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Abstract. Pattern scaling is used to explore the uncertainty in future forcing scenarios. Of the possible techniques used for

pattern scaling, the two most prominent are the delta and least squared regression methods. Both methods assume that local

climate changes scale with globally averaged temperature increase, allowing for spatial patterns to be generated for multiple

models for any future emission scenario. We explore this assumption by using different time periods and scenarios, and exam-

ine the differences and the statistical significance between patterns generated by each method. Regardless of epoch chosen, the5

relationship between globally averaged temperature increase and local temperature are similar. Temperature patterns generated

by the linear regression method show a better fit to global mean temperature change than the delta method. Differences in pat-

terns between methods and epochs are largest in high latitudes (60-90 degrees N/S). Error terms in the least squared regression

method are higher in lower forcing scenarios, and global mean temperature sensitivity is higher. These patterns will be used to

examine feedbacks and uncertainty in the climate system.10

1 Introduction

The Representative Concentration Pathways (RCPs) are a collection of scenarios of future climate change that span a range

of potential changes in aerosols, greenhouse gases, and natural forcings consistent with various assumptions about societal

choices, technological development, and socio-economic assumptions in the 21st century (Moss et al., 2010; Meinshausen

et al., 2011; van Vuuren et al., 2011). It is far too computationally costly to explore a large number of emission scenarios15

in fully coupled general circulation models (GCMs). However, uncertainties in climate effects stemming from future forcing

projections are difficult to explore with a limited number of future forcing scenarios. Uncertainty in future climate is particularly

problematic for stakeholders who attempt to adapt to or mitigate future impacts.

In the absence of a large sample of model experiments to draw upon, scaled scenarios are used for reducing uncertainty

(Dessai et al., 2005). Creating spatial patterns of change scaled from GCMs is called ’pattern scaling’. Pattern scaling was20

initially established to enable the creation of transient climate projections from the steady state response of a GCM to a

doubling of the preindustrial CO2 concentration (Santer et al., 1990). It can is used to generate climate change scenarios under

changes in anthropogenic forcings that have not been simulated by full GCMs, but instead simulated by using simple climate
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models (SCMs) that emulate the more complex behavior of GCMs (Moss et al., 2010). In essence, pattern scaling combines the

computational efficiency of a SCM with a GCMs ability to represent spatial patterns of change. In order to include uncertainty

estimates or derive optimal policies, through use of an Integrated Assessment Model (IAM), highly efficient calculations of

global change are generally required; such simulations often use pattern scaling to derive spatial distributions of change (Frieler

et al., 2012; Collins et al., 2015).5

The main assumption in pattern scaling is that the time-dependent, spatially varying response of a climate variable (e.g., local

temperature) to change (e.g., in the CO2 concentration) is separable into (1) a spatial pattern that is invariant and scaled with

global mean temperature and (2) a timeseries of global mean temperature change. The spatial pattern of temperature change

per degree of global average temperature increase has been shown to remain relatively constant with increasing global mean

temperature increases (Mitchell, 2003; Tebaldi and Arblaster, 2014; Leduc et al., 2016). For temperature, the generated pattern10

explains a large portion of the variability of the externally forced change over time and across scenarios within a given model.

Pattern scaling methodologies have evolved into two general types. The first and most common pattern scaling technique

is the time-slice method or the "delta" method, which is simply local future change, normalized by global future change both

averaged over some chosen time period, hereafter referred to as an epoch (Tebaldi and Arblaster, 2014; Herger et al., 2015;

Osborn et al., 2015). The second is the linear regression method, which uses ordinary least squares regression coefficients to15

fit local trends on a model gridbox scale to a global trend (Mitchell, 2003; Ruosteenoja et al., 2007; Lopez et al., 2013).

