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Abstract. Vector quantities, e.g., vector winds, play an extremely important role in climate systems. The energy and water 

exchanges between different regions are strongly dominated by wind, which in turn shapes the regional climate. Thus, how 10 

well climate models can simulate vector fields directly affects model performance in reproducing the nature of a regional 

climate. This paper devises a new diagram, termed the vector field evaluation (VFE) diagram, which is very similar to the 

Taylor diagram but provides a concise evaluation of model performance in simulating vector fields. The diagram can 

measure how well two vector fields match each other in terms of three statistical variables, i.e., the vector similarity 

coefficient, root-mean-square (RMS) length (RMSL), and RMS vector difference (RMSVD). Similar to the Taylor diagram, 15 

the VFE diagram is especially useful for evaluating climate models. The pattern similarity of two vector fields is measured 

by a vector similarity coefficient (VSC) that is defined by the arithmetic mean of the inner product of normalized vector 

pairs. Examples are provided, showing that VSC can identify how close one vector field resembles another. Note that VSC 

can only describe the pattern similarity, and it does not reflect the systematic difference in the mean vector length between 

two vector fields. To measure the vector length, RMSL is included in the diagram. The third variable, RMSVD, is used to 20 

identify the magnitude of the overall difference between two vector fields. Examples show that the new diagram can clearly 

illustrate the extent to which the overall RMSVD is attributed to the systematic difference in RMSL and how much is due to 

the poor pattern similarity. 
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1 Introduction 

Vector quantities play a very important role in climate systems. It is well known that atmospheric circulation transfers mass, 

energy, and water vapor between different parts of the world, which is an extremely crucial factor to shaping regional 

climates. The monsoon climate is a typical example of one that is strongly dominated by atmospheric circulation. A strong 

Asian summer monsoon circulation usually brings more precipitation and vice versa. Therefore, the simulated precipitation 5 

is strongly determined by how well climate models can simulate atmospheric circulation (Twardosz et al. 2011; Sperber et 

al., 2013; Zhou et al., 2016). Ocean surface wind stress is another important vector quantity that reflects the momentum flux 

between the ocean and atmosphere, serving as one of the major factors for oceanic circulation (Lee et al., 2012). The wind 

stress errors can cause large uncertainties in ocean circulation in the subtropical and subpolar regions (Chaudhuri et al., 2013). 

Thus, the evaluation of vector fields, e.g., vector winds and wind stress, would also help in understanding the causes of 10 

model errors.  

 

The Taylor diagram (Taylor 2001) is very useful in evaluating climate models, and it has been widely used in model inter-

comparison and evaluation studies over the past several years (e.g., Hellström and Chen, 2003; Martin et al., 2011; Giorgi 

and Gutowski, 2015; Jiang et al., 2015; Katragkou et al. 2015). However, the Taylor diagram was constructed for evaluating 15 

scalar quantities, such as temperature and precipitation. The statistical variables used in Taylor diagram, i.e., the Pearson 

correlation coefficient, standard deviation, and root-mean-square error (RMSE), do not apply to vector quantities. No such 

diagram is yet available for evaluating vector quantities such as vector winds, wind stress, temperature gradients, and 

vorticity. Previous studies have usually assessed model performance in reproducing a vector field by evaluating its x- and y-

component with the Taylor diagram (e.g., Martin et al. 2011; Chaudhuri et al., 2013). Although such an evaluation can also 20 

help to examine the modeled vector field, it suffers from some deficiencies as follows: (1) a good correlation in the x- and y-

component of the vector between the model and observation may not necessarily indicate that the modeled vector field 

resembles the observed one. For example, assuming we have two identical 2-dimensional vector fields 𝐀��⃑  and 𝐁��⃑ , their 

correlation coefficients are 1 for both the x- and y-component. If the x-component of vector field 𝐀��⃑  adds a constant value, 

the correlation coefficients for both the x- and y-component do not change, but the direction and length of vector A��⃑  change, 25 

which suggests that the pattern of two vector fields are no longer identical. Thus, computing the correlation coefficients for 

the x- and y-component of a vector field is not well suited for examining the pattern similarity of two vector fields. (2) It is 

hard to determine the improvement of model performance. For example, should one conclude that the model performance is 

improved if the RMSE (or correlation coefficient) is reduced for the y-component but increased for the x-component of a 

vector field? Given these reasons and the importance of vector quantities in a climate system, we have developed a new 30 

diagram, termed the vector field evaluation (VFE) diagram, to measure multiple aspects of model performance in simulating 

vector fields. 
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To construct the VFE diagram, one crucial issue is quantifying the pattern similarity of two vector fields. Over the past 

several decades, many vector correlation coefficients have been developed by different approaches. For example, some 

vector correlation coefficients are constructed by combining Pearson’s correlation coefficient of the x- and y-component of 

the vector (Charles, 1959; Lamberth, 1966). Some vector correlation coefficients are devised based on orthogonal 

decomposition (Stephens, 1979; Jupp and Mardia, 1980; Crosby et al., 1993) or the regression relationship of two vector 5 

fields (Ellison, 1954; Kundu, 1976; Hanson et al., 1992). These vector correlation coefficients usually do not change when 

one vector field is uniformly rotated or reflected to a certain angle. This is a reasonable and necessary property for the vector 

correlation coefficient when one detects the relationship of two vector fields. However, in terms of model evaluation, we 

expect the simulated vectors to resemble the observed ones in both direction and length with no rotation permitted. Thus, 

previous vector correlation coefficients are not well suited for the purpose of climate model inter-comparisons and 10 

evaluation.  

