
weights

::::
and,

::::
thus,

:::
the

::::::
optimal

:::::
value

:::
for

:::
µe↵:::

are
::::
also

::::::
known

:::
for

::
the

:::::::::::::::::
infinite-dimensional

::::::
sphere

:::::::
function

::::::::::::::::
(Arnold, 2006, 3.2).

:::::
These

:::::::
include

::::::::
non-zero

::::::
weights

:::
for

:::
all

:
�

:::::::
samples

::::
and

:::::::
negative

:::::::
weights

:::
for

:::
the

:::::
worse

::

�
2 :::::::

samples5

:::::
(hence

::::::::
doubling

:::
the

:::::
value

::
of

:::::
µe↵ ).

::::::::
However,

:::::::
negative

:::::::
weights

:::
are

:::
not

:::::::::
considered

::
to

::
be

::
a

:::::
robust

::::::
enough

::::::::
practical

::::::
choice.

:

Together with the problem dimension n, it
::
the

::::::::::
generalized

:::::::
number

:::
of

::::::::::
independent

:::::::
selected

::::::::
samples

:::
µe↵:appears in the

calculation of the four smoothing constants c�, cc, cµ, c1 used in the update formulas of both the evolution paths and the

covariance matrix. Their dependence on n and µe↵ have been derived empirically. The formula for the damping parameter d�
differs from the original one but yields the same value for the weights we choose. The

::::
The constant � (cf. Subsubsection 2.2.6)10

is approximately the expected norm of the n-dimensional standard normal distribution N (0,I).

The algorithm details are summarized in Algorithm 1. It starts with the identity matrix I for the covariances, that is, with

an isotropic distribution. Assuming the optimum solution to reside within the unit cube [0,1]

n ✓ Rn, the mean x and the over

all scale � are initialized according to Hansen (2016). Actually, having bound constraints (cf. Subsubsection 2.2.7) we operate

on the unit cube and shift and scale obtained samples into their real bounds before calculating their objective function values.15

New samples are drawn as described in Subsubsection 2.2.3. The yk correspond to the xk �x considered there, divided

by the step size �. The new x is calculated according to xµ in Subsubsection 2.2.4. Note that y is the �-adjusted move of

the mean while y

⇤ adjusts the move of the mean with respect to the (isotropic) standard normal distribution. The evolution

paths which cumulate the drifts of the distribution mean (adjusted with regard to the overall scale and with regard to isotropy,

respectively) are updated using the corresponding smoothing factors. Here, the factors before y and y

⇤ act as normalization20

constants (Hansen, 2016). Finally, the overall step size and the covariances are updated as described in Subsubsections 2.2.6

and 2.2.5, respectively.
::
For

:::
the

:::::
given

::::::
weighs

::
w

:::
the

:::::
factor

::::

c�
1+c�::

in
:::
the

::::::
update

:::::::
formula

::
of

:
�

::
is

:::::
equal

::
to

:
a
:::::
more

::::::
general

::::::::::
formulation

::::
used,

::::
e.g.,

::
in

:::
the

:::::::::
CMA-ES

::::::
tutorial

:::::::::::::
(Hansen, 2016).

:
We stop either after the predefined number of iterations or if the current

population shows a flat misfit distribution, i.e., if the fitness of the better 70% of the individuals deviate less than ✏= 10

�5

from the very best one.25

2.3.2 Algorithm parallelization

Our current technical implementation of the parallel framework can be easily transferred to other EAs/EDAs. The iterative

optimization process is carried out via a series of chain jobs, where short serial jobs (the actual optimizer) that update the

population of model evaluations (“individuals”; i.e. parameter sets for biogeochemistry) alternate with parallel jobs of function

evaluations (“generations”), i.e. forward integrations of the coupled ocean model with different parameter sets. Parameters of30

the optimizer are population size � and the termination criterion for convergence, additionally a maximum number of iterations.

As noted above, the framework presented here is set up such that a serial script serial.job calls the optimization routine

(in our case CMA-ES), which computes a population of size = � of parameter vectors, stored in ASCII files. The same script

then calls a parallel script parallel.job, which starts � model simulations. During these simulations, the parameter files are
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Algorithm 1 The (µ/µw,�)-CMA-ES

Initialization:

Set �, µ, w, µe↵ , �, c�, cc, cµ, c1 according to Table 1

Set x= (

1
2 , . . . ,

1
2 )

T

Set p
�

= p

c

= 0, C=B=D= I and � = 0.5

while stopping criterion⇤) is not met do

Sample probability distribution:

for k = 1, . . . ,� do

Sample z

k

2 Rn from N (0,I) by sampling its entries from N (0,1)

Set y
k

=BDz

k

and x

k

= x+�y

k

end for

Update probability distribution:

Update mean:

x  
P

µ

k=1wk

x

k

Set y =

P
µ

k=1wk

y

k

and y

⇤

=BD�1BT
y

Update evolution paths:

p

�

 (1� c

�

)p

�

+

p
c

�

(2� c

�

)µe↵ y

⇤

p

c

 (1� c

c

)p

c

+

p
c

c

(2� c

c

)µe↵ y

Update covariances and scaling:

�  � · exp
⇣

c�
1+c�

⇣
kp�k

�

� 1

⌘⌘

Set C
µ

=

P
µ

k=1wk

y

k

y

T
k

and C1 = p

c

p

T
c

C  (1� c

µ

� c1)C+ c1C1 + c

µ

C
µ

Determine B and D from eigendecomposition C=BD2BT

end while
⇤) our stopping criterion is that either a predefined number of iterations is reached or the fitness distribution is flat (see text)

read, and a spinup is carried out for each individual setup. The individual model runs then output the misfit function to specified

files. When all jobs are finished, script parallel.job invokes script serial.job again, etc.. Thus, communication

between both alternating steps (creation of parameter vectors and computation of resulting misfit function) is carried out by

these parameter and misfit files. In addition, file nIter.txt keeps track of the progress of optimization, and provides the

information which generation is to be computed; it also contains the runtime parameters for the optimizer, CMA-ES. See5

::
the

:
information in supplement for more details on how this setup works, and how to specify biogeochemical and optimizer

parameters used,
:
e.g., in the work presented here.
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2.4 Misfit function

As a first approach to optimization, we have calculated the root-mean-square error RMSE between simulated and observed

(or twin) annual mean phosphate, nitrate, and oxygen concentrations on a global scale, weighted by the volume Vi of each

individual grid box, expressed as fraction of total ocean volume, VT. To sum the three different components of the misfit

function we have to divide them by some typical value. Here we use the global mean concentration of observed tracers. The5

resulting misfit function J thus reads:

J =

3X

j=1

1

oj

vuut
NX

i=1

(mi,j � oi,j)
2
Vi

VT
(4)

for the annual mean concentrations of three tracers phosphate (j = 1), nitrate (j = 2) and oxygen (j = 3), at N = 52749

locations (model grid boxes) of the model domain. oj is the global average observed (or twin) concentration of the respective

tracer. mi,j and oi,j are model and observations (or twin results), respectively. By weighting the model mismatch with volume,10

we put some emphasis on the deep ocean, down-weighting deviations in surface grid boxes relative to those of deep boxes.

Thus, our misfit function serves more as a long time-scale geochemical estimator, in contrast to a function that focuses on

(rather fast) turnover in the surface layer.

2.5 Parameters to be estimated

Although the model contains more than 20 parameters (even more, if we consider the empirically derived parameters for15

benthic burial, nitrogen fixation, denitrification and air-sea gas exchange; see Kriest and Oschlies, 2013, 2015), for this

first approach we only consider six parameters for optimization.
::
As

::
a

:::::::
stringent

::::
test

:::
for

:::
the

:::::::::
framework

:::
we

:::::
chose

::::::::::
parameters

:::
that

::::::::::
encompass

:
a
:::::

large
:::::
range

:::
of

::::
time

::::
and

:::::
space

::::::
scales,

::::::
reflect

:::::::
different

:::::::
trophic

:::::
levels

::::
and

:::::::::::
dependencies

::::::::
between

:::::::
internal

::::::::::
(interactions

:::::::
between

:::::::::::::
compartments)

:::
and

:::::::
external

::::::::::
(dependence

:::
on

:::::
light)

::::::
factors.

:::
We

:::::
aimed

::
to

:::::
avoid

:::::::::::
simultaneous

:::::::::::
optimization

::
of

:::::::::
parameters

:::
that

:::
are

:::::::::
obviously

::::::
related

::
to

::::
each

:::::
other,

::::
such

::
as

:::::::::
maximum

::::::
growth

::::
rates

::::
and

::::::::::::
half-saturation

::::::::
constants,

::
or

:::::::
sinking20

:::::
speed

:::
and

::::::::::::::
remineralization

::::
rate.

Four parameters are more relevant for biological interactions at the sea surface. Phytoplankton growth is controlled by the

half-saturation for light (Ic, in W m�2) and phosphate (KPHY, in mmol P m�3). For optimization of zooplankton parameters we

chose its maximum grazing rate (µZOO, in d�1) and quadratic mortality rate (ZOO, in (mmol P m�3)�1 d�1). Two parameters

are of importance for the transport and decay of particulate organic matter to/in the deep ocean, namely the ratio of oxygen25

consumption to phosphate release during aerobic remineralization (R�O2:P, mmol O2:mmol P), and the parameter for vertical

increase of sinking speed of organic matter, a (d�1). Note that as stated above, in the following, and during optimization, we

express this last parameter through b= r/a, with r held constant at r = 0.05 d�1.

:::
For

::::
each

:::::::::
parameter

:::
we

:::::::
initially

::::::
chose

:
a
::::::

rather
::::
wide

::::::
range

::
of

:::::::
possible

:::::::::
parameter

::::::
values

::::::
(Table

:::
2).

