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Abstract. A simple and complementary model evaluation technique for regional chemistry-transport is discussed. The method-

ology is based on the concept that we can learn on models performances by comparing the simulation results with observational

data available for other time periods than the period originally targeted. First, the statistical indicators selected in this study

(spatial and temporal correlations) are computed for a given period, using co-localised observation and simulation data in time

and space. Second, the same indicators are used to calculate scores for several other years by conserving only the spatial loca-5

tions and Julian days of the year. The difference between the results provides complementary insights on the model capability

to reproduce well the observed variability. In order to synthesise the large amount of results, a new indicator is proposed,

designed to compare the several error statistics between all the years of validation and to quantify if the studied period was

fairly modelled for the good reasons.

1 Introduction10

Chemistry transport models (CTM) aim at simulating the atmospheric composition where humans and the environment can be

affected by air pollution. Air pollution results from the presence of chemical components emitted into the atmosphere due to

anthropogenic activities and natural sources (biogenic emissions from vegetation, soil erosion, sea salts, volcanic activity, and

wild-land fires). CTMs are used to represent the dynamical and chemical processes that drive spatial and temporal features of

the atmospheric composition.15

To estimate the quality of CTMs, model output results are usually compared with available observations. These comparisons

are performed since the models exist: this is crucial to quantify the ability of models to reproduce particular observed events

or a general behaviour. The quantification of the model quality is performed in every research study: depending on the studied

case, the modelled variables, the spatial and temporal resolution. The comparison between observations and model outputs

is a complex task and has to take into account numerous factors, such as, for example the spatial representativeness of the20

monitoring stations (Valari and Menut, 2008; Solazzo and Galmarini, 2015). From many years, the way to evaluate a model
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results is discussed and in the field of atmospheric composition, numerous methods were proposed. This is not possible to give

an exhaustive list of all validation studies and we present here some examples.

Baldridge and Cox (1986) and Cox and Tikvart (1990) proposed the use of error statistics like correlation, bias, Root Mean

Squared Error (RMSE) in the specific framework of air quality, i.e. the atmospheric composition when criteria pollutant con-25

centrations exceed pre-defined limit values. Chang and Hanna (2004) also proposed an evaluation framework dedicated to air

quality model performance and explained there is not "a single best evaluation methodology" and how important it is to use as

much as possible evaluation criteria to really well understand model results. Later, and in order to ensure the use of systematic

procedures in the evaluation process, dedicated tools were developed for the model evaluation. For example, Appel et al. (2011)

and Galmarini et al. (2012) proposed complex statistical modules to extract all possible information related to the capability of30

a model to reproduce an observed event. In parallel, some studies were dedicated to revisit the way to evaluate models such as

Thunis et al. (2012), dedicated to air quality in a policy framework. In this study, they proposed the "Target diagram" to have

on the same plot the bias and the RMSE. Complementary to the definition of performance indicators to be used, Simon et al.

(2012) use these indicators to compile photochemical models performances over a large set of data over several years of simula-

tion. This kind of evaluation may also be done in dedicated projects such as the recent AQMEII (Air Quality Model Evaluation35

International Initiative), comparing chemistry-transport models running both in Europe and Northern America, (Vautard et al.,

2012; Campbell et al., 2015) or the EURODELTA project, (Bessagnet et al., 2016) and in the EMEP (European Monitoring and

Evaluation Programme) context in the frame of the United Nation Convention on Long-range Transboundary Air Pollution,

(Prank et al., 2016). Using comparisons between observations and models outputs, some studies proposed methodologies to

decompose the statistical scores in order to estimate the main source of errors, (Solazzo and Galmarini, 2016). Finally, other40

studies also use observations to adjust the result by implementing methods to unbias simulation without changing the model,

as in Porter et al. (2015) for ozone over the United States. The common point of all these studies is that they are always using,

as best as possible, the observations corresponding in time and location to the model cell.

In the present study, a simple method is proposed to add information about the model performances more focussed on its

variability. To reach this objective, we propose to use observations corresponding to the modelled period and geographical45

domain but also, to use observations for the same domain but other periods. By this way, we want to extract the information

about the model variability and to answer the question: Are the performances of the model satisfactory because the model is

accurate or just because the model is able to reproduce a situation which is recurrent from year to year? The issue to be solved

and the tools developed are presented in section 2. The new methodology with the presentation of the indicator developed

for this study are presented in section 3. The results and discussions to point out the drivers of model errors are presented in50

section 4 and section 5 for the new indicator.