 

To measure how well the patterns of two vector fields resemble each other, a vector similarity coefficient (VSC) is 

introduced in section 2 and interpreted in section 3. Section 4 constructs the VFE diagram with three statistical variables to 

evaluate multiple aspects of simulated vector fields. Section 5 illustrates the use of the diagram in evaluating climate model 15 

performance. A discussion and conclusion are provided in section 6. 

2 Definition of vector similarity coefficient 

Consider two vector fields 𝐀��⃑  and 𝐁��⃑  (Figure 1a). Without loss of generality, vector field A��⃑  and B��⃑  can be written as a pair of 

vector sequences: 

A��⃑ i = (xai, yai);  i = 1, 2, …, N     20 

B��⃑ i = (xbi, ybi);  i = 1, 2, …, N     

Each vector sequence is composed of N vectors. To measure the similarity between vector fields 𝐀��⃑  and 𝐁��⃑ , a vector similarity 

coefficient (VSC) is defined as follows: 

Rv = ∑ A��⃑ i∙B��⃑ i
N
i=1

�∑ �A��⃑ i�
2N

i=1 �∑ �B��⃑ i�
2N

i=1

     (1) 

where || represents the length of a vector. ∙ represents the inner product. 25 

We define a normalized vector as follows:  
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A��⃑ i
∗ = A��⃑ i

�1
N ∑ �A��⃑ i�

2N
i=1

= A��⃑ i
LA

     (2) 

and 

B��⃑ i
∗ = B��⃑ i

�1
N ∑ �B��⃑ i�

2N
i=1

= B��⃑ i
LB

     (3) 

respectively, where  

LA = �1
N

∑ �A��⃑ i�
2N

i=1    (4) 5 

and 

LB = �1
N

∑ �B��⃑ i�
2N

i=1   (5) 

are the quadratic mean of the length or RMS length (RMSL) of a vector field which measures the mean length of the vectors 

in a vector field. Based on (2) and (3), we have  

∑ �A��⃑ i
∗�

2N
i=1 = ∑ �B��⃑ i

∗�
2N

i=1 = N (6) 10 

Clearly, the normalization of a vector field only scales the vector lengths without changing their directions (Fig. 1b). 

With the aid of (2) and (3), equation (1) can be rewritten as  

Rv =
1
N

� A��⃑ i
∗ ∙ B��⃑ i

∗
N

i=1

 

=
1
N

��A��⃑ i
∗��B��⃑ i

∗�
N

i=1

cosαi 

=
1
N

�
�A��⃑ i

∗�
2

+ �B��⃑ i
∗�

2
− �C�⃑ i

∗�
2

2

N

i=1

  

= 1 −
1

2N
��C�⃑ i

∗�
2

N

i=1

 

= 1 −
1
2

MSDNV 

          (7) 

where C�⃑ i
∗ is the difference between the normalized 𝐀��⃑  and 𝐁��⃑  (Fig. 1b). MSDNV is mean-square difference of the normalized 

vectors (Shukla and Saha 1974, with minor modification) between two normalized vector sequences: 
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MSDNV = 1
N

∑ �A��⃑ i
∗ − B��⃑ i

∗�
2N

i=1 = 1
N

∑ �C�⃑ i
∗�

2N
i=1   (8) 

Given the triangle inequality, 0 ≤ �C�⃑ i
∗� ≤ �A��⃑ i

∗� + �B��⃑ i
∗�, we have 

 0 ≤ �C�⃑ i
∗�

2
≤ ��A��⃑ i

∗� + �B��⃑ i
∗��

2
≤ 2�A��⃑ i

∗�
2

+ 2�B��⃑ i
∗�

2
 (9) 

With the aid of (6), (7), (8) and (9) we obtain 

0 ≤ MSDNV ≤ 4, and –1 ≤ Rv ≤ 1   5 

Rv reaches its maximum value of 1 when MSDNV = 0, i.e., A��⃑ i
∗ = B��⃑ i

∗ for all i (1 ≤ i ≤ N). Rv reaches its minimum value of –1 

when MSDNV = 4, i.e., A��⃑ i
∗ = −B��⃑ i

∗ for all i (1 ≤ i ≤ N). Thus, the vector similarity coefficient, Rv, always takes values in the 

intervals [–1, 1] and is determined by MSDNV, namely 1
2N

∑ �C�⃑ i
∗�

2N
i=1 . Clearly, �C�⃑ i

∗� is determined by the differences in both 

vector lengths and angles between A��⃑ i
∗ and B��⃑ i

∗ (Fig. 1b). A smaller �C�⃑ i
∗� suggests that A��⃑ i

∗ is closer to B��⃑ i
∗ and vice versa. To 

better understand Rv, some special cases are discussed as follows. 10 

For all i (1 ≤ i ≤ N): 

If A��⃑ i
∗ = B��⃑ i

∗, then �C�⃑ i
∗� = 0. We obtain Rv = 1 when each pair of normalized vectors is exactly the same length and direction 

(Fig. 2a).  

