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Abstract.

The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms dedicated to the estimation of terrestrial

evaporation and root-zone soil moisture from satellite data. Ever since its development in 2011, the model has been regularly

revised aiming at the optimal incorporation of new satellite-observed geophysical variables, and improving the representation

of physical processes. In this study, the next version of this model (v3) is presented. Key changes relative to the previous5

version include: (1) a revised formulation of the evaporative stress, (2) an optimized drainage algorithm, and (3) a new soil

moisture data assimilation system. GLEAM v3 is used to produce three new data sets of terrestrial evaporation and root-zone

soil moisture, including a 36-year data set spanning 1980–2015, referred to as v3a (based on satellite-observed soil moisture,

vegetation optical depth and snow water equivalent, reanalysis air temperature and radiation, and a multi-source precipitation

product), and two satellite-based data sets. The latter share most of their forcing, except for the vegetation optical depth and10

soil moisture, which are based on observations from different passive and active C- and L-band microwave sensors (European

Space Agency Climate Change Initiative, ESA CCI) for the v3b data set (spanning 2003–2015) and observations from the

Soil Moisture and Ocean Salinity (SMOS) satellite in the v3c data set (spanning 2011–2015). Here, these three data sets are

described in detail, compared against analogous data sets generated using the previous version of GLEAM (v2), and validated

against measurements from 91 eddy-covariance towers and 2325 soil moisture sensors across a broad range of ecosystems.15

Results indicate that the quality of the v3 soil moisture is consistently better than the one from v2: average correlations against

in situ surface soil moisture measurements increase from 0.61 to 0.64 in case of the v3a data set and the representation of

soil moisture in the second layer improves as well, with correlations increasing from 0.47 to 0.53. Similar improvements are

observed for the tv3b and c data sets. Despite regional differences, the quality of the evaporation fluxes remains overall similar

as the one obtained using the previous version of GLEAM, with average correlations against eddy-covariance measurements20

ranging between 0.78 and 0.81 for the different data sets. These global data sets of terrestrial evaporation and root-zone soil
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moisture are now openly available at www.GLEAM.eu and may be used for large-scale hydrological applications, climate

studies, or research on land–atmosphere feedbacks.

1 Introduction

Climate change alters the complex interplay between land and atmosphere, significantly impacting different processes in the

global hydrological cycle (Huntington, 2006; Wild et al., 2008; Miralles et al., 2014b). Analysing these impacts requires5

long-term, observational and consistent data sets of essential hydrological variables, such as soil moisture, precipitation and

terrestrial evaporation (or “evapotranspiration”). Unfortunately, the large-scale observation of terrestrial evaporation is ham-

pered by the inability to sense this flux directly from satellites. Consequently, this crucial return flow of water from land into

the atmosphere remains one of the most elusive and uncertain components of the global hydrological cycle (Dolman et al.,

2014; Miralles et al., 2016b; Fisher et al., 2017).10

However, the climate community is becoming increasingly aware of the crucial role that terrestrial evaporation plays in the

Earth system, acting as a link in hydrological and biogeochemical cycles, and being a driver of air humidity, cloud formation,

temperature or precipitation (Seneviratne et al., 2010; Taylor et al., 2012; Miralles et al., 2012). Consequently, past decades

have seen significant efforts to enhance our understanding of the global magnitude and variability of this flux. Some of these

efforts have mainly concentrated on routinely measuring evaporation in the field (Wang and Dickinson (2012), and references15

therein), resulting in the increased availability of in situ observations from different climatic regions across the globe (Baldoc-

chi et al., 2001; Jung et al., 2009). In addition, acknowledging the sparseness of current in situ networks and their inability to

meet the spatio-temporal requirements for climatological studies, the potential of satellite remote sensing to enhance our under-

standing on terrestrial evaporation dynamics has been intensively explored. While in the near future, evaporation will remain

undetectable from space, several models that combine remotely-observable drivers of this flux (e.g. radiation, air temperature,20

soil moisture) have been developed and are being intensively used in recent years (Wang and Dickinson, 2012; McCabe et al.,

2016).

Existing algorithms share the overarching objective of producing consistent, long-term, global data sets of terrestrial evap-

oration, but the methods and input data sets used in these models differ markedly (e.g., Mu et al., 2007; Fisher et al., 2008;

Zhang et al., 2010; Miralles et al., 2011; Loew et al., 2015). Recently, McCabe et al. (2016), Michel et al. (2016) and Miralles25

et al. (2016a) evaluated the relative value of four of these evaporation models using standardized satellite- and in situ based

forcing data sets. As expected, results highlighted substantial differences in model performance, especially under conditions

of water stress. In addition, these studies found pronounced deficiencies in the way evaporation is partitioned into its different

components (i.e. transpiration, bare soil evaporation, open-water evaporation, interception loss and sublimation). Miralles et al.

(2016a) and Fisher et al. (2017) also highlighted the importance to advance the physical representation of evaporation in these30

simple models, and the need to incorporate new technological advances in remote sensing science.

The Global Land Evaporation Amsterdam Model GLEAM (Miralles et al., 2011), is arguably the only one of these global

evaporation models that is designed to be driven by remote sensing observations only. These observations are primarily derived
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from microwave sensors, including soil moisture and vegetation optical depth used in GLEAM to constraint the potential

evaporation rates. Another key feature of the approach is the independent and detailed modelling of forest interception loss

based on Gash’s analytical model (Gash, 1979; Valente et al., 1997; Miralles et al., 2010). Evaporation and root-zone soil

moisture data sets from GLEAM have been widely used in the past to study spatial variability and trends in the water cycle

(e.g., Jasechko et al., 2013; Greve et al., 2014; Miralles et al., 2014a; Zhang et al., 2016), as well as land–atmosphere feedbacks5

(e.g., Miralles et al., 2014b; Guillod et al., 2015). The first version (v1) of the model was developed by Miralles et al. (2011)

and further refined (v2) by Miralles et al. (2014b); the present paper presents the third version (v3) of the methodology. In

this new version, most components of GLEAM have been updated, except for the interception loss algorithm and the potential

evaporation module. First, aiming at a more realistic representation of evaporative stress, observations of microwave VOD and

root-zone soil moisture have been combined to represent the non-linear response of soil and vegetation to the drying of land10

(e.g., Colello et al., 1998; Serraj et al., 1999; Ronda et al., 2002; Combe et al., 2016). Second, the soil module has been adapted

to represent the continuous drainage of precipitation through the vertical profile. Finally, the soil moisture data assimilation

system – recently updated and validated for Australia (Martens et al., 2016) – has been optimized to work at the global scale and

to integrate different datasets of satellite soil moisture observations. These changes have respected the minimalistic approach

of GLEAM of targeting only the fundamental processes controlling large-scale evaporation rates, while keeping the overall15

simplicity and observational nature of the model.

The main goal of this study is to present the new version of GLEAM and the resulting evaporation and root-zone soil

moisture data sets, including a global validation using a large database of soil moisture measurements from 2325 in situ

sensors, and evaporation measurements from 91 eddy-covariance towers. In addition, the quality of these data sets is compared

against analogous datasets generated using the former version of GLEAM, allowing to evaluate the added value of the new20

formulations. The paper is organized as follows: Sect. 2 describes the new algorithms, highlighting the main changes upon the

previous version. The forcing data and the in situ validation data are described in Sect. 3. Section 4 analyzes the quality of the

GLEAM data sets and discusses the results, while the main conclusions are summarized in Sect. 5.

2 Methodology

2.1 Baseline description of GLEAM25

GLEAM separately derives the different components of terrestrial evaporation, i.e. transpiration, bare soil evaporation, open-

water evaporation, interception loss and sublimation (Miralles et al. (2011), see Fig. 1). Each grid cell comprises four different

land-cover types: (1) bare soil, (2) low vegetation (e.g. grass), (3) tall vegetation (e.g. trees) and (4) open water (e.g. lakes).

