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Abstract. A simple and complementary model evaluation
technique for regional chemistry-transport is discussed. The
methodology is based on the concept that we can learn more
on models performances by comparing the simulation results
with observational data available for other time periods than5

the period originally targeted. First, the usual scores selected
in this study (spatial and temporal correlations) are computed
for a given period, using co-localised observation and sim-
ulation data in time and space. Second, the same scores are
calculated for several other years by conserving only the spa-10

tial locations and Julian days of the year. The difference be-
tween the two score provides complementary insights to the
following questions: (i) is the model performing well only
because the situation is recurrent? (ii) is the model represen-
tative enough of the measurements for all variables? (iii) if15

the pollutants concentrations are not well modelled, is it due
to meteorology or chemistry? In order to synthesise the large
amount of results, a new indicator is proposed: the "multi-
year variability", designed to compare the several error statis-
tics between all the years of validation and to quantify if the20

studied period was fairly modelled for the good reasons.

1 Introduction

Chemistry transport models (CTM) aim at simulating the air
pollutants concentrations in the lowest layers of the atmo-
sphere where humans and the environment can be affected by25

air pollution. Air pollution results from the presence of chem-
ical components emitted into the atmosphere due to anthro-
pogenic activities and natural sources (biogenic emissions

from vegetation, soil erosion, sea salts, volcanic activity, and
wild-land fires). CTMs are used to represent the dynamic and 30

chemical processes that drive spatial and temporal features of
the atmospheric composition.

To estimate the quality of CTMs, model output results are
usually compared with available observations. These com-
parisons are performed since the models exist: this is cru- 35

cial to quantify the ability of models to reproduce particular
observed events or a general behaviour. Depending on the
model resolution and domain size, the comparison between
model outputs and observations data may be tricky due to the
spatial representativeness of the monitoring stations (Valari 40

and Menut, 2008; Solazzo and Galmarini, 2015). All mod-
elling studies takes into account this problem of model rep-
resentativeness and, for many years, comparisons between
observations and models outputs were performed using com-
plex statistical approaches. A non exhaustive list of valida- 45

tion studies are provided hereafter, Baldridge and Cox (1986)
and Cox and Tikvart (1990) proposed the use of error statis-
tics like correlation, bias, Root Mean Squared Error in the
specific framework of air quality, i.e. the atmospheric com-
position when criteria pollutant concentrations exceed pre- 50

defined limit values. Chang and Hanna (2004) also proposed
an evaluation framework dedicated to air quality model per-
formance and explained there is not "a single best evalua-
tion methodology" and how important it is to use as much as
possible evaluation criteria to really well understand model 55

results.
Dedicated tools to model evaluation have been developed

such as Appel et al. (2011) and Galmarini et al. (2012), to en-
sure the use of systematic procedures in the evaluation pro-
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cess. In parallel, some studies were dedicated to revisit the
way to evaluate models such as Thunis et al. (2012), dedi-
cated to air quality in a policy framework. In this study, they
proposed the "Target diagram" to have on the same plot the
bias and the RMSE. Complementary to the definition of per-5

formance scores to be used, Simon et al. (2012) use these
scores to compile photochemical models performances over
a large set of data over several years of simulation. This kind
of evaluation may also be done in dedicated projects such as
the recent AQMEII (Air Quality Model Evaluation Interna-10

tional Initiative), comparing chemistry-transport models run-
ning both in Europe and Northern America, Vautard et al.
(2012); Campbell et al. (2015) or the EURODELTA project,
Bessagnet et al. (2016) and in the EMEP (European Mon-
itoring and Evaluation Programme) context in the frame of15

the United Nation Convention on Long-range Transbound-
ary Air Pollution, Prank et al. (2016). Using comparisons
between observations and models outputs, some studies pro-
posed methodologies to decompose the statistical scores in
order to estimate the main source of errors, Solazzo and Gal-20

marini (2016). Finally, other studies also use observations to
adjust the result by implementing methods to unbias simula-
tion without changing the model, as in Porter et al. (2015) for
ozone over the United States.

