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Abstract. Currently, atmospheric chemistry and transport models (CTMs) used to assess impacts of air quality applied at a 

European scale lack the spatial resolution necessary to simulate fine-scale spatial variability. This spatial variability is 

especially important for assessing the impacts to human health or ecosystems of short-lived pollutants, such as nitrogen 

dioxide (NO2) or ammonia (NH3). In order to simulate this spatial variability, a sub-grid model has been developed to 15 

estimate the spatial distributions (at a spatial resolution of 1 × 1 km
2
) of annual mean atmospheric concentrations within the 

grid squares of a CTM (in this case with a spatial resolution of 50 × 50 km
2
). This is done by combining high spatial 

resolution emission data with simple parameterisations of atmospheric dispersion. The sub-grid model was tested for two 

European sub-domains (the Netherlands and central Scotland) and evaluated using NO2 and NH3 concentration data from 

monitoring networks within each domain. A statistical comparison of the performance of the two models shows that the sub-20 

grid model represents a substantial improvement on the predictions of the CTM, reducing both mean model error (from 60% 

to 40% for NO2 and from 42% to 26% for NH3 and increasing the spatial correlation (r) with the measured concentrations 

(from 0.0 to 0.42 for NO2 and from 0.74 to 0.85 for NH3). This improvement was greatest for monitoring locations close to 

pollutant sources. Although the model ideally requires high spatial resolution emission data, which is not available for the 

whole of Europe, the use of a Europe-wide emission dataset with a lower spatial resolution also gives an improvement on the 25 

CTM predictions for the two test domains. The sub-grid model provides a simple and robust method to estimate sub-grid 

variability that can potentially be extended to different time scales and pollutants.   
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1 Introduction 

The impacts of air pollution on human health and natural ecosystems are often evaluated using data from atmospheric 

dispersion models or atmospheric chemistry and transport models (CTMs). The scale of these evaluations ranges from local 

assessments with domains of several kilometres (e.g. Dragosits et al., 2002, Aggarwal and Jain, 2015, Galvis et al., 2015) to 

global assessments using grid cells of 1–10 degrees (see for example Dentener et al., 2006). The spatial resolution used in 5 

these assessments depends on many factors, including availability of input data, model assumptions, receptor type (e.g. 

people, forests, etc) and computation time. Many of the impact assessments at a European scale are carried out using 

atmospheric concentration or deposition predictions of the model developed by the Meteorological Synthesizing Centre-

West (MSC-W) of the European Monitoring and Evaluation Programme (EMEP). The EMEP MSC-W model (Simpson et 

al., 2012), called the EMEP model hereafter, has commonly been applied for policy purposes at a spatial resolution of ca. 50 10 

× 50 km
2
 (e,g. Fagerli and Aas, 2008, Simpson et al., 2006). Although the model is increasingly used at even finer resolution 

(e.g. 0.1 × 0.1 degrees) even for official MSC-W purposes (EMEP, 2015), such runs are extremely CPU intensive for 

European-scale modelling, and cannot be used for the 100s–1000s of simulations required by the source-receptor matrices 

which are an important output of MSC-W (EMEP, 2015).  EMEP model results also underpin the Greenhouse gas - Air 

pollution Interactions and Synergies (GAINS) model, which is a key tool in developing European policy within both UN-15 

ECE and the European Union (Amann et al., 2011).  However, the resolution of the EMEP model (or any other European 

scale CTM), at least when run in typical policy mode, is not currently high enough to resolve the large horizontal 

concentration gradients found close to sources of relatively short-lived pollutants, such as ammonia (NH3), nitrogen dioxide 

(NO2) or sulphur dioxide (SO2) (CLRTAP, 2014; Denby et al., 2011).   

The EMEP model predicts the mean atmospheric concentration within each grid square. However, within a grid square there 20 

may be concentrations an order of magnitude (or more) above and below this mean value, even if the mean prediction is 

correct.  Neglecting this sub-grid variability (SGV) can strongly bias assessments of air pollution impacts.  For example, 

Denby et al. (2011) estimated that urban background exposure to NO2 is underestimated by an average of 44% when the 50 

× 50 km
2
 grid concentrations of the EMEP model are used.  This problem is not restricted to the low grid resolution used by 

the EMEP model, it also occurs in assessments with higher resolutions.  For example, Hallsworth et al. (2010) used a CTM 25 

to estimate NH3 concentrations in the UK at spatial resolutions of 5 × 5 km
2
 and 1 × 1 km

2
.  They found that the 5 km model 

estimated that the NH3 critical level of 1 ug m
-3

 was exceeded for 40% of the total area of UK Special Areas of Conservation 

(SAC), whereas the 1 km model estimated an exceedance for only 21%.  This reduction in the area of exceedance when the 

model resolution was increased was due to the ammonia sources (agricultural areas) and the SAC being separated spatially.  