Except for the fraction of open water, these fractions are sourced from the Global Vegetation Continuous Fields product

(MOD44B), based on observations from the Moderate Resolution Image Spectroradiometer (MODIS). For the fraction of open30

water, the product of Tuanmu and Jetz (2014) is used. The evaporative flux is calculated for each of these fractions separately

and then aggregated to the scale of the pixel based on the fractional cover of each land-cover type. First, the Priestley and Taylor
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(1972) equation is used to calculate the cover-dependent potential evaporation rate Ep (mm/day) based on air temperature and

net radiation:

λEp = α
∆

∆ +ψ
(Rn −G) (1)

where λ (MJ kg−1) is the latent heat of vaporization and ∆ (kPa K−1) is the slope of the saturated water vapour-temperature

curve. Both variables can be estimated using empirical relationships to the air temperature (Henderson-Sellers, 1984; Maid-5

ment, 1993). ψ (kPa K−1) is the psychometric constant, α (–) is the Priestley and Taylor coefficient, Rn (W m−2) is the net

radiation and G (W m−2) is the ground heat flux. G is calculated as a constant fraction of Rn depending on the cover type

(Miralles et al., 2011). For α, a value of 1.26 has been reported by Priestley and Taylor (1972) for well-watered grasslands,

and has been used in numerous studies for a variety of ecosystems. However, empirical studies have highlighted the more

conservative nature of tree stomata, often resulting in lower rates of potential evaporation in forested areas (Shuttleworth and10

Calder, 1979; Kelliher et al., 1993; Teuling et al., 2010). Therefore, the α for tall vegetation is defined after the findings by

McNaughton and Black (1973), Shuttleworth et al. (1984), Viswanadham et al. (1991), Diawara et al. (1991) and Eaton et al.

(2001), that report an average value of 0.97 (with a 0.08 standard deviation over the different studies) for various forests during

unstressed and precipitation-free periods (i.e. no rainfall interception).

Estimates of Ep are converted into actual transpiration or bare soil evaporation (depending on the land-cover type), using a15

cover-dependent, multiplicative stress factor S (–) ranging from 1 to 0. S is calculated as a function of microwave VOD and

root-zone soil moisture (see Sect. 2.2.3). The latter is calculated using a multi-layer water-balance algorithm considering net

precipitation (precipitation minus interception loss) and snowmelt as inputs, and evaporation and drainage as outputs (Miralles

et al., 2011). The depth of the root zone is a function of the land-cover type and comprises three model layers for the fraction

of tall vegetation (0–10, 10–100 and 100–250 cm), two for the fraction of low vegetation (0–10, 10–100 cm), and only one20

for the fraction of bare soil (0–10 cm). Forest rainfall interception loss is estimated independently using the analytical model

introduced by Gash (1979) and further refined by Valente et al. (1997), forced with precipitation and considering both the

characteristics of precipitation and vegetation (Miralles et al., 2010). In the next section, we focus on the changes relative to

the previous model version (Miralles et al., 2014b), and we refer to Miralles et al. (2011), Miralles et al. (2014b), and Martens

et al. (2016) for more detailed descriptions of the model baseline.25

2.2 Recent advances in GLEAM

2.2.1 Soil module

Figure 2 shows a schematic of the conceptual root zone for the fraction of tall vegetation in a pixel. Each soil layer is subdivided

in three different compartments. The first compartment (bottom) represents the water retained below the wilting point, wwp

(m3 m−3), and which is not available for root uptake; for the bare soil fraction, the residual soil moisture, wr (m3 m−3), is30

used instead. The second compartment of the layer is bounded by wwp and the porosity of the soil matrix, wp (m3 m−3), and
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represents the maximum volume of water available for evaporation. Finally, the third compartment represents the solid phase

of the soil column and thus cannot hold any water. The soil properties used in GLEAM come from the database of Global

Gridded Surfaces of Selected Soil Characteristics generated by the International Geosphere-Biosphere Programme Data and

Information System (IGBP-DIS, Global Soil Data Task Group (2000)).

At every daily time step i, the state of any layer l is characterized by its water content w(l)
i (m3 m−3), which is updated5

using:

w
(l)
i = w

(l)
i−1 +

(
F

(l−1)
s,i +F

(l−1)
f,i −E

(l)
i−1 −F

(l)
s,i

)
∆t

∆z(l)
(2)

where w(l)
i−1 is the volumetric soil moisture content of layer l at the previous time step (i− 1), F (l−1)

s,i (mm/day) is the volume

of water slowly draining into the layer (slow draining flux), F (l−1)
f,i (mm/day) is the volume of water directly reaching the layer

(fast draining flux), E(l)
i−1 (mm/day) is the evaporative flux from the previous day, F (l)

s,i (mm/day) is the slow drainage of water10

out of the reservoir, ∆t is the temporal resolution (one day) and ∆z(l) (mm) is the depth of the soil layer. Note that for the first

layer (l =1), only F 0
f,i is considered as an input, as there is no draining layer on top.

In previous model versions, the entire volume of net precipitation (i.e. precipitation minus interception loss, plus snowmelt)

was first stored in the top layer, which subsequently drained to field capacity into the next soil layer (Miralles et al., 2011,

2014b); the same process was used to calculate the vertical flow from the remaining layers. As a result, the soil moisture could15

not exceed field capacity, nor was drainage allowed to occur below that threshold. In GLEAM v3, net precipitation is first

partitioned between the different soil layers based on the relative saturation at the beginning of the daily time step, in order to

estimate the fast draining flux F (l)
f,i . Next, the volume of water that slowly drains to the next layer (F (l)

s,i ) is estimated using a

simplified representation of Darcy’s law, in which a fraction of the available water above wilting point is drained to the next

layer based on (1) the relative saturation of each layer, and (2) the difference in soil moisture content between both layers.20

The rationale behind this simple drainage algorithm is that the downward flux of water is expected to increase if (1) the

relative soil moisture content is higher (physically resulting in increased hydraulic conductivities), and (2) the difference in

soil moisture between source and sink is larger (resulting in higher differences in soil-water potential). This empirical drainage

algorithm is preferred over well-known alternatives such as the Richards equation (Richards, 1931), Brooks-Corey (Brooks

and Corey, 1964) or Clapp-Hornberger (Clapp and Hornberger, 1978), due to its simplicity and the fact that it does not require25

the use of additional largely-unconstrained ancillary data on soil properties at the global scale.

2.2.2 Data assimilation system

The original Kalman filter approach to assimilate microwave soil moisture observations – typically sensitive to the first few

centimeters of the soil – into GLEAM was replaced in favour of a simple Newtonian Nudging algorithm in the v2 (Miralles

et al., 2014b), which was recently further optimized (Martens et al., 2016). This Newtonian Nudging scheme minimizes the30

computational demands and fits well within the rationale of GLEAM of keeping the model as simple and observation-driven as

possible. While more complex algorithms like the ensemble Kalman filter have also been applied in GLEAM, the added value
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has shown to be marginal (Miralles et al., 2014b). Therefore, in this new version, we adopt a similar approach to the Newtonian

Nudging scheme implemented by Martens et al. (2016):

w
(1)+
i = w

(1)−
i +Kγ

(
ŵo

i − ŵ
(1)−
i

)
(3)

where w(1)+
i is the a posteriori soil moisture state at the first model layer (i.e. after application of the data assimilation algo-

rithm), w(1)−
i is the a priori soil moisture state at the same layer (i.e. before assimilation of the observed soil moisture), K (–)5

is the nudging factor (a value of 1 is used to maximize the impact of the assimilation algorithm as in Martens et al. (2016)),

γ (–) is the quality factor, and ŵo
i (m3 m−3) and ŵ(1)−

i (m3 m−3) are the observed and modelled soil moisture anomalies,

respectively. The latter represent deviations relative to the seasonal climatology of soil moisture – calculated as in De Lannoy

and Reichle (2016) and Lievens et al. (2017) – as opposed to the absolute values of soil moisture assimilated by Martens et al.

