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Abstract. The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a 

newly developed box model scheme, where its effect on the growth, composition and mixing state of particles 10 

is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme 

MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol 

concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to 

significantly advance the representation of organic aerosols in Earth system models by improving upon the 

conventional representation as non-volatile particulate organic matter, often with also an assumed fixed size 15 

distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish and a 

Southeast U.S. forest, and investigate the evolution of mass concentrations and volatility distributions for 

organic species across the gas and particle phases, as well as assessing their mixing state among aerosol 

populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate 

volatility range, while they remain in the particle phase in the low volatility range. Their volatility distribution 20 

at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We 

also compare against parallel simulations with the original scheme, which represented only the particulate and 

non-volatile component of the organic aerosol, examining how differently the condensed phase organic matter 

is distributed across the mixing states in the model. The results demonstrate the importance of representing 

organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between 25 

the gas and particulate phases. 

 

Keywords: organic aerosols, volatility-basis set, aerosol mixing state, box model  

1 Introduction 

Atmospheric aerosols play a key role in the Earth system with great impacts on global air quality, public health 30 

and climate (Boucher et al., 2013; Myhre et al., 2013; Seinfeld and Pandis, 2016). One contribution to the large 

uncertainty in aerosol radiative forcing is organic aerosol (OA), which is ubiquitous in the atmosphere and 
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contribute to a large portion of submicron particulate mass in various regions around the world (Zhang et al., 

2007; Jimenez et al., 2009). Advancements in measurement techniques greatly improved our understanding of 

the evolution of OA and lifetime in the atmosphere at the process level (Jimenez et al., 2009). However, OA 

processes in models still remain poorly constrained. Measurements imply that OA concentrations are potentially 

underestimated in current models (Tsigaridis et al., 2014). Such a discrepancy hints at large uncertainties in the 5 

prediction of aerosol-radiation interactions, their hygroscopicity, aerosol-cloud interactions and their overall 

impact on climate (Petters and Kreidenweis, 2007).  

Missing sources of secondary organic aerosol (SOA) in models have been suggested to be the main cause of the 

underestimated OA formation (Heald et al., 2005; Volkamer et al., 2006; Hodzic et al., 2010; Spracklen et al., 

2011). More recently, studies have sought to investigate the underestimation of organic aerosol mass within 10 

more advanced model frameworks, which are capable of resolving semi-volatile primary organic aerosol (POA) 

and including secondary organic aerosol (SOA) from a wider set of precursors including intermediate-volatility 

organic compounds (IVOCs). The volatility-basis set was developed (Donahue et al., 2006) to provide a 

relatively simple framework whereby models can represent the overall behavior of the myriad of compounds 

that constitute organic aerosol and their precursors. The approach involves considering OA as being composed 15 

of a number of representative species, each with a particular volatility, spanning a spectrum in vapor pressures 

from highly volatile (which essentially remains in the gas phase) to very low vapor pressure species which 

partition readily into the particle phase. VBS then captures the chemical aging of the organic species in the gas-

phase, with the hydroxyl radical oxidizing them and producing the adjacent lower volatility class as a product. 

This method has been used extensively in regional studies (Robinson et al., 2007; Shrivastava et al., 2008; 20 

Murphy and Pandis, 2009; Tsimpidi et al., 2010; Hodzic et al., 2010; Fountoukis et al., 2011; Tsimpidi et al., 

2011; Bergström et al., 2012; Athanasopoulou et al., 2013; Zhang et al., 2013; Fountoukis et al., 2014) but less 

so in global models (Pye and Seinfeld, 2010; Jathar et al., 2011; Jo et al., 2013; Tsimpidi et al., 2014; Hodzic et 

al., 2015). Other studies have used the 2D-VBS (Donahue et al., 2011; Murphy et al., 2011), an approach that 

in addition to the volatility space also resolves that of chemical composition, by tracking the amount of 25 

oxygenation in the representative organic compounds. However, the 2D-VBS is not implemented in global 

models, due to its large amount of tracers and the large number of free parameters that are involved in the 

parameterization. 