Modelling at a higher resolution resolved the large horizontal concentration gradients better, thus predicting higher 30 

concentrations in the agricultural areas and lower concentrations within the SAC.  By contrast, Oxley and ApSimon (2007) 

found that increasing the model spatial resolution from 50 km to 5 km and from 5 km to 1 km increased the estimates of 

exposure to primary particles with a diameter of 10 µm or less (PM10) in urban areas.  This is because in this case the urban 
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areas are also some of the largest sources of primary PM10. A multi-model study involving five CTMs to simulate pollutant 

concentrations across Europe found a large increase in annual mean concentration predictions of PM10 and NO2 in urban 

locations when increasing the spatial resolution through the range 56, 28, 14 and 7 km (Cuvelier et al., 2013; Schaap et al., 

2015). For most of the models, about 70% of the model response to the change of resolution was due to the change in the 

spatial distribution of emissions. By comparing the concentration predictions in urban areas with measured values, model 5 

performance (slope, bias and correlation) was generally found to improve for all models as the resolution was increased.  In 

order to resolve the large horizontal concentration gradients found in urban areas, Cuvelier et al. (2013) suggested that a 

resolution of a few km down to one km would be needed, but added that this is not currently feasible for application across 

Europe. However, even this might not be sufficient for resolving the large horizontal concentration gradients of NO2, for 

example. 10 

Several potential methods could be used to estimate the SGV of the concentration predictions of short-lived air pollutants 

across Europe.  Firstly, the EMEP model could be applied at a higher resolution. This has been done in the UK for a 

resolution of 5 × 5 km
2
 (EMEP4UK) (Vieno et al., 2010; Vieno et al., 2014), and for Europe at ca. 7 × 7 km

2
 (Schaap et al., 

2015, EMEP, 2015), but such runs are extremely CPU demanding. A European application at 1 × 1 km
2
 resolution or higher 

is currently not feasible. Such runs would also require a consistent and accurate high resolution emission dataset, which is 15 

not currently available. A second solution is the ‘stitching together’ of national modelling simulations at a high resolution 

(see, for example, de Smet et al., (2013); Janssen and Thunis, 2016).  This approach has the advantage of making use of 

national expertise and emission and meteorological datasets.  However, the disadvantages are that it is likely to lead to 

‘border effects’ as a result of differing methodologies and/or input datasets used by neighbouring countries and results may 

not be available for all countries, making it difficult to carry out a consistent assessment for the whole of Europe.  The third 20 

solution is to apply geo-statistical techniques to the low resolution concentration data (e.g. from the EMEP model) that 

makes use of other relevant spatial datasets.  These techniques can be used to either estimate the probability distribution of 

the concentration (or a related quantity) within each grid square or to explicitly estimate the spatial distribution of the 

concentration within the grid square.  An example of the former approach is that of Denby et al. (2011) who estimated the 

population-weighted concentrations of NO2, PM10 and O3 within each EMEP 50 × 50 km
2
 grid square using information on 25 

measured concentrations and their covariance with population density, that was then parameterised using emission and 

altitude data.  Another example is the SGV parameterisation of Ching et al. (2006) for the CMAQ model based on sub-grid 

concentration distributions of benzene and formaldehyde calculated using the ISCST3 short-range dispersion model. The 

same CMAQ simulations were used by Isakov et al. (2007) to develop a method to explicitly model the sub-grid spatial 

distributions of concentrations at a resolution of 200 × 200 m
2
. Their method used relationships between the sub-grid 30 

concentrations and sub-grid emission strengths derived from short-range dispersion modelling results, although it was only 

applied to a small area (Philadelphia County).  A different geo-statistical approach was used by Janssen et al. (2012), in 

which they estimated sub-grid concentrations for Belgium by using empirical relationships between long-term atmospheric 

concentrations and land use characteristics. A Europe-wide approach was developed for NO2 and particulate matter by 
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Kiesewetter et al. (2013 and 2014), although only at a resolution of 7 × 7 km
2
.  In their work, concentrations simulated by 

the EMEP model at a resolution of 28 × 28 km
2
 were disaggregated using an ‘urban increment’.  This increment was 

calculated from the concentration predictions of the CHIMERE model (Bessagnet et al., 2004) at a resolution of 7 × 7 km
2
.  

The relationship between the differences in the concentration predictions of the two models and the emission rate (from near-

ground-level sources only) used for each 7 km grid square was used to calculate the urban increment. Model evaluation 5 

using annual mean concentrations from more than 1500 urban background monitoring stations showed that the model can 

predict concentrations within a factor of two of the measured value for most locations.  The authors also developed a 

parameterisation to estimate the additional concentration increment at the locations of roadside air quality stations, although 

this approach relies heavily on measurement data. 