If A��⃑ i
∗ = −B��⃑ i

∗, then �A��⃑ i
∗� = �B��⃑ i

∗� = �C�⃑ i
∗�/2. We obtain Rv = –1 when each pair of normalized vectors is exactly the same length 

but opposite direction (Fig. 2b). 15 

If A��⃑ i
∗ ⊥ B��⃑ i

∗, then �A��⃑ i
∗�

2
+ �B��⃑ i

∗�
2

= �C�⃑ i
∗�

2
. We obtain Rv = 0 when each pair of normalized vectors is orthogonal to each other. 

If �C�⃑ i
∗�

2
< �A��⃑ i

∗�
2

+ �B��⃑ i
∗�

2
, we obtain 0 < Rv < 1 when the angles between A��⃑ i

∗ and B��⃑ i
∗ are acute angles (Fig. 2c).  

If �C�⃑ i
∗�

2
> �A��⃑ i

∗�
2

+ �B��⃑ i
∗�

2
, we obtain –1 < Rv < 0 when the angles between A��⃑ i

∗ and B��⃑ i
∗ are obtuse angles (Fig. 2d). 

Thus, a positive (negative) Rv indicates that the angles between A��⃑ i
∗ and B��⃑ i

∗ are generally smaller (larger) than 90°, which 

suggests that the patterns between A��⃑ i
∗ and B��⃑ i

∗ are similar (opposite) to each other. A greater Rv indicates a higher similarity 20 

between two vector fields. Based on equations (2), (3), and (7), Rv does not change when 𝐀��⃑  or 𝐁��⃑  is multiplied by a positive 

constant, which is analogous to the property of Pearson’s correlation coefficient. Thus, Rv can measure the pattern similarity 

of two vector fields but cannot determine whether two vector fields have the same amplitude in terms of the mean length of 

vectors. However, we can use the scalar variable RMSL to measure the mean length of a vector field. 

3 Interpreting VSC 25 

VSC is devised to measure the pattern similarity of two vector fields. Here, we present three cases to provide more insights 

into VSC. To facilitate the validation, we define the mean difference of angles (MDA) between two vector fields as follows: 
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MDA = α� = 1
N

∑ αi
N
i=1 = 1

N
∑ acos � A��⃑ i∙B��⃑ i

|A��⃑ i||B��⃑ i|
�N

i=1  

where αi is the included angle between paired vectors. MDA takes values in intervals [0, π] and measures how close the 

corresponding vector directions of two vector fields are to each other. A mean square difference (MSD) of normalized vector 

lengths is defined as follows:  

MSD =
1
N

���A��⃑ i
∗� − �B��⃑ i

∗��
2

N

i=1

 

=
1
N

� ��A��⃑ i
∗�

2
+ �B��⃑ i

∗�
2

− 2�A��⃑ i
∗��B��⃑ i

∗��
N

i=1

 

= 2 −
2
N

��A��⃑ i
∗��B��⃑ i

∗�
N

i=1

 

(10) 

 5 

Given equation (6) and the Cauchy–Schwarz inequality: 

���A��⃑ i
∗��B��⃑ i

∗�
N

i=1

�

2

 ≤  ��A��⃑ i
∗�

2
 

N

i=1

��B��⃑ i
∗�

2
 

N

i=1

 

we find that MSD takes on values in intervals [0, 2]. 

For all i (1 ≤ i ≤ N), if �A��⃑ i
∗� = �B��⃑ i

∗�, we have MSD = 0, 

For all i (1 ≤ i ≤ N), if �A��⃑ i
∗��B��⃑ i

∗� = 0, we have MSD = 2. 

MSD measures how close the corresponding vector lengths of two normalized vector fields are to each other. 10 

3.1 Relationship of VSC with the MSD 

VSC can be written as follows: 

Rv =
1
N

� A��⃑ i
∗ ∙ B��⃑ i

∗
N

i=1

 

=
1
N

��A��⃑ i
∗��B��⃑ i

∗�
N

i=1

cosαi 

=
1
N

� �
��A��⃑ i

∗�
2

+ �B��⃑ i
∗�

2
� − ��A��⃑ i

∗� − �B��⃑ i
∗��

2

2
�

N

i=1

cosαi 

 

If we assume each corresponding angle between two vector fields αi = α = const (i = [1, N]), with the support of (6) and 

(10) we obtain 15 
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Rv = �1 −
1

2N
���A��⃑ i

∗� − �B��⃑ i
∗��

2
N

i=1

� cosα 

= �1 −
MSD

2
� cosα 

(11) 

Thus, Rv varies between 0 and cosα due to the difference in vector length when α is a constant angle. Rv equals 0 when α 

equals 90° regardless of the value of MSD. MSD plays an increasingly important role in determining Rv when α approaches 

0 or 180°.  