A fundamental difference between observations data and25

models results is the coherence of the spatial representa-
tiveness of the monitoring stations compared to the model
cell (Valari and Menut, 2008; Solazzo and Galmarini, 2015).
To quantify the model errors due to mis-representation of
physics and chemistry from those only due to representa-30

tiveness, several methodologies have been developed. These
methods are effective but often required important compu-
tation time. Among these approaches, ensemble modelling
is used in analysis of case studies and forecasting, (Kiout-
sioukis and Galmarini, 2014; Marécal et al., 2015; Lemaire35

et al., 2016). By performing several perturbed simulations,
a general tendency on the error can be identified. But if the
case study consists of a complex real situation, the analysis
can be challenging. Adjoint modelling allows tracking the
behaviour of chemical species with respect to model input40

parameters. But it requires tedious model developments and
the result is generally valid for an infinitesimal perturbation
since the problem to solve was linearized, (Menut, 2003; Pi-
son et al., 2007). In practice, the validity of this approach is
limited to chemical species with a long lifetime as presented45

in Kopacz et al. (2010); Mao et al. (2015). Finally, the com-
mon point of all these studies is that they are always using the
observations corresponding in time and location to the model
cell.

In the present study, a simple method is developed to50

improve the evaluation of models and to identify the pro-
cesses responsible for discrepancies of models outputs ver-
sus observations. In areas where the monitoring network are
dense enough, like in Europe, comparisons are performed
with observations from surface stations that provide hourly55

O3, NO2 concentrations for gases and PM2.5 and PM10 for
particles. Complementary to surface concentrations data, the
meteorology is evaluated using meteorological networks pro-
viding 2m temperature, 10m wind speed and precipitation
rates. In order to quantify the transport of aerosols in dense 60

plumes aloft, observations from lidar or from the AERONET
(AErosol RObotic NETwork) program for the optical depth
are increasingly used to assess regional models.

For all these variables, temporal and spatial correlations
are computed to identify the model capacity compared to 65

observations. First, the correlations are calculated between
observations data and model outputs for the simulation year
(i.e. the reference year). Second, the correlations are calcu-
lated between the observations data for other years and the
model output for the reference year. Logically, the correla- 70

tions calculated for the reference year for observations and
model outputs would give the better results. By difference
with the correlations calculated for other years (with the ob-
servations only), we expect to conclude if the model is able
to catch the observed variability and for the good reasons. 75

Using this approach, the goal is to give complementary in-
formation to those usually obtained when using only scores
(correlations, bias, RMSE) calculated for a single year, the
studied year. It is thus expected to give additional elements
to answer these questions: Are the performances of the model 80

satisfactory because the model is accurate or just because
the model is able to reproduce a situation which is recur-
rent from year to year? For a given variable, does the model
have a good spatial representativeness compared to the cor-
responding observations?, and Are the biases introduced by 85

meteorological or emissions variability or by the formulation
of processes in the chemistry-transport model itself?

The issue to be solved and the tools developed are pre-
sented in section 2. The new methodology with the presenta-
tion of the indicator developed for this study are presented in 90

section 3. The results and discussions to point out the drivers
of model errors are presented in section 4.

2 The problem to solve

The problem to solve is presented in a general way by pre-
senting the principle of chemistry-transport modelling. Then, 95

the studied case and the models used are presented.

2.1 Regional chemistry-transport modelling

In chemistry-transport modelling, several processes are in-
volved, some of them directly influencing the others. When
studying both meteorological and chemical variables, the de- 100

pendencies between all variables are helpful to know to better
interpret the model results. These processes may be broken
down into four categories: (i) boundary conditions, (ii) dy-
namics, (iii) emissions, and (iv) chemistry.
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The boundary conditions prescribe the concentrations of 105

chemical species which may enter the simulation domain.
Usually for large domains, they are issued from global mod-
els as monthly climatologies. They correspond to averaged
values suitable to characterize the background concentrations
of long-lived species such as ozone, carbon monoxide, min-5

eral dust.
The meteorological variables influence transport and mix-

ing processes, with a direct effect on gas and aerosol plumes
locations and their vertical distribution. Cloudiness and tem-
perature impact the photolysis efficiency, the boundary layer10

height impact the surface mixing of pollutants, rainfall im-
pact the wet deposition. Moreover, meteorology impact
emissions: wind variability is the prevalent driver for dust
emissions, and it has also a major impact on wildfires emis-
sions. Both temperature and solar irradiance influence the15

magnitude of biogenic emissions from vegetation. The spa-
tial variability of landuse data has also a strong impact on all
these natural emissions.