In this paper we present the development, testing and evaluation of a simple sub-grid model that combines high-spatial-10 

resolution emission data and a simple parameterisation of short-range dispersion to estimate the spatial distribution of 

concentrations of short-lived pollutants within the EMEP model grid squares.  The sub-grid model is used to calculate the 

annual mean concentrations of NO2 and NH3 for 2008 at a resolution of 1 × 1 km
2
 for two test domains (central Scotland and 

the Netherlands) and evaluated using monitoring network data from within the two domains. Section 2 provides information 

on the methods and datasets used and Section 3 describes the model development process.  Section 4 presents the results of 15 

the sub-grid modelling, model evaluation and an analysis of the sensitivity of the model to some of the parameters and 

datasets used whilst Section 5 discusses model performance, its applicability, and potential improvements and extensions. 

2 Materials and Methods 

The two domains used in this study are central Scotland and the Netherlands (Fig. 1).  These domains were chosen because 

they provide a contrast between a built-up, industrialised and agricultural region (the Netherlands) and a region with both 20 

large cities, intensive industrial and agricultural areas as well as more extensively used or semi-natural areas (central 

Scotland).  Both domains also have NH3 and NOx emission inventory data at a ca. 1 × 1 km
2
 resolution. Spatially distributed 

annual NH3 and NOx emission data for the study year (2008) were obtained from the National Atmospheric Emissions 

Inventory (http://naei.defra.gov.uk/) for the Scottish domain and from the National Institute for Public Health and the 

Environment (RIVM), for the Netherlands (Fig. 1).  In order to evaluate the sub-grid model for an emission dataset with a 25 

lower spatial resolution that could be used for a Europe-wide application of the sub-grid model, the 2008 ‘EC4MACS’ 

emissions with a spatial resolution of ca. 7 × 7 km
2
 (EC4MACS, 2012, also used in Schaap et al., 2015) were also used for 

the two domains. 

Meteorological data used to develop the sub-grid model were taken from the Lyneham meteorological station in the UK for 

1995 (LYNE95) (Spanton et al., 2004), which was a fairly typical year with regards to mean air temperature and wind speed.  30 

Although an arbitrary choice, this dataset was chosen because it has been used in various model evaluation studies and has 

been made freely available to the dispersion modelling community (e.g. Hall et al., 2000; Theobald et al., 2012).  In order to 
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make the dataset less location-specific (LYNE95mod) the wind direction data were randomised and the wind speed was 

scaled so that the annual mean value was equal to the annual domain mean value used in the EMEP model for the 2008 study 

year (5.1 m s
-1

). The use of a single UK meteorological dataset from a different year to the study year for the development of 

a model applied at the European scale may introduce a large amount of error or uncertainty in the predictions. In order to 

assess this uncertainty, two domain-specific meteorological datasets for the study year were also tested.  These datasets were 5 

from Easter Bush, for Scotland (von Bobrutzki et al., 2010), and Cabauw, for the Netherlands (obtained from the Cesar 

Database: http://www.cesar-database.nl/). 

 

In order to parametrise the pollutant dispersion from source areas, three different atmospheric dispersion models were used.  

These were ADMS (v4) (Carruthers et al., 1994), AERMOD (v12345) (Cimorelli et al., 2002) and LADD (Dragosits et al., 10 

2002).  These three models were chosen because they have been extensively evaluated for the atmospheric dispersion of NO2 

and NH3, with the exception of LADD, which has only been evaluated for NH3 (Theobald et al., 2012).   

Model evaluation was carried out using 2008 annual mean concentration data from local and national monitoring networks 

in the two study domains.  For Scotland, NO2, data were obtained from the Air Quality in Scotland website 

(http://www.scottishairquality.co.uk/) (48 stations: 37 traffic and 11 non-traffic sites) and from RIVM for the Netherlands 15 

(43 stations: 13 traffic and 30 non-traffic). The evaluation was done for all sites, and for the traffic and non-traffic sites 

separately since the traffic sites are strongly influenced by the exact site location and are unlikely to be representative of a 1 

× 1 km
2
 grid square. For NH3 concentrations in the Scottish domain, monitoring data were obtained from the UK National 

Ammonia Monitoring Network (NAMN) (Sutton et al., 2001) (http://uk-air.defra.gov.uk/networks/network-info?view=nh3), 

which has 14 sites within the domain. In addition, NH3 monitoring data from 21 sites in a local network covering 36 km
2
 20 

(Vogt et al., 2013) were also used. For the Netherlands, NH3 concentration data from the Measuring Ammonia in Nature 

(MAN) network (Lolkema et al., 2015) were provided by RIVM (108 stations).  Model performance was assessed using the 

evaluation statistics of the R package “OpenAir” (Carslaw and Ropkins, 2012).  Four performance metrics were used to 

compare the modelled concentrations with the observed values: fraction of model predictions within a factor of two of the 

observations (FAC2), normalised mean bias (NMB), normalised mean gross error (NMGE) and the Pearson correlation 25 

coefficient (r) (see Appendix A for definitions). 