Assumptions

In the delta method, the underlying assumption is that responses to external forcing and internal variability are independent,

implying that anthropogenic forcings do not modify the internal variability of the climate system (Mitchell, 2003; Herger et al.,

2015). This premise is known to be false, but in practice, estimation errors introduced through this assumption are small. In20

this method there is also the assumption that the relationship of local change to global mean change is independent of the trend,

which implies that length of epochs used should not alter the resulting pattern. Barnes and Barnes (2015) argue that the ideal

epoch length is dependent on minimizing variable variance by selecting a epoch length with a high signal-to-noise ratio, which

is largely dependent on length of time series and whether the trend in the time series is linear. They found that for temperature,

one-third the length of the time series is ideal, and for a 100 year time series the standard thirty year epoch length is sufficient.25

Choice of reference epoch does matter for assessing future change (Lopez et al., 2013; Hawkins and Sutton, 2015), but it is

unclear whether choice of epoch will affect the resulting scaled pattern. Throughout the IPCC Fifth Assessment Report (AR5;

Stocker et al., 2013) a 30-year reference epoch of 1986-2005 was used for discussion of projected anomalies; previous assess-

ment reports used earlier epochs. In impacts studies, a later reference period is more suitable in that it is more representative

of the current climate, and hence what socio-economic systems are already somewhat adapted to. In adaptation/mitigation30

analyses, a pre-industrial control simulation epoch is often used as the baseline from which change is diagnosed, as this period

is likely to provide the largest deviation from projected future climate.

In the linear regression pattern scaling method, the underlying assumption is that local change scales proportionally with

global mean temperature (GMT) change, and that the relationship is stationary over time. This assumption is not always true in
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the climate system, especially considering different forcing scenarios and spatial heterogeneity of projected change. Transient

forcing is likely to scale the local temperature sensitivity to the trend in global mean temperature. Mitchell (2003) found that the

linear regression method reduces the influence of the non-linearities arising from faster (or slower) warming. For temperature-

related variables the assumption of stationarity is valid, but the magnitudes of estimation errors vary between scenarios for

non-temperature variables (Frieler et al., 2012). Lopez et al. (2013) found that when pattern scaling patterns of temperature5

extremes, the magnitude of the error in the pattern estimates was substantially large. In linear regression, only the error term (ε)

is assumed to have a normal distribution (based on the central limit theorem), so it is highly likely that climate extremes would

yield high error terms. This can be problematic when constructing confidence intervals but is not necessarily a limitation in the

method itself, nor in the resulting patterns (Lustenberger et al., 2014).

The differences between the two methods are clear, but the differences between the patterns generated by each method are10

not. In terms of computational efficiency, the delta method is the fastest, which is a reason why it is predominantly used (Herger

et al., 2015). However, in terms of skill in trend estimation and adaptability of additional predictors, the linear regression

method is preferable (Frieler et al., 2012; Mitchell, 2003; Lustenberger et al., 2014; Barnes and Barnes, 2015).

In both methodologies, it is implied that the patterns generated under different scenarios are not significantly different.

Tebaldi and Arblaster (2014) found that patterns from different scenarios were highly spatially correlated, and that choice of15

scenario did not explain a significant proportion of variability in patterns when using the delta pattern scaling method. However,

would the patterns generated through the regression method show significant difference between scenarios, and if so, where?

In this manuscript, we use a simplified approach for each method to assess the differences in pattern strength and skill

between each method’s generated pattern. We begin by examining how the choice of epoch changes the global and local re-

lationship especially considering potential long-term trends and variability. We then compare how the delta and regression20

patterns differ, with respect to spatial heterogenity and pattern strength. And finally, we explore the assumption that the rela-

tional pattern is consistent across forcing scenarios where the forcings and potential mitigation would be different.

2 Data/Methods

Climate Models

We employ three sets of experiments from the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2011).25

The ‘historical’ experiment includes most known climate forcings from the 19th and 20th Centuries, and is used to construct

historical climatologies for use in creating a pattern via the delta method. Model historical runs varied in length, so we used

1861 as the start of the historical period, and 2005 as the end. For future projections, we used climate model output for two of

the four available RCPs. The bulk of our efforts employ the high-forcing RCP8.5 scenario where radiative forcing increases to

8.5 W/m2 through the 21st Century (Riahi et al., 2011). We also use the mid-forcing RCP4.5 scenario where radiative forcing30

increases to 4.5 W/m2 through the 21st Century (Thomson et al., 2011) achieved by limiting future emissions yielding a weaker

response. For the future simulations, the start year was 2006, and the end year was 2100.
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Twelve climate models are examined for the historical and the RCP4.5/RCP8.5 experiments (Table 1). Accurate simulations

of global mean temperature are not necessarily an essential pre-requisite for predicting global temperature trends Rupp et al.