2 Methodology

In the present study, a simple method is developed to improve the evaluation of models variability and to identify the processes

responsible for discrepancies of models outputs versus observations. The methodology is general and could be applied to
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all types of model. In this study, the methodology is presented for the specific case of the regional atmospheric composition55

modelling: a topic mixing meteorology and chemistry, with a high spatial and temporal variability, thus having a good potential

to test the interest of our methodology.

2.1 Regional chemistry-transport modelling

In chemistry-transport modelling, several processes are involved, some of them directly influencing the others. When studying

both meteorological and chemical variables, the dependencies between all variables are helpful to know how to better interpret5

the model results.

The boundary conditions prescribe the concentrations of chemical species which may enter the simulation domain. Usually

for large domains, they are issued from global models as monthly climatologies. They correspond to averaged values suitable to

characterize the background concentrations of long-lived species such as ozone, carbon monoxide, mineral dust. Anthropogenic

emissions are prescribed from databases and the influence of meteorology is limited in the model. Vegetation, fires and mineral10

dust emissions depend both on landuse data and meteorology. These emissions are not measurable, it is almost impossible to

directly quantify their realism.

The meteorological variables influence transport and mixing processes, with a direct effect on gas and aerosol plumes

locations and their vertical distribution. Cloudiness and temperature impact the photolysis efficiency, the boundary layer height

impact the surface mixing of pollutants, rainfall impact the wet deposition. Moreover, meteorology impact emissions: wind15

variability is the prevalent driver for dust emissions, and it has also a major impact on wildfires emissions. Both temperature

and solar irradiance influence the magnitude of biogenic emissions from vegetation. The spatial variability of landuse data has

also a strong impact on all these natural emissions.

The chemistry-transport model is a numerical integration tool of all forcings and processes. The chemical mechanism handles

the life cycle of chemical species (production and loss) when the deposition processes are the only net sink of species. With20

the model, the spatial (horizontal and vertical) and temporal resolutions are also defined, directly impacting the simulation

representativeness and thus the realism of the modelled air pollutant concentrations when they are compared to available

observations.

2.2 The studied case

The study focuses on the summer 2013 period (1st May to 31 August) over the Euro-Mediterranean region. This period is25

called "reference period" in this paper. This case has already been modelled (using the same models, WRF and CHIMERE)

and the results were discussed in Menut et al. (2015). The same simulation is used in this study, all parameters are identical.

The observational data come from different sources depending on the variables, Table 1 . In this region, where the moni-

toring network are dense enough, comparisons are performed with observations from surface stations that provide hourly O3,

NO2 surface concentrations for gases and PM2.5 and PM10 (particulate matter with mean mass median diameter lower than30

2.5 and 10µm, respectively) for particles. Complementary to surface concentrations data, evaluated using the EBAS database,

(Tørseth et al., 2012), the meteorology is also evaluated for 2m temperature, T2m, 10m wind speed, U10m, and precipitation
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Variable Network Spatial Vertical Temporal Unit

coverage coverage frequency

O3, NO2 EBAS/EMEP Europe Surface Hourly ppb

PM2.5, PM10 EBAS/EMEP Europe Surface Hourly µg m−3

AOD, Angström AERONET Global Column Hourly ad.

T2m BADC Global Surface Tri-hourly oC

U10m BADC Global Surface Tri-hourly m s−1

Precipitation BADC Global Surface Daily mm day−1

Table 1. List of measurements data used for the statistical comparison with the model results. All data used are issued from surface stations,

representative of their own environment. Originally provided hourly or three-hourly, they are used as daily averaged in this work.

rates (in mm day−1) from the BADC (British Atmospheric Data Centre). In order to quantify the transport of aerosols in dense

plumes aloft, observations from AERONET (AErosol RObotic NETwork) program are used for the optical depth, AOD, and

the Angström exponent. In this study, all variables are used as daily mean (except for precipitation corresponding to daily35

cumulated values) in order to (i) have homogeneous scores between the variables, (ii) be able to separate the systematic and

the day-to-day variabilities. The use of an hourly time frequency was ruled out to avoid a too strong weight of the diurnal cycle

in the temporal variability.