3.2 Relationship of VSC with MDA 

To examine the relationship of Rv with the included angles between two vector fields in a more general case, we produce a 5 

number of random vector sequences. Firstly, we construct a reference vector sequence, 𝐀��⃑ , comprising 30 vectors, i.e., i = 

[1,30]. The lengths of 30 vectors follow a normal distribution, and the arguments of 30 vectors follow uniform distribution 

between 0 and 360°. Secondly, we produced a new vector sequence 𝐁��⃑  by rotating each individual vector of 𝐀��⃑  for a certain 

angle randomly between 0° and 180° without changes in vector lengths. Such a random production of 𝐁��⃑  was repeated 1×106 

times to produce sufficient random samples of vector sequences. The vector similarity coefficients Rv are computed between 10 

𝐀��⃑  and the 1×106 sets of randomly produced vector sequences, respectively. As shown in Figure 3, Rv generally shows a 

negative relationship with MDA, i.e., a smaller MDA generally corresponds to a larger Rv, and vice versa. However, it 

should be noted that Rv varies within a large range for the same MDA. For example, when MDA equals 90°, Rv can vary 

from approximately -0.5 to 0.5 depending on the relationship between the vector lengths and the corresponding included 

angles. A positive (negative) Rv is observed when the 30 vector lengths and included angles are negatively (positively) 15 

correlated. This means that the patterns of two vector fields are closer (opposite) to each other when the included angles 

between the long vectors are small (large). In other words, the longer vectors generally play a more important role than the 

shorter vectors in determining Rv. 

3.3 Application of VSC to 850-hPa vector winds 

In this section, we compute the Rv of the climatological mean 850-hPa vector winds in January with that in each month in the 20 

Asian-Australian monsoon region (10°S–40°N, 40°–140°E). The purpose of this analysis is to illustrate the performance of 

Rv in describing the similarity of two vector fields. The wind data used is NCEP-DOE reanalysis 2 data (Kanamitsu, et al., 

2002). The climatological mean 850-hPa vector winds show a clear winter monsoon circulation characterized by northerly 

winds over the tropical and subtropical Asian regions in January and February (Figs. 4a, 4b). The spatial pattern of vector 

winds in January is very close to that in February, which corresponds to a very high Rv (0.97). The spatial pattern of vector 25 

winds in January is less similar to that in April and October, which corresponds to a weak Rv of 0.48 and -0.11, respectively. 

In August, the spatial pattern of 850-hPa winds is generally opposite to that in January, which corresponds to a negative Rv (-
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0.64). The VSCs of vector winds between January and each individual month show a clear annual cycle characterized by a 

positive Rv in the cold season (November-April) and a negative Rv in the warm season (June-September) in the Asian-

Australian monsoon region (Fig. 4f, solid line). Figure 4 illustrates that VSC can reasonably measure the pattern similarity of 

two vector fields. We also computed the VSCs of the January climatological mean vector winds with that in each individual 

month during the period from 1979 and 2005, respectively. The VSCs show a smaller spread in winter (January, February, 5 

and December) and summer (June, July, and August) months than during the transitional months such as April, May, and 

October (Fig. 4f). This indicates that the spatial patterns of vector winds have smaller inter-annual variation in summer and 

winter monsoon seasons than during the transitional seasons. 

4 Construction of the VFE diagram 

To measure the differences in two vector fields, a root-mean-square vector difference (RMSVD) is defined following 10 

Shukla and Saha (1974) with a minor modification: 

RMSVD = �
1
N

��A��⃑ i − B��⃑ i�
2

N

i=1

�

1
2

 

where A��⃑ i and B��⃑ i are the original vectors. The RMSVD approaches zero when two vector fields become more alike in both 

vector length and direction. The square of RMSVD can be written as 

RMSVD2 =
1
N

��A��⃑ i − B��⃑ i�
2

N

i=1

 

=
1
N

� ��A��⃑ i�
2

+ �B��⃑ i�
2

− 2�A��⃑ i ∙ B��⃑ i��
N

i=1

 

=
1
N

��A��⃑ i�
2

N

i=1

+
1
N

��B��⃑ i�
2

N

i=1

−
2
N

Rv ∙ ���A��⃑ i�
2

N

i=1

��B��⃑ i�
2

N

i=1

 

=
1
N

��A��⃑ i�
2

N

i=1

+
1
N

��B��⃑ i�
2

N

i=1

− 2Rv ∙ �
1
N

��A��⃑ i�
2

N

i=1

�
1
N

��B��⃑ i�
2

N

i=1

 

With the support of equation (4), (5), (7), we obtain 

RMSVD2 = LA
2 + LB

2 − 2Rv ∙ LALB   (12) 15 

The geometric relationship between RMSVD, LA, LB, and Rv is shown in Figure 5, which is analogous to Figure 1 in Taylor 

(2001) but constructed by different quantities. It should be noted that RMSVD is computed from the two original sets of 

vectors. However, the MSDNV in section 2 is computed using normalized vectors. 
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With the above definitions and relationships, we can construct a diagram that statistically quantifies how close two vector 

fields are to each other in terms of the Rv, LA, LB, and RMSVD. LA and LB, measure the mean length of the vector fields 𝐀��⃑  

and 𝐁��⃑ , respectively. In contrast, RMSVD describes the magnitude of the overall difference between vector fields 𝐀��⃑  and 𝐁��⃑ . 

Vector field 𝐁��⃑  can be called the “reference” field, usually representing some observed state. Vector field 𝐀��⃑  can be regarded 5 

as a “test” field, typically a model-simulated field. The quantities in equation (12) are shown in Figure 6. The half circle 

represents the reference field, and the asterisk represents the test field. The radial distances from the origin to the points 

represents RMSL (LA and LB), which is shown as a dotted contour (Fig. 6). The azimuthal positions provide the vector 

similarity coefficient (Rv). The dashed line measures the distance from the reference point, which represents the RMSVD. 