(2016).10

As most assimilation algorithms require bias-free observations in reference to the modelled states, a bias removal algorithm

prior to (or during) the assimilation step has to be applied. However, no standard procedure exist to correct these constant or

seasonally varying biases (Lievens et al., 2015; De Lannoy and Reichle, 2016), thus the choice of the bias-removal algorithm

remains to some degree subjective. As indicated by Martens et al. (2016), the use of a classical CDF-matching approach prior

to the assimilation step clearly introduced seasonal biases in the GLEAM soil moisture and evaporative fluxes. As a result, in15

GLEAM v3, soil moisture anomalies are assimilated instead, as this approach allows the correction of potential seasonal biases

between the modelled and observed soil moisture states (De Lannoy and Reichle, 2016). As a Triple Collocation Analysis

(TCA, Scipal et al. (2008); Miralles et al. (2010); Gruber et al. (2016)) is applied here to obtain the observation and model

errors, the anomaly time series of the observations are scaled towards the modelled soil moisture anomalies using a linear

regression model prior to the assimilation (Yilmaz and Crow, 2013). We note that for applying a TCA, a third independent data20

set of the same geophysical variable is required. For this purpose, soil moisture fields from the Noah model in the Global Land

Data Assimilation System (GLDAS) (Rodell et al., 2004) are used. The three independent and rescaled anomaly time series of

surface soil moisture are used in the TCA to estimate both the model and observation errors on a yearly basis. The latter two

are then adopted to calculate the quality factor (γ) as in Martens et al. (2016):

γ =
σ
(1)
mod

σ
(1)
mod +σobs

(4)25

where σ(1)
mod (m3 m−3) and σobs (m3 m−3) are the standard deviations of the random model and observation errors, respectively.

Finally, in contrast to the assimilation of soil moisture observations in all model layers in GLEAM v2 (Miralles et al., 2014b;

Martens et al., 2016), only the first model layer is updated in the new version. The latter choice is motivated by the slower

dynamics of the deeper model layers, which are strongly perturbed when soil moisture observations are directly assimilated

into these layers using the simple Newtonian Nudging scheme. The impact of the soil moisture update in this GLEAM v330
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is thus propagated towards deeper layers by drainage processes only, which ensures a smooth transition of water through the

vertical profile.

2.2.3 Stress module

Water availability, heat stress, or phenological constraints acting on evaporation, are generally combined in a single empirical

stress factor accounting for the decrease in potential evaporation (Sellers et al., 2007). In GLEAM, a multiplicative stress factor5

S ranging between 0 (maximum stress and thus no evaporation) and 1 (no stress and thus potential evaporation) is defined.

In the first version (Miralles et al., 2011), S was parameterized separately for the fractions of tall and short vegetation using

non-linear relationships between S and the soil moisture of the wettest layer. To account for changes in vegetation phenology of

short vegetation, the VOD was also used in the calculation of S for this fraction. These functions were linearized in the second

version, and the VOD was also introduced for the calculation of the stress for the fraction of tall vegetation (Miralles et al.,10

2014b). However, based on experimental evidence, a non-linear response of S to soil moisture is expected for most vegetation

types (e.g., Colello et al., 1998; Serraj et al., 1999; Ronda et al., 2002; Combe et al., 2016). As a consequence, a non-linear

stress function for both tall and short vegetation is re-introduced in GLEAM v3:

S =

√
VOD

VODmax

(
1−

(
wc −w(w)

wc −wwp

)2
)

(5)

where VODmax (–) is the maximum VOD for a specific pixel, wc (m3 m−3) is the critical soil moisture and w(w) (m3 m−3)15

is the soil moisture content of the wettest layer, assuming that plants withdraw water from the layer in which it is more easily

accessible. As soil moisture decreases, S decreases (i.e. increased evaporative stress), since water becomes less easily available

for the roots. As vegetation phenology is not explicitly accounted for, the VOD – closely linked to the vegetation water content

(Liu et al., 2013) – is used to account for the effect of (seasonal or occasional) phenological constraints on evaporation (e.g.

leaf-out, fires, pests etc.), with decreasing VOD resulting in lower values for S and thus higher evaporative stress. As seen from20

Eq. 5 and Fig. 3, the stress function is thus defined by both the soil moisture content in the wettest soil layer and the VOD. If

w(w) reaches wwp, Eq. 5 implies that the vegetation is incapable to retrieve water from the soil and S equals zero (and so does

actual transpiration). On the other hand, for soil moisture values exceeding wc and the VOD reaching its maximum value, it is

assumed that the vegetation is unstressed (i.e. S =1, thus transpiration equals potential transpiration).

Figure 3 illustrates the shape of the stress function in Eq. 5 for a pixel dominated by a strong seasonality in VOD (left-hand25

side) and a site with a limited variability in VOD (right-hand side). For illustrative purposes only, it is assumed that the soil

properties (wc and wwp) are the same for both sites. As can be seen, where the range in VOD is low given the absence of a

marked seasonality, S mainly depends on soil moisture. Conversely, if a large seasonality in the VOD is present (see left-hand

side figure), the VOD becomes more important for the calculation of S.
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Finally, for the bare soil fraction, S is linearly related to the soil moisture state using the critical and residual soil moisture

content as upper and lower boundary conditions, respectively:

S = 1− wc −w(1)

wc −wr
(6)

Since only the top layer is considered for the fraction of bare soil, S is fully driven by surface soil moisture (w(1)).

3 Data5

3.1 Input data sets

Table 1 gives an overview of the selected forcing data sets in GLEAM v3. All input data sets have a daily resolution and are

linearly re-sampled from their original spatial resolution to a common 0.25◦ global grid. Given the aim to extract all valuable

information on terrestrial evaporation from existing satellite records, forcing data sets are preferentially derived from satellite

observations. However, since a key application of the GLEAM data sets is to analyze the impact of climate change on terrestrial10

hydrology, we also explore the use of alternative forcing data sets, such as reanalysis data, to yield multi-decadal records of

terrestrial evaporation and root-zone soil moisture.

Radiation inputs are based on measurements from the Clouds and Earth’s Radiant Energy System (CERES) onboard Terra

and Aqua (Wielicki, 1996), which are available globally from the year 2001 onwards on a 1◦ regular grid. Additionally,

radiation fluxes from the current reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA-15

Interim (Dee et al., 2011), are also processed. ERA-Interim data are available globally from 1979 to present, with a temporal

resolution of 3 hours and a spatial resolution of approximately 0.75◦. For the precipitation forcing, the Tropical Rainfall

Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42v7 product (Huffman et al., 2007) and the

Multi-Source Weighted-Ensemble Precipitation (MSWEP) data set (Beck et al., 2016) are selected. The TMPA 3B42v7 data set

combines measurements from several satellites and is bias corrected on a monthly time scale using ground-based measurements20

of precipitation. The product is available for the period 1998–2015 and covers 50◦N–50◦S based on a 0.25◦ grid. MSWEP on

the other hand is based on a merger of selected satellite-, reanalysis- and gauge-based products, and is available from 1979

until 2015 at a 0.25◦ spatial resolution. Air temperatures are derived from measurements of the Atmospheric Infrared Sounder

(AIRS, Aumann et al. (2003)), which are available from 2003 onwards on a global 1◦ regular grid. Air temperature estimates

from ERA-Interim are also selected for the long-term GLEAM data set. As for the radiation, data are available globally from25

1979 until near present at 3-hourly intervals. To estimate sublimation, observations of snow-water equivalent from the European

Space Agency (ESA) GLOBSNOW product (Luojus et al., 2013) are used. This data set is mainly based on retrievals from

the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), and the Advanced

Microwave Scanning Radiometer (AMSR-E), and is available from 1980 onwards. The GLOBSNOW product only covers

the Northern hemisphere and is therefore merged with the National Snow and Ice Data Center (NSIDC) monthly snow-water30

equivalent climatology product (Armstrong et al., 2005) for the Southern hemisphere. The latter is also based on measurements
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from SSMR and SSM/I. As discussed in Sect. 2.2.3, the phenological controls on transpiration are derived from observations

of microwave VOD. Here, the 0.25◦ product from Liu et al. (2011) is used, which is based on retrievals from several passive

microwave sensors using the Land Parameter Retrieval Model (LPRM, Owe et al. (2008)). The product is available at the global

scale and spans the period 1980–2012; in order to cover the period 1980–2015, it is merged with LPRM-based VOD retrievals

from SMOS (van der Schalie et al., 2015, 2016) using a similar CDF-matching approach as the one used by Liu et al. (2011).5