::::
The

:::::
lower

:::::
value

:::
of

::::::
R�O2:P::::

was
:::
set

::
to
::::

150
::::::
mmol

::::::::
O2:mmol

::
P

:::::::::::::::
(Anderson, 1995),

:::::
while

:::
its

:::::
upper

:::::
value

::
is
:::

at
:::
the

:::::
upper

::::
end

::
of

::::::::
observed

::::::
values30

:::::::::::::::::::::::::
(Boulahdid and Minster, 1989),

::::
and

:::::
closer

:::
to

:::::
value

::::
used

:::
in

:::::::
previous

::::::
model

::::::
studies

::::::::::::::::::::
(Paulmier et al., 2009).

:
b

::
is
:::::::

allowed
:::

to

12



::::
vary

:::::::
between

::::
low

::::::
values

::::::::
observed

::::::
mainly

::
in

:::::::
oxygen

::::::::
minimum

::::::
zones

::::::::::::::::::::
(Van Mooy et al., 2002),

::::
and

:::::
twice

:::
the

::::::
global

:::::
open

:::::
ocean

:::::::::
composite

::::::
derived

:::
by

:::::::::::::::::
Martin et al. (1987);

:::
its

:::::
range

::
is
:::::::

slightly
::::::

larger
::::
than

:::
the

::::::
range

::::::
applied

:::
in

:::::::
previous

:::::::::
modeling

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kwon and Primeau, 2006; Kriest and Oschlies, 2008; Kriest et al., 2012),

::
or

:::
the

::::::
range

::
of

::
b

::::::::::
determined

::::
from

::::::
insitu

::::::::::
observations

::::::::::::::::::::::::::::::::::::::::
(e.g., Martin et al., 1987; Buesseler et al., 2007).

::
It

:::::
agrees

:::::
with

:::
the

:::::
range

:::
of

:
b

:::::::
derived

:::::
from

:::::::
indirect

::::::::
estimates

::
of

:
b

::::::::::::::::::::::::::::::::::
(Henson et al., 2012; Marsay et al., 2015).

:
5

::::::
Ranges

:::
for

:::::::::
parameters

::
of

:::::::::
parameters

::::::
related

::
to

::::::
surface

:::::::::
processes

::::
were

::::
more

:::::::
difficult

::
to

::::::
assign.

::::
Due

::
to

:::
the

::::::
highly

:::::::::
aggregated

::::
form

::
of

:::
the

::::::
organic

:::::::::
biological

::::::::::
components

::
in

:::
the

::::::
model

::::
these

:::::::::
parameters

:::
are

::::::::
supposed

::
to

::::::
reflect

:
a
::::::
variety

::
of

::::::::
processes

:::::
such

::
as

::::::
species

::::
shift

:::
and

:::::::::
adaptation

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., half-saturation constants for nitrate uptake may vary over several orders of magnitude; see Collos et al., 2005).

:::
We

:::::::
therefore

:::::::
initially

::::::::
assigned

::::
very

:::::
wide

:::::::::
boundaries

:::
for

:::
Ic,

::::::
KPHY,

::::::
µZOO :::

and
::::::
ZOO,

::::::
which

:::::
allow

:::
the

::::::::::
optimization

:::
to

::::
pick

:::::::::
parameters

::::
that

:::::::
virtually

::::
may

::::
shut

:::::
down

:::::::
certain

::::::::
biological

::::::
fluxes

:::
and

:::::::::
processes.

::::
The

::::::
choice

:::
of

::::
these

:::::
wide

::::::::::
boundaries,

:::
its10

:::::::::::
consequences

:::
for

::::::::::
optimization

::::
and

:::::
model

:::::::::::
performance

:::
and

:::
the

::::::
effects

::
of

::::::::
narrower

:::::::::
boundaries

::::
will

::
be

::::::::
examined

::::
and

::::::::
discussed

:::::
below.

:

2.6 Setup and performance of optimization

Using the combined framework described above, i.e. TMM+MOPS+CMAES
::::::::
CMA-ES, we carried out five different, full

optimizations: one against annual average phosphate, nitrate and oxygen of year 3000, simulated by an experiment that15

applies
:
,
::::
with

:::
the

::::
aim

::
to

:::::::::
determine

:::
the

::::
four

:::::::::
parameters

:::::::
related

::
to

::::::
surface

:::::::
biology

::::
and

:::
two

::::::::::
parameters

::::
more

:::::::
closely

:::
tied

:::
to

::::
deep

::::::::::::::
biogeochemistry

:::::::::
mentioned

::::::
above.

:::
The

:::::::::::
experiments

:::::
differ

::::
with

::::::
respect

::
to

:::
the

:::::::::::
observations

::::
used

:::
for

:::
the

:::::
misfit

::::::::
function

::::::
(model

::::::
output,

:::::::::::
climatologies

::
of

::::::::::::
observations),

:::::::::
population

::::
size

:
�

:::
of

::::::::
CMA-ES

:::
(10

::
or

:::
20

:::::::::
individuals

:::
per

::::::::::
generation),

:::::::::
parameter

:::::::::
boundaries,

::::
and

:::
the

:::::::
sampling

:::::::
strategy

::
of

:::::::::
CMA-ES.

:::::
They

::
are

:::::::::
explained

::
in

:::::
detail

:::::
below.

:

2.6.1
::::
Twin

::::::::::
experiment20

::::
First

::
we

:::::
tested

:::
the

::::::
ability

::
of

::::::::
CMA-ES

::
to

::::::
recover

::::::
known

:::::::::
parameters

::
of

:
a
::::::
model

:::::::::
simulation

:::
that

::::::
applied

:
the same biogeochemical

parameters as MOPS-RemHigh of Kriest and Oschlies (2015), setup “base” (i. e., with a particle flux described by b= 0.858, or

a= 0.058275).
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Kriest and Oschlies (2015, setup “base”, i.e., with a particle flux described by b= 0.858, or a= 0.058275, and a high affinity of oxic and suboxic remineralization to oxidants).

::::
This

:
is
:::::
done

::
by

:::::::::::
optimization

::::::
against

::
its

:::::::::
simulated

::::::
annual

::::::
average

:::::::::
phosphate,

::::::
nitrate

:::
and

:::::::
oxygen

::
of

::::
year

:::::
3000. We refer to this

experiment as “TWIN”.
:::::
TWIN

::::::
applies

::::::
rather

::::
wide

::::::::::
boundaries

:::
for

:::
all

:::::::::
parameters

::::
(see

:::::
table

:::
2),

::::
and

:
a
::::::::::

population
::::
size

:::
for25

::::::::
CMA-ES

::
of

:::::::
�= 10,

:::::
which

::::
was

:::::::
deemed

::::::::
sufficient

:::
for

:::
six

::::::::::
parameters,

:::::
given

:::
the

:::::::
default

:::::::::::
configuration

::
of

::::
the

::::::::
CMA-ES

::::
(see

::::::
above).

2.6.2
::::::::::::
Optimizations

:::::::
against

::::::::
observed

::::::
tracers

Four further optimizations were carried out against observations of annual mean phosphate, nitrate, and oxygen (Garcia et al.,

2006a, b), gridded onto the model geometry. These are referred to as OBS-WIDE, OBS-WIDE-20, OBS-NARR and OBS-30

NARR-R.
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To fully explore the capabilities of the CMAES, for experiment TWIN, OBS-WIDE and OBS-WIDE-20 we first set rather

wide boundary constraints (parameter boundaries; see table 2) . The second set
::
To

:::::::::
investigate

:::
the

::::::::
robustness

:::
of

::::::::
CMA-ES

::::
with

::::::
respect

::
to

:::::::
different

::::::
setups

::
of

:::
the

::::::::
algorithm

:::::
itself,

:::
the

::::::::::
experiments

:::::
differ

::
in

:::
the

:::::
upper

::::
and

:::::
lower

:::::::::
boundaries

::
of

:::
the

::::::
search

:::::
space

::
for

:::::::::::
zooplankton

:::::::::
parameters,

:::
the

:::::::::
population

::::
size

::
� of optimizations against observations was carried out with a narrower range

of zooplankton parameters (
::::::::
CMA-ES

:::
and

:::
its

::::::::
sampling

:::::::
strategy.

::::
This

::
is

::::
done

::
in

::
a

:::::::
stepwise

:::::::
fashion.5

:::::::::
Experiment

:::::::::::::
“OBS-WIDE”

::::::
differs

:::::
from

::::::
TWIN

::::
only

::::
with

:::::::
respect

::
to
::::

the
:::::::::::
observations

::::
that

::::
enter

::::
the

:::::
misfit

::::::::
function.

:::
In

::::::::::
OBS-WIDE

:::
we

::::::::::
encountered

::
an

:::::::
unlikely

:::::
(with

::::::
respect

::
to

::::::::
biological

:::::
tracer

:::::::::::::
concentrations)

:::::::
solution,

:::::::
pointing

:::::::
towards

:
a
::::::::
potential

::::
local

::::::::
minimim

::
in

:::
the

:::::
misfit

:::::::
function.

:::
We

::::::::
therefore

:::
set

::
up

::::
two

::::::::::
experiments

::
to

:::::::::
investigate

::::::::
strategies

::
to

:::::::
improve

:::
the

:::::::::::
performance

::
of

::::::::
CMA-ES

::::
with

::::::
respect

::
to

:::::
more

:::::::
plausible

:::::::::
solutions.

:::
The

::::::::::
experiments

::::
both

:::::::
increase

:::
the

::::::
search

::::::
density

::
in

:::
the

:::::::::
parameter

:::::
space

::::
with

::::::
respect

::
to

:::::::::::
OBS-WIDE.

::
In

::::::::::
experiment

:::::::::::::::
“OBS-WIDE-20”

:::::
search

:::::::
density

::
is

::::::::
increased

:::
by

:::::::
doubling

:::
the

::::::::::
population

:::
size

:::
of10

::::::::
CMA-ES

::
to

::::::
�= 20.

:::::::::
Otherwise,

:::
its

::::
setup

::
is
:::
the

:::::
same

::
as

:::::::::::
OBS-WIDE.