3 The proposed methodology

As discussed in the introduction, many Statistical Indicators (SI) exist to quantify the model ability to realistically simulate40

observed pollution events. The correlations (temporal and spatial), the Root Mean Squared Error (RMSE), its normalized

expression nRMSE, and the bias (the difference between observations and modelled values) are widely used in regional air

pollution modelling. The correlations are able to split the relative contributions of systematic meteorology or sources related

variability and day-to-day variability. The RMSE and the bias are a direct quantification of the model error.

Figure 1. Principle of the multi-year variability indicator (Imv) calculation, using one modelled year and several year of observations. SI

stands for "Statistical Indicator" and is related to spatial and temporal correlation.
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The main goal of this study is to separate the contributions due to systematic and sporadic events. The systematic events45

correspond to yearly phenomena when the sporadic events correspond to event observed during one year but not the others. In

addition, complementary to the model variability quantification, the model error is also important to estimate. The key point of

this study is to (i) study the model variability which is statistically represented by the correlations, and (ii) add complementary

information on the model errors, here that could be represented by the RMSE (or the nRMSE).

First, as presented in Figure 1 , the SI are calculated between observations data and model outputs for the simulation year50

(i.e. the reference year). Second, the SI are calculated between the observations data for other years and the model output for

the reference year. Logically, the scores calculated for the reference year for observations and model outputs would give the

better results. By difference with the scores calculated for other years (with the observations only), we expect to conclude if the

model is able to catch the observed variability and for the good reasons. Using this approach, the goal is to give complementary

information to those usually obtained when using only SI calculated for a single year, the studied year.55

We apply this methodology for the simulation of the year 2013 and using observations data for years ranging from 2008 to

2013. In order to give some synthetic answers, the different SI scores are aggregated into a single indicator, called Imv and

presented in detail in the next section. Of course it seems apparently awkward to evaluate day by day a model with observational

data from another year. For a given station at a given day of the reference year air concentrations will be affected by a different

local meteorology, emissions and also long range transport of chemical species. But we can consider that to take the same date60

for another year is strictly the same that to choose randomly a date in the same season. This trivial method can emphasize how

a model is affected by large scale patterns and long term temporal cycles.

3.1 Calculation of correlations and nRMSE

In this study, we focus on three Statistical Indicators: the spatial correlation, the temporal correlation and the normalized RMSE.

For these three indicators, it is important that, for all years of validation, the same list of stations with valid measurements is65

used.

The correlation used in this study is the Pearsons’ correlation. Each correlation provides specific information on the quality

of the simulation. The temporal correlation, noted Rt, is estimated station by station and using daily averaged data in order to

have homogeneous comparisons between all variables. This correlation is directly related to the variability from day to day, for

each station. Ot,i and Mt,i represent the observed and modelled values, respectively, at time t and for the station i, for a total70

of T days and I stations. The mean time averaged value Xi is:

Xi =
1

T

T∑
t=1

Xt,i (1)

The temporal correlation Rt,i for each station i is calculated as:

Rt,i =

∑T
t=1(Mt,i−Mi)(Ot,i−Oi)√∑T

t=1(Mt,i−Mi)2
∑T

t=1(Ot,i−Oi)2
(2)
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The mean temporal correlation, Rt, used in this study is thus:75

Rt =
1

I

I∑
i=1

Rt,i (3)

with I the total number of stations. The spatial correlation, noted Rs, uses the same formula type except it is calculated

from the temporal mean averaged values of observations and model for each location where observations are available. A good

correlation shows that the model correctly locates the largest horizontal gradients as known sources and long range transport

plumes.80

The spatio-temporal mean averaged value is estimated as:

X =
1

I

I∑
i=1

Xi (4)

and the spatial correlation is thus expressed as:

Rs =

∑I
i=1(Mi−M)(Oi−O)√∑I

i=1(Mi−M)2
∑I

i=1(Oi−O)2
(5)

The normalized Root Mean Square Error is expressed as:85

nRMSE =

√√√√ 1

T

1

I

T∑
t=1

I∑
i=1

(
Ot,i−Mt,i

Ot,i

)2

(6)

for all stations i and all times t.