3 Model development 

The sub-grid 1 × 1 km
2
 concentration estimates were calculated from three components: the EMEP 50 × 50 km

2
 

concentration predictions, the 1 × 1 km
2
 emission data and an estimate of short-range (< 50 km) pollutant dispersion.  Figure 

2 shows a schematic of the process. Short-range pollutant dispersion was parameterised using a simple scenario of a single 1 30 

× 1 km
2
 source with an emission rate of 1 Mg km

-2
 yr

-1
 in the centre of a square domain (of dimensions 101 × 101 km

2
). For 

the dispersion of NH3, the source was assumed to be at ground level (a suitable approximation for most agricultural sources, 
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which account for more than 90% of emissions in Europe). For NO2, the assumption was made that NO2 concentrations were 

linearly correlated with NOx concentrations (valid for annual mean concentrations). This allowed us to use the NOx 

emissions for the calculation of NO2 concentrations without considering photochemical reactions. Emissions of NOx can 

occur over a range of emission heights, depending on the source type.  Since the emission height will affect the resulting 

NO2 concentrations at ground level, it needs to be taken into account. This was done by assigning a representative emission 5 

height for each emission sector (Selected Nomenclature for Air Pollution (SNAP) code) that contributed more than 1% of the 

total domain emissions (Table 1). These emission heights correspond loosely to the mean effective emission heights used in 

the EMEP model for the sector emissions. In order to test the sensitivity of the sub-grid model to the emission heights used, 

additional simulations were carried out using emission heights half and double these values. For the ground level source, all 

three dispersion models (ADMS, AERMOD and LADD) were used to simulate the annual mean near-ground-level 10 

concentrations of NH3 and NO2 on a 1 km grid (for the 101 × 101 km
2
 domain) using the LYNE95mod meteorological 

dataset.  For the elevated source scenarios, only ADMS and AERMOD were used to simulate the annual mean 

concentrations because the LADD model is not suitable for simulating dispersion from elevated sources (Theobald et al., 

2012).  A height of 1.5 m was used for the near-ground-level concentrations, because this height is commonly used for 

concentration monitoring and impact assessments (Cape et al., 2009). No removal processes (chemical reactions, dry or wet 15 

deposition etc.) were simulated because these processes depend strongly on local conditions (concentrations of other 

chemical species, meteorological conditions, surface characteristics, etc.). The result of these simulations was nine 

concentration fields, three for ground level sources (three models × one source height) and six for elevated sources (two 

models × three source heights) centred on the source location. For each source height, a rotationally symmetric concentration 

field (or kernel) was obtained by fitting regression curves to the modelled concentrations (natural log of concentrations vs. 20 

natural log of distance from source centre), which was then averaged over all models (more details are provided in the 

supplementary material). 

These kernels were then multiplied by the emission data (for each SNAP sector separately in the case of NOx) using a 

“moving window” approach and the results summed over the entire domain (central Scotland or the Netherlands).  The 

resulting “sub-grid distributions” provide an estimate of the spatial variability of the concentrations at a 1 × 1 km
2
 resolution, 25 

which were then used to “redistribute” the EMEP predictions within each 50 × 50 km
2
 grid square.  This step is necessary 

since the sub-grid model does not take into account large scale processes such as long-range transport or chemical 

transformations of pollutants, processes that are included in the large scale model (the EMEP model, in this case). The 

simplest way to do this redistribution would be to multiply the sub-grid distributions by the EMEP predictions and then 

divide by the mean value of the sub-grid distribution for each 50 × 50 km
2
 grid square.  This approach conserves the sub-grid 30 

distribution for each 50 × 50 km
2
 square and also has the same mean concentration as the EMEP prediction.  However, it 

also could lead to large discontinuities at the edges of the EMEP grid squares if the ratio between the mean of the sub-grid 

distribution and the EMEP prediction differ greatly from that of adjacent squares.  To avoid this problem, the ratio of the 

EMEP predictions to the mean value of the sub-grid distribution for each 50 × 50 km
2
 square was interpolated on a 1 × 1 km

2
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grid (using a spline interpolation of the values at the centre of each grid square in ArcGIS 10.2 (Environmental Systems 

Research Institute, Redlands, CA, USA)). The interpolated field was then multiplied by the sub-grid distribution and then the 

process was repeated over ten iterations. In fact only four-five iterations were necessary to give concentration fields that 

differed by a maximum of 1%. A more detailed description of the process is provided in the supplementary material. 