(2013); Eyring et al. (2016) . However, culling the list of all available models is sometimes necessary, and developing a perfor-

mance based rubric ’score card’ of models is helpful. Also, because most modeling centers released multiple models based on

different physical parameterizations and/or interactions, the assumption of model independence is not valid (Sanderson et al.,5

2015). For these reasons, we developed a small set of simple performance metrics based on the structure from Rupp et al.

(2013). We then used the ’best’ representative model from each modeling center, to limit the list of models used in this analysis

to twelve. However, it should be noted that by calculating the climate change pattern, individual model bias is not likely to

skew ensemble mean results, and as such excluding individual models based on observed bias is not necessary (Mitchell, 2003;

Lopez et al., 2013).10

For this study, only seasonal and annual surface air temperature was analyzed, and in some cases, the influence of the land-

ocean contrast was examined. For such cases, a land mask was applied using each model’s native resolution, with 100% of the

grid cell either land or ocean. Uncertainty (model to model variability) in GCM output results from individual model param-

eterizations, random climate variability, and input for model initialization (Tebaldi and Knutti, 2007). Therefore, this analysis

incorporates the multi-model ensemble mean and median as well as the uncertainty represented by the model spread. Because15

models varied in spatial resolution, when appropriate, the models were first regridded to T85 resolution prior to calculating

ensemble mean or median.

2.1 Data Analysis

Reanalysis output from the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research20

(NCAR) (Kalnay et al., 1996) is used to validate the model ensemble annual and seasonal climatology because it spans the later

half of the 20th Century and has continuous spatial coverage. It incorporates observations and numerical weather prediction

model output to create a dataset that includes surface and atmospheric variables. The NCEP/NCAR reanalysis data for tem-

perature captures observed surface temperature trends and variability reasonably well (Simmons et al., 2004). It seems likely

that biases in the reanalysis could contribute to errors in pattern scaling methodologies, and using different reanalyses could25

shed light on the relative contribution of this source of error in comparison to other potential sources; exploring this would be

a large undertaking and is the subject of future work.

Scaled temperature patterns were created for each model of the ensemble and also for mean and median values of the

ensemble. It is unclear how the choice of epoch changes the pattern between global and local temperature, considering how

different sectors place importance on certain reference periods. To obtain a delta pattern with a high signal-to-noise ratio,30

ideally one would use an ensemble of models, with a pre-industrial historical epoch forced by the highest emission scenario

with the future epoch being as far in the future as possible. Each of these contributions could improve signal clarity and

robustness. Here we calculate the delta pattern for each model, and then use the ensemble median and/or mean in our analysis.
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The delta pattern (DP) is described as follows:

DPMS =
∆TLMS

∆TGMS
(1)

For each model (M ) and future scenario (S), local, grid-box change (TL) is normalized by global mean change (TG), with

respect to a 30 year reference climatology from the CMIP5 historical simulation. The global mean for the historical and future

periods were weighted by the cosine of the latitude because the CMIP model data is on a gaussian grid.5

The linear regression pattern scaling method is not dependent on historical climatology, and as such uses only the future

forcing scenario. We use a least squares approach, which provides the best fit for calculating the regression pattern:

TLMS = αMS +βMS ∗TGMS + εMS (2)

As previously, TG is the global mean surface temperature time series (unsmoothed), and TL is the gridded time series. β

is a two-dimensional field of regression slopes, and ε is the residual term (error) stemming from linearly fitting the dependent10

variable to the predictor. α is the y-intercept, which we take to be 0 by only computing change, not absolute temperature.