3.2 Definition of the Imv indicator

For the specific purpose of the model variability (and not the model error), we define an indicator, Imv , dedicated to express

in one value the results obtained with the temporal and spatial correlations. The goal of this indicator is to quantify how the90

correlation between measurements data (for different years) and model outputs (for the reference year) evolves from a year to

another one. This indicator does not replace the usual statistical indicators but aims at providing complementary information

about the variability between years.

We first define the differences, D, between all years as:

D =
1

N − 1

(
N−1∑
i=1

|si− sN |

)
(7)95
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with sN the score of the indicator for the reference year being modelled and si the score of the indicator computed using

observations corresponding to other meteorological years (from 1 to N − 1 if there is N − 1 other available years for the

observations).

We now aim to develop a simple indicator, called Imv , which is a combination of the statistical indicator for the reference

year and the differences between years. This Imv corresponds in fact to the SI itself weighted by the differences between the100

SI scores of all years. We want that Imv follows these rules:

– Imv has the same evolution than the studied SI. If the correlation increases, Imv also increases.

– Imv is bounded between 0 and 1 such as the correlation. This enables to compare the results for different variables (with

different metrics).

– In case of high correlation value found for the studied year i.e ideally sN tends to 1:

– If the differences between the other years are low (D tends to 0), it means that the model is correct for the studied

year, but possibly because it reproduces a recurrent phenomena. In this case, we want that Imv decreases and tends

to 0.5

– If the differences between the other years are high (D tends to 1): in this case, the model gives good results for the

studied year and this is not because it simulates a systematic event. In this case, we want that Imv remains close to

the indicator value. With sN ≈ 1 and Imv ≈ 1, we can conclude that the model is very good for the studied year

and this is not due to an easy phenomenon to model.

– In case of low correlation value, and whatever the magnitude of differences between years, the model is not correct. Imv10

must be low, as the indicator value.

These constraints induce to define an indicator having this kind of formulation:

Imv = sN
(
1− exp(−Ds)

4
)

(8)

s

This means that Imv has always, as maximum value, the value of the indicator itself. The power 4 is here defined to have a15

specific shape for Imv respecting the rules presented below. Finally, this expression gives an indicator variability presented in

Figure 2 . Considering the state-of-the art of chemistry-transport modelling, the model is considered as accurate and to have

an acceptable variability for Imv > 0.4: this means that the correlation is at least 0.5 and the differences are also at least greater

than 0.5.

Finally, this indicator is not calculated for nRMSE and bias. Two reasons explain this choice: (i) contrarily to correlations,20

RMSE and bias are not bounded between 0 and 1. This leads to indicators values possibly varying a lot between several years

and thus difficult to compare between years. (ii) The goal of the indicators is to extract a message from the model variability of
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Figure 2. Scheme of the Imv values as a function of the studied year correlations values and the multi-years differences D.

the studied year compared to the other years. In this case, the correlations represent statistical indicators more adapted to this

evaluation.

4 Time series of statistical indicators25

The calculations of differences are performed for the correlations and the nRMSE. These values are calculated for all variables

described in Table 1 and for the years 2008 to 2013. For each year, it is reminded that only the May to August period is

considered. Results are presented as time series in Figure 3 and discussed in the following sections. Note also that some

values discussed in these sections are also reported in the synthetic Table 4 .

4.1 Meteorological variables30

The meteorological variables are T2m, u10m and the precipitation rate. The values of the Statistical scores are provided, year

by year, in Figure 3 . As an example, the same values are reported for T2m in Table 2 .

T2m is a meteorological variable, constraining processes both for meteorology and chemistry. Its diurnal cycle is well marked

as its latitudinal variability (for large model domains), often ensuring a good spatial correlation. In general, this variable is the

less uncertain of all modelled meteorological parameters. The spatial correlation is good for all years, ranging from 0.57 (2009)35

to 0.62 (2011). For the studied year (2013), the score is 0.60, slightly lower than for 2011. Even if the correlation for the selected

year is good, it is not significantly better than for the other year, with D=0.02. This means that the model reproduces fairly

well a spatial pattern that is observed every year. Indeed, the simulation domain is large and the temperature has a latitudinal
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T2m u10m Precipitation AOD