4 Results 5 

4.1 Sub-grid concentration predictions and model evaluation 

Figure 3 shows the sub-grid concentration predictions for NO2 and NH3 for the two domains.  The EMEP concentration 

fields are also shown for comparison.  Table 2 shows the evaluation statistics of the EMEP and sub-grid models for annual 

mean NO2 concentrations for the Dutch and Scottish monitoring data.  In general the sub-grid model performed notably 

better than the EMEP model as a result of a consistent underestimation by the latter (negative NMB).  The mean error of the 10 

EMEP model is largest for the Scottish dataset with a NMGE of 82% and 70% for the datasets with and without traffic 

stations, respectively.  The model performs worst for the Scottish traffic stations with a mean underestimation of 84%. The 

EMEP model performs considerably better for the Dutch dataset, with 91% of predictions within a factor of two of the 

observed values, although this drops to 69% when considering the traffic stations only.  The sub-grid model (using 1 x 1 km
2
 

emissions) also performed best for the Dutch dataset, with a smaller mean bias and error and a better correlation than the 15 

EMEP model.  However, the EMEP model had a lower mean bias and error for the non-traffic stations. The sub-grid model 

also performed better than the EMEP model for the Scottish dataset (both with and without traffic stations), as well as for the 

combined dataset (Netherlands plus Scotland). Similarly to the EMEP model, the sub-grid model performed worst for the 

Scottish traffic stations, although notably better than the EMEP model. The use of the lower resolution emissions actually 

improved the performance of the sub-grid model for some of the statistics (most notably for the non-traffic stations in the 20 

Netherlands domain). 

Table 3 shows the evaluation statistics of the EMEP and sub-grid models for annual mean NH3 concentrations for the Dutch 

and Scottish monitoring data.  In general the sub-grid model performed notably better than the EMEP model. The EMEP 

model performed worse for the local monitoring network, as all monitoring locations were within a single EMEP 50 × 50 

km
2
 square. The sub-grid model (using 1 x 1 km

2
 emissions) also performed worst for this dataset, although its performance 25 

was better than that of the EMEP model, as it was for all the datasets except for the National Ammonia Monitoring Network 

sites.  The use of the 7 x 7 km
2
 emissions worsened the performance of the sub-grid model for all datasets except for the 

National Ammonia Monitoring Network sites, for which it had a similar performance to the model using the higher 

resolution emissions. Figure 4 shows the scatterplots of NO2 and NH3 concentration predictions of the EMEP and sub-grid 

model vs. the observed values for all sites in both domains. 30 
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4.2 Sensitivity of sub-grid model predictions to model parameters 

The use of domain-specific meteorological datasets only had a small effect on the concentration estimates of the sub-grid 

model (Fig. 5).  Mean differences from the estimates using the generic meteorological dataset (LYNE95mod) were 7% for 

both NO2 and NH3, although differences of up to 29% were found for individual measurement sites. Model performance was 

barely affected (not shown). Randomising the wind direction data of the domain-specific datasets gave very similar results to 5 

those using the generic dataset, with maximum differences of only 1% (not shown). This suggests that the meteorological 

factor that most influences the sub-grid model estimates is the wind direction distribution. 

The sub-grid model estimates are also not very sensitive to the NOx emission height. On average, the effect on the 

concentration predictions of halving or doubling the emission heights is less than 2%, with a maximum difference of 6%. 

This lack of sensitivity to the exact height used reflects the fact that ground-level sources contribute significantly more to 10 

near-source concentrations than elevated sources. 

5 Discussion 

5.1 An improvement, but is it enough? 

These results show that a simple and robust geostatistical approach can be used to improve the EMEP model predictions of 

NO2 and NH3 annual concentrations.  This improvement is not surprising considering the large difference in spatial 15 

resolutions (50 km vs. 1 km) and the strong link between short-lived pollutants and the spatial distribution of emissions. 

However, is this improvement large enough to warrant the inclusion of such a sub-grid model into the output processing 

options of a chemical transport model? In order to answer this question, we can use the concept of model acceptability 

suggested by Chang and Hanna (2004).  This concept can be used to evaluate whether the EMEP model and/or the sub-grid 

model perform acceptably and, therefore, whether the sub-grid model represents an improvement on the EMEP model alone, 20 

in terms of model acceptability. Hanna and Chang (2012) suggested that an ‘acceptable’ model is one that meets the criteria 

for more than half of a series of statistical tests.  The performance metrics used are: fractional bias, geometric mean bias, 

normalised mean square error, geometric variance and FAC2 (see Appendix A for definitions and acceptability criteria). In 

the current study, we define an acceptable model as one that meets at least three of these five criteria (for each dataset). 

Although the concept of model acceptability of Chang and Hanna (2004) was defined for research-grade experimental data, 25 

the fact that we are considering annual mean concentrations (instead of high temporal resolution measurements), should 

make the approach suitable for use with operational models and monitoring data, such as those used here. For the two 

combined datasets (NO2-All and NH3-All) shown in Fig. 4, the EMEP model meets none and five of the five criteria for NO2 

and NH3 respectively, whereas the sub-grid model meets three and five criteria, respectively (Table 4).  This suggests that 

the sub-grid model is a significant improvement (in terms of model acceptability) for NO2 (even when the lower resolution 30 

emission dataset is used), but not for NH3. This can be explained by looking at the number of criteria met for the individual 
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datasets (Table 4).  For NO2, The EMEP model performed acceptably for the Netherlands (All) but not for Scotland (All).  