Anthropogenic emissions are prescribed from databases
and the influence of meteorology is limited in the model.20

Vegetation, fires and mineral dust emissions also depend both
on landuse data and meteorology variables. These emissions
are difficult to measure, it is almost impossible to quantify
their realism.

The chemistry-transport model is a numerical integration25

tool of all the forcings and processes. The chemical mech-
anism handles the chemical species life cycle (production
and loss) when the deposition processes are the only sink of
species. With the model, the spatial (horizontal and vertical)
and temporal resolutions are also defined, directly impact-30

ing the simulation representativeness and thus the realism of
the modelled air pollutant concentrations when they are com-
pared to available observations.

2.2 The studied case and the models

The case study focuses on the summer 2013 period (1st May35

to 31 August) over the Euro-Mediterranean region, this pe-
riod is called "reference period" in this paper. This case has
already been modelled (using WRF and CHIMERE) and the
results were discussed in Menut et al. (2015). The same sim-
ulation is used in this study, all parameters are identical. The40

observational data come from different sources depending on
the variables, Table 1.

Ozone (O3) and nitrogen dioxide (NO2) are the main pol-
lutants targeted in this study. PM2.5, PM10 are the surface
concentrations of particulate matter with mean mass median45

diameter lower than 2.5 and 10µm, respectively. Surface con-
centrations of pollutants are issued from the EBAS database,
(Tørseth et al., 2012). AOD and Angström are the Aerosol
Optical Depth and the Angström exponent. T2m is the 2m
temperature above ground, U10m the wind speed module at 50

10m above ground and "Precipitation" is the amount of pre-
cipitation in millimetres cumulated during a whole day. In

this study, all variables are used as daily mean (except for
precipitation corresponding to daily cumulated values) in or-
der to (i) have homogeneous scores between the variables, 55

(ii) be able to separate the systematic and the day-to-day vari-
abilities. The use of an hourly time frequency was ruled out
to avoid a too strong weight of the diurnal cycle in the tem-
poral variability.

3 The proposed methodology 60

As discussed in the introduction, many scores exist to quan-
tify the model ability to realistically simulate observed pol-
lution events. The correlations scores (temporal and spatial),
the Root Mean Squared Error (RMSE) and the bias (the
difference between observations and modelled values) are 65

widely used in regional air pollution modelling. The cor-
relations are able to split the relative contributions of sys-
tematic meteorology or sources related variability and day-
to-day variability. The key point of this study is the study
of model variability which is statistically represented by the 70

correlations. The mean bias (or the normalized bias) is not
a score able to quantify the variability. And the RMSE is a
score containing a part of variability but remains driven by
the bias.

The goal of this study is to separate the contributions due 75

to systematic events (i.e. when the model seems good, but
simulate the same thing every day and every year) and due
to sporadic events ((i.e. when the model is good because and
able to retrieve the day to day variability). This is why the
proposed methodology is based on the calculation of the tem- 80

poral and spatial correlations only.
The methodology follows three steps: (i) compute the cor-

relation scores (spatial and temporal) between the measure-
ments and the model for the whole reference period, (ii) re-
calculate these scores between the modelled reference period 85

and the observed data for the similar period in 2008, 2009,
2010, 2011 and 2012, (iii) build and use a synthetic score to
quantify if the model has high scores for good reasons or not.
This is summarized in Figure 1.

Figure 1. Principle of the multi-year variability score’s calculation,
using one modelled year and several observations years.

Of course it seems apparently awkward to evaluate day by
day a model with observational data from another year. For
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Variable Network Spatial Vertical Temporal Unit
coverage coverage frequency

O3, NO2 EBAS/EMEP Europe Surface Hourly ppb
PM2.5, PM10 EBAS/EMEP Europe Surface Hourly µg m−3

AOD, Angström AERONET Global Column Hourly ad.
T2m BADC Global Surface Tri-hourly oC
U10m BADC Global Surface Tri-hourly m s−1

Precipitation BADC Global Surface Tri-hourly mm day−1

Table 1. List of measurements data used for the statistical comparison with the model results. All data used are issued from surface stations,
representative of their own environment. Originally provided hourly or three-hourly, they are used as daily averaged in the present study.

a given station at a given day of the reference year air con-
centrations will be affected by a different local meteorology,5

emissions and also long range transport of chemical species.
But we can consider that to take the same date for another
year is strictly the same that to choose randomly a date in
the same season. This trivial method can emphasize how a
model is affected by large scale patterns and long term tem-10

poral cycles.