Both the Taylor diagram and the VFE diagram are constructed based on the law of cosine. The differences between the two 10 

diagrams are summarized in Table 1. Indeed, the Taylor diagram can be regarded as a specific case of the VFE diagram, 

which is further interpreted in Appendix A. 

5 Applications of the VFE diagram 

5.1 Evaluating vector winds simulated by multiple models 

A common application of the diagram is to compare multi-model simulations against observations in terms of the patterns of 15 

vector winds. As an example, we assess the pattern statistics of climatological mean 850-hPa vector winds derived from the 

historical experiments by 19 CMIP5 models (Taylor et al., 2012) compared with the NCEP-DOE reanalysis 2 data during the 

period from 1979 to 2005. The RMSVD and RMSL (LA and LB) were normalized by the observed RMSL (LB), i.e., RMSVD’ 

= RMSVD/LB, LA’ = LA/LB, and LB’ = 1. This leaves VSC unchanged and yields a normalized diagram as shown in Figure 7. 

The normalized diagram removes the units of variables and thus allows different variables to be shown in the same plot. The 20 

VSCs vary from 0.8 to 0.96 among 19 models, clearly indicating which model-simulated patterns of vector winds well 

resemble observations and which do not. The diagram also clearly shows which models overestimate or underestimate the 

mean wind speed (RMSL) (Fig. 7). For example, in comparison with the reanalysis data, some models (e.g., 12, 19, 13, and 

15) underestimate wind speed over the Asian-Australian monsoon region in summer. In contrast, some models (e.g., 6 and 

10) overestimate wind speed (Fig. 7a). In winter, most models overestimate the 850-hPa wind speed (Figure 7b).  25 

 

To illustrate the performance of the VFE diagram in model evaluation, Figure 8 shows the spatial patterns of the 

climatological mean 850-hPa vector winds over the Asian-Australian monsoon region derived from the NCEP2 reanalysis 

and three climate models. Models 1 and 4 show a spatial pattern of vector winds very similar to the reanalysis data in 

summer, and Rv reaches 0.96 and 0.95, respectively (Figs. 8a, 8c, 8e). In contrast, the spatial pattern of the vector winds 30 

simulated by model 12 is less similar to the reanalysis data (Figs. 8a, 8g). For example, the reanalysis-based vector winds 
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show stronger southwesterly winds over the southwestern Arabian Sea than the Bay of Bengal (Fig. 8a). However, an 

opposite spatial pattern is found in the same areas in model 12. More precisely, the southwesterly winds are weaker over the 

southwestern Arabian Sea than over the Bay of Bengal (Fig. 8g). Rv reasonably gives expression to the lower similarity of 

the spatial pattern in the vector winds characterized by a smaller Rv (0.86) in model 12 that is clearly lower than that (0.96) 

in model 1. Figure 7 suggests that model 12 underestimates wind speed (normalized RMS wind speed is 0.78) in summer. In 5 

contrast, model 4 overestimates wind speed (normalized RMS wind speed is 1.35) in winter. These biases in wind speed can 

be identified in Figure 8. For example, model 12 generally underestimates the 850-hPa wind speed, especially over the 

Somali region in summer, compared with the reanalysis data (Figs. 8a, 8g). Model 4 overestimates the strength of easterly 

winds between 5°N and 20°N and westerly winds between the equator and 10°S in winter (Figs. 8b, 8f).  

5.2 Other potential applications 10 

Similar to the Taylor diagram (Taylor, 2001), the VFE diagram can be applied to the following aspects.  

5.2.1 Tracking changes in model performance 

To summarize the changes in the performance of a model, the points on the VFE diagram can be linked with arrows. For 

example, similar to Figure 5 in Taylor (2011) the tails of the arrows represent the statistics for the older version, and the 

arrowheads point to the statistic for the newer version of the model. By doing so, the multiple statistical changes from the old 15 

version to the new version of the model can be clearly shown in the VFE diagram. The VFE diagram can also be combined 

with the Taylor diagram to show the statistics for both scalar and vector variables in one diagram by plotting double 

coordinates because both diagrams are constructed based on the law of cosine. 

 

5.2.2 Indicating the statistical significance of differences between two groups of simulations 20 

One way to assess whether there are apparent differences between two groups of data is by showing them on the diagram. 

Two groups of data can have a significant difference if the statistics from two groups of data are clearly separated from each 

other, and vice versa. As an illustration of this point, Figure 9 shows the normalized pattern statistics of the climatological 

mean 850-hPa vector winds derived from multiple members of model 12, 13, and 14. The symbols representing the same 

model show a close clustering, signifying that the sampling variability has less impact on the statistics of climatological 25 

mean vector winds. On the other hand, the symbols representing different models are clearly separated from each other. This 

suggests that the differences between models are much larger than the sampling variability of individual models. Thus, the 

differences between models 12, 13, and 14 are likely to be significant. Models 12 and 13 are different versions of the same 

model. Compared with model 12, model 13 shows a similar RMSL but higher VSCs and smaller RMSVDs, which suggests 

that the improvement of model 13 beyond 12 is primarily due to the improvement of the spatial pattern of vector winds (Fig. 30 

9). It should be noted that a formal test of statistical significance usually requires more than 30 samples. The ensemble 
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member involved here is less than 10, which may not be sufficient to conclude a significant difference between three models, 

especially for models 12 and 13.  