This is partly due to the Dutch network having a larger proportion of non-traffic sites (70% vs. 23%), which would be more 

representative of the 50 × 50 km
2
 grid cells. However, the EMEP model also performed acceptably for the Dutch traffic 

stations but neither the EMEP model nor the sub-grid model performed acceptably for the Scottish traffic stations. Looking 

more carefully at the traffic stations used in the domains reveals that station siting may have an influence on model 5 

performance.  According to the information available regarding the Scottish traffic sites, monitoring stations are located 

between 0.5 and 16 m from the road edge.  Although no information is available regarding the exact locations of the Dutch 

monitoring stations, Nguyen et al. (2012) point out that one station in the Amsterdam Municipal Health Service (GGD) 

network (not used in this study) “is very close to the road (< 2.5 m)”. This suggests that, in general, sites in the Dutch 

network are > 2.5 m from the road, whereas in the Scottish network 17 of the 37 traffic sites are closer than this.  This 10 

difference in station siting could be the reason why neither the EMEP nor sub-grid model performs acceptably for the 

Scottish dataset. For NH3, the EMEP and sub-grid model perform acceptably for the two national networks but only the sub-

grid model performs acceptably for the local network.  This is probably because the national networks site their monitoring 

stations far from the influence of individual emission sources in order to be representative of a large area, whereas the local 

network was located in an area with intensive poultry farming and was designed to assess the influence of individual sources. 15 

Since the majority (86%) of the sites used in the analysis belonged to the national networks, overall model performance was 

similar to model performance for those networks. The sub-grid approach, therefore, is most useful where there are large 

horizontal concentration gradients, such as within large cities (for NO2) or areas with intensive agriculture (for NH3), which 

is where the largest impacts are most likely to occur. 

It is also worth briefly comparing the improvements in model performance with those reported by other studies.  Denby et al. 20 

(2011) showed that the population weighted concentration for NO2 was, on average, 44% higher with their sub-grid 

parameterisation than that calculated using the original concentrations from the EMEP model.  Although not directly 

comparable (since we do not calculate population weighted concentrations), NO2 concentrations estimated using our sub-grid 

model were, on average 77% higher than those of the EMEP model at the monitoring station locations. Despite this increase, 

the sub-grid model estimates were still, on average, 27% lower than the measured concentrations.  Janssen et al. (2012) 25 

showed that their approach of downscaling modelled concentrations from 15 × 15 km
2
 to 3 × 3 km

2
 reduced model error by 

about 20%. Our sub-grid model for NO2 reduced model error by 30–40%, although for a larger change in resolution (50 × 50 

km
2
 to 1 × 1 km

2
). In the study by Schaap et al. (2015), increasing the spatial resolution from approx. 56 × 56 km

2
 to 7 × 7 

km
2
 increased the correlation (r) between the models’ predictions and hourly urban background NO2 concentrations from 

approx. 0.1–0.4 to 0.6–0.7 and reduced model bias by approx. 60–90% for most of the models.  For a similar change in 30 

spatial resolution (50 × 50 km
2
 to 7 × 7 km

2
), our sub-grid model for annual mean NO2 concentrations using the low 

resolution emissions increased r from 0.16–0.54 to 0.51–0.79 and reduced model bias by approx. 20–70%. 
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5.2 How can the sub-grid approach be applied? 

Two potential uses of the sub-grid approach can be envisaged: a Europe-wide application to provide a spatial assessment of 

exceedance of NO2 and NH3 annual limit values or critical levels and the assessment of individual emission hot-spots in 

areas where detailed modelling assessments are not available but high resolution emission data are.  In the latter case, if the 

hot-spot domain is located within a single EMEP 50 × 50 km
2
 grid square, the smoothing step would not be necessary.  The 5 

Europe-wide application would require high spatial resolution emission data for the whole domain.  There is, as far as we are 

aware, currently no European emission inventory with a spatial resolution close to 1 × 1 km
2
.  The highest resolutions 

available are the 7 × 7 km
2 
emission inventories produced for various EU projects (Kuenen et al., 2014, EC4MACS, 2012).  

As shown above, the use of emission data at this resolution still gives an improvement on the concentration predictions and 

even performs better than the sub-grid model using the higher resolution emissions, in some cases.  10 

5.3 Advantage, disadvantages and potential improvements 

The sub-grid model can provide more accurate concentration predictions than the EMEP model alone, especially close to 

emission sources.  However, this approach has only been tested for annual mean NO2 and NH3 concentrations, although 

could potentially be extended to other short-lived pollutants and shorter time scales (daily or hourly).  This means that the 

model cannot currently be used to assess exceedance of short-term limit values (e.g. for Europe, an hourly mean 15 

concentration of 200 µg NO2 m
-3

 more than 18 times in one year) although, as shown by Kiesewetter et al. (2013), the annual 

mean limit values for NO2 and PM10 are more stringent targets.  Critical levels for ammonia are expressed as annual mean 

concentrations and so a sub-grid model with a higher temporal resolution is not necessary.  The other limitation of the 

approach is the need for high resolution emission data although, as shown above, the use of emission data with a resolution 

of 7 × 7 km
2
 already produces improvements in model performance compared with the original CTM concentration 20 

estimates. 