The inclusion of semi-volatile organics is important for accounting for the total mass of organics in the 

particulate phase, since an increase in particulate organic matter may not be the result of chemically produced 30 

low-volatility species, but simply be reflecting a temperature-driven increase in the partitioning of semi-volatile 

organic aerosol into the particle phase. It has been established that the highly oxidized, very low volatility 

organics play a key role in particle formation (Metzger et al., 2010; Paasonen et al., 2013; Riccobono et al., 
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2014; Kirkby et al., 2016) and particle growth (Tröstl et al., 2016), while the range of volatilities contributing 

to aerosol growth increases with aerosol size (Pierce et al., 2011; Yu, 2011). Semi-volatile organics also affect 

aerosol size and mixing state, as well as their impact on climate, due to changes in cloud condensation nuclei 

(CCN) formation rates (Petters et al., 2006, Riipenen et al., 2011; Scott et al., 2015) , hygroscopicity (Petters 

and Kreidenweis, 2007) and optical properties (Mehre et al., 2013). Since OA emissions are on the rise from 5 

developing countries (Lamarque et al., 2010) and no Earth system model considers anthropogenic OA as semi-

volatile as measurements suggest, it is important to include and constraint semi-volatile organics to ultimately 

reduce uncertainties in aerosol radiative forcing and make climate model simulated aerosol changes more 

realistic.  

The objective of this study is to further develop an aerosol microphysics model by including a more advanced 10 

representation of organic aerosol, including semi-volatile primary OA and an evolving OA volatility during 

chemical aging in the gas phase in its calculations. This objective was achieved by implementing the VBS 

framework in the aerosol microphysical scheme MATRIX (Bauer et al., 2008), which represents major aerosol 

processes such as nucleation, condensation (excluding organics in its original version) and coagulation, and 

explicitly tracks the mixing state of different aerosol populations. As many traditional chemistry-climate models 15 

do (Tsigaridis et al., 2014), MATRIX treats POA and SOA as non-volatile (Bauer et al., 2008). By coupling 

MATRIX with VBS, POA are treated as condensable semi-volatile organic compounds. These can partition 

among different aerosol populations based on their volatility and aerosol population size distribution, capturing 

particle growth via condensation of low-volatility organic vapors, thus providing a more physically-based 

calculation of aerosol microphysics.  20 

2 Model description 

A box model is used for this study. The gas-phase chemical mechanism CBM-IV (Gery et al., 1989), as used in 

the NASA GISS ModelE (Shindell et al., 2001; Shindell et al., 2003), is coupled to the MATRIX aerosol 

microphysics scheme, utilizing the Kinetic Pre-Processor KPP (Sandu and Sander, 2006) to solve the differential 

equations of the gas-phase chemistry scheme. A time step of 30 minutes is used, for consistency with the global 25 

model.  

2.1 MATRIX box model 

MATRIX (Multiconfiguration Aerosol TRacker of mIXing state; Bauer et al., 2008) is an aerosol microphysical 

model based on the Quadrature Method of Moments scheme (McGraw, 1997) in the NASA GISS ModelE Earth 

System Model, which can be used either as a module within the global model or as a stand-alone box-model. 30 

Here, the stand-alone box model is used for development. The design of the code is such that the box-model 
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code can be used as-is in the global model, without any changes, allowing for seamless transition and maximum 

portability. MATRIX is designed to resolve the aerosol temporal evolution and represent the mixing states of a 

user-selected set of aerosol populations, which are modes of different composition as listed in Table 2, tracking 

two moments each, number and mass, while keeping the width of the distribution fixed. It describes new particle 

formation, particle growth through condensation with explicit treatment of sulfuric acid condensation and 5 

lumped treatment of the NH4-NO3-H2O system, as well as coagulation of particles among different populations. 

Each aerosol population has its own set of aerosol components, which may be primary (from direct aerosol 

emissions), secondary (formed by nucleation or condensation of gas-phase components onto existing primary 

particles), or mixed (from any constituent, following condensation on primary aerosols or coagulation between 

primary/secondary/mixed populations).  10 

Black carbon is uniquely treated in MATRIX, in order to separate the coated (via condensation) from the mixed 

(via coagulation) populations. It is emitted in BC1, which can grow (blue arrow in Figure 1) with inorganic and 

organic coating, and as its coating volume fraction reaches 5%, it would be moved in the BC2 population, shown 

as the orange circle. 

2.2 VBS framework 15 

The volatility-basis set approach is introduced to the original model; it is an organic aerosol volatility 

parameterization that separates semi-volatile organic compounds into logarithmically-spaced bins of effective 

saturation concentrations, which are used for gas-particle partitioning and photochemical aging (Donahue et al., 

2006). The scheme groups organic compounds into nine surrogate VBS species according to their effective 

saturation concentrations (C*) at 298 K, which are separated by factors of ten, ranging from 10-2 to 106 μg m-3. 20 