ANG O3 NO2 PM2.5

PM10 Ammonium Sulphate Nitrate

Figure 3. Multi years scores for T2m, u10m, the precipitation rate, Aerosol Optical Depth (AOD), Angström exponent (ANG), surface

concentrations of O3, NO2, PM2.5, PM10, Ammonium, Sulphate and Nitrate. The correlations and the nRMSE are calculated between the

observations (2008-2013) and the model results (2013). The spatial correlation, Rs, is in black, the temporal correlation, Rt in blue, the

nRMSE in red..

variability larger than between each measurements stations. The temporal correlation ranges from 0.25 to 0.91 (2013). The

nRMSE is less evolving than the correlations, with values ranging from 0.22 (2013) to 0.34 (2010). The lowest value is found40

for 2013, highlighting the fact that the model error is the lowest for the reference year. The model is thus performing well in

capturing the day to day variability for T2m and for the good reasons.

From Figure 3 , the calculation of u10m also gives satisfactory results with Rt=0.60. The spatial correlation, Rs=0.09, is

not correct and very variable from one year to another. As for T2m, we also have an effect of the model resolution and the

representativeness of the variable.45
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Year Rs Rt nRMSE

2008 0.58 0.34 0.31

2009 0.57 0.36 0.32

2010 0.61 0.30 0.34

2011 0.62 0.25 0.32

2012 0.61 0.37 0.32

2013 0.60 0.91 0.22

D 0.02 0.59 0.10

Table 2. Scores for T2m. The correlations and nRMSE are calculated between the observations (2008-2013) and the model results (2013).

Scores for the precipitation are correct, with a very good spatial correlation, always exceeding 0.6. As for the temperature,

the latitudinal effect plays a major role in the variability. Both the spatial and temporal correlations increase significantly for

the reference year. The nRMSE is not on the plot, the values being larger than 1.2. The model is biased in absolute values

and overestimates the amount of daily precipitation. But the day to day variability is correct and this is what is requested in

atmospheric composition modelling (the lower atmosphere is scavenged when a precipitation occurs, whatever its value).50

For the meteorological variables, these scores showed that the meteorological forcing is well retrieved, and always better for

the year being considered compared to other years.

4.2 Optical properties

The optical properties are directly linked to the atmospheric composition of aerosol and may be quantified using the Aerosol

Optical Depth (AOD) and the Angström exponent (ANG).55

For the AOD, the spatial correlation is very good for 2013, Rs=0.97 but it is as good or better for other years. This means that

we model a rather recurring phenomenon: every year the same stations are on average exposed to aerosol plumes. The temporal

correlation is lower with Rt=0.45 but much better than for other years. This indicates that the model partly reproduces the

observed temporal variability but the events are changing from one year to another and the model captures well these changes.

In the studied region, the AOD are sensitive to desert dust outbreaks in summer. This means that large scale systems are driving60

the aerosol plumes; they are spatially recurrent and temporally better estimated for the year being considered than for other

years.

For the ANG, the spatial correlation is very good, Rs=0.91 but also persistent in time. The temporal correlation is much

better for 2013 than other years. This is probably due to a size distribution that is not necessarily well simulated from one day

to another (showed by AOD and explained in (Menut et al., 2016)) but the relative contributions of fine and coarse aerosol65

atmospheric load are fairly reproduced. This feature highlights the high sensitivity of the AOD calculation to the modelled

aerosol size distribution, although the overall mass emitted and transported is realistic.
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Globally, the AOD and ANG reflect the model’s ability to retrieve the long range transport of long-lived aerosols which

depends on several processes (emissions, transport, and deposition). These scores show the model is able to retrieve these

yearly recurrent plumes but the model size distribution of particles clearly requires improvements.70

4.3 Surface concentrations

For the surface concentrations of gaseous and aerosol species, the variability is much more related to local effects. As an

example, the detailed values of the statistical indicators and the differences between years are fully presented for NO2.

Year Rs Rt nRMSE

2008 0.44 0.00 1.56

2009 0.42 -0.04 1.76

2010 0.66 -0.04 1.82

2011 0.79 -0.03 2.07

2012 0.76 0.04 2.84

2013 0.88 0.22 1.76

D 0.27 0.23 0.33

Table 3. Scores for NO2. The correlations and nRMSE are calculated between the observations (2008-2013) and the model results (2013).