::
In

:::::::::
experiment

::
“OBS-NARR). In this latter experiment ,

:
”

::
we

:::::
keep

::::::
�= 10

::
of

:::::::::::
OBS-WIDE,

:::
but

::::::
restrict the boundaries for zooplankton parameters are restricted to ±50% of the value of

the reference run of MOPS. We

:::::::
Because

:::::::::::
optimization

:::::::::::
OBS-NARR

::::::
showed

::::
the

::::
best

::::::
results

::::
with

:::::::
respect

::
to
::::::

misfit
::::::::
function,

:::::::::::::
biogeochemical

::::::
fluxes

::::
and

::::::::::
optimization

:::::::::::
performance

::::
(see

::::::
below;

:::::
tables

::
3

:::
and

:::
4),

::
in

::::::::::
experiment

::::::::::::::
“OBS-NARR-R”

:::
we

:
finally evaluate the robustness of15

optimization OBS-NARR by repeating this optimization with a different random selection of the parameters
::::::::
parameter

::::::
values

from the distribution calculated by CMAES (experiment OBS-NARR-R)
::::::::
CMA-ES.

Four of the five optimizations were carried out using a population size � of 10, which was deemed sufficient for six

parameters, given the default configuration of the CMAES (see above). To investigate more closely a potential local minimum

that occurred in OBS-WIDE, in experiment OBS-WIDE-20 we increased the population size to �= 20.20

2.6.3
:::::::::::
Performance

The internal termination criterion of CMAES
::::::::
CMA-ES was reached after 95, 173, 182 and 140 generations for OBS-WIDE,

OBS-WIDE-20, OBS-NARR and OBS-NARR-R, respectively. For the twin experiment, we restricted the maximum number of

generations to 200, at which TWIN had approached the target parameters, the misfit declined to < 0.0004 (i.e., on average less

that 0.2‰ of global mean tracer concentrations; see Eqn. 4) and fitness variance declined to < 10

�9. As presented above, in25

each “generation” we computed 10 (20) different “individuals” (model simulations over 3000 years) in parallel. One simulation

of each generation on average took ⇡ 1.25 hours, on 40 (80) nodes of Intel Xeon IvyBridge or Intel Xeon Haswell at the North-

German Supercomputing Alliance (HLRN). We note that tests on either hardware (two iterations of the coupled code, started

from generation 80 and 160 of experiment TWIN) did not reveal any differences in the estimated fitness. The CMAES
::::::::
CMA-ES

- which, due to its very short runtime, is not parallelized - was always computed on one core of Intel Xeon IvyBridge.30
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3 Results

3.1 Twin experiment (TWIN)

The optimization starts with a wide range of potential parameters (see Fig. 3), with individual parameters sometimes even

exceeding the prescribed boundaries. This results in high maximum and minimum misfit (Fig. 4), and this high variability

is maintained over about 10-20 generations. The trajectory of transient average parameter values and their variance depend5

strongly on the parameter itself: while the two parameters associated with rather long time scales and large ocean volumes,

namely the stoichiometric ratio R�O2:P and exponent b describing particle sinking, approach their target values quite early

(about generation 20-40), parameters associated with surface biogeochemistry stay far away from their target value for ⇡ 80

generations (Ic, KPHY, ZOO), or oscillate around it (µZOO). After ⇡ 160 generations, most of the parameters reached their

target value, the exception being the half-saturation constant of phytoplankton for phosphate uptake, KPHY (Table 3). This10

parameter still shows considerable variability at the end of the optimization (generation 200), although by that time is it quite

close to the - rather low - target value.

The misfit function, its variance and the parameter variance do not decrease monotonously
:::::::::::
monotonically

:
throughout the

optimization trajectory. In particular, after an initial decline over ca. 60 generations, parameter and misfit variance increase

again. Further increases in variance can be seen around generation 100, and at the end, when the algorithm widens its search15

area again, probably in search for an optimal KPHY. It seems encouraging that the algorithm obviously does not get stuck in a

local minimum, but, at the expense of deterioration of the misfit, continues to search for an even better parameter set.

The largest fraction of the misfit function is related to oxygen, followed by the misfit to nitrate, and then phosphate. The

dominance of oxygen and nitrate is not surprising, as these tracers are not conservative; i.e., their global inventory might change

due to air-sea gas exchange, denitrification and nitrogen fixation (see also Kriest and Oschlies, 2015), so that the model may20

not only err with respect to the spatial distribution of these tracers, but also with respect to their global mean concentration.

In Fig. 5 we finally exploit the shape of the misfit function, shown on a color scale for each two pairs of parameters. As can

be seen from misfit plotted against R�O2:P and b (upper right corner), these two parameters are quite well constrained, with a

very well defined minimum around the target value. All other parameters show more or less elongated search “canyons”. Much

of the algorithm search starts away from the target value; however, the algorithm finally manages to approach the target value25

even when the search path is not straight, but curved in the two-dimensional projections of the parameter space. Further, even

when the algorithm exceeds the target value (e.g., for the maximum growth rate of zooplankton, µZOO; lower right corner),

despite of the already low misfit function the algorithm finally returns to the somewhat lower value (compare also to Fig. 3,

lower left panel).

Summarizing, CMAES
::::::::
CMA-ES seems capable to deal even with our irregular search landscape, when iterated for a long30

enough time and with a sufficiently large population size. Some problem remains with regards to the half-saturation constant of

phytoplankton for phosphate uptake: zooming into the scatter plot presented in Fig. 5 reveals that for this parameter the search

landscape becomes quite uninformative (Fig. 6), with similar misfits close to the optimum.
:::::
around

:::::
±2%

::
of

::
its

::::
last

:::::
value.

:::::
Thus,

:
a
:::
low

:::::
misfit

::::
can

::
be

::::::::
achieved

:::::
within

::::
over

::
a

::::
wide

:::::
range

::
of

:::
this

:::::::::
parameter.

:
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One reason for this low sensitivity of the misfit function
::
to

::::::
KPHY may be found in the fact, that in the twin, against which the

model is optimized, only very few (1%) phosphate values are at or below the target value of KPHY = 0.03125 mmol P m�3.

Therefore, besides the dominance of oxygen in the misfit function (Fig. 4) the misfit function is further dominated by phosphate

concentrations outside the oligotrophic surface regions, rendering it quite insensitive to changes in the half-saturation constant

at low values.
:
In

::::::::
addition,

::
a

:::::
closer

::::
look

::
at

:::
the

:::::
misfit

::::::::::
topography

:::::
(Fig.

::
5)

:::::
points

:::::::
towards

::
a
:::::::
potential

::::::::::
correlation

::
of

:::::
µZOO::::

and5

:::::
ZOO,

::::::
which

:::
may

::::::::::
complicate

:::
the

:::::::::
algorithm’s

::::::
search

:::
for

::
an

::::::::
optimum

::
set

:::
of

:::::::::
parameters,

:::::::
thereby

:::::::
slowing

::::
down

:::
its

:::::::::::
convergence.

3.2 Optimization against observed nutrients and oxygen distributions

3.2.1 Wide boundary constraints for zooplankton (OBS-WIDE, OBS-WIDE-20)

When optimizing the model against observed concentrations with exactly the same setup as for experiment TWIN, optimiza-10

tion OBS-WIDE reaches the internal termination criterion of the CMAES
:::::::
CMA-ES

:
at generation 95. Instead of declining

exponentially towards zero, the misfit only declines from an average initial value of ⇡ 0.8 to 0.477 (Fig. 7, Table 3), i.e. only

slightly less than the misfit of the reference run (0.529). Also, the variance of misfit, as well as that of the parameters show a

more or less gradual decline, without any intermittent increase (see supplement). Another notable difference to TWIN is the

higher contribution of phosphate to the misfit function (Fig. 7).15

Some parameters diverge strongly from those of there reference run. In particular, the phytoplankton’s half-saturation con-

stant for light, Ic, increases strongly up to its upper boundary (Fig. 8; Table 3; see also supplement for a plot of topography

of the misfit function). However, the stronger light-limitation of phytoplankton growth is counteracted by a strong decrease

in zooplankton growth rate, µZOO, and a strong increase in its quadratic mortality rate, ZOO. As a consequence, average

and maximum zooplankton concentrations are < 25% and < 50% of that of the reference run in the surface layer (Fig. 9),20

while phytoplankton is strongly increased, when compared to the reference run. Most likely because the zooplankton-detritus

pathway is nearly shut off, DOM concentrations are strongly increased. The reorganization of the pelagic food web in this

optimized model scenario is reflected in the global annual biogeochemical fluxes: primary production is enhanced by almost

14%, but loss through grazing is reduced to about 1/3 of that of the reference run (Table 4). As a consequence, the largest

fraction of recycling is through remineralization of detritus and DOM (> 95% of annual production), and only 4% through25

zooplankton excretion, while in the reference run zooplankton recycles almost 15% of annual production. Due to the reduced

particle sinking speed shallow (130 m) and deep (2030 m) particle flux are reduced, as is benthic burial. While some of the

simulated fluxes are within the observed estimates, too low zooplankton concentration, as well as resulting low zooplankton

grazing are far outside observed estimates (see Table 4).

Therefore, although optimization OBS-WIDE against observations has decreased the misfit to observations to ⇡ 90% of that30

of the (subjectively tuned) reference run, the outcome is not overly satisfying with respect to the optimized parameters and

the resulting dynamical behavior of the model. Obviously, the very wide boundary constraints we chose for the zooplankton
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parameters led to a solution where zooplankton is almost dead - a phenomenon that does not occur in the real ocean
:
a
::::::::::
statistically

::::::
optimal

:::
but

::::::::::
biologically

:::::::::::
meaningless

:::::::
solution.