3.1 Calculation of the correlation scores

To compute the correlation coefficients, it is important that,
for all years of validation, the same list of stations with valid
measurements is used. The correlation used in this study is15

the Pearsons’ correlation. Each correlation provides specific
information on the quality of the simulation.

The temporal correlation, noted Rt, is estimated station by
station and using daily averaged data in order to have homo-
geneous comparisons between all variables. This correlation20

is directly related to the variability from day to day, for each
station.

The Ot,i and Mt,i represent the observed and modelled
values, respectively, at time t and for the station i, for a total
of T days and I stations. The mean time averaged value Xi25

is:

Xi =
1

T

T∑
t=1

Xt,i (1)

The temporal correlation Rt,i for each station i is calcu-
lated as:

Rt,i =

∑T
t=1(Mt,i−Mi)(Ot,i−Oi)√∑T

t=1(Mt,i−Mi)2
∑T
t=1(Ot,i−Oi)2

(2) 30

The mean temporal correlation, Rt, used in this study is
thus:

Rt =
1

I

I∑
i=1

Rt,i (3)

with I the total number of stations. The spatial correlation,
noted Rs, uses the same formula type except it is calculated 35

from the temporal mean averaged values of observations and
model for each location where observations are available. A
good correlation shows that the model correctly locates the
largest horizontal gradients as known sources and long range
transport plumes. 40

The spatio-temporal mean averaged value is estimated as:

X =
1

I

I∑
i=1

Xi (4)

and the spatial correlation is thus expressed as:

Rs =

∑I
i=1(Mi−M)(Oi−O)√∑I

i=1(Mi−M)2
∑I
i=1(Oi−O)2

(5)

For the correlations, obviously better scores are expected 45

for the reference year compared to the other. This would con-
firm that during the transport of pollutants, the model is able
to correctly model the day to day variability.

3.2 The multi-year variability Imv indicator

The goal of this indicator is to quantify how the correlation 50

between measurements data (for different years) and model
output (for the reference year) evolves from a year to another
one. We first define the differences, D, between all years as:

D =
1

N − 1

(
N−1∑
i=1

|si− sN |

)
(6)

with sN the score for the actual year being modelled and 55

si the score computed using observations corresponding to
other meteorological years (from 1 to N−1 if there is N−1
other available years for the observations).

We now aim to develop a simple indicator that would fol-
low these rules:

1. The indicator increases with the correlation: More the5

correlation is high, better the model is.
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2. The indicator increases with the differencesD: more the
differences are important more the studied year was dif-
ferent from the others, more the system has a variability.

3. The indicator is moderated if the differences D are low.10

For example, we want that a correlation of 0.8 has not
the same meaning if D=0 or D=1: the indicator has
to give a higher value for (R=1, D=1) than for (R=1,
D=0).

We can thus estimate a "Multi Year Variability" indicator,15

noted Imv as:

Imv = sN
(
1− exp(−Ds)

δ
)

(7)

The value for δ is arbitrary but it should be larger than
unity, in order to have an indicator Imv between 0 and 1.
This tuning parameter enables to adapt the relative weight20

we want to attribute to the absolute value of the scores for
the selected year and the differences between all years. In
general, we want that a good score for the studied year have
a larger weight than the differences between several years.
Using δ=4, we consider that the relative weight of the corre-25

lation value against the difference reflects well the fact that
the model has correct scores and variability.

Figure 2. Scheme of the Imv score as a function of the studied year
correlation and the multi-years differences.

The behaviour of Imv is plotted on Figure 2 for values of
the scores and the differences ranging from 0 to 1. Ideally we
hope that the model performs well for the correlation scores 30

but also be able to reproduce the observed variability. When
Imv tends to 1 this means that the correlation value is close
to 1 and the differences of the modelled studied year com-
pared to the other years are also close to 1. In reality, this

ideal situation is rarely obtained since we are modelling a 35

very complex atmospheric system, based on processes with
different variabilities and uncertainties. Moreover, if the cor-
relation is close to zero, the model is definitely poor. Finally,
if the difference is close to zero, one can conclude that model
performances are independent of the selected year: in that 40

case, Imv is also close to 0.
The role of the indicator Imv is to provide complemen-

tary information than the correlation and the differences sep-
arately analysed. This indicator has thus to be viewed as com-
plementary to the correlation score and not replacing it. From 45

a subjective point of view, considering the state-of-the art of
chemistry-transport modelling and from Figure 2, we con-
sider that the model is accurate and has an acceptable vari-
ability for Imv > 0.3: this means that the correlation is at
least 0.5 and the differences are also at least greater than 0.5. 50

Of course, this value may change if the δ value is different.