NO2 is both primary and secondary in origin. Mostly emitted in urbanized areas, the diurnal cycle of this species is well

constrained. Depending on meteorological conditions, its lifetime may vary significantly, from hours to days. Modelling this75

species with CTMs is challenging because several uncertainties are acting at the same time, including the spatial representa-

tiveness of the model cell. The scores show if the sources are properly placed and if the photochemistry and transport processes

have been well simulated. In general, at coarse model resolution, the model results for this species are worse than for ozone.

The spatial correlation gives a score of Rs=0.88 for 2013. This corresponds to the best correlation compared to the other years.

The anthropogenic emissions being strongly linked to industrial activities and traffic, and these activity sectors being spatially80

fixed, the good spatial correlation is more due to anthropogenic sources such as biogenic and vegetations fires. The temporal

correlation is low for 2013, Rt=0.22, but is close to 0 for other years, then significantly better for the reference year compare

to the others. These two correlations values show that the model certainly captures the right location of emission sources (low

variability of Rs). The nRMSE is large and shows that the concentrations are overestimated by the model. But this overesti-

mation appears for all years and can be due to the representativness of the surface measurements compared to the surface of85

model cells.

The spatial correlation is good for O3, NO2 and PM10, with Rs=0.69, 0.88 and 0.81 respectively. For PM2.5 this correlation

is low with Rs=0.16. The PM10 shows that the largest particles are well modelled over the whole domain, and this was also

the conclusion for the AOD and ANG. The low score for PM2.5 indicates that for the aerosol distribution, the fine mode is not

as well modelled as the coarse mode. This is confirmed by the scores of the aerosol inorganic species, Ammonium, Sulphate
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and Nitrate that contributes to a large fraction of the fine fraction of particles. Except for Sulphate (with Rs=0.51), the spatial

correlations are 0.15 for Nitrate and 0.20 for Ammonium. Thus, the fine part of the aerosol is not well modelled mainly due to

a deficiency in the modelling of nitrates.5

The temporal correlations have a completely different behaviour that the spatial correlations. The values are generally low,

from Rt=0.09 for Nitrate to Rt=0.32 for O3. Surprisingly, the PM10 concentrations display a good spatial correlation but a

poor temporal correlation. This is due to the long lifetime in the atmosphere of non-reactive species such as mineral dust:

large plumes are correctly modelled over regions but the day to day variability needs improvements. Another point is the

good spatial correlation for NO2 but its low temporal correlation with Rt=0.22. In this case, this means we have a correctly10

spatialized anthropogenic emissions inventory (mainly for NO2 sources) but difficulties to model the day to day chemistry.

For the surface concentrations, we can conclude that O3, NO2 and PM10 concentrations are spatially well modelled and this

is not due to a recurrent behaviour. For particles, the problem is more related to the fine mode, where PM2.5 concentrations are

not well located. This modelling problem is highlighted by the low correlations and Imv values for the inorganic species. For

the temporal correlations, the scores are always lower than for the spatial correlation but also always higher for the reference15

year than for the other years.

5 Estimation of the Imv indicator for all variables

To summarize the results obtained for each statistical indicator and the values of differences between all years, we apply the

Imv formulation. This enables to have one values for each SI (Rs and Rt) and each variable. Results are presented in Table 4

and are also displayed on single plots in Figure 4 .20

In Table 4 , the Imv larger than 0.4 are highlighted. This threshold is clearly subjective but mentioned here to better highlight

the variables being well modelled and with a correct variability from a year to another. As discussed in detail, the best scores

are obtained for the meteorological variables, and more temporally than spatially.

In Figure 4 , The x-axis represents the correlation (spatial or temporal), the y-axis represents the differences between all

years, D. For each studied variables, their values are reported on the figure where the colours represent the value of Imv . The25

interpretation of these results follows the quality criteria presented in the academic scheme in Figure 2 . This presentation

shows an important spread for the spatial correlation results. If the relative differences D range from 0 to 0.6, the correlations

range from 0.09 (for the 10m wind speed) to 0.97 (for AOD). The common point is that there is no variable with differences

above 0.5. This means that, spatially, the studied problem shows systematic patterns from year to year. The low values of

correlations show that some variables are systematically badly estimated. This means that some meteorological structures (for30

u10m) or emission sources (contributing to the PM2.5 surface concentrations) are systematically mis-located.