To examine if this optimization became trapped in a local minimum, in experiment OBS-WIDE-20 we increased the pop-

ulation size of CMAES
:::::::
CMA-ES

:
from �= 10 to �= 20. Due to a larger population, in this optimization the variability of

fitness (Fig. 10) and parameter values (Fig. 11) is maintained over a longer period, again, as for optimization TWIN, with5

intermittent increases of variance during the course of the optimization. Most importantly, using the setup of OBS-WIDE-20

the optimization finds very different parameters for many of the biogeochemical components:

R�O2:P is now closer to the a priori value of 170, while optimal b has increased considerably to b= 1.34 (Table 3). The

largest difference to both the reference run as well as optimization OBS-WIDE occurs for the four biogeochemical parameters

that are more closely tied to surface processes: Ic decreases to less than 50% of its a priori value, while KPHY is at its upper10

boundary of 0.5 mmol P m�3. Encouragingly, zooplankton parameters are now such that zooplankton is viable (Fig 9). Its

maximum growth rate is very close to the a priori value of 2 d�1. Its mortality rate is still quite high; however, because of its

high growth rate zooplankton plays a considerable role in the pelagic nitrogen budget , with global fluxes much closer to the

observed ones than for optimization OBS-WIDE (Table 4).
:::
The

:::::::::
topography

:::
of

:::
the

:
-
:::::
rather

:::::
dense

:
-
::::
scan

::
of

:::
the

:::::::::
parameter

:::::
space

::
of

:::::::::::::
OBS-WIDE-20

::::
(Fig.

::::
12)

:::::
points

:::::::
towards

::
a

:::::::
potential

::::::::::
correlation

:::::::
between

::::::
KPHY,

::::::
µZOO :::

and
::::::
ZOO.

::
In

::::
this

:::::::::
projection,

::::
low15

:::::
misfit

:::::
values

:::::
occur

:::::
along

::
a

::::::::::
concomitant

:::::::
increase

::
of
::::::
KPHY::::

with
::::::
either

:::::
µZOO::

or
::::::
ZOO.

::::
This

::
is

::::
also

:::::::
reflected

::
in

:::
the

::::
high

:::::
level

::
of

:::::::::
parametric

::::::::::
uncertainty,

::
as

:::::::
revealed

::
by

::
a
::::
large

:::::
range

::
of

:::::::::
parameter

:::::
values

:::
in

::
the

:::::::
vicinity

::
of

:::
the

::::::::
optimum

:::::
(Table

:::
3).

:

Summarizing, using a larger population size and thus a denser scan of the parameter space (see Fig. 12), CMAES
::::::::
CMA-ES

has found a better solution, with respect to the misfit function (see Table 3) as well as a closer fit to biogeochemical fluxes and

more plausible biological patterns.20

3.2.2 Narrow boundary constraints for zooplankton (OBS-NARR and OBS-NARR-R)

Optimizations with a population size of �= 20, as for OBS-WIDE-20, are computationally quite expensive, especially when

iterated over a large number of generations (Table 3). Via the quite wide boundary constraints for zooplankton parameters,

we have assumed to have almost no knowledge about zooplankton. In the following two sensitivity experiments we examine

the impact of this assumption on optimization performance, by restricting zooplankton parameters to a narrower range. These25

experiments are again carried out with a population size of �= 10.

To enforce live zooplankton, we restricted the range of zooplankton parameters to ±50% of their reference value. This results

indeed in a solution with organic tracer concentrations close to that of the reference run or OBS-WIDE-20 (Fig. 9). After 182

generations, the algorithm terminates with a misfit of 0.45 (Fig. 13), i.e. better than experiment OBS-WIDE, but the same

as for optimization OBS-WIDE-20 (Table 3). As in TWIN and OBS-WIDE-20, misfit variance shows intermittent increases,30

and the contribution of nitrate to the misfit function dominates over that of phosphate. Likewise, resulting optimal parameter

values are quite close to those of OBS-WIDE-20 (Table 3). Thus, OBS-NARROW is more similar to OBS-WIDE-20 than to

OBS-WIDE, demonstrating the importance of good a priori knowledge about parameter values.
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As for OBS-WIDE-20, the quadratic mortality of zooplankton, ZOO and the half-saturation constant of phosphate uptake

for phytoplankton, KPHY show a strong increase; the latter up to its upper prescribed boundary, which may be interpreted as an

attempt of the algorithm to force the model towards higher surface nutrient concentrations in the subtropical gyres. A reduced

half-saturation constant for light, on the other hand, counteracts the grazing pressure exerted by zooplankton, particularly in

the high latitudes. Most likely because of increased detritus production by zooplankton - and thus increased export from the5

surface layer (Table 4) - particle flux to the deep ocean is reduced by an increase in b, i.e. relatively slow particle sinking speed.

A closer look at the topography of the misfit function shows that for some parameters it
::
the

::::::
misfit is quite insensitive to

changes
::
in

:::::
some

:::::::::
parameters

:
(Fig. 15; see supplement for a detailed plot of misfit topography around ±2% of the optimal

parameters). While again the parameters R�O2:P and b, that tend to exert an influence on large temporal and spatial scales, are

quite well constrained, many of the surface-related parameters, that act on smaller time scales, such as KPHY, show a wide10

scatter across the parameter space
:::
(see

::::
also

::::
Table

:::
3), with very little differences in the misfit function.

However, variations in parameters after ⇡40 generations do not strongly improve the model fit to observations (Figures 13

and 14). The rather constant misfit after generation 40 is quite surprising, given that some parameters still show some significant

excursions after that time, indicating that - as already shown in Fig.15
:::::
before

:
- the misfit function is quite uninformative about

these parameters. This insensitivity of abiotic
:::::::
inorganic

:
tracers is also illustrated in Fig. 16, which shows the deviation of ver-15

tically integrated tracers from observations, plotted for individuals of three different generations of OBS-NARR (see also blue

vertical lines in Fig. 14) The parameters of these individuals differ mainly with respect to their combination of KPHY and ZOO.

While the reference run applies very low KPHY = 0.03125 mmol P m�3 and moderate ZOO = 3.2 (mmol P m�3)�1 d�1,

individuals of the optimization are characterized by medium (generation 61) to high (generation
:::::::::
generations

:
110 and 182)

KPHY, and moderate (generation
::::::::::
(generatiors

::
61

:::
and

:
110) , slightly increased (generation 61) and high (generation 182) ZOO20

(see also blue vertical lines in Fig. 14). All individuals differ from the reference run; yet the difference among them is almost

not visible in the simulated tracer distributions. Thus, annual mean tracer concentrations on a global scale do not seem to

suffice in constraining some of the parameters related to the very dynamic biological turnover at the sea surface
:
,
::::::
leading

::
to

::
a

::::
large

:::::::::
parametric

::::::::::
uncertainty

:::::
(Table

:::
3),

:::::::
possibly

::::::::
amplified

::
by

::::::::::
correlation

::::::
among

::::
these

:::::
three

:::::::::
parameters.

Except for deep particle fluxes, all biogeochemical fluxes are increased compared to the reference run or experiment OBS-25

WIDE, but similar to that of OBS-WIDE-20 (Table 4). Therefore, although the misfit function so far only optimized towards

inorganic constituents, the optimized model with narrow zooplankton parameter boundaries shows a much better fit to observed

global fluxes to primary production, zooplankton grazing, shallow and deep particle flux, and benthic burial. The seemingly

better dynamical biogeochemical behavior of this model setup gives some confidence that the model’s fit to inorganic tracers

is not improved on
::
at

:::
the cost of any other tracer.30

Repeating optimization OBS-NARR with a different random selection of parameters from the parameter distribution in each

generation (OBS-NARR-R) yields the same, or very similar, best values for most of the parameters (see Table 2), the exception

being the two zooplankton parameters, µZOO and ZOO. These two parameters of OBS-NARR-R are 7% (µZOO) and 16%

(ZOO) lower than in OBS-NARR; however, the misfit of both optimizations is the same (0.45). The low sensitivity of the

18



misfit function to zooplankton parameters is mirrored in similar nutrient and oxygen distributions (see supplement) and almost

identical biogeochemical fluxes (see Table 4).

4 Discussion

4.1 Computational performance

Our results suggest that the CMAES
::::::::
CMA-ES optimization algorithm performs well, particularly for the twin experiment, even5

though the parameters to be estimated involve diverse temporal and spatial scales. CMAES
:::::::
CMA-ES

:
manages to set up curved

search paths in parameter space, and therefore is capable to approach an optimum within a rather complex topography of the

misfit function. Its sometimes elongated and/or curved shape resembles many of those resulting from earlier 1D (Athias et al.,

2000; Schartau et al., 2001; Schartau and Oschlies, 2003a; Ward, 2009) or 3D (Kwon and Primeau, 2006, 2008) optimizations

of marine biogeochemical models. However, when imposing wide boundary constraints for zooplankton parameters, OBS-10

WIDE becomes trapped in a local minimum; only with a larger population size or narrower parameter boundaries we find a

solution that results in realistic concentrations and fluxes of all components. Clearly, the number of experiments conducted

here is too small to make statistically significant statements about the optimizers’ exploration capability with respect to the

population size. But similar to other population based heuristics, examinations with multimodal test functions have given

evidence that larger populations increase CMAES
::::::::
CMA-ES’ chance to find good local optima (or even a global optimum;15

Hansen and Kern, 2004). It remains to be investigated, whether different configurations of the CMAES
:::::::
CMA-ES, or a different

optimization algorithm, e.g., gradient-based methods or evolutionary algorithms, perform better or worse with respect to the

number of model evaluations required, or their ability to avoid local minima (see also Athias et al., 2000). However, there

is some indication that genetic algorithms perform better with respect to a rough topography of the misfit function, when

compared to a variational adjoint method, with otherwise equally good fit to marine biogeochemical observations (Ward et al.,20

2010).