Solving for β (the regression coefficient) using ordinary least squares results in:

β̂ =
∑n

i=1(TLi−TL)(TGi−TG)∑n
i=1(TGi−TG)2

(3)

Multiplying β by the number of time steps in the series results in the 21st Century trend. A time series for ε can then be

determined.15

To examine the significance differences between patterns, we use a 2-tailed Student’s t-test probability using the incomplete

beta function ratio. This was done because the ensemble consists of only twelve models, which is a small portion of all

available models, and because we assume the ensemble variance for each pattern is the same. In other words, models with

a weak relationship between TG and TL in the delta method are also weak when using the regression method. The resulting

probability indicates that for small values (≤ 0.05) there is a significant difference between patterns.20

To assess the significance of LSR patterns, we calculated p-values of β, indicating whether the regression predictor is

statistically significantly associated with changes in the response. High p-values indicate that the dependent variable and the

independent variable are not significantly related, and that the linear fit is poor.

A Principal Components Analysis (also called an Empirical Orthogonal Function, or EOF, analysis) was also conducted,

but only to test the assumption that the global warming signal explains the largest percentage of variance across scenarios,25

which has been shown to be the case in previous CMIP experiments (Vecchi and Soden, 2007; Dai, 2016). We did not evaluate

the EOFs (spatial patterns) themselves for further physical causation, or for construction of patterns as done by Holden and

Edwards (2010).
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3 Results/Discussion

3.1 Epoch Differences

Differences between historical and future epochs are analyzed by first comparing the multi-model ensemble against reanalysis

data to show how well the multi-model ensemble data fits the observed period, as well as to show the projected trend for two

future scenarios (Figure 1). For the annual time series, the multi-model ensemble shows strong agreement (<0.3◦C) with the5

reanalysis data and the standard deviation of the ensemble mean is small (+/-0.2◦C). The ensemble significantly underestimates

the observed epoch in December through February (DJF) as the reanalysis data is generally outside 1 sigma of the ensemble

mean. The ensemble overestimates the June through August (JJA) period, but the reanalysis data is mostly within the one sigma

of the ensemble mean. For all future scenarios, the higher forcing scenario shows an increase of about 5◦C by the end of the

21st Century with no sign of leveling off, whereas the lower forcing scenario shows an average of 2◦C change and appears to10

level off by the end of the century (Figure 1).

When using the delta method to construct a pattern, the assumption is that regardless of epoch chosen, the trend is the same.

This assumption is not true when comparing a higher forcing scenario with a steeper trend (Figure 1 and 2) to a lower forcing

scenario, where the difference in thirty year trends can be as much as 2◦C. The largest differences between future and past

climate are when the earliest epoch is chosen from the historical, and the latest epoch is chosen from the future, regardless15

of scenario (Figure 3), which is also when differences in trend are the largest. In the higher forcing scenario, there are larger

differences between global future and historical epochs, up to 5.5◦C change in DJF for the ensemble mean. This is reinforced

in Table 2, where the 21st Century ensemble median trend is more similar to the late 21st, late 19th Century difference than

other epochs, but the 21st Century trend has a larger spread. DJF has the largest 21st Century trend/difference. If using the late

21st Century epoch, the difference between historical epochs result in an average of 0.5◦C difference. This is also consistent20

when using the mid 21st Century epoch.

There is a weaker (stronger) temperature sensitivity in the Northern Hemisphere (Southern Hemisphere) when using the late

19th Century as a epoch rather than the late 20th Century epoch (Figure 4), as observed warming over the Northern Hemisphere

has been greater than the observed warming over the Southern Hemisphere (Friedman et al., 2013). However the difference

in patterns are minor, ≤ 0.2◦C between the two historical epochs. The difference in patterns for the two future epochs are25

larger in the Northern Hemisphere at higher latitudes, but there is little hemispheric symmetry in these differences particularly

at mid and high latitudes where pattern differences are not equal in strength or direction. These future epoch differences in

pattern strength in the high Northern latitudes exhibit strong seasonality, with weaker temperature sensitivity in the Northern