The resulting data set contains gaps due to the repeating cycle of the satellites, the requirement of non-frozen conditions for

parameter retrieval, and the presence of Radio Frequency Interference (RFI). In order to obtain smooth and continuous time

series, the VOD data set is gap-filled using a moving average filter with a 7-day window. Remaining gaps, generally occurring

in winter time due to freezing temperatures and snow covers, are linearly interpolated between the last and next available

retrieval. We note however that in periods for which the land is covered by snow, the VOD is not used as the entire evaporation10

flux is assumed to be sublimation. Finally, if any gaps remain, these are filled using nearest neighbour interpolation. It should

be noted here that microwave sensors operating at different frequencies might be sensitive to diverse components of vegetation,

varying at different time scales (e.g. Guglielmetti et al., 2007; Liu et al., 2011). Despite the CDF-matching, which corrects for

differences in long-term statistics, the use of different microwave sensors might impact the temporal dynamics of the VOD

data set used here. Finally, for the assimilation of microwave surface soil moisture, the SMOS Level 3 soil moisture product15

(Jacquette et al., 2010) and the ESA Climate Change Initiative soil moisture (ESA CCI SM v2.3) data set (Liu et al., 2012;

Wagner et al., 2012) are selected. The latter is a blended product of soil moisture retrievals from several active and passive

microwave sensors, available for the period 1978–2015 at the global scale. In addition, surface soil moisture fields from the

Noah model in GLDAS (Rodell et al., 2004) are used as a third independent data set in the TCA (see Sect. 2.2.2). Despite

fundamental differences between GLEAM and Noah, some degree of dependency between their soil moisture estimates might20

be present due to the presence of common precipitation observations embedded within MSWEP, TMPA 3B42 and the forcing

of GLDAS Noah. However, the merging schemes used to produce the precipitation data sets are ultimately different (Rodell

et al., 2004; Huffman et al., 2007; Beck et al., 2016). Such a dependency could penalize the satellite-based soil moisture in

the TCA (Yilmaz and Crow, 2014), which would result in a lower quality factor γ (see Eq. 4) applied in the data assimilation

system and, subsequently, in a more conservative soil moisture update.25

As discussed in Sect. 2, GLEAM also requires several static data sets describing the soil properties, land cover and average

rainfall climatology. For the land cover fractions, the MODIS Global Vegetation Continuous Fields product (MOD44B) is

selected (Hansen et al., 2005). The high-resolution product at 250 m is up-scaled to the required grid size of 0.25◦ (note that

in previous model versions, the low resolution 0.25◦ product produced by the MODIS team was used instead). Note that for

the fraction of open water, the product produced by Tuanmu and Jetz (2014) is combined with the MODIS-based product. Soil30

properties such as wilting point, soil porosity, field capacity and critical soil moisture are derived from the database of Global

Gridded Surfaces of Selected Soil Characteristics, IGBP-DIS (Global Soil Data Task Group, 2000). Finally, as in Miralles et al.

(2010), a monthly rainfall intensity climatology is inferred from the Combined Global Lightning Flash Rate Density monthly

product (Mach et al., 2007) produced by the National Aeronautics and Space Administration (NASA) agency.
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Using various combinations of the forcing data, three different data sets of terrestrial evaporation and root-zone soil moisture

are produced using GLEAM v3 (see also Table 1). The inputs of snow water equivalent, the third independent data set used in

the TCA, and the static fields are shared by all data sets. The first GLEAM data set (hereafter referred to as v3a) is a 36-year

data set (1980–2015) covering the entire globe and is based on satellite-observed soil moisture, vegetation optical depth and

snow water equivalent, reanalysis air temperature and radiation, and the MSWEP datset for precipitation. Given the multi-5

decadal coverage of this data set, it is intended to foster climatological research. The remaining data sets (v3b and v3c) are

driven by satellite-based data only, and span a shorter period. In addition, these data sets only cover 50◦N–50◦S due to the use

of the TMPA 3B42v7 product. The differences between both satellite-based data sets are the VOD and soil moisture forcing,

which are retrieved from SMOS only in the v3c data set, and from multiple active and passive microwave sensors in the v3b

data set. This also implies a different record length of 13 (2003–2015) and 5 years (2011–2015) for the v3b and v3c data sets,10

respectively.

3.2 Validation data sets

For validation purposes, in situ soil moisture and evaporation measurements from different global networks are processed. Soil

moisture measurements are sourced from the database of the International Soil Moisture Network (ISMN, Dorigo et al. (2011,

2013)), whereas the FLUXNET 2015 synthesis data set (http://fluxnet.fluxdata.org/) is used to obtain the in situ measurements15

of evaporation (see Table A1 for an overview of the selected sites). Note that several studies have already highlighted the lack of

closure in the energy balance at eddy-covariance sites and a consequential tendency to underestimate the latent heat flux (Wilson

et al., 2002). All available measurements for 1980–2015 are considered for inclusion in the validation set. Measurements are

masked using the quality flags provided in the corresponding data set archives and aggregated from their native temporal

resolution (generally 30 minutes or 1 hour) to the required daily scale. For the evaporation data sets, only days with less than20

25 % missing data are processed. As in Martens et al. (2016), the resulting daily time series are screened for extreme outliers

and repetitive recorded values. Soil moisture measurements are subsequently masked for snow and air temperatures below

0◦C using the snow water equivalent from GLOBSNOW and the air temperature data sets, respectively (see Table 1). As eddy-

covariance measurements are generally less reliable during precipitation, rainy intervals are masked from the data sets of in situ

evaporation. Finally, only sites with at least 365 daily measurements after masking are included in the validation data set. This25

yields a total of 91 quality-checked eddy-covariance sites (see Table A1) and a total of 2325 soil moisture sensors covering

various ecosystems across the globe. Note that the soil moisture sensors are installed at different depths below the soil surface

and used to validate both the first (0–10 cm, 1119 sensors) and second (10–100 cm, 1216 sensors) model layer, depending on

the installation depth. Sensors located in the same GLEAM grid cell (horizontally or vertically) are not combined, but treated

separately in the validation to avoid problems with potential artifacts resulting from merging sensors with different absolute30

values and gaps in their record. For the location of the in situ sites selected in this study, we refer to Figs. 4 and 7 (see Sect. 4).
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4 Results and discussion

4.1 Validation of soil moisture

4.1.1 Accuracy of soil moisture estimates

Table 2 summarizes the average correlation (R) and unbiased root mean square difference (ubRMSD) for the v3 soil moisture

data sets against the in situ measurements. Validation statistics are calculated using all available in situ measurements within5

the spatio-temporal domain of each of the data sets, as well as using a common set of soil moisture sites and an overlapping

period for the three data sets (i.e. 2011–2015). Statistics for analogous data sets obtained using GLEAM v2 (same input data,

except for the MODIS land cover fractions) are shown between brackets for comparison. Differences in correlations for the

three products are statistically tested for significance using a Student’s t-test (at the 10% level), after applying a Fisher Z

transformation on the time series. The autocorrelation of the daily time series was taken into account by reducing the degrees10

of freedom using an effective sampling size (De Lannoy and Reichle, 2016; Lievens et al., 2017). Note that the first year of each

of the data sets is not taken into account for this validation exercise to avoid the effects of model initialization on validation

statistics.