We classify organics as Murphy et al., 2014 does:  low-volatility organics are in bins 10-2 to 10-1 μg m-3 (M2 

and M1 in Table 1), semi-volatile organics are in bins 100 to 102 μg m-3 (M0, P1, P2), and intermediate-volatility 

organics are in bins 103 to 106 μg m-3 (P3, P4, P5, and P6). Low-volatility organics partition almost exclusively 

to the particulate phase, the semi-volatile species are present in both the gas and aerosol phase, and intermediate-

volatility organics are the most volatile ones in the framework and remain almost exclusively in the gas phase. 25 

Equilibrium partitioning is assumed for all volatility bins. Gas phase organics can become chemically aged by 

the extremely reactive hydroxyl radicals (•OH) during daytime with a rate constant of 10-11 cm3 s-1, and as they 

become more oxidized, their volatility decreases and they move down to the adjacent bin with a factor of 10 

lower volatility (Donahue et al., 2006). Parameters and names used to represent them in this study are listed in 

Table 1.  30 

The emission rates for the VBS species were derived from the POA emission rate in the global model for the 

corresponding gridbox and month, which were distributed in the volatility space by using mass-based emission 

factors from Shrivastava et al. 2008 (Table 1). Adding up the 9 factors from each bin listed in Table 1, we obtain 
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a total factor of 2.5, which means the new scheme’s organics emission is 2.5 times that of the organics emissions 

in the original scheme. The additional multiplication factor of 1.5 is applied to the emission to account for 

missing sources of volatile organics in the IVOC volatility regime in the inventories (Shrivastava et al. 2008). 

3 Model development 

In the original version of the MATRIX model, organics only contribute to particle growth and mix with other 5 

aerosol species via coagulation. Primary organic aerosols are emitted only as non-volatile particulate organic 

matter, and do not exist in the gas phase or interact with other aerosol populations. Implementing the VBS 

scheme adds these missing processes. Before this development, there were 8 alternative configurations of 

MATRIX available to the user, each representing a distinct set of aerosol populations whose number, 

composition and interactions by coagulation vary. A 9th configuration with 15 selected aerosol populations is 10 

created for this study (Table 2), in which 8 of the 16 populations, ACC, OCC, BC1, BC2, OCS, BOC, BCS, and 

MXX, could contain organics as semi-volatile VBS species. We only included semi-volatile organics in 8 

populations, so that we can examine the BC-OA-sulfate-nitrate system first, before adding them into the 

nucleation population AKK and the dust and sea salt populations (DD1, DS1, DD2, DS2, SSA, SSC). Through 

coagulation, the 15 donor populations grow or mix and are placed into recipient populations, based on the donor 15 

population composition, as described in Bauer et al. (2008). In a future stage, organics will also be implemented 

in the AKK mode to present nanoparticle growth and we will include an additional nucleation scheme that 

considers the dependence of new particle formation that involve organics (Kirkby et al., 2016; Tröstl et al., 

2016).   

Previously, each aerosol population carried up to 5 tracers – sulfate, black carbon, non-volatile organics, dust 20 

and sea salt. Now each of the 8 organic-containing populations carry 9 additional semi-volatile VBS species 

listed in Table 1. Together with the 5 original tracers, we now have up to 14 available tracers per population, 

depending on whether they carry organic aerosols or not, with the original organics tracer (OCAR) representing 

the non-volatile biogenic OA, as it did in the original mechanism.  This newly coupled model MATRIX-VBS 

treats POA as semi-volatile gas-phase species, which then partition into and out of the particulate phase. The 25 

amount of gas-phase species partitioned onto each aerosol population is based on the surface area of that 

population, in addition to the mass of that population and the volatility of species, and equilibrium partitioning 

is assumed.  

The semi-volatile nature of biogenic SOA is not represented in the VBS framework in this work. Instead, 

biogenic SOA are treated as non-volatile, as in the original MATRIX version, and are produced with a 10% 30 

constant yield from terpenes emissions without any requirement for oxidation before the OA is formed (Lathière 

et al., 2005; Tsigaridis et al., 2014). The inclusion of semi-volatile biogenic SOA will be parameterized in the 
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same way as in the VBS framework presented here in the future. 

4 Simulations 

To test the newly developed model’s behavior, we simulated idealized cases representative of four different 

locations and environments: one very polluted city (Beijing), another cleaner yet still very polluted city at high 

altitude and closer to the tropics (Mexico City), a very clean Finnish forest (Hyytiälä), and an anthropogenically-5 

affected forest in the Southeast U.S. (Centreville, Alabama). The experiments are performed for a winter 

(January) and a summer month (July) for 10 days, and initial conditions and emission rates for each location 

were extracted from a GISS ModelE simulation (similar setup as described in Mezuman et al., 2016) for the 

year 2006, listed in Table 3. All parameters and emissions are held constant throughout the simulations. Here 

we do not include deposition and dilution, for simpler mass-balance calculations. Semi-volatile POA, sulfate in 10 

the accumulation mode, and black carbon, are emitted continuously in the OCC, ACC, BC1 populations, 

respectively, shown in Figure 1 as yellow circles. Condensation of VBS species on BC1 can increase the non-

absorbing shell of that population, leading to formation of BC2, as described above. 