As the computational effort remains a challenge in parameter optimization of global ocean BGC models, further possibilities

to accelerate model evaluations within the optimization process are desirable. Surrogate-assisted approaches use meta-models

to approximate model evaluations within optimization (Priess et al., 2013). They are becoming practice within evolutionary

frameworks coping with computational expensive model functions (Jin, 2011). It should be worth considering surrogate ap-25

proaches with CMAES
:::::::
CMA-ES

:
as investigated in Kern et al. (2006), Auger et al. (2013) and Loshchilov et al. (2012). A

general approach with EA and EDA frameworks is to prematurely abort the fitness calculation after detecting that the corre-

sponding individual will not be better than the worst member of the current population. We can benefit from such short-cut

fitness computation if the optimizers’ implementation supports asynchronous communication. An example for this approach

is dealt with in Kliemann et al. (2013). There, aborting fitness calculations reduces the computational effort by orders of mag-30

nitude, since the considered combinatorial problem is of minimax-type. However, short-cut fitness computation concerning

ocean models requires a more elaborated method and is not expected to reach similar savings.
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4.2 Misfit function and parameter identifiability

In our study we chose annual means of dissolved nutrients and oxygen on a rather coarse spatial grid as a measure for model

skill. By doing so, we avoid problems associated with time lags (e.g., in phytoplankton blooms, which would result in time lags

of nutrient depletion) or meso- and submesoscale spatial structures (see, e.g., Wallhead et al., 2006), obviously on
::
at the cost

of precisely resolving parameters related to the biological system in surface layers. Possibly as a consequence of this particular5

misfit function, the parameters that could be fitted best are parameters that are mostly influential in determining the nutrient

or oxygen distribution on large spatial and temporal scales, such as the stoichiometric ratio between oxygen and phosphorus,

R�O2:P, or the parameter that determines particle sinking speed, b (see also Kriest et al., 2012). Our model optimizations

against observations so far confirm a stoichiometry of R�O2:P ⇡ 170 mmol O2:mmol P, in agreement with observational

estimates (Takahashi et al., 1985; Anderson and Sarmiento, 1994), but suggest an increase of b towards ⇡ 1.3. The latter is10

to some extent in agreement with results obtained by Kwon and Primeau (2006, 2008), who found an optimal b of 1, when

fitting a simple global model against observed inorganic tracers. It should be kept in mind, however, that the b obtained in our

study resembles
::::::::
represents

:
not only particle sinking speed, but also accounts for the effect of numerical diffusion in our rather

coarse vertical grid (Kriest and Oschlies, 2011). Accordingly, the “true” b can be regarded as being about 10-20% smaller

than obtained by our study(manuscript in progress). .
:
Also, as has been shown earlier (Kriest and Oschlies, 2013), the lower15

boundary condition simulated by benthic exchange can be very important for the ability of phosphate and oxygen to constrain

particle sinking; therefore, the results obtained in our study should be regarded as specific to this particular biogeochemical

model.

Our optimizations against observations with wide and narrow boundaries for zooplankton parameters produced two solutions

with quite similar misfit, but with very different biological parameters, and consequently different fluxes and concentrations of20

organic components in the surface layers. Using wide boundary constraints for zooplankton parameters resulted in a solution

where zooplankton is almost extinct, while phytoplankton and DOM concentration are far too high. Solutions of optimizations

with unrealistic parameter values or concentrations for zooplankton have been observed earlier (Schartau et al., 2001; Ward

et al., 2010), and point towards a necessity to better constrain this compartment. Increasing the population size � of CMAES

::::::::
CMA-ES in optimization OBS-WIDE-20 could cure this problem, but on

:
at

:
the cost of a high computational demand. Restrict-25

ing the range of zooplankton parameters resulted in a better fit to nutrient and oxygen; more importantly, concentrations and

fluxes in the latter solution are much more realistic, confirming in the latter parameter set. This illustrates the potential benefit

of a sound a priori knowledge of parameter ranges, both in terms of biogeochemical and computational performance.

Another possibility to avoid undesired effects like nearly extinct zooplankton is to bring in further objectives which consider

that issues
::
to

::::::::
introduce

::::::
further

:::::::
criteria

:::
that

:::::
take

::::::
account

:::
of

:::
this

:::::
issue. A technically easy approach would be to add further30

objective terms to the cost
::::
misfit

:
function. But facing complex model interactions, it can become difficult to find suitable

weights for the different terms in order to force solutions to become a desired compromise of objectives. An alternative is

to deal with more than one objective function, say f1,f2, . . . ,fk. For example, we can define the deviation of zooplankton

mass from observed values as a second objective. Now, two solutions x 6= y are said to be incomparable if fi(x)> fi(y) but
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fj(x)< fj(y) for some i 6= j. Multi-objective optimization algorithms aim to find (a limited number of) good incomparable

solutions, from which the user can make a final choice that is a good compromise in his/her opinion. The topic of multi-

objective optimization is intensively regarded with EAs (Deb, 2001) and EDAs (Hauschild and Pelikan, 2011), including

CMAES
::::::::
CMA-ES (Igel et al., 2007).

Nevertheless, even for the more realistic optimizations OBS-WIDE-20, OBS-NARR and OBS-NARR-R we find similar5

misfits for a rather wide range of some phyto- and zooplankton parameters, pointing towards an indeterminacy of these param-

eters when using the current misfit function. These
:::::
While

:
it
::::::
cannot

:::
be

::::
ruled

:::
out

::::
that

:::
this

:::::
arises

:::::
from

:
a
:::::::::
correlation

::::::
among

:::::
these

:::::::::
parameters,

:::::
even

::::::
simpler

::::::::::::::
biogeochemical

::::::
models

::::
with

::::
less

:::::::
degrees

::
of

::::::::
freedom

:::::
might

:::
be

:::::::
difficult

::
to

::::::::
constrain

::::
from

:::::::
nutrien

:::
data

::::::
alone:

:
problems were also encountered by Kwon and Primeau (2006), when optimizing b, DOP production and its de-

cay rate against phosphate on a global scale. They found that phosphate data alone were not sufficient to resolve parameters10

associated with DOP, but several equally good fits could be obtained with different sets of parameters. It remains to be inves-

tigated , whether this is related to the lack of temporal solution
:::::::
seasonal

::::
data, or to phosphate not being too tightly related to

:::::::::::
concentration

:::::
being

::::::
weakly

:::::::::
dependent

::
on

:
dissolved or particular organic matter

:::::::::::
concentration. Subsequent studies with differ-

ent misfit functions, that for example resolve monthly changes, target at the representation of surface nutrients (e.g., by using

a weighted, relative misfit; Kriest et al., 2010) or add additional tracers to the misfit function (e.g., combining chlorophyll15

derived from remote sensing with nitrate observations; see also Tjiputra et al., 2007) will reveal the effect of the assumptions

made for the misfit function with respect to constraining these parameters.

4.3 Future directions

Even the use of observations more closely related to surface biology may not resolve the problem of indeterminacy, as shown

by Ward et al. (2010) in optimizations of two different, 0D-biogeochemical models. As in earlier, 0D and 3D studies (e.g.,20

Friedrichs, 2001; Schartau et al., 2001; Kwon and Primeau, 2006, 2008), they found almost identical misfits for a wide range

of parameters, an indication that these models are underdetermined, particularly when attempting to estimate more than about

10 parameters. In our study we have chosen to tune a rather moderate number of six parameters, but already noted some

difficulty in constraining two of these. A potential solution could be to fix certain parameters to prior values, and thereby

decrease the dimension of the parameter space to be estimated. However, as pointed out by Ward et al. (2010), this may lead to25

an underestimate of model uncertainty, and therefore not be the ultimate cure for
::::::
solution

::
to

:
this problem. Future studies will

address these problems by testing different combinations of parameters, in conjunction with different misfit functions.

The above mentioned problems may even increase if we move towards more sparsely sampled, biased, or noisy data. So far,

for the twin experiment as well as for the optimization against observations we assume perfect data coverage. However, sparse

data sets (as usually available from cruises or time series stations) as well as the influence of noise have been shown to be30

very influential for the ability of an optimization to recover results from 0D (Friedrichs, 2001; Schartau et al., 2001; Löptien

and Dietze, 2015) and 3D (Tjiputra et al., 2007) twin experiments.
:::
The

::::::::
presence

::
of

:::::
noise

:::
or

:::::::::::
measurement

:::::
errors

::::::
should

:::
be

:::::::
reflected

::
in

:::
the

::::::::::
termination

:::::::
criterion

:::
for

:::::::::::
optimization;

::::
this

::::
will,

:::
for

:::::
some

:::::::::
parameters,

::::::::
influence

:::
the

::::::::
estimates

::::::::
optimum

::::::
values
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:::::::::::::::::::::::::::::
(see Fig. 8 of Schartau et al., 2016). Future studies will have to address to what extent noise will affect the 3D optimizations

presented here
:::
and

::::
how

:::
this

:::::::::
parameter

:::::::::
uncertainty

::::
will

::::
map

::::
onto

:::::
model

::::::
fluxes,

::
or

::::
even

::::::::
transient

::::::::
scenarios.

While we found a decrease of the twin experiment’s misfit to almost zero, the misfit of the optimization against observa-

tions remained relatively high (on average, about 15% of global mean tracer concentrations). Potential reasons for this are an

inappropriate biogeochemical model structure, wrong choice of parameters to be optimized, or flaws in the physical model.5

For example, it is well known that coarse resolution models do not resolve physical processes of the Equatorial Pacific current

system (Dietze and Loeptien, 2013), which may result in an attempt of the optimization to “cure” deficient physics by changing

biogeochemical parameters. This feature might also explain some of the sensitivities - or lack of - found by Kwon and Primeau

(2006). Solutions to this potential flaw could be to exclude regions from the misfit, that are known to be not well represented

by the physical model, or to weigh biogeochemical misfits by the model’s fit to observations of physical data.10

To summarize, any global model study that aims to inversely determine parameters of a global biogeochemical ocean model

in an attempt to find the model setup “best” suited for a particular application (and circulation), has to consider five tasks: (1)

investigate model solutions on the appropriate (depending on tunable parameters) time scales, possibly including long, millen-

nial simulations; (2) address the potential of local minima (depending on the topography of the misfit function); (3) investigate

different parameter combinations and boundaries, including the misfit function’s sensitivity to them; (4) disentangle the effects15

of physical and biogeochemical model on model-data misfit; and (5) investigate the effect of misfit function, including data

distribution and availability on model assessment. This last point also includes decisions about weights applied to different

data sets, or for a particular form of misfit function, which may be very influential for the optimal parameter choice (Evans,

2003). It also depends on the desired application of the model, and the scientific question it is supposed to address.