 

5.2.3 Evaluating model skill 

Similar to equation (4) and (5) in Taylor (2001), one can also construct skill scores using VSC and RMSL to evaluate model 5 

skills to simulate vector fields. For example: 

𝑆𝑣1 = 4(1+𝑅𝑣)
(𝐿𝐴+1/𝐿𝐴)2(1+𝑅0)

  (13) 

𝑆𝑣2 = 4(1+𝑅𝑣)4

(𝐿𝐴+1/𝐿𝐴)2(1+𝑅0)4    (14) 

where R0 is the maximum VSC attainable. Sv1 or Sv2 take values between zero (least skillful) and one (most skillful). Both 

skill scores can be shown as isolines in the VFE diagram, similar to Figure 10 and 11 in Taylor (2001). Both skill scores, Sv1 10 

and Sv2, take the VSC and the RMSL into account. However, Sv1 places more emphasis on the correct simulation of the 

vector length, whereas Sv2 pays more attention to the pattern similarity of the vector fields. 

6 Discussion and Conclusions 

In this study, we devised a vector field evaluation (VFE) diagram based on the geometric relationship between three scalar 

variables, i.e., the vector similarity coefficient (VSC), RMSL, and RMS vector difference (RMSVD). Three statistical 15 

variables in the VFE diagram are meaningful and easy to compute. VSC is defined by the arithmetic mean of the inner 

product of normalized vector pairs to measure the pattern similarity between two vector fields. Our results suggest that VSC 

can well describe the pattern similarity of two vector fields. RMSL measures the mean length of a vector field. RMSVD 

measures the overall difference between two vector fields. The VFE diagram can clearly illustrate how much the overall 

RMSVD is attributed to the systematic difference in vector length versus how much is due to poor pattern similarity.  20 

 

As discussed in Appendix A, three statistical variables can be computed with full vector fields (including both the mean and 

anomaly) or anomalous vector fields. One can compute three statistical variables using full vector fields if the statistics in 

both the mean state and anomaly need to be taken into account (Figs. 7, 9). Alternatively, one can compute three statistical 

variables using anomalous vector fields if the statistics in the anomaly are the primary concern. The VFE diagram is devised 25 

to compare the statistics between two vector fields, e.g., vector winds usually comprise 2- or 3-dimensional vectors. One-

dimensional vector fields can be regarded as scalar fields. In terms of the one-dimensional case, the VSC, RMSL, and 

RMSVD computed by anomalous fields become the correlation coefficient, standard deviation, and centered RMSE, 

respectively, and they are the statistical variables in the Taylor diagram. Thus, the Taylor diagram is a specific case of the 

VFE diagram. The Taylor diagram compares the statistics of anomalous scalar fields. The VFE diagram is a generalized 30 

Taylor diagram that can compare the statistics of full or anomalous vector fields.  
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The VFE diagram can also be easily applied to the evaluation of 3-dimensional vectors; however, we only considered 2-

dimensional vectors in this paper. If the vertical scale of one 3-dimensional vector variable is much smaller than its 

horizontal scale, e.g., vector winds, one may consider multiplying the vertical component by 50 or 100 to accentuate its 

importance. In addition, as with the Taylor diagram, the VFE diagram can also be applied to track changes in model 5 

performance, indicate the significance of the differences between two groups of simulations, and evaluate model skills. More 

applications of the VFE diagram could be developed based on different research aims in the future.  

Code availability 

The code used in the production of Figure 3 and 7a are available in the supplement to the article. 

 10 
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Appendix A: The relationship between the VFE diagram and the Taylor diagram 

Consider two full vector fields A��⃑  and B��⃑ : 

A��⃑ i = (xai, yai);  i = 1, 2, …, N     

B��⃑ i = (xbi, ybi);  i = 1, 2, …, N     

A��⃑ i and B��⃑ i are 2-dimensional vectors. Each full vector field includes N vectors and can be broken into the mean and anomaly: 5 

A��⃑ i = A��⃑ i + A��⃑ i
′ = �xai + xai

′ , yai + yai
′ �;  i = 1, 2, …, N     

B��⃑ i = B��⃑ i + B��⃑ i
′ = �xbi + xbi

′ , ybi + ybi
′ �; i = 1, 2, …, N     

where xai = 1
N

∑ xai
N
i=1 , yai = 1

N
∑ yai

N
i=1 , xbi = 1

N
∑ xbi

N
i=1 , ybi = 1

N
∑ ybi

N
i=1  

The standard deviation of the x- and y-component of vector A��⃑ i and B��⃑ i can be written as follows:  

 σax = �1
N

∑ (xai − xai)2N
i=1 = �1

N
∑ xai

′ 2N
i=1 , σay = �1

N
∑ �yai − yai�

2N
i=1 = �1

N
∑ yai

′ 2N
i=1  10 

 σbx = �1
N

∑ (xbi − xbi)2N
i=1 = �1

N
∑ xbi

′ 2N
i=1 , σby = �1

N
∑ �ybi − ybi�

2N
i=1 = �1

N
∑ ybi

′ 2N
i=1  

The RMSL of vector field 𝐀��⃑  is written as follows: 

LA
2 =

1
N ��A��⃑ i�

2
N

i=1

 

=
1
N � �(xai + xai

′ )2 + � yai + yai
′ �2�

N

i=1

 