The four organic-containing populations described above can coagulate (black arrows in Figure 1) with 

themselves and each other and form three additional organic-containing mixed populations, BOC, OCS and 15 

BCS, shown as green circles. This schematic includes seven of the eight organic-containing populations in the 

model.  

5 Results and discussion 

The temporal evolution of the total organics mass concentrations from the new scheme and the old scheme are 

presented in Figure 2 for January and Figure 3 for July in the four locations under study. They show large 20 

changes in organics concentrations between the old scheme (black line on the right column) and the new one 

(colors). The organics in the new scheme are represented and distributed by organic tracers of different volatility, 

whose saturation concentration C* ranges from the least volatile 10-2 μg m-3 (“M2” in Figures 2 and 3) to the 

most volatile 106 μg m-3 (“P6” in Figures 2 and 3). They are distributed between the gas and aerosol phases by 

gas-particle partitioning, whereas the organics in the original scheme are only represented by one nonvolatile 25 

organic aerosol tracer (“OCAR”). 

As mentioned in the model description, the emission rates for organics in the each of the volatility bin in the 

new scheme were derived from the Shrivastava et al. (2008) mass-based emission factors. Consequently, since 

there is no deposition and dilution in the simulations, the new scheme’s organics total mass concentrations 

(shown in color in the right columns of Figures 2 and 3) always adds up to 2.5 times that of the old scheme 30 

(shown as dash-dotted lines) throughout the simulations in both January and July.  
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5.1 Winter 

In January, the total mass concentration for organics in Beijing, Centreville, Hyytiälä and Mexico City at the 

end of 10 days are approximately 115 μg/m3, 16 μg/m3, 13 μg/m3, and 65 μg/m3, respectively. Organic VBS 

species partition between the gas and aerosol phases within their corresponding volatility bin. The more volatile 

the species, the more it partitions into the gas phase. The concentration evolution of VBS species in the gas 5 

phase from the four locations are shown in the left column of Figure 2 for January. From top to bottom in each 

panel, volatility decreases from the most volatile species (“P6”) to the least volatile (“M2”). Although semi-

volatile organics are emitted in the aerosol phase, in the intermediate volatility range from P6 to P3 bins, the 

species are so volatile that they evaporate and partition into the gas phase almost completely.  

In all four locations, almost all species in the intermediate volatility range are in the gas phase, those in the semi-10 

volatile range partition between the gas and aerosol phases, and those in the low volatility range are in the 

aerosol phase in January. This is especially true for Beijing and Hyytiälä, where the volatility distributions are 

very similar (in relative terms), where the total concentration of gas-phase species is higher than the sum of all 

aerosol-phase species. In Centreville, the total amount of gas-phase species is approximately the same as that of 

the aerosol-phase species, whereas in Mexico City there are more species in the aerosol than in the gas phase. 15 

In Centreville and Mexico City, the species show a diurnal variability, which will be explained later.  

Aging can help explain the similar volatility distributions in Beijing and Hyytiälä. The •OH concentration in 

both locations are low in January: Beijing’s mean •OH is approximately 105 molecules/cm3 and Hyytiälä’s mean 

•OH is approximately 104 molecules/cm3. Low •OH concentrations limit the aging of intermediate-volatility 

organics and their ability to move to the lower volatility bins, thus the volatility distributions do not change 20 

drastically, something that is also evident by the lack of a daily cycle. On the other hand, much higher mean 

•OH concentrations in Centreville (2*106 molecules/cm3) and Mexico City (5*106 molecules/cm3) provide more 

oxidation power, making oxidation a significant pathway in aerosol evolution. The higher mean •OH 

concentrations also explain the diurnal variability of both gas-phase and aerosol-phase mass concentrations we 

see in the two locations, because •OH is only produced during daytime and has very low concentrations during 25 

night. Since Mexico City has slightly higher •OH concentration than Centreville, its total gas-phase 

concentration reaches a dynamic equilibrium after approximately 4 days, whereas Centreville’s total gas-phase 

continues to rise approaching equilibrium at a slower pace.  