With regards to potential improvements, in addition to the extension to shorter time periods, it would also be possible to 

include spatially-varying wind data since this has the potential to better represent local conditions.  Such data could be 

obtained directly from the meteorological fields of the CTM.  It also would be possible to incorporate stack parameters 

(effective emission heights and the contribution of stack emissions to the emissions of a particular grid square) from 25 

officially reported data and/or other data sources.  This would potentially improve concentration estimates close to large 

stack sources. As shown above, model performance is poorer for sites very close to roads and so the inclusion of a roadside 

increment model could also improve the model estimates. However, by increasing the complexity of the model, we have to 

careful not to lose sight of the objective of the sub-grid model, which is to provide a robust and simple method of post-

processing concentrations estimated by a chemical transport model. 30 

The sub-grid approach also has the potential to be applied to other pollutants for which there is a strong relationship between 

emissions and concentrations.  Zhang and Wu (2013) analysed air quality simulations of the CMAQ model to quantify the 
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influence of a range of processes on the atmospheric concentrations of several pollutants.  The species that were most 

strongly influenced by emission processes were: NH3, NO, NO2, SO2, PM2.5, SO2
4-

, elemental carbon, and primary organic 

aerosol and are, therefore, potential candidates for an extension of the model. The spatial distribution of ozone, a secondary 

pollutant, cannot be estimated based on emissions but its inverse relationship with NOx could be exploited to model the sub-

grid variability. Apart from concentrations, it may also be possible to develop a sub-grid model for processes such as wet 5 

deposition of nitrogen or sulphur, for which high resolution rainfall maps could be used to estimate the sub-grid 

distributions. Dry deposition of reduced nitrogen could also be modelled using the NH3 concentration distribution and land 

cover parameters, assuming that most of the deposition is in the form of NH3.  Dry deposition of oxidised nitrogen would be 

more difficult since there is no one dominant species that contributes. 

Conclusions 10 

The sub-grid spatial variability of the annual mean concentration predictions of NO2 and NH3 of an atmospheric chemistry 

and transport model can be estimated by combining the predictions with high spatial resolution emission datasets and short-

range dispersion fields. This paper describes the development of this technique and its application to two test domains in 

Europe. Comparison of the sub-grid model predictions with annual mean concentrations measured within both domains 

shows that the sub-grid model represents an improvement on the predictions of the chemical transport model reducing both 15 

model error and bias and increasing the spatial correlation with the measured concentrations. 

Code availability 

The sub-grid model code (in R) plus example input and output files are provided in the supplementary material. 

Data availability 

The data shown in Fig. 4 and Fig. 5 are provided in the supplementary material. 20 
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Appendix A: Descriptions of the performance metrics used 

Table A1: The four metrics relating modelled concentrations (Mi) with the observed values (Oi), used for evaluating model 

performance. 

Performance measure Definition

 
Fraction of model predictions within a factor of two of 
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0.25.0 
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i
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Normalised mean bias: 
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Table A2: The five performance measures relating modelled concentrations (Mi) with the observed values (Oi) used to assess 5 
model acceptability. 

Performance measure Definition Optimum value Acceptability Criterion 

Fractional bias (FB) 

)(

)(2

MO

MO
FB




  0 |FB| < 0.3 

Geometric Mean Bias (MG)  MOMG lnlnexp   1 0.7 < MG < 1.3 

Normalised mean square error 

(NMSE) 

 
MO

MO
NMSE

2


  0 NMSE < 1.5 

Geometric variance (VG)   2
lnlnexp MOVG   1 VG < 4 

Fraction of model predictions 

within a factor of two of the 

observations (FAC2) 

0.25.0 
i

i

O

M
 

1 FAC2 > 0.5 
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Table 1: Emission heights used for each main emission sector 

SNAP Code Emission sector Effective emission height used (m) 

1 Combustion in energy and transformation industries 400 

2 Non-industrial combustion plants 0 

3 Combustion in manufacturing industry 400 

4 Production processes 50 

7 Road transport 0 

8 Other mobile sources and machinery 0 

9 Waste treatment and disposal 200 

Table 2: Performance evaluation of the EMEP and sub-grid models for annual mean NO2 concentrations. The best performing 

model for each statistic is highlighted in bold. FAC2 is the fraction of model predictions within a factor of two of the observations, 

NMB is the normalised mean bias, NMGE is the normalised mean gross error and r is the Pearson correlation coefficient. Shaded 

cells highlight the model performance for the sub-grid model using the lower resolution emission data. 5 