=
1
N ��xai

2 +  yai
2�

N

i=1

+
1
N ��xai

′ 2 + yai
′ 2�

N

i=1

 

=
1
N � �A��⃑ i

′�
2N

i=1

+
1
N ��A��⃑ i

′�
2

N

i=1

 

= LA
2 + LA′

2  

(A1) 

 

Similarly, we have 

LB
2 = LB

2 + LB′
2  (A2) 

 15 

The VSC between vector fields 𝐀��⃑  and 𝐁��⃑ :         
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RvA =
1

�∑ �A��⃑ i�
2N

i=1 �∑ �B��⃑ i�
2N

i=1

� A��⃑ i ∙ B��⃑ i

N

i=1

 

=
1

NLALB
��(𝑥ai + xai

′ )(𝑥bi + xbi
′ ) + (y�ai + yai

′ )(y�bi + ybi
′ )�

N

i=1

 

=
1

NLALB
��(x�aix�bi + y�aiy�bi) + (xai

′ xbi
′ + yai

′ ybi
′ )�

N

i=1

 

=
1

NLALB
��  A���⃑ ı

���� ∙  B���⃑ ı
����

N

i=1

+ � A��⃑ i
′ ∙ B��⃑ i

′
N

i=1

� 

=
LALB
LALB

RvA +
LA′LB′

LALB
RvA′ 

(A3) 

The RMSVD2 between vector fields 𝐀��⃑  and 𝐁��⃑ : 

RMSVD2 =
1
N

��A��⃑ i − B��⃑ i�
2

N

i=1

 

=
1
N �((x�ai + xai

′ − x�bi − xbi
′ )2 + (y�ai + yai

′ − y�bi − ybi
′ )2)

N

i=1

 

=
1
N �((x�ai − x�bi)2 + (y�ai − y�bi)2 + (xai

′ − xbi
′ )2 + (yai

′ − ybi
′ )2)

N

i=1

 

=
1
N � �A��⃑ i − B��⃑ i�

2N

i=1

+
1
N ��A��⃑ i

′ − B��⃑ i
′�

2
N

i=1

 

(A4) 

 

Based on equation (A1), (A2), and (A4), we can conclude that the LA, LB, and RMSVD2 derived from the full vector fields is 

equal to those derived from the mean vector fields plus those derived from the anomalous vector fields. The Rv computed by 

two full vector fields is also determined by that derived from the mean state and anomaly (A3). This indicates that the VFE 5 

diagram derived from the full vector fields takes the statistics in both the mean state and anomaly of the vector fields into 

account. The VFE diagram derived from the full vector fields is recommended for use if both the statistics in the mean state 

and anomaly are of great concern. On the other hand, the VFE diagram derived from anomalous vectors fields can be used if 

the statistics in the anomaly are the primary concern. In this case, anomalous LA, LB, and Rv and RMSVD2 can be written, 

respectively, as follows: 10 
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LA′
2 =

1
N ��A��⃑ i

′�
2

N

i=1

=
1
N �(xai

′ 2 + yai
′ 2)

N

i=1

 (A5) 

LB′
2 =

1
N ��B��⃑ i

′�
2

N

i=1

=
1
N �(xbi

′ 2 + ybi
′ 2)

N

i=1

 (A6) 

RvA′ =
1

�∑ �A��⃑ i
′�

2N
i=1 �∑ �B��⃑ i

′�
2N

i=1

� A��⃑ i
′ ∙ B��⃑ i

′
N

i=1

 

=
1

�∑ �xai
′ 2 + yai

′ 2�N
i=1 �∑ �xbi

′ 2 + ybi
′ 2�N

i=1

�(xai
′ xbi

′ + yai
′ ybi

′ )
N

i=1

 

 

(A7) 

RMSVDA′
2 =

1
N ��A��⃑ i

′ − B��⃑ i
′�

2
N

i=1

 

=
1
N �((xai

′ − xbi
′ )2 + (yai

′ − ybi
′ )2)

N

i=1

 

(A8) 

 

The vector fields 𝐀��⃑  and 𝐁��⃑  can be regarded as two scalar fields if we further assume that the y-component of both vector 

fields is equal to 0. Under this circumstance, equation (A5 – A8) can be written as follows: 

LA′
2 =

1
N

� xai
′ 2

N

i=1

= σax
2  

LB′
2 =

1
N

� xbi
′ 2

N

i=1

= σbx
2  

RvA′ =
1

�∑ xai
′ 2N

i=1 �∑ xbi
′ 2N

i=1

� xai
′ xbi

′
N

i=1

 

RMSVDA′
2 =

1
N

�(xai
′ − xbi

′ )2
N

i=1

 

LA′ and LB′ equal the standard deviation of the x-component of vector fields 𝐀��⃑  and 𝐁��⃑ , respectively. RvA′  is the Pearson’s 

correlation coefficient between the x-component of vector fields 𝐀��⃑  and 𝐁��⃑ , and RMSVDA′
2  is the centered RMS difference 5 

between the x-component of vector fields 𝐀��⃑  and 𝐁��⃑ . The Taylor diagram is constructed using the standard deviation, 
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correlation coefficient, and centered RMS difference (Talor, 2001). Thus, the Taylor diagram can be regarded as a specific 

case of the VFE diagram (i.e., for 1-dimensional cases). The VFE diagram is a generalized Taylor diagram which can be 

applied to multi-dimensional variables. 
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Tables 
 

Table 1 summarizing the difference between the Taylor diagram and the VFE diagram 

 Taylor diagram VFE diagram 

Purpose Evaluating scalar fields Evaluating vector fields 

Composition 
Correlation coefficient (R), standard deviation 

(STD), centered RMSE 

Vector similarity coefficient (Rv), RMS vector 

length (RMSL), RMSVD 

R vs Rv 
R: measuring the pattern similarity of scalar 

fields 

Rv: measuring the pattern similarity of vector 

fields by considering vector length and 

direction simultaneously 

STD vs RMSL STD: measuring the variance of a scalar field RMSL: measuring the length of vectors. 