Looking at the total of the organics (right column of Figure 2), it is not surprising that the very polluted Beijing 

has the highest concentration of total organics while the cleanest location, Hyytiälä, has the lowest; what is 30 

interesting, however, is that organics at these locations share similar volatility distributions. By the end of the 

10-day simulations in the new scheme, the volatility distributions in Beijing and Hyytiälä are very similar to the 

emission factors distribution among the volatility, with factor differences of less than 0.1. This behavior is, again, 
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a result of the low •OH concentrations in the two locations, and the low oxidation rate that limits the change in 

volatility distribution.  Volatility is also temperature dependent, which is also relevant to the total aerosols 

present. In Beijing, we would expect higher gas-phase concentration due to the higher temperatures. However, 

the larger amount of aerosols moves the partitioning point towards the aerosol phase, which offsets the 

temperature difference in the colder Hyytiälä case, and gives us similar results. 5 

On the other hand, the volatility distributions in Centreville and Mexico City are very different from the applied 

emission factor distribution, except the two bins in the low volatility range, M2 and M1. Due to the high 

concentrations of •OH, both sites have low gas-phase organics concentrations because the intermediate-volatility 

gases are more efficiently oxidized and their less volatile products partition into the aerosol phase. Therefore, 

the relative amount of organics from the intermediate volatility range no longer resembles the applied emission 10 

factors. The organics in the intermediate volatility range from P6 to P3, are totaling factors of approximately 

0.38 and 0.15 in Centreville and Mexico City, respectively, which are in sharp contrast to the factors of 0.4, 0.5, 

0.8 applied to each of the respective bins. 

5.2 Summer 

The total mass concentration of organics in Beijing and Mexico City at the end of 10 days in July are 15 

approximately 130 μg/m3 and 67 μg/m3, very similar to the amounts in January. However, Centreville and 

Hyytiälä have higher concentrations of organics than they did in January, with 90 μg/m3 and 43 μg/m3. The 

volatility distributions for the four locations in July (Figure 3) are also very different from that of January. 

Organics are all very low in the intermediate volatility and semi-volatile ranges, and they are all high in the low 

volatility ranges, with less than 10% of the total organics in the gas phase in all four locations. This behavior 20 

means that at all locations oxidation is very strong, stronger than any place during January. This sharp change 

in behavior is caused by the difference in •OH concentrations during the two months. July’s concentrations are 

much higher than those in January because •OH production is increased due to increased photolysis in the 

summer. The mean •OH concentration is approximately 1.5*107 molecules/cm3 in Beijing and Hyytiälä, and it 

is approximately 1*107 molecules/cm3 in Centreville and 2*107 molecules/cm3 in Mexico City. More •OH leads 25 

to faster oxidation of the gas-phase organics and the consequent partitioning of the less-volatile oxidation 

products into the aerosol phase. This is evident in Figure 3, where the gas-phase concentrations in all four 

locations are very low. In all cases, dynamic equilibrium was reached after just two days. They also exhibit a 

strong diurnal variability, as expected from the fast •OH oxidation, which decreases with decreasing volatility.  
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5.3 Mixing state 

The temporal evolution of total organic aerosol mass concentration per population is shown in Figure 4 (absolute 

amounts) and Figure 5 (relative amounts). The first and third columns are results from the new scheme with 

condensing and coagulating organics for January and July, respectively, while the second and fourth columns 

are results from the old scheme with only coagulating organics from January and July, respectively. The organic 5 

aerosol mass concentrations in Figure 4 correspond to the aerosol-phase concentrations in Figures 2 and 3 

(middle column), except they are now separated by population, whereas in the earlier two figures they were 

separated by mass tracers representing volatility. At a first glance, the population with the highest organic mass 

is BOC for January and July in both schemes. BOC is the population that contains OC, BC, and sulfate, and is 

the end result of coagulation of all populations in our idealized cases. However, in the old scheme, populations 10 

OCC and OCS also have significant amounts of organics. This is because in the new scheme the emitted 

populations are ACC, BC1 and OCC, and organics that are emitted in the OCC population can condense on 

and/or coagulate with other populations, including being lost by evaporation and then repartitioning to other 

populations. Thus there is an additional loss mechanism of organics from those populations in the new scheme. 

In addition, there is competition between the ACC and BC1 populations in both schemes, and in the new scheme, 15 

aerosol-phase organics in the OCC population could either coagulate with the ACC population to form OCS, or 

they could coagulate with the BC1 population to form BOC. This competition determines how much OCS and 

BOC are formed, and it affects how much gas-phase organics from the OCC population could condense on the 

two populations and the distribution of organics among the populations. Since partitioning adds a loss 

mechanism to OCC, part of the evaporated mass will go to BOC, making it larger, and a more efficient scavenger 20 

of other particles. As a result, most organics coagulate with and condense on the BOC population and/or the 

OCS population, and together with the emitted OCC population, hold the most organics and dominate the mass 

fractions. 