Hemisphere cool season (DJFM) and summer (JJA), and stronger in the late spring (AM) and autumn (SON). The difference in

variance between the two reference epochs is not significant (probability ≤ 0.05 (S1 and S2)) but appears to show that where30

the pattern is weaker, the variance is less. This suggests that the strength of the relational pattern is somewhat dependent on

variance, with larger differences in variance showing stronger temperature sensitivity.
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3.2 Pattern Differences

The key idea in either pattern scaling method is that local temperature change scales with global climatic change. The different

methods used to quantify global change are first examined by comparing future minus present change to the 21st Century

projected linear trend (Figure 5). In the higher forcing scenario, the 21st Century trend is most similar to the difference between

the late 21st Century and late 19th Century. Using the later historical epoch results in∼ 1◦C difference between projected trend5

and epoch change (S3). The opposite is true when using a lower forcing scenario. In this case, the later 20th Century epoch

difference is most similar to the 21st Century linear trend. When using the lower forcing scenario, it is not necessarily implied

that there is less future variability (Knutti and Sedlacek, 2013), despite the suggestion of less variability from the twelve model

ensemble used in this study as shown in Figure 1.

Regardless of epoch chosen for the delta method, the patterns are similar (Figure 6),and with the exception of the high10

latitudes, the differences in pattern are small (< 0.2◦C). In both plots, the regression method has a significantly stronger

temperature sensitivity in the Northern Hemisphere high latitudes from December to July and is weaker in boreal autumn

(SON). This stems from how each methodology captures the effect of Arctic amplification, where the warming trend in the

Arctic is almost twice as large as the trend in the global average, but this question is not explored here. It is interesting to

note that in the S. Hemisphere, the Antarctic ice sheet margin (60-80◦S) region has a weaker relationship with global mean15

temperature when using the regression method than using the delta method.

There are few regions where the patterns differ significantly (Figure 7), and there are fewer significant differences between

the regression method and the delta method using the late 20th Century epoch than the late 19th Century epoch. Significant

differences between method patterns are shown in the Baltic/ N. European region for both epochs, but in the earlier epoch,

significant differences are shown in the Northwest Pacific region.20

The global mean trend/difference forces an overestimation of the spatial pattern, particularly over land masses and high

latitudes in the delta method (Figure 8), possibly due to Arctic amplification. Also, as shown in Figure 6, the Baltic/N. European

region pattern has a stronger temperature sensitivity in the delta method. Overall, it appears that the regression pattern method

overestimates the relationship between global temperature and local temperature, but the degree to which it overestimates the

relationship is small (< 0.8◦C). When using the delta pattern, the Antarctic region is both overestimated and underestimated25

by up to 0.15◦C, which is generally larger than the error in the regression pattern estimates. Temperature patterns fit well to

GMT change, but when constructing precipitation patterns the relationship to GMT is not as strong. Nevertheless precipitation

patterns have been shown to scale linearly with GMT (May, 2011). These patterns are valid in the ’wet get wetter and dry get

drier idea, but the resulting patterns are likely to have larger errors, for many regions.

3.3 Scenario Differences30

It is assumed that the local temperature sensitivity to global mean temperature change, regardless of methodology, is consistent

across scenarios despite less accuracy in stronger mitigation scenarios (May, 2011). Assuming the trend in global mean tem-

perature is linear, the first EOF in global annual temperature, in both future scenarios, is the warming trend (S4). This explains
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the majority of the variance in the time series of temperature change (Table 3), despite differing rates of change from each

scenario (Figures 1, 2, 3, and 4). This is expected, as the lower forcing scenario would result in less warming, and GMT change

would be smaller accounting for less variance explained.

The choice of future forcing scenario may significantly (≥ 0.05◦C) alter the resulting pattern. At high latitudes, the local-

global temperature relationship is significantly different and therefore not predicted well when using a pattern scaling method5

(Figure 9). In the higher forcing scenario, small portions along the Antarctic margin are significant at the 95% level. In the lower

forcing scenario, there are significant fit errors along the Antarctic continent and in the North Atlantic, as well as throughout

the mid and high latitudes. While this shows that the local-global relationship in the lower forcing scenario has more errors in

fit, it does not imply that the relational pattern is significantly different across scenarios.