As indicated by the statistics in Table 2, all data sets compare reasonably well against the in situ measured soil moisture, with

correlations for the first model layer (w(1)) of 0.64, 0.61 and 0.63 for the v3a, v3b and v3c data sets, respectively. For the second15

model layer (w(2)), correlations are lower (ranging from 0.49 to 0.53), which can be expected given the lower representativeness

of a single in situ measurement over the thicker model layer (10–100 cm). The ubRMSD yields mean values of approximately

0.06 m3 m−3 and 0.05 m3 m−3 for the first and second model layer, respectively. Overall, the validation statistics shown in

Table 2 point to a higher quality of the v3a soil moisture data set compared to v3b and v3c. This is also confirmed by the

statistics obtained for the common validation period: for both model layers and in terms of correlations, the v3a soil moisture20

is superior, with correlation coefficients for w(1) being significantly higher in approximately 20 % of the sites (the opposite is

true in 2 % of the sites only). Due to the high autocorrelation in the second layer soil moisture – strongly reducing the degrees

of freedom in the statistical test – correlations for the v3a dataset are only higher at approximately 3 % of the individual sites.

Permutations of the precipitation forcing amongst the different data sets indicate that the higher quality of the soil moisture in

v3a is primarily due to the precipitation forcing used in each data set (not shown), and suggests an overall high accuracy of the25

MSWEP data as indicated by Beck et al. (2016). We note, however, that more than 75 % of the soil moisture probes are located

in the CONUS (Continental United States), where gauge-based precipitation data sets are known to over-perform satellite-

based products (Beck et al., 2016). These findings should thus not be extrapolated to other regions. Finally, the difference in

quality between v3b and v3c is relatively small, with slightly better statistics for the v3c data set, which integrates SMOS data.

For comparison, Table 2 also reports the validation statistics for the same data sets obtained using GLEAM v2. Both the30

ubRMSD and the correlations suggest that the v3 soil moisture data sets have a higher quality: at 26 %, 19 % and 12 % of the in

situ soil moisture sites, the correlations significantly improve in case of the v3a, v3b and v3c datasets, respectively (statistically

significant deterioration only occurs in a small number of sites). Although for the second layer significant improvements of R
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only occur in around 8 % of the individual sites and for all three data sets, overall differences in R are more pronounced for

this layer, mainly as a result of both the improved drainage formulation and the optimized data assimilation algorithm. Figure 4

shows maps of the difference in R against in situ measured surface soil moisture for the v3 and v2 data sets. Since most in situ

sites are located in the CONUS domain, also a detailed view of the results over this area is presented. As illustrated in these

maps, the quality of the soil moisture data sets improves in most regions and for the majority of sites (blue colour). It could5

be argued that in the Great Plains, the performance of GLEAM v3 is lower than for v2, yet only a limited number of sites are

available in this area.

Finally, to better evaluate the skill of GLEAM v3 to capture the effect of specific precipitation events on the estimated

soil moisture – without the influence of the seasonal cycle – correlations between the anomaly time series of GLEAM soil

moisture and the anomaly time series of in situ soil moisture are also calculated (Ran in Table 3). Note that to calculate a robust10

climatology, only in situ sites with at least 5 years of data were used, resulting in a lower subset of stations and no anomaly-

based evaluation for the v3c dataset. As expected, correlations decay after the removal of the seasonal cycle, but remain in the

range of 0.48–0.54 for the first layer and 0.43–0.49 for the second layer. In addition, results shown in Table 3 confirm the high

accuracy of the v3a soil moisture as compared to the v3b data set (significantly better correlations are obtained in 55 % of the

individual sites), and the higher performance of GLEAM v3 over the previous version (v2), with the number of significantly15

better correlations being similar as for the regular correlations.

4.1.2 Impact of the data assimilation system

The left-hand side panel in Fig. 5 shows the differences in the correlations against the in situ measurements when data assim-

ilation of satellite soil moisture is included in GLEAM v3 versus when it is not (i.e. model open loop). As more than 75%

of soil moisture validation sites are located in the CONUS, only the results for this region are shown here. For the v3a data20

set, the assimilation of the CCI soil moisture has a rather neutral to negative impact on the modelled soil moisture states of

the first model layer. Generally, correlations are decreasing (red colour) after assimilation in very dry (e.g. West Coast of the

CONUS) and forested regions (e.g. East Coast of the CONUS). This decrease is statistically significant in about 10 % of the in

situ soil moisture sites, while a neutral effect is obtained at the majority of the sites (89 %). In regions of limited topography

and dominated by sparse vegetation (e.g. Great Plains), the quality of the modelled soil moisture is slightly improving (blue25

colour). For the v3b and v3c datasets, the assimilation of satellite-derived soil moisture (ESA CCI v2.3 in v3b and SMOS L3 in

v3c) has – in general – a more pronounced and positive impact (blue colour) on the modelled soil moisture, especially in areas

such as the Great Plains. The latter can be expected given the higher quality of microwave soil moisture retrievals in regions

with low vegetation cover (Dorigo et al., 2015).

The negative impact of assimilating satellite observations of surface soil moisture in the v3a data set is partly explained by30

the high quality of the GLEAM open-loop soil moisture compared to the quality of the satellite-based soil moisture data set

(ESA CCI SM v2.3): correlations are significantly better for the open loop in 73 % of the individual sites. The high quality of

the model open loop in these regions is largely due to the accuracy of the MSWEP precipitation forcing in the CONUS domain;

this is illustrated in the central panel in Fig. 5, where difference maps between the correlations against in situ measurements
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of the satellite soil moisture observations and the three open-loop data sets are shown. A clearly higher quality of the model

open-loop soil moisture in terms of correlations is highlighted for regions such as the East and West coasts of the CONUS

(red colour), and similar patterns are obtained for the ubRMSD (not shown). In those regions, the assimilation of satellite

soil moisture may decrease model performance, especially in case of the v3a, where differences are more pronounced (see

correspondence to left panel in Fig. 5). For the v3b and v3c data sets, the difference in quality between satellite soil moisture5

and open loop is lower (the model open loop is significantly better in 55 % and 25 % of the in situ sites for the v3b and

v3c datasets, respectively). Moreover, the difference in correlations becomes even positive in regions with low vegetation (see

central panels in Fig. 5), pointing to the higher quality of the satellite-based soil moisture observations as compared to the

model estimates in those areas (e.g. the Great Plains). These maps point again to the above-mentioned lower quality of the

v3b and v3c precipitation forcing in those regions (TMPA 3B42v7 compared to MSWEP). The subtle differences between the10

validation results for the v3b and v3c data sets relate to the different quality of the CCI and SMOS soil moisture observations,

respectively, bearing in mind the different study period and number of in situ stations used in their validation. Analogous results

for anomaly time series are summarised in Fig. 6 and point to the same conclusions as drawn from Fig. 5.

Finally, it may be argued that differences in quality between the satellite-derived and modelled soil moisture should reflect

in the TCA-based quality factor (γ) used in the data assimilation algorithm (see Sect. 2.2.2). As outlined in Sect. 2.2.2, the15

quality factor used in the Newtonian Nudging algorithm is estimated on a yearly basis by applying a TCA on the soil moisture

anomalies of three independent data sets. Based on Eq. 4 it can be seen that values of γ below (above) 0.5 point to a lower

(higher) model error relative to the observation error. The multi-year average quality factor for each of the three data sets is

shown in the right-hand side panel in Fig. 5. Spatial patterns in these maps agree well with the ones observed in the central maps,

reflecting the ability of the TCA to capture the relative errors of modelled and observed surface soil moisture. Nonetheless,20

despite the overall low quality factors for the v3a data set (i.e. γ rarely exceeds 0.3) – which reflects the higher error of the

observed soil moisture relative to the model open loop – a decrease in quality is often observed when this soil moisture data

set is assimilated into GLEAM v3a (see above discussion). As expected, the quality factors for the v3b and v3c data sets are

higher and exceed 0.5 in some low-vegetated regions, indicating again the higher quality of the satellite-based soil moisture

observations as compared to the model open loop in these areas. Nevertheless, our simple Newtonian Nudging data assimilation25

system is still assumed to correct for random forcing errors, and other potential effects such as irrigation, that are not explicitly

modelled in GLEAM.