There is some similarity between the January and July results between the new and the old schemes (Figure 5). 

This similarity means that the distribution of organics among aerosol populations is not significantly affected 25 

by season. This is consistent with a study by Bauer et al. (2013), where they found that the mixing state 

distribution is rather a characteristic of a region and not so much of a season, although the total (absolute) 

amounts by season may vary.  By the end of the simulations, most locations have more organics present in the 

BOC population, except those in Centreville. The reason for this is sulfate; from the sulfate and black carbon 

emissions listed in Table 3, we can calculate the sulfate to black carbon ratio in Centreville to be 2:1, higher 30 

than the corresponding ratios in all other locations. This high ratio helps the ACC population to survive the 

competition against BC1 for coagulation with OCC. This leads to higher OCS formation, which is available for 

gas-phase organics to condense on, thus coagulation and condensation both bring more organics in the OCS 
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population during the first half of the simulation. These results show that the sulfate to black carbon ratio is 

important for the mixing state by delaying the inevitable BOC domination. Also, comparing the distribution 

fraction in Figure 5, volatile organics create rather different mixing states as those created by coagulation alone 

in the original scheme, meaning that the semi-volatility did alter mixing state significantly. 

5.4 Size distribution 5 

Another important factor on the evolution of aerosols is their size distribution. Shown in Figures 6 and 7 are the 

January size distributions from Mexico City and Centreville. The first row shows number concentration, the 

second row surface area, and the third row volume. The first two columns are results from the new and old 

schemes after 24 hours of simulation, and the right two columns are after 120 hours. The total number 

concentration, surface area and volume from the eight populations are shown as dotted lines. Note also that 10 

these plots show the total aerosol size distribution per population, which includes the contribution of species 

other than organics.  

The size distributions in July are very similar to January in all locations, therefore only January is shown here. 

Beijing, Hyytiälä and Mexico City exhibit somewhat similar size distributions (with different absolute amounts), 

just as their mass fractions. The size distribution is dominated by OCC, OCS and BOC in the first 3 to 4 days, 15 

but later only by BOC. On the other hand, Centreville, similar to its mixing state, is different in size distribution 

of different aerosol populations from the other three locations. Therefore, only size distributions of Mexico City 

and Centreville are shown here. 

In the new scheme for Mexico City after 24 hours of simulation, the number concentration has two modes. OCC 

has even smaller size as Aitken mode sulfate AKK does, as a result of the evaporation of organics, but its number 20 

concentration is higher. OCS and BOC have started to form from coagulation of OCC with ACC and BC1, and 

their diameter, number concentration, surface area and volume are very similar, almost overlapping, with BOC 

slightly smaller in diameter. After 120 hours of simulation, OCC’s number concentration has decreased 

significantly, from 4*107 m-3 to 1*107 m-3. This is because OCC is semi-volatile, it has evaporated and 

condensed onto other populations, and at the same time its loss due to coagulation with other populations has 25 

increased, due to the increase of their number concentration and decrease in size. OCS size grew very slightly, 

but BOC grew significantly, with peaks of surface area and volume both increasing approximately one order of 

magnitude. Its peak surface area increased from 1.5*105 μm2m-3 to 9*105 μm2m-3, and its peak volume grew 

from approximately 2*104 μm3m-3 to 2*105 μm3m-3. BOC’s growing large surface area is another reason why it 

has so much organics and dominates the mass concentration: the greater the surface area, the more gas-phase 30 

species are able to condense. This matches the mixing state results (Figure 5), where we saw after 24 hours 

ACC, OCC and BOC have high mass fractions, whereas after 120 hours OCC and OCS are negligible, and more 

than 90% of the total organic aerosol mass is in the BOC population.  
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In the old scheme, after 24 hours OCC has higher number concentration (peaking at 5*107 m-3) and size than in 

the new scheme, and higher surface area and volume, due to its greater number and diameter. OCS and BOC 

are both fewer in number (peaks are 1*107 m-3 and 1.5*107 m-3 lower in the old scheme) but slightly greater in 

diameter than they are in the new scheme. Later, after 120 hours, OCC decreases in number to a peak at 3.5*107 

m-3, due to coagulation with ACC and BC1 to form more OCS and BOC. Therefore, OCS and BOC increased 5 

in number and size, with BOC seeing greater growth (the peak of number concentration increased from 7*106 

m-3 to 2.3*107 m-3, the peak of surface area increased from 1.5*105 μm2m-3 to 1.1*106 μm2m-3 and the peak of 

volume increased from 3*104 μm3m-3 to 3.1*105 μm2m-3). For OCS we calculated more modest increases of 

approximately 50% in number, surface area and volume concentration peaks: the number concentration from 

4*106 m-3 to 7*106 m-3, surface area from 1*105 μm2m-3 to 1.5*105 μm2m-3 and volume from 2*104 μm3m-3 to 10 

4*104 μm3m-3, as seen in the new scheme as well. However, BOC’s growth in the old scheme is even greater 

than that in the new scheme. This slightly accelerated growth slows down at later hours (not shown), because 

BOC dominates faster in the new scheme than in the old one (Figure 4).  