The difference in patterns from future forcing scenarios is small (≤ 0.5◦C) except over the Barents Sea region (Figure10

10). For the delta patterns the largest relational difference in patterns is in the Northern Hemisphere at high latitudes, but

these differences are not significant likely due to high variability in these regions. The difference in patterns generated by the

regression method under different forcing scenarios are generally larger with more extreme deviations at mid-high latitudes.

This is due to the fact that scenarios with stronger mitigation practices have a smaller GMT trend and the resulting local

temperature sensitivity to GMT is stronger.15

This is further examined by separating the land and ocean patterns (Figure 11). The difference in pattern between scenarios

for the regression method when isolating the land/ocean pattern is comparatively large, especially over the Arctic and Antarctic

regions. The ocean (land) GMT sensitivity of the lower forcing scenario is ≥ 0.5◦C than the higher forcing scenario over the

Arctic (Antarctic) region. In the higher forcing scenario the local fit to GMT has less significant errors, but this is likely

because the GMT trend is stronger and it is shown that the local temperature scales well with GMT. The difference in the20

pattern between scenarios for the delta method when isolating the land/ocean pattern is small except over the Arctic region,

which shows strong seasonal differences (≥ 0.5◦C) in boreal autumn (SON). In this way the delta method is more consistent

across future forcing scenarios, and this should be taken into consideration when choosing methodology.

4 Conclusions

This study looks specifically at differences in spatial temperature sensitivity patterns using simplistic methods. The goal in25

pattern scaling is to efficiently generate statistical emulators from GCMs for use in SCMs, which we have done using two of

the basic pattern scaling methodologies.

The assumption that choice of epoch does not alter the resulting delta pattern holds true. The difference in patterns from

using epochs a century apart is not statistically significant. The GMT sensitivity and the spatial pattern is very similar for the

epochs used, despite the fact that epoch trends were dissimilar.30

The difference in patterns generated by each method are minor except at Northern Hemisphere high latitudes and along the

Antarctic margin. With the assumption of a future linear trend in GMT, the regression pattern works well with a better global

to local fit. This results in the regression method pattern being closer to the modeled trend than the delta method pattern. The
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simplistic design of the regression method allows for additional predictors in the pattern equation, and confidence intervals to

be easily calculated, and as such more ideal for future use in an integrated assessment model experiment. The delta method

introduces further complexity in choice of historical epoch, and assumes that there is no observed trend in the historical

simulation.

Choice of scenario can affect the resulting pattern, particularly when using the regression method. In this case, the GMT5

temperature sensitivity is stronger when using a lower forcing scenario because the GMT trend is proportionally smaller and

changes in GMT have a stronger effect on local temperature, particularly under strong mitigation. Delta method patterns are

more consistent across scenarios with less heterogeneity in local temporal and spatial GMT sensitivity. With the assumption that

different future forcing scenarios should not change the resulting pattern, the delta pattern is more consistent across scenarios,

regardless of epoch chosen, despite differences in epoch trends being large.10

5 Code and/or data availability

CMIP5 model data is publicly available via the Earth System Grid Federation website (ESGF, https://pcmdi9.llnl.gov/). Re-

analysis data is publicly available online via the Earth System Research Laboratory website

(http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html). Code used to construct this analysis is available on

GitHub through the Joint Global Change Research Institution repository. Any additional data can be obtained from Cary15

Lynch (cary.lynch@pnnl.gov).
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HadGEM-ES 1.2 x 1.8 Meteorological Office Hadley Centre, UK
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Table 2. Annual and seasonal mid (2041-2070) and late (2071-2100) 21st Century difference and 21st Century trend (2006-2100) in degrees

Celsius for ensemble minimum, median, and maximum using the rcp8.5 future scenario.