RMSE vs RMSVD 

centered RMSE: aggregating the magnitude of 

the errors between the simulated and observed 

anomaly fields 

RMSVD: aggregating the magnitude of the 

overall difference between the simulated and 

observed vector fields.  

 

 5 
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Figures 

 

 
Figure 1: Schematic illustration of two vector sequences. (a) original vectors, (b) normalized vectors. The length of vector sequence 𝐀��⃑ 𝐢 is 

systematically greater than that of vector sequence 𝐁��⃑ 𝐢.  The normalization only alters the lengths of vectors without changes in directions. 5 

 

 

 
Figure 2: Examples of normalized vector sequences that produce different vector similarity coefficients (Rv). (a) Rv = 1, (b) Rv = –1, (c) 

Rv > 0, (d) Rv < 0.  10 
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Figure 3: Scatter plot between the vector similarity coefficient (Rv) and mean difference of angle (MDA) derived from the 

reference vector field 𝐀��⃑  and each randomly produced vector field 𝐁��⃑ . There are 106 random vector fields 𝐁��⃑  are included in the 

statistics. The colors denote the correlation coefficients between the vector length and the included angle between two vector 

sequences. 5 
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(a) Jan 850-hPa vector wind 

 

(b) Feb 850-hPa vector wind 

 
(c) Apr 850-hPa vector wind 

 

(d) Aug 850-hPa vector wind 

 
(e) Oct 850-hPa vector wind 

 

(f) Rv 

 

Figure 4: Climatological mean 850-hPa vector wind in (a) January, (b) February, (c) April, (d) August, and (e) October. (f) The vector 

similar coefficients of 850-hPa climatological mean vector winds between January and 12 months (Solid line). The “+” represents the VSC 

between the climatological mean vector winds in January and the vector winds in each individual month over the period of 1979-2014, 

respectively. There are 432 (12×36) “+” symbols. Monthly NCEP-NCAR reanalysis II data were used to produce this figure. 
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Figure 5: Geometric relationship among the vector similarity coefficient Rv, the RMS length LA and LB, and RMS vector difference 

(RMSVD) 

 

 5 

 

 
Figure 6: Diagram for displaying pattern statistics. The vector similarity coefficient between vector fields is given by the azimuthal 

position of the test field. The radial distance from the origin is proportional to the RMS length. The RMSVD between the test and 

reference field is proportional to their distance apart (dashed contours in the same units as the RMS length). 10 
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(a) summer 

 

(b) winter 

 

Figure 7: Normalized pattern statistics of 850-hPa vector winds in the Asian-Australian monsoon region (10°S–40°N, 40°–140°E) among 

19 CMIP5 models compared with the NCEP reanalysis 2 data. The RMS length and the RMSVD have been normalized by the RMS 

length derived from NCEP2. The data were excluded from the statistics in areas with a topography higher than 1500 m. 
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(a) NCEP2 summer 

 

(b) NCEP winter 

 

(c) Model 1 summer (Rv = 0.96, RMSL = 1.04, RMSVD = 0.30) 

 

(d) Model 1 winter (Rv = 0.90, RMSL = 1.09, RMSVD = 0.45) 

 
(e) Model 4 summer (Rv = 0.95, RMSL = 0.98, RMSVD = 0.32) 

 

(f) Model 4 winter (Rv = 0.84, RMSL = 1.35, RMSVD = 0.75) 

 

(g) Model 12 summer (Rv = 0.86, RMSL = 0.78, RMSVD = 0.52) 

 

(h) Model 12 winter (Rv = 0.83, RMSL = 1.09, RMSVD = 0.61) 

 

Figure 8: Climatological mean 850-hPa vector winds in summer and winter for the NCEP reanalysis II data and three climate models 

during the period 1979 to 2005. The vector similarity coefficient (Rv), normalized RMS length (RMSL), and normalized RMSVD are also 

shown at the top of each panel. The vectors are set to a missing value in the areas with a topography higher than 1500 m. 
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Figure 9: Normalized pattern statistics for climatological mean 850-hPa vector winds over the Asian-Austrian monsoon region (10°S–

40°N, 40°–140°E) derived from each independent ensemble member by models 12, 13 and 14.  Models 12, 13, and 14 include 5, 6, and 

9 ensemble simulations, respectively. The same type of symbols show a close clustering, and different types of symbols are clearly 

separate from each other, which suggests that the difference between different models are likely to be significant. 

 

 

 

 

 5 

 

 

 

 

 10 

 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-172, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 1 August 2016
c© Author(s) 2016. CC-BY 3.0 License.