The Centreville size distributions tells a different story. In the early stages with the new scheme, OCS has greater 

number concentration and size than BOC does; OCS’s peak number concentration is 0.5*107 m-3, more than 15 

double than that of BOC, while its peak surface area and volume are 1*105 μm2m-3 and 2*105 μm3m-3, whereas 

those of BOC are negligible. Later, OCS still outgrows BOC in number, but barely exceeds in  surface area and 

is not greater in volume. BOC shifts to greater diameters, therefore it has greater volume than OCS does after 

120 hours. As for the old scheme, OCC does not decrease in number from 24 hours to 120 hours as it does in 

Mexico City, but its number increases from 1.7*107 m-3 to 2.5*107 m-3. This means that in that period of time 20 

coagulation loss is less than the amount of OCC emitted, which is what was also seen earlier for the mass 

concentrations (Figure 2). At 120 hours, OCS has again higher number concentration than BOC does, but only 

slightly (peak number concentration difference is approximately 1*106 m-3) and not as much as in the case of 

Mexico City, and the latter’s surface area and volume continue to be greater than those of the former due to its 

increasing diameter.  25 

6 Conclusions 

Organic aerosol volatility calculations were implemented into a new aerosol microphysics scheme, MATRIX-

VBS. Results from idealized cases in Beijing, Centreville, Hyytiälä and Mexico City during summer and winter 

using the new scheme were compared against the original scheme and showed how the inclusion of semi-

volatility of organics and their reactivity affected aerosol mass concentration, as well as their mixing state and 30 

size distribution. Emission factors, •OH oxidation, temperature and total aerosol levels are the key factors 

determining organics’ volatility distribution and mass concentration. The mixing state is affected by particle 

size and concentration, which determines coagulation and condensation pathways. Results from the new scheme 
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showed different mixing state distribution from the original scheme.  

Going forward, the new scheme will be simplified, and we will reduce the number of tracers needed, in order to 

simplify the model and save computational resources, without losing the essential information needed for 

volatility.  The simplified version of the box model will then be implemented in the NASA GISS ModelE Earth 

System Model. While this study is purely theoretical, we will evaluate MATRIX-VBS after its implementation 5 

into GISS ModelE. We will gain even better understanding of how semi-volatile organics are altering aerosol 

mixing state, how meteorological conditions and pollution levels influence organics’ volatility distribution, as 

well as their mixing state in the real world, and what implications these processes have on the climate system. 

 

Code Availability 10 

This model development is part of GISS ModelE Earth System Model, which is publicly available. In addition, 

the box model used here is available on request.  
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Table 1. Naming convention and parameters used in the VBS implementation described here. 1 

Parameter 9 Virtual VBS Species 

C* μg m-3 at 298K 10-2 10-1 100 101 102 103 104 105 106 

Name of volatility bins M2 M1 M0 P1 P2 P3 P4 P5 P6 

Mass-based emission factors 

applied to POA emissions 

(Shrivastava et al., 2008) 

0.03 0.06 0.09 0.14 0.18 0.30 0.40 0.50 0.80 

Enthalpy of vaporization1 153 142 131 120 109 98 87 76 65 

 2 
1: enthalpy of vaporization is calculated using Eqn.12 from Epstein et al. 2010.  3 
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Table 2. Aerosol population chemical composition in MATRIX.  