3.3 Detailed examples of Imv calculation

To better understand the relevance of Imv , two examples are
detailed in this section. The scores are calculated for 2m tem-
perature, T2m, and for the surface concentration of nitrogen 55

dioxide, NO2. Results are presented in Table 2.
These two variables are presented here because they rep-

resent very different variables in a CTM simulation:

• T2m is a meteorological variable, constraining processes
both for meteorology and chemistry. Its diurnal cycle is 60

well marked as its latitudinal variability (for large model
domains), ensuring a good spatial correlation. In general, it
is the less uncertain of modelled meteorological variables.

• NO2 is both a primary and secondary species. Mostly
emitted in urbanized areas, the diurnal cycle of this species
is well constrained. Depending on meteorological condi-
tions, its lifetime may vary significantly, from hours to5

days. Modelling this species with CTMs is challenging be-
cause several uncertainties are acting at the same time, in-
cluding the spatial representativeness of the model cell.

T2m NO2

Year Rs Rt Year Rs Rt

2008 0.58 0.36 2008 0.44 0.00
2009 0.57 0.38 2009 0.42 -0.04
2010 0.60 0.30 2010 0.66 -0.04
2011 0.62 0.26 2011 0.79 -0.03
2012 0.61 0.40 2012 0.76 0.04
2013 0.61 0.94 2013 0.88 0.22
D 0.02 0.60 D 0.27 0.23
Imv 0.04 0.85 Imv 0.58 0.13

Table 2. Scores for T2m and NO2. The correlations are calculated
between the observations (2008-2013) and the model results (2013).
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3.3.1 Analysis of T2m scores

The spatial correlation is good for all years, ranging from10

0.57 (2009) to 0.62 (2011). For the studied year (2013), the
score is 0.61, slightly lower than for 2011. Even if the cor-
relation for the selected year is good, it is not significantly
better than for the other year, with D=0.02, and this yields to
Imv(Rs)=0.04. This means that the model reproduces fairly15

well a spatial pattern that is observed every year. Indeed, the
simulation domain is large and the temperature has a lati-
tudinal variability larger than between each measurements
stations. This temporal correlation ranges from 0.26 to 0.94.
And the best score is for 2013 leading to a good score of20

Imv(Rt)=0.85. The model is thus performing well in cap-
turing the day to day variability for T2m and for the good
reasons.

3.3.2 Analysis of NO2 scores

Nitrogen dioxide is both a primary and secondary species25

quickly produced by oxidation of NO and the scores show
if the sources are properly placed and if the photochemistry
and transport processes have been well simulated. In gen-
eral, at coarse model resolution, the scores for this species are
worse than for ozone. NO2 is very dependent on the quality30

of emission inventories, however the measurements stations
considered in this study are background sites.

The spatial correlation gives a score of Rs=0.88 for 2013.
Being the best comparison, we obtain Imv(Rs)=0.58. This
shows the importance of NOx emission source location that35

is the main driver of spatial performances. The temporal cor-
relation is low for 2013, Rt=0.22, but is close to 0 for other
years. In the end, we have a low score with Imv(Rt)=0.13
even if the simulated year is better. These two scores show
that the model certainly captures the right location of emis-40

sion sources (low variability of Rs). For the temporal vari-
ability, the model is not able to reproduce the day to day
variability, but it remains significantly better for the reference
year compare to the others.

4 Results and discussion45

The correlations are calculated for all variables described in
Table 1 and for the years 2008 to 2013, it is reminded that
only the May to August 2013 period was modelled. Results
are presented as time series in Figure 3. Using all correlations
and differences values, a Imv is estimated for each variable. 50

Results (Table 3) are discussed in the following sections.