5 Conclusions20

We have presented a framework for the optimization of global biogeochemical ocean models, that combines an offline approach

for transport of biogeochemical tracers with an Estimation of Distribution Algorithm (Covariance Matrix Adaption Evolution

Strategy, CMAES
:::::::
CMA-ES). A twin experiment revealed a good performance of this algorithm with respect to recovering

six parameters, that are associated with various time and space scales. Further tests with different setups of the optimization

algorithm - or different algorithms - will provide insight into potential improvements regarding the computational performance25

of this tool.

Optimizations against observations of annual mean nutrients and oxygen , using different optimization setups could reduce

the misfit of the model to some extent; however, they resulted in two different solutions, and the remaining misfit was
::::
even

:::
for

::
the

::::::
“best”

::::::
model

:::::::
solution

:::
the

::::::::
remaining

:::::
misfit

::
is
:
still ⇡ 15% of global mean tracer concentrations. The first obstacle ,

::::::
which

might be related to an indeterminacy of the biological parameters, and has been observed in other studies as well; in addition,30

the misfit function most likely is not informative enough about these parameters
:::::::::::
inappropriate

:::::::
physics. Tests with different

misfit functions and components of the misfit may reveal more suitable measures of model skill. The second problem - a rather

high remaining misfit - can probably be related to inappropriate, physical or biogeochemical model setup. Therefore, future
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studies will address the impact of different misfit functions and tunable parameter combinations for constraining the rather

uncertain model parameters. It is important to note that
:::::::::
circulation

::::::
(which

:
is
::::
easy

::
to
::::::::
exchange

::::
with

:::
the

::::::
current

::::::::::
framework)

::::
will

::::::
provide

:::::
more

::::::
insight

:::
into

:::
the

::::::
impact

::
of

:::::::
physical

:::::::
forcing

::
on

:::
the

::::::
ability

::
of

:::
the

:::::::::::::
biogeochemical

::::::
model

::
to

::
fit

:::
the

:::::::::::
observations.

::::::::::::
Encouragingly,

:::::::::
parameter

::::
sets

:::::::::
associated

::::
with

:::
the

::::::
lowest

::::::
misfit

::
to

::::::::
dissolved

:::::::::
inorganic

::::::
tracers

::::
also

:::::
show

:::
the

::::
best

::
fit

:::
to

:::::
global

:::::
mean

:::::
tracer

::::::
fluxes

:::
not

:::::::::
considered

::::::
during

::::::::::::
optimization.

::::
This

::::::::
increases

:::
our

::::::::::
confidence

::
in

:::
the

:::::::
method

::::::::
presented

:::::
here.5

:::::
Some

::::::::
parameter

::::::::
estimates

::::
are

:::::::::
associated

::::
with

::
a

:::::
rather

::::
high

:::::
level

::
of

::::::::::
uncertainty.

::::::::::::
Incorporating

::::::::
different

::
or

:::::::::
additional

::::
data

:::
sets,

::::
that

:::::
more

::::::
closely

:::::
relate

::
to

:::
the

:::::::::
parameters

::
to

:::
be

:::::::::
optimized,

:::
can

::::
help

::
to

:::::::
improve

::::::::
estimates

:::
for

:::::
these

:::::::::
parameters.

:::::::::
Likewise,

observations that provide information about the upper and lower bounds of biological parameters - such as zooplankton grazing

and mortality rates - may
:::
will

:
provide a good guidance for setting up

::::
future

:
optimization studies, and lower their computational

demand.10

We expect, however, that, depending on tracer type, distribution, and form of the misfit function (e.g., weighted vs. unweighted

misfit), optimizations may yield quite different solutions for the resulting parameters, and biogeochemical fluxes (see also Evans, 2003).

For one and the same model, structure and components of the misfit function, as a measure of model skill, will likely depend

on the scientific question we want to address with the model.

Assessment of parameters in biogeochemical ocean models may involve a misfit topography with many local minima, which15

probably can best be dealt with stochastic and/or evolutionary algorithms. Local minima in the misfit function, particularly

when optimizing many (> 3) parameters for which there are only few, uncertain observations regarding their potential values,

should give rise to a cautious interpretation of global model results. This has also been discussed extensively by Ward et al. (2010),

and later by Löptien and Dietze (2015). It remains to be investigated how parameter uncertainties that arise from global

optimizations as the one presented here, will map onto model sensitivities when these are run in forward, predictive mode.20

6 Code availability

The source code of MOPS coupled to TMM, as well as the optimization framework are available as supplement. The most

recent TMM source code, forcing, etc. are available under

https://github.com/samarkhatiwala/tmm.25

Appendix A: Source code

As research questions may diverge strongly (and therefore, also the different user groups, hardware, biogeochemical models

and circulations), we aimed to construct a tool that is as generic and universally applicable as possible, with a high level of

portability among different architectures. The model-optimization framework of TMM already comprises new subroutines for

data assimilation and cost (misfit )
::::
misfit

:
function evaluation, as well as monitor routines to facilitate run-time checks of model30

state, and a more generic coupling interface for biogeochemistry. It can thus easily be applied within an optimization frame-
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work. While we here focus on the coarse resolution model, we note that the generic structure of the TMM framework allows

the user to easily switch between transport matrices, once these are available. Likewise, coupling different biogeochemical

models to the framework only requires editing of a (few) interface subroutines. Finally, in principle it should be possible to

exchange the optimization algorithm by any other algorithm, that requires only model misfit as input, and provides a set of

parameter files as output.5

Reading a parameter file and computation of misfit are two distinct tasks: one may want to only read a set of parameters

(which is usually very specific to a particular model ), without computing any misfit function. On the other hand, one may only

want to compute the misfit, but apply parameters set in the initialization routine. Therefore, these two tasks - although both

A1
:::::::::
MOPS-2.0

::::::::::::::
biogeochemical

::::::::::
subroutines

::::::
Besides

:::
the

::::::::::
stand-alone,

:::::::
forward

:::::::::
integration

:::
of

:
a
:::::
global

::::::::::::::
biogeochemical

:::::
model

::::
two

::::::::
additional

:::::
tasks are required for optimiza-10

tion- are assigned to different components of the framework: parameter I/O is related more closely to the biogeochemistry

itself, and therefor carried out by external_forcing_mops_biogeochem.c, and related subroutines. Computation of

misfitis a more general task, and therefore invoked by the main driver code, tmm_main.c. However, it is also related to the

biogeochemical model structure itself, as the mapping of simulated to observed tracers and diagnostics can depend strongly on

the biogeochemical model structure. Therefore, files related to misfit computation are also embedded in the biogeochemical15

model subroutines:
:::::::::::
computation

:::
and

::::::
output

::
of

:::::
misfit,

::::
and

::::
input

::
of

::::
trial

:::
sets

::
of

::::::::::
parameters

:::::
passed

::
to
:::
the

::::::
model

::
by

:::
the

::::::::
optimizer.

In the following, files that have been added, or are relevant for input of parameter vectors and computation of misfit functions

are denoted by an asterisk
:::
that

::::
have

:::::
been

::::::
added

::
or

:::::::
changed

::::::::::::::::::::::::::::::::::::::::::::::::::::
(with respect to MOPS-1.0; see Kriest and Oschlies, 2015) are

:::::
shown

::
in

::::
bold

::::
face. An overview of the model structure and layout, with emphasis on those parts that affect computation of

biogeochemical fluxes and tracers, optimization and parameter handling is given in Fig. ??.
::
the

::::::::::
supplement.

:
20

A2 MOPS-2.0 biogeochemical subroutines

Most of the biogeochemical subroutines are described in detail the appendix of Kriest and Oschlies (2015). We here only briefly

describe the different biogeochemical subroutines, and refer the reader to that website, and to the detailed documentation in

the supplementary material that accompanies this manuscript.

As noted in Kriest and Oschlies (2015), the code mainly consists of
::::::
consists

::
of

::::
two

::::
files

::::
with

:
outer routines, that connect25

to the TMM and translate to the “3D” circulation
::::
main

::::::
driver

::::
code

:::::::::::::
tmm_main.c, and inner routines that contain the local

biogeochemical sources and sinks, and define the biogeochemical parameters. These routines communicate via common blocks

in header files.
⇤external_forcing_mops_biogeochem.c connects biogeochemical subroutines to the TMM, including input

(1) external_forcing_mops_biogeochem.c
:
is
:::
the

::::
first

:::::::
interface

::::::::
between

::::::
MOPS

:::
and

:::
the

::::::
TMM.

:::::::
Besides

::
in-

:
and30

output of files and runtime parameters . It also
:
it determines from runtime options whether a parameter file should be

read, and
::
as

::::
well

::
as its name. Additionally, it assembles the vectors of individual profiles for tracers, diagnostics, and

:
It
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::::::::
assembles

:
model equivalents for the misfit function into one combined vector to be passed to

:::
and

:::::
passes

::
it
::
to

:
the main

driver code, tmm_main.c. It thus provides the basic interface between a biogeochemical model and the TMM, and

calls the following subroutines
::::::::::
soubroutines:

–

(1.2) mops_biogeochem_copy_data
::::
ini.F: maps tracer fields back and forth to communicate generically with5

the basic TMM structure. This new routine facilitates the introduction of new tracers.

– mops_biogeochem_ini.F: basic initialization.
:::::::
interface

:::::::
between

::::
(1)

:::
and

:::::::::
(1.2.1).

:
It calls

• ⇤BGC_INI.F: sets the

(1.2.1) BGC_INI.F
::::::
assigns biogeochemical parameters. Note that in this file we distinguish

:::
The

::::::
routine

:::::::::::
distinguishes

between parameters that stay fixed, and
::::::
derived parameters that depend on parameters which change during10

optimization, and therefor have to change as well
::::
read

::::::
during

:::::::
runtime. For example, the stoichiometry for

nitrate loss during denitrification depends on the stoichiometric ratio of
:::::::::::
stoichiometric

:::::
ratio O2:P for aerobic

remineralization (Paulmier et al., 2009). Therefore
:::::::::
determines

:::
the

:::::::::::
stoichiometry

:::
for

:::::
nitrate

::::
loss

:::::
during

::::::::::::
denitrification

::::::::::::::::::
(Paulmier et al., 2009).