4.2 Validation of evaporation

4.2.1 Accuracy of evaporation estimates

Table 4 lists the validation statistics for the different evaporation data sets. In contrast to the results of the soil moisture valida-30

tion exercise (Tables 2 and 3), differences between the three data sets are less pronounced. For the overlapping period 2011–

2015 and the common sample of sites, an average correlation of approximately 0.78 and a similar ubRMSD of 0.71 mm day−1

is obtained for all three data sets. In addition, differences are only significant at the 10% significance level in two in situ sta-
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tions. Analogous statistical inferences for the validation of GLEAM v2 are shown between brackets and differ only slightly

from the ones calculated for the data sets obtained using the new model version. At the majority of sites, no statistcal signifcant

difference in R is obtained. Figure 7 shows maps of the differences in correlation against the in situ measurements for the

v3 and v2 data sets. Given the low number of in situ sites, no clear conclusions on geographical patterns can be drawn. Over

Continental Australia, GLEAM v3 performs generally better, except for the v3c data set, where for some sites a deterioration5

of the results is shown when compared to the corresponding v2c. However, as the validation database for the latter contains a

significantly lower number of measurements, due to the shorter time period, it may be less representative of the overall quality

of the data set. Correlations for the anomaly time series are listed in Table 5 and confirm the above conclusions.

As an example, Fig. 8 shows time series of GLEAM and in situ measured evaporation for two validation sites, i.e. US-Ne3

(Great Plains, see Table A1) at the left-hand side and AU-ASM (central Australia, see Table A1) at the right-hand side. While10

for the first site the performance of GLEAM v3 tends to be lower, statistics are improving for the second site with respect to the

previous version of the model. Overall, time series show a good correspondence between model and in situ measurements. For

US-Ne3, correlations drop from 0.82 (v2a) and 0.83 (v2b) to 0.78 (v3a) and 0.77 (v3b); on the other hand, for the SMOS-based

data sets (v2c and v3c), correlations increase from 0.73 to 0.76. Analogous differences are obtained in terms of ubRMSD.

Despite the apparent decrease in quality for the v3 data sets, the time series shown for US-Ne3 illustrate that the estimates of15

evaporation are realistic and have no systematic errors. For AU-ASM, correlations consistently improve for all three data sets

from 0.84 (v2a), 0.84 (v2b) and 0.78 (v2c) to 0.88 (v3a), 0.88 (v3b) and 0.84 (v3c), and similar improvements are obtained for

the ubRMSD. Time series at the right-hand side of Fig. 8 show that the better results are mainly explained by the improved

estimates of the evaporative flux during the dry season. For these periods, GLEAM v3 estimates lower volumes of evaporation,

resulting in a closer agreement with the in situ measurements; although most of these differences are not statistically significant.20

This is mainly related to the new drainage formulation, which allows a faster dry-out during precipitation-free periods, leading

to an increase in evaporative stress. Additionally, the new drainage algorithm also yields less extreme evaporation peaks after

precipitation events, since the faster drainage implies that the soil profile requires stronger precipitation events to saturate.

Results for AU-ASM indicate that these evaporation patterns are realistic under conditions of water stress, yet caution may be

taken when extrapolating these findings to other climatic and ecological regimes.25

4.2.2 Global magnitude and variability of terrestrial evaporation

The top row in Fig. 9 presents the mean annual evaporation from the v3a (left) and a difference map with v2a (right). Analogous

results are obtained for the v3b and v3c data sets, but are excluded for simplicity. As expected, the general climatic patterns of

evaporation appear realistic, and are comparable to those reported by Miralles et al. (2016a) and McCabe et al. (2016), based

on a range models and different forcing data. Differences in the annual totals between v3a and v2a amount to 100 mm y−1 in30

several regions, with overall less evaporation in areas covered by short vegetation and more evaporation in deserts and tropical

regions. The total continental evaporation (excluding inland water bodies) amounts to 66·103 km3 (v3a) versus the 68·103 km3

from the previous version (v2a); these numbers agree well with previously reported values from a range of independent sources

– see Miralles et al. (2016a) and references therein.
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The remaining maps in Fig. 9 show the partitioning of GLEAM evaporation into its different components, i.e. forest inter-

ception loss, transpiration and bare soil evaporation. Note that for illustrative purposes only and to ease comparison to previous

literature (Miralles et al., 2016a), the estimated sublimation is added to the bare soil flux and the evaporation from inland

waters (open-water evaporation) is not considered here. Averaged over the entire land surface, approximately 74% of the total

flux of water from land into the atmosphere is coming from transpiration, 15% comes from bare soil evaporation and about5

11% is the result of interception loss; for the v2a data set, 80%, 8% and 12% are obtained, respectively. These discrepancies

are also evidenced in the difference maps shown in the right-hand side panel in Fig. 9. It can be seen that almost across the

entire globe the bare soil evaporation is higher in the v3a data set; only for some drier regions such as the Namibian desert,

central Australia and parts of Chile, the bare soil evaporation is decreased. In contrast, transpiration typically increases in these

areas. As shown, the total flux of interception loss is generally lower in the new version, except for some parts of Amazonia,10

Eastern China and CONUS where a clear increase may be observed. All these differences are the result of the modified stress

functions, but – more importantly – of the new (high-resolution) land cover fractions used in GLEAM v3 which report an over-

all larger fraction of bare soils over the continents. The higher contribution of bare soil evaporation and the lower volumes of

transpiration, especially in semi-arid regions like the Sahel, result in closer agreement with the partitioning obtained from other

data sets (Wang et al., 2014; Schlesinger and Jasechko, 2014; Miralles et al., 2016a; Good et al., 2015). Nonetheless, Miralles15

et al. (2016a) recently raised awareness about the use of satellite-based evaporation algorithms to assess the contribution from

different evaporation components, and suggested to avoid the use of any single model in isolation due to the large differences

found in inter-model comparisons.

5 Conclusions

The available range of satellite-observable geophysical variables that relate to the process of evaporation – such as soil moisture,20

air temperature and net radiation – is continuously growing and the quality of these datasets is constantly improving. As a

result, models aiming at the accurate estimation of terrestrial evaporation from satellite observations need to be updated to

optimally incorporate these new data. Concurrently, as our knowledge of the relevant physical processes advances based on

new experimental evidence, these simple retrieval models should aim to increase their realism. With the overarching goal of

improving our understanding of continental evaporation, a next version of the Global Land Evaporation Amsterdam Model25

(GLEAM v3) – a set of algorithms dedicated to the estimation of global terrestrial evaporation from satellite data – is presented

in this paper. Three major modifications are included: (1) a revised representation of the evaporative stress, (2) an optimized

water-balance module, and (3) a new soil moisture data assimilation strategy. Using GLEAM v3, three novel data sets of root-

zone soil moisture and terrestrial evaporation are presented. The first data set (v3a) spans the 36-year period 1980–2015, has

a global coverage, and is produced using satellite-observed soil moisture, vegetation optical depth and snow water equivalent,30

reanalysis air temperature and radiation, and a multi-source precipitation product. The remaining two data sets (v3b and v3c)

are produced using satellite-based forcing only, with their difference being the use of SMOS-based VOD and soil moisture
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(v3c), as opposed to the corresponding CCI forcing (v3b). Both data sets are quasi-global (50◦N–50◦S) and span 2003–2015

for v3b, and 2011–2015 for v3c.