Dataset n 

EMEP model Sub-grid model 

FAC2 NMB NMGE r Emission data FAC2 NMB NMGE r 

Netherlands (All) 43 0.91 -0.24 0.31 0.54 

1 × 1 km2 1.0 0.04 0.22 0.84 

7 × 7 km2 1.0 -0.08 0.21 0.79 

Netherlands (No traffic stations) 30 1.00 -0.06 0.18 0.73 

1 × 1 km2 1.0 0.07 0.27 0.86 

7 × 7 km2 1.0 0.01 0.21 0.81 

Netherlands (Traffic stations only) 13 0.69 -0.45 0.45 0.17 

1 × 1 km2 1.0 0.00 0.17 0.58 

7 × 7 km2 1.0 -0.18 0.21 0.32 

Scotland (All) 48 0.06 -0.82 0.82 0.16 

1 × 1 km2 0.48 -0.48 0.52 0.46 

7 × 7 km2 0.23 -0.63 0.63 0.51 

Scotland  (No traffic stations) 11 0.27 -0.70 0.70 0.40 

1 × 1 km2 0.91 -0.07 0.30 0.80 

7 × 7 km2 0.64 -0.38 0.39 0.85 

Scotland (Traffic stations only) 37 0.00 -0.84 0.84 0.05 

1 × 1 km2 0.35 -0.54 0.55 0.50 

7 × 7 km2 0.11 -0.67 0.67 0.51 

All  91 0.46 -0.58 0.60 -- 

1 × 1 km2 0.73 -0.27 0.40 0.42 

7 × 7 km2 0.59 -0.40 0.46 0.27 
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Table 3: Performance evaluation of the EMEP and sub-grid models for annual mean NH3 concentrations. The best performing 

model for each statistic is highlighted in bold. FAC2 is the fraction of model predictions within a factor of two of the observations, 

NMB is the normalised mean bias, NMGE is the normalised mean gross error and r is the Pearson correlation coefficient. Shaded 

cells highlight the model performance for the sub-grid model using the lower resolution emission data. 

Dataset n 

EMEP Sub-grid model 

FAC2 NMB NMGE r Emission data FAC2 NMB NMGE r 

Netherlands 108 0.85 0.23 0.39 0.69 

1 × 1 km2 0.93 0.10 0.22 0.85 

7 × 7 km2 0.90 0.28 0.40 0.71 

Scotland – Local network 21 0.52 -0.47 0.65 -- 

1 × 1 km2 0.62 -0.08 0.54 0.48 

7 × 7 km2 0.52 -0.48 0.66 -- 

Scotland (National 

Ammonia Monitoring 

Network) 

14 0.71 0.07 0.46 0.73 

1 × 1 km2 0.50 0.24 0.42 0.80 

7 × 7 km2 0.57 0.07 0.43 0.81 

All 143 0.79 0.17 0.42 0.74 

1 × 1 km2 0.84 0.09 0.26 0.85 

7 × 7 km2 0.81 0.20 0.42 0.75 

Table 4: Number of model acceptability criteria met for each model and evaluation dataset. Shaded cells represent acceptable 5 
model performance ( ≥ 3 criteria met). 

Pollutant                   Dataset 

No. of criteria met 

EMEP Sub-Grid 

(1 × 1 km2 

emissions) 

Sub-Grid 

(7 × 7 km2 

emissions) 

NO2 

Netherlands All 5 5 5 

Netherlands No traffic stations 5 5 5 

Netherlands Traffic stations only 3 5 5 

Scotland All 0 2 1 

Scotland No traffic stations 0 5 3 

Scotland Traffic stations only 0 2 0 

All  0 3 3 

NH3 

Netherlands 5 5 5 

Scotland Local network 2 5 2 

Scotland National Network 5 5 5 

All 5 5 5 
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Figure 1: Spatial distributions of annual emissions of NOx (left) and NH3 (right), for the Dutch (top) and Scottish (bottom) 

domains. The EMEP 50 × 50 km2 grid is also shown (in blue). 
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Figure 2: Schematic showing the process of producing the sub-grid concentration predictions from short-range dispersion model 

simulations and high spatial resolution emission data. 
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Figure 3: Sub-grid model predictions (top row) of annual mean concentrations of NO2 and NH3 for the two domains. EMEP model 

predictions at a resolution of 50 × 50 km2 are shown for comparison (bottom row).  

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-160, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 11 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



22 

 

Figure 4: Modelled concentrations plotted against measured values for all sites for (a) NO2 and (b) NH3. NO2 traffic stations are 

indicated by bold symbol outlines. Plot data provided in the supplementary material. 

Figure 5: Modelled concentrations plotted against measured values for all sites for (a) NO2 and (b) NH3 using both the generic 5 
meteorological dataset (LYNE95mod) and the domain-specific meteorological data. Plot data provided in the supplementary 

material. 
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