M21C - L19C M21C - L20C L21C - L19C L21C - L20C
Difference (◦C) Difference (◦C) Difference (◦C) Difference (◦C) 21C Trend (◦C)

Ensemble Minimum ANN 2.05 1.55 3.28 2.78 3.24
DJF 2.18 1.71 3.65 3.17 3.71
JJA 1.85 1.36 2.91 2.43 2.86

Ensemble Median ANN 3.07 2.57 4.74 4.34 4.87
DJF 3.22 2.75 5.07 4.62 5.25
JJA 2.75 2.34 4.35 3.97 4.52

Ensemble Maximum ANN 3.56 3.12 5.44 4.98 5.51
DJF 3.74 3.46 5.77 5.47 6.04
JJA 3.44 2.90 5.21 4.71 5.27

Table 3. Percent variance explained by empirical orthogonal functions of model ensemble mean of globally averaged surface air temperature

for historical (1861-2005) and future (2006-2100) scenarios.

Simulation EOF1 EOF2 EOF3

Annual Historical 18.39 11.35 7.60

RCP 8.5 84.54 2.11 1.47

RCP 4.5 56.33 5.70 4.29

DJF Historical 21.60 14.136 11.04

RCP 8.5 71.53 4.81 4.43

RCP 4.5 39.42 13.30 7.79

JJA Historical 19.04 10.37 8.0

RCP 8.5 57.54 8.84 3.99

RCP 4.5 21.24 16.03 8.60
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Figure 1. Ensemble median global air temperature (degree Celsius). NCEP/NCAR reanalysis (1948-2010, purple line) compared to ensemble

median historical simulation (1860-2005, black line), rcp4.5 (2006-2100, blue line), and rcp8.5 (2006-2100, red line) for annual (top plot),

boreal winter (middle plot), and boreal summer (bottom plot). Shading indicates 1 sigma about the ensemble mean.
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Figure 2. Ensemble mean 30 year trend difference in global air temperature in degrees Celsius between historical and future rcp8.5 (left

column) and rcp4.5 (right column) CMIP5 scenarios for mean annual (top row), DJF (middle row), and JJA (bottom row).
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Figure 3. Ensemble mean global air temperature in degrees Celsius difference between historical and future rcp8.5 (left column) and rcp4.5

(right column) CMIP5 scenarios for mean annual (top row), DJF (middle row), and JJA (bottom row).
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Figure 4. Ensemble mean global air temperature delta method pattern difference based on differences in historical (top) and future (bottom)

reference periods in degrees Celsius. Top plot shows late 21st (2071-2100) and late 19th (1861-1890) Century pattern and late 21st and late

20th (1971-2000) Century pattern difference. Bottom plot shows mid 21st (2041-2070) and late 19th (1861-1890) Century pattern and late

21st (2071-2100) and late 19th (1861-1890) Century pattern difference.
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Figure 5. Annual model ensemble global air temperature (degree Celsius) for late 21st (2071-2100) vs. 19th (1861-1890) Century difference

and 21st Century (2006-2100) trend. Future scenarios of rcp8.5 (brown) and rcp4.5 (green) are used.
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Figure 6. Ensemble mean global air temperature regression method and delta method pattern (2071-2100 vs. 1861-1890 (left) and 2071-2100

vs. 1971-2100 (right)) difference for annual (top), DJF (middle) and JJA (bottom)in degrees Celsius.
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Figure 7. Significance of difference for ensemble mean global air temperature regression method and delta method pattern (2071-2100 vs.

1861-1890 (left) and 2071-2100 vs. 1971-2100 (right)) for annual (top), DJF (middle) and JJA (bottom) using a Student’s t-test probability

statistic.
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Figure 8. Difference in degrees Celsius between annual modeled trend for the 21st Century using forcing scenario rcp8.5 and delta method

(2071-2100 vs. 1861-1890, top) and regression method (bottom).
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Figure 9. Statistical significance (p-value) of regression patterns of rcp8.5 (left) and rcp4.5 (right) scenarios for annual mean (top), DJF

(middle), and JJA (bottom).
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Figure 10. Ensemble average difference annual delta (top, late 21st minus late 19th Century) and regression (bottom) patterns between

rcp8.5 and rcp4.5 scenarios in degrees Celsius.
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Figure 11. Ensemble annual average difference between rcp8.5 and rcp4.5 scenarios regression (left) and delta (right, late 21st minus late

19th Century) patterns (in degrees Celsius) for land only (top) and ocean only (bottom).
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