Results based on the validation of these three data sets against an extensive set of in situ measured evaporation and soil

moisture point to a slightly higher quality of the v3a soil moisture data set as compared to the other two data sets, while the

quality of the modelled evaporation is rather similar across all three. The higher accuracy of the v3a soil moisture is explained5

by the high quality of the MSWEP precipitation forcing over the regions where soil moisture probes are located, compared to

the satellite-based forcing in the v3b and v3c data sets. Results, however, might be biased given that the vast majority (i.e. more

than 75%) of the in situ soil moisture sites are located in the CONUS, where gauge-based precipitation products are known

to outperform sattelite products (Beck et al., 2016). Finally, the quality of the new v3 data sets is also compared to analogous

data sets obtained using GLEAM v2. For the soil moisture, the modifications in GLEAM result in a consistent improvement10

across the vertical profile. These improvements mainly relate to the optimized drainage algorithm and the new data assimilation

system, which allow a more realistic representation of the downward flux of water through the soil profile. On the other hand,

the increased quality of the evaporation data is not revealed unambiguously by the in situ validation, likely hampered by the

low availability of validation sites. It is illustrated that, on average, the performance of GLEAM v3 is comparable to that

of the former version. The partitioning of terrestrial evaporation into its different components shows an increase in bare soil15

evaporation almost in every continental region, while interception loss generally decreases, and transpiration increases for

some dry regions such as the Namibian desert and Central Australia. These results are related to the static data set describing

the land cover fractions per pixel, which is also updated in GLEAM v3.

Based on the results in this study, it can be concluded that the modifications in GLEAM have led to a more realistic repre-

sentation of physical processes and an overall increased quality of the data sets, particullary in the case of the root-zone soil20

moisture. Following the advances in satellite technology and the increased availability of new data, GLEAM will be further op-

timized in coming years. Current activities concentrate on the incorporation of new constraints on evaporation, the application

of GLEAM to higher resolutions and near-real time, and the improved partitioning of evaporation into its different components.

Meanwhile, the data sets of terrestrial evaporation and root-zone soil moisture presented in this study have been made available

for studies of hydrological cycle dynamics and climate model benchmarking using www.GLEAM.eu as gateway.25

6 Code and data availability

The model code of GLEAM v3 is available upon request from the corresponding author. Datasets described in this paper can

be freely accessed from www.GLEAM.eu.
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Appendix A: In situ eddy-covariance sites

Table A1. List of the FLUXNET sites used in this study together with their FLUXNET code (ID), IGBP land cover (LC) and official

reference (or principal investigator (PI)).

ID LC Reference/PI ID LC Reference/PI ID LC Reference/PI

AT-Neu GRA George Wohlfahrt CN-HaM GRA Kato et al. (2006) US-ARM CRO Fischer et al. (2007)

AU-ASM ENF Cleverly (2011) CN-Qia ENF Huimin Wang US-ARb GRA Margaret Torn

AU-Cpr SAV Calperum Tech (2013) CZ-BK1 ENF Marian Pavelka US-ARc GRA Margaret Torn

AU-DaP GRA Beringer (2013a) CZ-BK2 GRA Marian Pavelka US-Blo ENF Goldstein et al. (2000)

AU-DaS SAV Beringer (2013c) CZ-wet WET Marian Pavelka US-Cop GRA David Bowling

AU-Dry SAV Beringer (2013b) DE-Geb CRO Antje Moffat US-GLE ENF Arain and Restrepo-Coupe (2005)

AU-Emr GRA Schroder (2014) DE-Gri GRA Christian Bernhofer US-Goo GRA Tilden Meyers

AU-GWW SAV Macfarlane (2013) DE-Hai DBF Knohl et al. (2003) US-Ha1 DBF Goulden et al. (1996)

AU-RDF WSA Beringer (2014b) DE-Kli CRO Christian Bernhofer US-Ivo WET McEwing et al. (2015)

AU-Rig GRA Beringer (2014a) DE-Lkb ENF Rainer Steinbrecher US-LWW GRA Twine et al. (2000)

AU-Stp GRA Jason Beringer DE-Lnf DBF Alexander Knohl US-MMS DBF Schmid et al. (2000)

AU-TTE OSH Jason Beringer DE-Obe ENF Christian Bernhofer US-Me2 ENF Campbell and Law (2005)

AU-Ync GRA Beringer (2013d) DE-RuR GRA Borchard et al. (2015) US-Me3 ENF Bond-Lamberty et al. (2004)

BE-Bra MF Ivan Janssens DE-Seh CRO Karl Schneider US-Me5 ENF Irvine et al. (2004)

BE-Lon CRO Moureaux et al. (2006) DE-Tha ENF Christian Bernhofer US-Me6 ENF Ruehr et al. (2012)

BE-Vie MF Aubinet et al. (2001) FI-Hyy ENF Timo Vesala US-NR1 ENF Arain and Restrepo-Coupe (2005)

BR-Sa3 EBF Steininger (2004) FI-Sod ENF Tuomas Laurila US-Ne1 CRO Simbahan et al. (2006)

CA-Gro MF McCaughey et al. (2006) FR-Fon DBF Bazot et al. (2013) US-Ne2 CRO Amos et al. (2005)

CA-NS7 OSH Bond-Lamberty et al. (2004) FR-Gri CRO Pierre Cellier US-Ne3 CRO Verma et al. (2005)

CA-Obs ENF Bond-Lamberty et al. (2004) IT-Col DBF Giorgio Matteucci US-Oho DBF Noormets et al. (2008)

CH-Cha GRA Shijie Han IT-La2 ENF Alessandro Cescatti US-PFa MF Richardson et al. (2006)

CH-Dav ENF Lukas Hoertnagl IT-Lav ENF Damiano Gianelle US-SRC OSH Shirley Kurc

CH-Fru GRA Zeeman et al. (2010) IT-MBo GRA Damiano Gianelle US-SRG GRA Biederman et al. (2016)

CH-Oe1 GRA Christof Ammann IT-PT1 DBF Günther Seufert US-SRM WSA Scott et al. (2009)

CH-Oe2 CRO Christof Ammann IT-Ren ENF Stefano Minerbi US-Ton WSA Chen et al. (2007)

CN-Cha MF Shijie Han IT-Tor GRA Galvagno et al. (2013) US-Var GRA Ma et al. (2007)

CN-Cng GRA Gang Dong RU-Fyo ENF Milyukova et al. (2002) US-WCr DBF Cook et al. (2004)

CN-Dan GRA Shi Peili SD-Dem SAV Ardö et al. (2008) US-Whs OSH Scott (2010)

CN-Din EBF Guoyi Zhou US-AR1 GRA David Billesbach US-Wkg GRA Scott et al. (2010)

CN-Du2 GRA Chen Shiping US-AR2 GRA David Billesbach ZA-Kru SAV Bob Scholes

CN-Ha2 WET Yingnian Li
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Figure 1. Schematic of the four modules of GLEAM.

Table 1. List of the selected forcing data sets together with their references, the original spatial resolution and period of availability. The first

column indicates the use of these data in GLEAM.

Data set Variable Data set Type Resolution Period References

v3b,c Radiation CERES L3SYN1DEG Satellite 1◦ 2001–2015 Wielicki (1996)

v3a ERA-Interim Reanalysis 0.75◦ 1979–2015 Dee et al. (2011)

v3b,c Precipitation TMPA 3B42v7 Merge 0.25◦ 1998–2015 Huffman et al. (2007)

v3a MSWEP v1.0 Merge 0.25◦ 1979–2015 Beck et al. (2016)

v3b,c Air Temperature AIRS L3RetStdv6.0 Satellite 1◦ 2003–2015 Aumann et al. (2003)

v3a ERA-Interim Reanalysis 0.75◦ 1979–2015 Dee et al. (2011)

v3a,b,c Snow Water GLOBSNOW L3av2 + Satellite 0.25◦ 1980–2015 Luojus et al. (2013)