The representation of temporal correlations shows a specific linear pattern. The largest correlation values are positively

correlated with differences. This temporal correlation represents the day to day variability at each location. This means that

the studied problem is based on high day to day variability without similar consecutive days (in this case, one would have high
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Variable Rs Rt

Value D Imv Value D Imv

T2m 0.60 0.02 0.04 0.91 0.59 0.82

u10m 0.09 0.23 0.05 0.59 0.56 0.53

precip 0.89 0.20 0.49 0.08 0.07 0.02

AOD 0.97 0.02 0.09 0.45 0.34 0.33

ANG 0.91 0.04 0.14 0.59 0.44 0.49

O3 0.69 0.13 0.29 0.32 0.27 0.21

NO2 0.88 0.27 0.58 0.22 0.23 0.13

PM2.5 0.16 0.15 0.07 0.27 0.32 0.20

PM10 0.81 0.10 0.27 0.17 0.14 0.07

Ammonium 0.20 0.13 0.08 0.21 0.20 0.12

Sulphate 0.51 0.21 0.29 0.31 0.34 0.23

Nitrate 0.15 0.51 0.13 0.09 0.08 0.03

Table 4. The Imv values for all variables: the meteorology with T2m, u10m and precipitation rate, the vertically integrated column of

aerosols with the Aerosol Optical Depth (AOD) and the Angström exponent (ANG), the surface concentrations of all aerosols in term of size

distribution with PM2.5 and PM10 and for the inorganic species with Dp < 10 µm. Values of Imv above 0.3 are bolded. Units of the variables

are detailed in Table 1 .

correlations but low differences). This illustrates the fact that the studied problem is primarily an issue of sporadic events and35

the model is able to correctly find this variability from one day to another.

6 Conclusions

At first glance, using a different year than the simulated one for the day to day evaluation seems awkward. However, we can

learn more about the performances of chemistry transport models than using a single year for the usual statistical indicators.

Of course, this approach will never replace a strict evaluation of a pollution case analysis using time series, vertical profiles40

and usual error statistics. However, it offers a very fast and integrated vision of the strengths and weaknesses of a model with

very little calculation. This methodology can also be deployed in inter-comparison exercises.

To answer the questions presented in the introduction, and for this particular model and simulated period, the following

conclusions can be drawn. The model always simulates better the studied year than any other meteorological year and it is able

to reproduce the day to day variability for high concentrations of pollutants.45

The spatial correlation is good for 2m temperature and precipitation rate, but not for wind speed: this highlights the fact

that the modelled domain is large and the resolution not optimized for small scale processes. The spatial correlation is also

very good for the long-range transport of particles as demonstrated with Rs=0.97 and 0.90 for AOD and ANG. But, since this
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Spatial correlation Rs Temporal correlation Rt

Figure 4. Results of the Imv scores for the spatial and temporal correlations. For each model variable its value is represented using the

correlation on the x-axis and the difference between the studied year and the others on the y-axis. The colours represent the Imv values.

feature occurs every year, this leads to low Imv values. This means that for a large domain, the main spatial patterns of particle

concentrations are recurrent and well modelled. The chemical species that are best modelled are either species with a long50

atmospheric lifetime (PM10) or species well spatially constrained on the domain (such as NO2 mainly due to anthropogenic

emissions). For particles, the results depend on the size distribution: the largest particles are better simulated than the finest

ones.

The conclusions are different for the temporal correlation. The scores are calculated using daily observations and modelled

outputs. Thus, these scores reflect the ability of the model to retrieve the day to day variability. As for the spatial correlation,55

scores are good for the meteorological variables. For the aerosol, and mainly for the long-lived species (such as mineral dust),

the temporal correlation is also correct as the Imv values: Imv=0.33 and 0.49 for AOD and ANG respectively. But for the

short-live species the temporal correlation and the Imv values are low. This means that improvements are required in priority

for the day to day variability compared to the locations of emissions. This may probably be due to the atmospheric transport,

the spatial variability of 10m wind speed being poorly simulated. But, on overall, the temporal correlation is better for the

studied year than for the others, showing that the problem is highly variable from year to year, but the model is significantly5

able to catch the evolution of the atmospheric composition.
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7 Code and/or data availability

This study presenting a methodology using existing data and models, all required information are already included in this10

article.
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