Population 

abbreviation 

Description  

 

Composition 

(constituents other than 

NH+
4, NO-

3, and H2O) 

AKK sulfate (Aitken mode) SO4
2- 

ACC sulfate (accumulation mode) SO4
2- 

OCC organic carbon OC, SO4
2- 

BC1 fresh black carbon (<5% coating) BC, SO4
2- 

BC2 
aged (by condensation) black carbon 

(>5% coating) 
BC, SO4

2- 

BCS aged (by coagulation) black carbon BC, SO4
2- 

BOC black and organic carbon BC, OC, SO4
2- 

OCS organic carbon and sulfate OC, SO4
2- 

SSA sea salt (accumulation mode) sea salt, SO4
2- 

SSC sea salt (coarse mode) sea salt, SO4
2- 

DD1 
dust (accumulation mode; <5% 

coating) 
mineral dust, SO4

2- 

DD2 dust (coarse mode; <5% coating) mineral dust, SO4
2- 

DS1 
dust (accumulation mode; >5% 

coating ) 
mineral dust, SO4

2- 

DS2 dust (coarse mode; >5% coating) mineral dust, SO4
2- 

MXX mixed (all components) 
BC,OC, mineral dust, sea 

salt, SO4
2- 

*The sigma values for all populations are 1.80, except for AKK, which has a sigma of 1.60, and for SSC and MXX, 

which both have a sigma of 2.00. 
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Table 3. Conditions of each location used in the simulations, taken from the GISS ModelE for January and 

July 2006. 

 

January 2006 Units Beijing Centreville Hyytiälä Mexico City 

Fixed parameters 

Temperature K 270 279 260 283 

Pressure hPa 1007 996 1009 797 

RH % 46.8 77.7 79.5 62.5 

Gaseous emissions 

NOx 

pptv/hr 

 

216.5 92.4 169.7 148.7 

CO 6943.3 1199.3 557.3 2308.4 

Alkenes 4.3 0.3 0.1 1.3 

Paraffin 8.2 2.1 0.6 10.5 

Terpenes 1.8 26.3 9.4 25.8 

Isoprene 1.3 23.8 0.0 0.0 

SO2 555.8 191.7 24.1 538.7 

NH3 181.3 24.2 50.7 63.3 

Aerosol emissions 

sulfate 

μg/m3/hr 

0.06 0.02 0.003 0.05 

black carbon 0.09 0.01 0.008 0.03 

organics* 0.19 0.03 0.02 0.11 

       

July 2006 Units Beijing Centreville Hyytiälä Mexico City 

Fixed parameters 

Temperature K 304 303 292 289 

Pressure hPa 986 995 998 800 

RH % 59.8 61.8 77.8 83.1 

Gaseous emissions 

NOx 

pptv/hr 

 

281.3 124.3 200.9 165.3 

CO 8111.9 1749.9 630.5 2276.1 

Alkenes 5.0 0.5 0.1 1.3 

Paraffin 9.6 2.7 0.7 10.7 

Terpenes 36.9 145.4 87.6 44.9 

Isoprene 916.1 795.5 47.2 0.0 

SO2 653.7 206.5 26.8 549.5 

NH3 211.7 38.7 58.1 63.3 

Aerosol emissions 

sulfate 

μg/m3/hr 

0.06 0.02 0.002 0.05 

black carbon 0.10 0.01 0.01 0.03 

organics* 0.21 0.03 0.07 0.11 
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Figure 1. Schematic showing coagulation pathways among organic-containing aerosol populations as colored 

circles, with 9 organic VBS species condensed as grey outer circles. In yellow are the emitted donor aerosol 

populations, and green are the mixed recipient populations. OCC has a semi-transparent yellow core because it 5 

is actually emitted as the VBS species that can serve as condensation medium for gaseous VBS species, 

represented by the grey outer circles. In orange is population BC2, which contains >5% coating of sulfate and 

organics, which is formed rapidly from the growth of population BC1, which has <5% sulfate/organics coating. 
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Figure 2. Temporal evolution of the mass concentration of semi-volatile organics in the gas phase (left 

column), aerosol phase (across all populations; middle column) and total (right column) using the new scheme 

(refer to Table 1 for legend) for January. The total of non-volatile organics from the original scheme (OCAR) 

is shown in black dash-dotted lines in the aerosol phase column (middle). OCAR from the old scheme is 5 

exactly 2.5 times smaller from the total organic species in the new scheme. 
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Figure 3. Same as Figure 2, for July. 
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Figure 4. Temporal evolution of organic aerosol mass concentration in each organics-containing population 

from the new scheme (first column for January, third column for July), and the old scheme (second column for 

January, fourth column for July).  

  5 
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Figure 5. Temporal evolution of organic aerosol mass concentration fraction in each organics-containing 

population from the new scheme (first column for January, third column for July), and the old scheme (second 

column for January, fourth column for July). 

  5 
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Figure 6. Organics-containing aerosol populations (except MXX) and AKK (Aitken mode sulfate) size 

distributions for Mexico City in January. Top row: number concentration, middle row: surface area, bottom 

row: volume. Total of all populations in dotted black lines. 
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Figure 7. Same as Figure 6 for Centreville. 

 

 

 5 