Equivalent NSIDC v0.1 Armstrong et al. (2005)

v3c VOD SMOS-LPRM Satellite 25 km 2011–2015 van der Schalie et al. (2015, 2016)

v3a,b CCI-LPRM Satellite 0.25◦ 1980–2012 Liu et al. (2011, 2013)

v3c Soil Moisture SMOS L3 Satellite 25 km 2010–2015 Jacquette et al. (2010)

v3a,b ESA CCI SM v2.3 Satellite 0.25◦ 1978–2015 Liu et al. (2012); Wagner et al. (2012)

v3a,b,c GLDAS Noah Reanalysis 1◦ 1980–2015 Rodell et al. (2004)

v3a,b,c Cover Fractions MOD44B v51 Satellite 250 m static Hansen et al. (2005)

v3a,b,c Soil Properties IGBP-DIS Survey 0.25◦ static Global Soil Data Task Group (2000)

v3a,b,c Lightning Frequency LIS/OTD Satellite 5 km static Mach et al. (2007)
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Figure 2. Schematic of the water-balance module implemented in GLEAM v3 for the fraction of tall vegetation. w(l) (m3 m−3) is the

volumetric soil moisture content of layer l, F (l)
s (mm/day) is the slow draining volume of water, F (l)

f (mm/day) is the fast draining volume

of water, E(l) (mm/day) is the evaporative flux, P (mm/day) is the net precipitation, wwp (m3 m−3) is the wilting point and wp (m3 m−3) is

the porosity.
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Figure 3. Illustration of the stress function implemented in GLEAM v3 for the fractions of short and tall vegetation (colours relate to the

VOD). Left-hand side: pixel with high range in VOD (VODmax = 0.47, VODmin = 0.27); right-hand side: pixel with small range in VOD

(VODmax = 0.40, VODmin = 0.38). For illustrative purposes only, the wilting point and the critical soil moisture for both figures were set

to 0.1 and 0.5 m3 m−3, respectively.

Table 2. Average validation statistics for the different soil moisture data sets (v3a, v3b and v3c) and for the first two model layers (w(1) and

w(2)) against in situ measurements: ubRMSD is the unbiased root mean square difference, R is the correlation and N is the number of sites

included in the sample. The first part of the table reports the averaged statistics over all available sites and the entire study period, while the

second part shows the same statistics for a common sample of sites, and an overlapping study period (2011–2015) for the three data sets. The

same statistics for the data sets produced using GLEAM v2 are reported between brackets.

Data set Layer Complete record Overlap period

N ubRMSD R N ubRMSD R

[–] [m3 m−3] [–] [–] [m3 m−3] [–]

v3a w(1) 1119 0.059 (0.060) 0.64 (0.61) 777 0.057 (0.062) 0.67 (0.62)

w(2) 1216 0.048 (0.051) 0.53 (0.47) 746 0.048 (0.054) 0.51 (0.44)

v3b w(1) 1038 0.061 (0.063) 0.61 (0.58) 777 0.060 (0.063) 0.62 (0.58)

w(2) 1129 0.049 (0.052) 0.49 (0.42) 746 0.049 (0.054) 0.49 (0.42)

v3c w(1) 785 0.059 (0.063) 0.63 (0.58) 777 0.060 (0.062) 0.63 (0.59)

w(2) 754 0.048 (0.052) 0.49 (0.42) 746 0.049 (0.052) 0.49 (0.44)
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Figure 4. Difference in quality between the v3 and v2 data sets of surface soil moisture (R(GLEAM v3, in situ)−R(GLEAM v2, in situ)).

Colours relate to the difference in correlations against in situ measurements for the v3 and v2 surface soil moisture data sets. Statistics are

calculated based on all available sites reporting measurements falling within the spatio-temporal domain of the different data sets. Maps at

the right show a detailed overview of the results for the CONUS.

Table 3. Average anomaly correlations for different soil moisture data sets (v3a and v3b) and for the first two model layers (w(1) and w(2))

against in situ measurements: Ran is the anomaly correlation and N is the number of sites included in the sample. The first part of the

table reports the averaged statistics over all available sites and the entire study period, while the second part shows the same statistics for a

common sample of sites, and an overlapping study period (2004–2015) for the two data sets. The same statistics for the data sets produced

using GLEAM v2 are reported between brackets.

Data set Layer Complete record Overlap period

N Ran N Ran

[–] [–] [–] [–]

v3a w(1) 515 0.54 (0.52) 455 0.55 (0.53)

w(2) 714 0.49 (0.45) 622 0.48 (0.45)

v3b w(1) 455 0.48 (0.47) 455 0.48 (0.48)

w(2) 623 0.43 (0.40) 622 0.42 (0.40)
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Figure 5. Impact of the data assimilation system in GLEAM v3 on the surface soil moisture for the CONUS. Left-hand side figures show

the difference in correlations against in situ measurements for the GLEAM v3 surface soil moisture data sets with and without (open

loop) the assimilation of satellite-derived soil moisture (R(DA, in situ)−R(OL, in situ)). Maps in the central panel show the difference

in correlations against in situ measurements for the satellite-derived soil moisture data sets and the v3 soil moisture data sets without data

assimilation (R(SAT, in situ)−R(OL, in situ)). Maps at the right show the quality factor γ calculated in the data assimilation system. The

latter balances both the model and observation errors, with values above (below) 0.5 indicating a lower (higher) error in the observations

relative to GLEAM.
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Figure 6. Impact of the data assimilation system in GLEAM v3 on the surface soil moisture for the CONUS. Left-hand side figures show

the difference in anomaly correlations against in situ measurements for the GLEAM v3 surface soil moisture data sets with and without

(open loop) the assimilation of satellite-derived soil moisture (Ran(DA, in situ)−Ran(OL, in situ)). Maps in the central panel show the

difference in anomaly correlations against in situ measurements for the satellite-derived soil moisture data sets and the GLEAM v3 soil

moisture data sets without data assimilation (Ran(SAT, in situ)−Ran(OL, in situ)). Maps at the right show the quality factor γ calculated

in the data assimilation system. The latter balances both the model and observations errors, with values above (below) 0.5 indicating a lower

(higher) error in the observations relative to GLEAM.
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Figure 7. Difference in quality between the v3 and v2 data sets of terrestrial evaporation (R(GLEAM v3, in situ)−

R(GLEAM v2, in situ)). Colours relate to the difference in correlations against in situ measurements for the v3 and v2 evaporation data

sets. Statistics are calculated based on all available sites reporting measurements falling within the spatio-temporal domain of the different

data sets.
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Figure 8. Time series of GLEAM and in situ measured evaporation for two in situ validation sites: US-Ne3 (left) and AU-ASM (right).

Table 4. Average validation statistics for the different evaporation data sets (v3a, v3b and v3c) against in situ measurements: ubRMSD is

the unbiased root mean square difference, R is the correlation and N is the number of sites included in the sample. The first part of the

table reports the averaged statistics over all available sites and the entire study period, while the second part shows the same statistics for a

common sample of sites, and an overlapping study period (2011–2015) for the three data sets. The same statistics for the data sets produced

using GLEAM v2 are reported between brackets.

Data set Complete record Overlap period

N ubRMSD R N ubRMSD R

[–] [mm day−1] [–] [–] [mm day−1] [–]

v3a 91 0.72 (0.73) 0.81 (0.81) 41 0.71 (0.71) 0.79 (0.78)

v3b 63 0.75 (0.76) 0.80 (0.80) 41 0.71 (0.72) 0.78 (0.78)

v3c 44 0.74 (0.75) 0.78 (0.78) 41 0.71 (0.73) 0.78 (0.78)
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Figure 9. Global maps of terrestrial evaporation (top row) and the partitioning in its different components, i.e. forest interception loss (second

row), transpiration (third row) and bare soil evaporation (bottom row) for the v3a data set. On top, the multi-annual total flux of evaporation

for the v3a data set (left) and the difference with the v2a data set (right) are shown. The other maps show the percentage of the total flux in

the v3a data set coming from the different components (left) and the difference with the same maps for the v2a data set (right).

Table 5. Average anomaly correlations for different evaporation data sets (v3a and v3b) against in situ measurements: Ran is the anomaly

correlation and N is the number of sites included in the sample. The first part of the table reports the averaged statistics over all available

sites and the entire study period, while the second part shows the same statistics for a common sample of sites, and an overlapping study

period (2004–2015) for the two data sets. The same statistics for the data sets produced using GLEAM v2 are reported between brackets.

Data set Complete record Overlap period

N Ran N Ran

[–] [–] [–] [–]

v3a 53 0.42 (0.41) 34 0.41 (0.40)

v3b 35 0.46 (0.45) 34 0.43 (0.43)
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