:::::
Thus, if the latter

::::::
former changes, the former will have the recalculatedas well. This is

carried out by repeated calls to this routine after new parameter vectors have
::::
latter

:::
will

:::::
have

::
to

::
be

:::::::::::
recalculated.15

:::
The

::::::
routine

::
is

:::::
called

:::::
every

::::
time

::::
after

::
a
::::
new

::::::::
parameter

::::::
vector

:::
has been read.

– ⇤mops_biogeochem_set_params.F: assigns

(1.3) mops_biogeochem_set_params.F
::::
maps

:
vector of parameters , read by

::::
read

::
by external_forcing_mops_biogeochem.c

::::
(1)

parameters named in BGC_INI.F
:
to

::::::::
symbolic

::::::
names

:::::
used

::
by

:::::::
MOPS. Each call to this routine

::::::
(1.3) is fol-

lowed by a call to mops_biogeochem_ini.F
::::::
(1.2) and BGC_INI.F

::::::::
(1.2.1)(see above)

:
,
::
to

:::::::::
recalculate20

::::::::
dependent

:::::::::
parameters.

–

(1.1) mops_biogeochem_copy_data.F
:
:
:::::::
interface

::::::::
between

::::
(1)

:::
and

:::::::
(1.2)

:::
and

::::::
(1.4)

:
.

(1.4) mops_biogeochem_model.F: maps tracer fields used in
:::::::
interface

:::::::
between

:
BGC_MODEL

:::
(1) onto arrays to

be passed to
:::
and

:
external_forcing_mops_biogeochem.c

:::::::::
(1.4.1). It calls25

• ⇤BGC_MODEL.F: calculation of

(1.4.1) BGC_MODEL.F
::::::::
calculates biogeochemical sources and sinks. It now also assigns state variables to arrays that

will be passed to the misfit function.

–

(1.5) mops_biogeochem_diagnostics.F: maps diagnostic outputcomputed in
:::::::
interface

::::
(for

:::::::::
diagnostic

::::::
output)30

:::::::
between BGC_MODEL

:::
(1) onto arrays to be passed to

:::
and external_forcing_mops_biogeochem.c

::::::::
(1.4.1)

:
.
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– ⇤mops_biogeochem_misfit.F: maps arrays of simulated tracers for computation of misfit , computed in

BGC_MODEL onto arrays to be passed to external_forcing_mops_biogeochem.c.

(1.6) mops_biogeochem_misfit.F:
::::::::
interface

:::
for

:::::
misfit

::::::::::
computation

:::::::
between

::::
(1)

:::
and

:::::::::
(1.4.1).

:

(2) tmm_misfit.c
::::::::
initializes

:::
and

::::::
carries

::
out

:::::
misfit

:::::::::::
computation.

::::::
Writes

:::::
misfit

::
to

:::::
either

:::::
binary

::
or

::::::
ASCII

::::
files.

::
It

::::::::::::
communicates

::::
with

::
the

::::::::::::::
biogeochemical

:::::
model

::
in

::::
(1)

::
via

::::
(b)

:
.5

Communication between the different modules is carried out mainly via several header files:

–

(a) mops_biogeochem.h : introduces subroutines to external_forcing_mops_biogeochem.c
::::
(1).

:

–

(b) ⇤mops_biogeochem_misfit_data.hcommunicates parameters and variables
:::::
passes

::::::::::
information

:
related to10

misfit computation between external_forcing_mops_biogeochem.c
::::
(1) and main driver code tmm_main.c

::::
(2).

–

(c) BGC_PARAMS.h : communicates biogeochemical parameters between the different model pieces. It also contains the

biogeochemical tracer fields (bgc_tracer).
::::::
passes

:::::::::::::
biogeochemical

::::::::::
parameters

:::
and

:::::::
profiles

::
of

:::::::
tracers

:::::::
between

:::
all15

:::::::
different

:::::::
modules

:::::
called

:::
by

::::
(1).

:

–

(d) BGC_DIAGNOSTICS.h : passes arrays for diagnostic output. (Omitted from Fig. ??.)

–
:::::
passes

:::::::::
diagnostic

:::::::
variables

:::::
from BGC_CONTROL.h: passes runtime parameters to biogeochemistry.

(Omitted from Fig. ??.)
:::::::::
(1.4.1)

::
to

::::::
(1.5)

:
.20

–

(e) ⇤BGC_MISFIT.hpasses arrays from
::::::
passes

:::::
misfit

:::::::
variables

::::
from

:
BGC_MODEL.F

::::::::
(1.4.1) to mops

::::::
(1.6)

:
.

(f)
::::
BGC_biogeochem_misfit

:::::::::
CONTROL.F

:
h

:::::
passes

::::
time

::::
step

:::
and

::::::::
geometry

::::::::
between

::::::
(1.2)

:::
and

:::::::::
(1.2.1),

:::::::
(1.4)

:::
and

:::::::::
(1.4.1),

:
25

(g)
::::::::::::::::::::::::::
tmm_external_forcing.h

::::::::
introduces

::::::::::
subroutines

::
in

::::
(1)

:
to

:::::::::::::
tmm_main.c.

:
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A2 Interfacing computation of misfit with the TMM

For a most generic application of the TMM for biogeochemical model optimization we have devised several new

subroutines, that facilitate the implementation of any biogeochemical model into the framework. Therefore, the main

driver, tmm_main.c communicates directly with

–5

(h) ⇤tmm_misfit.c
::
h: contains initialization of misfit computation (including input of files of observations and

weights, as well as reading parameters for misfit from runtime arguments), the misfit function, and its output to

either binary or ASCII files. It communicates with the biogeochemical model (external_forcing_mops_biogeochem

::::::::
introduces

::::::::::
subroutines

::
in

::::
(2)

:
to

:::::::::::::
tmm_main.c. c) via ⇤mops_biogeochem_misfit_data.h. Its subroutines are

introduced to the TMM via header file10

– ⇤tmm_misfit.h

One
::::::
Finally,

:::
one

:
may want to prevent computation of a simulation if during spinup some parameter values or concentrations

lead to erroneous (e.g., negative) tracer concentrations. Routine tmm_monitor.c may serve as a module to monitor state

variables, or other model properties (not used in the current setup presented here).

A2 Optimization15

As noted above, the framework presented here is set up such that a serial script serial.job calls the optimization routine

(in our case CMAES
::::::::
CMA-ES), which computes a population of size = � of parameter vectors, stored in ASCII files. The

same script then calls a parallel script parallel.job, which starts � model simulations. During these simulations, the

parameter files are read, and a spinup is carried out for each individual setup. The individual model runs then output the misfit

function to specified files. When all jobs are finished, script parallel.job invokes script serial.job again, etc.. Thus,20

communication between both alternating steps (creation of parameter vectors and computation of resulting misfit function)

is carried out by these parameter and misfit files. In addition, file nIter.txt keeps track of the progress of optimization,

and provides the information which generation is to be computed; it also contains the runtime parameters for the optimizer,

CMAES
:::::::
CMA-ES. See information in supplement for more details on how this setup works, and how to specify biogeochemical

and optimizer parameters used e.g., in the work presented here.25
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Table 1. Operational constants of the CMA-ES algorithm (cf. Initialization in Algorithm 1).

Selection and recombination Step size control Covariance matrix adaption
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Table 2. Experimental setup of optimization. “low” and “upp
:::

high” indicate boundary constraints of the optimizations, respectively.� is the

population size of the optimization.

Name R

�O2:P Ic KPHY µZOO ZOO b

§

low high low high low high low high low high low high

TWIN 150 200 4.0 48 0.0001 0.5 0.1 4.0 0.0 10.0 0.4 1.8

OBS-WIDE 150 200 4.0 48 0.0001 0.5 0.1 4.0 0.0 10.0 0.4 1.8

OBS-WIDE-20 150 200 4.0 48 0.0001 0.5 0.1 4.0 0.0 10.0 0.4 1.8

OBS-NARR 150 200 4.0 48 0.0001 0.5 1.0 3.0 1.6 4.8 0.4 1.8

OBS-NARR-R 150 200 4.0 48 0.0001 0.5 1.0 3.0 1.6 4.8 0.4 1.8

§ Note that from b (the optimized parameter) in the model we calculate the rate of vertical increase in sinking speed a, always assuming

nominal detrital remineralization of r = 0.05 d�1. The resulting values for a are: 0.058275 (Target (Twin)), 0.125 (high) and 0.027778 (low).
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Table 3. Optimization results (evaluations, i.e. number of individuals, �, times number of generations, N ), best model misfit Mopt, optimum

parameters and their uncertainties. For each model and parameter, the first line gives the optimum parameter, followed by pmin and maximum

pmax of all individuals, for which the misfit M
i

is (M
i

�M

opt

)/M

opt

 0.001. The third line additionally present in brackets
:::::::::
parentheses

the percent of individuals , for which this criterion holds, as well as the range of optimum parameters as percent of the average parameter of

the last generation. We also give misfit and parameters of the reference run, against which the twin experiment was optimized.