4.1 Meteorological variables

Scores for T2m were discussed in the previous section.
The calculation of u10m also gives satisfactory results with
Rt=0.60 and Imv=0.54. The spatial correlation, Rs=0.09, is 55

not correct and very variable from one year to another, lead-

Variable Rs Rt

Value D Imv Value D Imv

T2m 0.61 0.02 0.04 0.94 0.60 0.85
u10m 0.09 0.09 0.03 0.60 0.56 0.54
precip 0.78 0.29 0.54 0.30 0.31 0.21
AOD 0.97 0.02 0.09 0.45 0.34 0.33
ANG 0.91 0.04 0.14 0.59 0.44 0.49
O3 0.69 0.13 0.29 0.32 0.27 0.21
NO2 0.88 0.27 0.58 0.22 0.23 0.13
PM2.5 0.16 0.15 0.07 0.27 0.32 0.20
PM10 0.57 0.43 0.47 0.11 0.10 0.04
Ammonium 0.20 0.13 0.08 0.21 0.20 0.12
Sulphate 0.51 0.21 0.29 0.31 0.34 0.23
Nitrate 0.15 0.51 0.13 0.09 0.08 0.03

Table 3. The Imv values for all variables: the meteorology with
T2m, u10m and precipitation rate, the vertically integrated column
of aerosols with the Aerosol Optical Depth (AOD) and the Angström
exponent (ANG), the surface concentrations of all aerosols in term
of size distribution with PM2.5 and PM10 and for the inorganic
species with Dp < 10 µm. Values of Imv above 0.3 are bolded. Units
of the variables are detailed in Table 1.

ing to Imv=0.03. As for T2m, we also have an effect of the
model resolution and the representativeness of the variable.
Scores for the precipitation are correct, with a very good spa-
tial correlation leading to Imv(Rs)=0.54. For the day to day 60

variability, the score is less good with Imv(Rt)=0.21 but sig-
nificantly higher for 2013. These scores showed that the me-
teorological forcing is well retrieved, and better for the year
being considered compared to other years.

4.2 Optical properties 65

The optical properties are directly linked to the atmospheric
composition of aerosol and may be quantified using the
Aerosol Optical Depth (AOD) and the Angström exponent
(ANG).

For the AOD, the spatial correlation is very good for 70

2013, Rs=0.97 but it is as good or better for other years.
This means that we model a rather recurring phenomenon:
every year the same stations are on average exposed to
aerosol plumes: Imv(Rs)=0.09. The temporal correlation is
lower with Rt=0.45 but much better than for other years: 75

Imv(Rt)=0.33. This means that the model partly reproduced
the observed temporal variability but the events are changing
from one year to another and the model captures well these
changes. The AOD are sensitive to desert dust outbreaks in
summer in that region. This means that large scale systems
are driving the aerosol plumes; they are spatially recurrent
and temporally better estimated for the year being consid-
ered than for other years.5

For the ANG, the spatial correlation is very good, Rs=0.91
but also persistent leading to a low score of Imv(Rs) = 0.14.
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T2m u10m Precipitation AOD

ANG O3 NO2 PM2.5

PM10 Ammonium Sulphate Nitrate

Figure 3. Multi years scores for T2m, u10m, the precipitation rate, Aerosol Optical Depth (AOD), Angström exponent (ANG), surface
concentrations of O3, NO2, PM2.5, PM10, Ammonium, Sulphate and Nitrate. The correlations are calculated between the observations
(2008-2013) and the model results (2013). The spatial correlation, Rs, is in black and the temporal correlation, Rt is in red.

The temporal correlation is much better for 2013 than other
years with Imv(Rt) = 0.49. This is probably due to a size
distribution that is not necessarily well simulated from one10

day to another (showed by AOD) but the relative contribu-
tions of fine and coarse aerosol atmospheric load are fairly
reproduced. This feature highlights the high sensitivity of the
AOD calculation to the modelled aerosol size distribution,
although the overall mass emitted and transported could be15

realistic.
Globally, the AOD and ANG reflect the model’s ability to

retrieve the long range transport of long-lived aerosols which
depends on several processes (emissions, transport, and de-
position). These scores show the model is able to retrieve20

these yearly recurrent plumes but the model size distribution
of particles clearly requires improvements.