Experiment �⇥N Mopt R

�O2:P Ic KPHY µZOO ZOO b

Reference 1 0.529 170.0 24.0 0.0315
:::::
0.03125

:
2.0 2.0

::
3.2 0.858

TWIN 2000 0.0003 170.0 24.0 0.034 2.0 3.20 0.858

170 24 0.033-0.035 2.0 3.19-3.20 0.858

(< 1) (< 1) (< 1) (5) (< 1) (< 1) (< 1)

OBS-WIDE 950 0.477 179.5 48.0 0.12 0.28 6.15 1.10

176-182 46-49 0.09-0.13 0.24-0.32 4.79-3.37 1.08-1.12

(31) (3) (6) (32) (28) (26) (4)

OBS-WIDE-20 3460 0.450 167.7 9.9 0.5 2.05 5.83 1.34

165-171 9.6-10.8 0.39-0.57 2.00-2.52 5.37-10.0 1.31-1.37

(64) (3) (12) (34) (25) (79) (5)

OBS-NARR 1820 0.450 167.0 9.7 0.5 1.89 4.57 1.34

165-170 9.0-10.3 0.39-0.53 1.57-2.02 2.95-4.66 1.30-1.36

(39) (3) (14) (28) (23) (37) (4)

OBS-NARR-R 1400 0.450 166.7 9.6 0.5 1.76 3.82 1.34

165-169 8.7-10.1 0.44-0.54 1.57-1.79 2.77-3.90 1.31-1.36

(50) (2) (14) (19) (13) (30) (3)
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Table 4. Global annual fluxes of primary production (PP), grazing (GRAZ), aerobic and anaerobic remineralization of detritus and DOM

to nutrients (REM), excretion by zooplankton (EXCR) export production (F120, flux through 120 m), flux through 2030 m (F2030), and

benthic burial (BUR), in Pg N y�1, for the reference experiment, OBS-WIDE, OBS-WIDE-20 and OBS-NARR (two repeated experiment

with different configurations of CMAES
:::::::
CMA-ES). We also show some globally derived, observed estimates. Conversion between different

elements was carried out via N:P=16, and C:P=122.

Experiment PP GRAZ REM EXCR F130
::::
F120

:
F2030 BUR

Reference 5.44 3.52 4.72 0.80 0.92 0.11 0.05

OBS-WIDE 6.20 1.24 5.94 0.25 0.81 0.06 0.02

OBS-WIDE-20 7.45 4.68 6.66 1.00 1.10 0.06 0.02

OBS-NARR 7.52 4.74 6.65 1.10 1.10 0.06 0.02

OBS-NARR-R 7.58 4.77 6.65 1.19 1.10 0.06 0.02

Observed§ 7.68-8.09 4.79, 5.71 - - 0.29-1.53 0.03-0.07 0.02

§ Observed fluxes are from Carr et al. (2006, primary production), Honjo et al. (2008, particle flux), Lutz et al. (2007, particle

flux), Dunne et al. (2007, particle flux), Schmoker et al. (2013, primary production, zooplankton grazing excluding/including

mesozooplankton grazing) and Wallmann (2010, burial; without shelf and slope region).
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Figure 1. A general EA (left) and EDA (right) schematic.
:::::
Cycles

::::::::
represent

:::
sets

::
of

:::::::
solutions

::::::
(vectors

:::
of

::::
BGC

::::::::
parameters

::
in
:::

our
:::::

case)
::
or

::
an

::::::
explicit

::::::::
probability

:::::::::
distribution

::::
from

:::::
which

:::
new

:::::::
solutions

:::
can

:::
be

:::::
drawn.

::::::::
Rectangle

::::::
symbols

:::::
depict

:::::::::
operations.

::::::::
Operations

::::::::
displayed

::
in

::
red

::::
font

::::::
depend

::
on

::::::
random

::::::::
decisions. EA: A set of candidate solutions (population) is iteratively updated. In each generation, candidate

solutions compete to form a mating pool which is realized by a
:::::
random

:
selection operator. Offspring solutions are produced by recombining

mates and/or introducing some mutation. Finally, there is a fitness based insertion back into the population,
:::::

which
::
is
::::::
usually

::::::
trimmed

::
to
::

a

::::::::
predefined

::::::::
population

:::
size.

:::
The

::::::
random

:::::::
operators

::::::::
selection,

:::::::::::
recombination

:::
and

:::::::
mutation

:::::
imply

::
an

::::::
implicit

:::::::::
probability

:::::::::
distribution

::
on

:::
the

:::::
search

::::
space

::::
with

:::::
respect

::
to
:::::
which

:::::::
solutions

:::
are

::::
likely

::
to
::::::
appear

::
in

::
the

::::
next

::::::::
generation.

:
EDA: Candidate solutions of the current iteration’s

population (and, indirectly, those of former iterations) are used to update an explicit probability distribution such that the likelihood to sample

good solutions increases. New samples
:::::::
candidate

:::::::
solutions

:::
are

::::::
directly

:::::::
sampled

::::
from

::
the

:::::::::
probability

:::::::::
distribution.

:::::::
Usually,

:::
the

::::::::
realization

of the probability distribution replace
:::::
update

::::::
ensures

:::
that

:::::::::
information

::
of

:::::
former

:::::::
solutions

:::::
fades

:::
out

:::::
slowly,

:::::::
resisting

::
for

::::::
several

::::::::
iterations.

::::::::
Therefore, the current population

:::
may

::
be

::::::
smaller

::
as

::
an

:::
EA

:::::::::
population

:::
and

::::
even

::
be

::::::
replaced

::::
with

:::
the

:::::
entire

::
set

:
of candidate solutions

:::
new

::::::
samples,

:::::
which

::
is

::
the

::::
case

::
for

:::
the

:::::::
CMA-ES

::::::::
algorithm

::
we

::::
use.
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Figure 2. Iterations of the CMA-ES applied to test functions. Left: The
::
A uni-variate Griewank

:::::::::::
Griewank-type function

:
f (grey curve). In

each iteration
::
we

::::
draw

::::::
�= 10

::::::
samples

::::
from

:
the normal distribution (blue curve)is sampled 10 times. The samples

::
For

::::
each

:::::
sample

:::
x

i

,
:::
the

:::
pair

::::::::
(x

i

,f(x

i

))

::
is

::::::
marked with their fitness values are shown as dots

:
a
:::
dot. The 5

:::::::
µ=

�

2 = 5

:
better samples (blue dots) are involved into the

normal distribution update for the next iteration. Right: Two-dimensional sphere function.
::::
Here,

:::::::
samples

::
are

::::::
marked

::::
with

:::
dots

::::
while

:::::::
function

:::::
values

::
are

:::::::
indicated

:::
by

::
the

::::
grey

:::::
levels

::
in

:::
the

:::::
counter

:::::
plots;

:::
the

:::
i-th

::::
grey

::::
level

:::::::
represents

:::
the

:::::
range

:::::::

⇥
i�1
2 ,

i

2

�
.
:
More samples (50) then

:::
than

necessary are used to update the distribution, which is indicated by its standard derivation
:::::::
deviation

:
ellipse (black), here. Distributions tend

to elongate into directions of descend
::::::
descent (iteration 2). For the convex example function the algorithm converges after few iterations.
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Figure 3. Optimization trajectory for six parameters of the twin experiment. Thick black line shows average parameter of all ten individuals

of a generation. Red lines indicate their maximum and minimum parameter value. Horizontal black lines indicate the target parameter. Note

that we restrict the y-axis to maximum and minimum boundary.
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Figure 4. Model misfit, its variance, calculated from individuals of each population (both transformed logarithmically
:
by

:::::
log10) and com-

ponents of the twin experiment. Left panel: Thick black line shows average misfit of all ten individuals of a generation. Red lines indicate

maximum and minimum misfit. Mid panel: Variance of misfit. Right panel: contribution of each component of the misfit Function. Blue:

oxygen. Red: nitrate. Black: phosphate.
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Figure 5. Model misfit, plotted for each pair of parameter combinations of the twin experiment. Color indicates misfit (see color bars on the

right). A cross indicates the target value, i.e. the value of the reference experiment. A circle indicates the parameter of one individual of the

last generation. Note that for better visibility we restrict the parameter range to its boundaries (see Table 2).
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Figure 6. As Fig. 5, but only plotted for a region ±2% around the average parameter value of the last generation
:
,
::::::::
regardless

::
of

::::::::
generation

:::
and

:::::::
associated

:::::
misfit. Note that

::::
these

::::::::
parameters

:::
can

::::
have

::::::
occurred

::::
early

::
in
:
the

::::::::::
optimization,

:::
and

::::
even

::
be

::::::::
associated

:::
with

:
a
::::
large

:::::
misfit

::::
(that

::::
would

::::
arise

::::
from

::
at

::::
least

:::
one

::
of

::
the

:::::
other

::::::::
parameters

::::::
causing

:
a
::::
large

::::::
misfit).

::::
Note

:::
that

::
the

:
color scale is different than in Fig. 5.
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Figure 7. As Fig. 4, but for optimization OBS-WIDE. Note that in the left plot, we now show the raw value of the misfit function (not log

transformed). The optimization finished at generation 95.

Figure 8. As Fig. 3, but for optimization OBS-WIDE. The optimization finished at generation 95.
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Figure 9. Surface (first) layer concentrations (in mmol C m�3, converted via a C:P ratio of 122) for phytoplankton, zooplankton, detritus

and DOM for the reference run, optimizations OBS-WIDE, OBS-WIDE-20 and OBS-NARR.
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Figure 10. As Fig. 7, but for optimization OBS-WIDE-20. The optimization finished at generation 173.

Figure 11. As Fig. 8, but for optimization OBS-WIDE-20. The optimization finished at generation 173.
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Figure 12. As Fig. 5, but for optimization OBS-WIDE-20. Note that the color scale differs from that of Fig. 5.
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Figure 13. As Fig. 10, but for optimization OBS-NARR. The optimization finished at generation 182.
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Figure 14. As Fig. 11, but for optimization OBS-NARR. The optimization finished at generation 182. Vertical blue lines indicate generation,

for which we also present deviations from observation of vertically integrated nutrients and oxygen from in Fig. 16.
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Figure 15. As Fig. 12, but for OBS-NARR.
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Figure 16. Model deviations from observations of vertically integrated phosphate (top), nitrate (middle) and oxygen (bottom) for the refer-

ence run, and three generations (61, 110, 182) of OBS-NARR. See blue lines in Fig. 14 for parameter values in this generation. For each

generation, we chose the best
::::
(with

::::::
respect

::
to

:::::
misfit) individual for plotting.

::::
Misfit

::
is

:::::
0.451,

::::
0.450

:::
and

:::::
0.450

::
for

::::::::
generation

:::
61,

:::
110

:::
and

::::
182,

:::::::::
respectively.

Simplified overview over model structure, connection between different subroutines and files, with emphasis on biogeochemical model

computation and parameter optimization (subroutines for parameter input highlighted in blue, for misfit function in red).
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