4.3 Surface concentrations

The spatial correlation is good for O3, NO2 and PM10, with
Rs=0.69, 0.88 and 0.57 respectively. For PM2.5 this correla- 25

tion is low with Rs=0.16. The PM10 shows that the largest
particles are well modelled over the whole domain, and this
was also the conclusion for the AOD and ANG. The low
score for PM2.5 indicates that for the aerosol distribution, the

fine mode is less well modelled than the coarse mode. This 30

is confirmed by the scores of the aerosol inorganic species,
Ammonium, Sulphate and Nitrate. Except for Sulphate (with
Rs=0.51), the spatial correlations are 0.15 for Nitrate and
0.20 for Ammonium. Thus, the fine part of the aerosol is not
well modelled mainly due to a deficiency in the modelling of 35

nitrates.
The temporal correlations have a completely different be-

haviour that the spatial correlations. The values are generally
low, from Rt=0.09 for Nitrate to Rt=0.32 for O3. Surpris-
ingly, the PM10 concentrations display a good spatial cor- 40

relation but a poor temporal correlation. This is due to the
long lifetime in the atmosphere of non-reactive species such
as mineral dust: large plumes are correctly modelled over re-
gions but the day to day variability needs improvements. An-
other point is the good spatial correlation for NO2 (and for 45

the good reasons with Imv=0.58) but its low temporal cor-
relation with Rt=0.22 and a low Imv=0.13. In this case, this
means we have a correctly localized anthropogenic emissions
inventory (main source of NO2) but difficulties to model the
day to day chemistry.5

In conclusion for the surface concentrations, we can con-
clude that O3, NO2 and PM10 concentrations are spatially
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well modelled and this is not due to a recurrent behaviour,
Imv having high values. For particles, the problem is more
related to the fine mode, where PM2.5 concentrations are not10

well located. This modelling problem is highlighted by the
low correlations and Imv values for the inorganic species.
For the temporal correlations, the scores are always lower
than for the spatial correlation but also always higher for the
reference year than for the other years.15

4.4 Representation of results on a single plot

Complementary to the Table 3, Figure 4 reports the results on
a single plot. The x-axis represents the correlation (spatial or
temporal), the y-axis represents the differences between all
years, D. For each studied variables, their values are reported20

on the Figure where the colours represent the value of Imv .
The interpretation of these results follows the quality criteria
presented in the academic scheme in Figure 2.

This presentation shows an important spread for the spa-
tial correlation results. If the relative differences D range25

from 0 to 0.6, the correlations range from 0.09 (for the
10m wind speed) to 0.97 (for AOD). The common point
is that there is no variable with differences above 0.5. This
means that, spatially, the studied problem shows systematic
patterns from year to year. The low values of correlations30

show that some variables are systematically badly estimated.
This means that some meteorological structures (for u10m)
or emission sources (contributing to the PM2.5 surface con-
centrations) are systematically mis-located.

The representation of temporal correlations shows a spe-35

cific linear pattern. The largest correlation values are posi-
tively correlated with differences. This temporal correlation
represents the day to day variability at each location. This
means that the studied problem is based on high day to day
variability without similar consecutive days (in this case, one40

would have high correlations but low differences). This illus-
trates the fact that the studied problem is primarily an issue
of sporadic events and the model is able to correctly find this
variability from one day to another.

5 Conclusions45

At first glance, using a different year than the simulated one
for the day to day evaluation seems awkward. However, we
can learn more about the performances of chemistry transport
models than using a single statistical indicator. Of course,
this approach will never replace a strict evaluation of a pol-50

lution case analysis using time series, vertical profiles and
usual error statistics. However, it offers a very fast and in-
tegrated vision of the strengths and weaknesses of a model
with very little calculation. This methodology can also be
deployed in inter-comparison exercises. 55

To answer the questions presented in the introduction, and
for this particular model and simulated period, the following

conclusions can be drawn. The model always simulates bet-
ter the studied year than any other meteorological year and it
is able to reproduce the day to day variability for high con- 60

centrations of pollutants.
The spatial correlation is good for 2m temperature and pre-

cipitation rate, but not for wind speed: this highlights the fact
that the modelled domain is large and the resolution not op-
timized for small scale processes. The spatial correlation is 65

also very good for the long-range transport of particles as
demonstrated with Rs=0.96 and 0.90 for AOD and ANG.
But, since this feature occurs every year, this leads to low
Imv values. This means that for a large domain, the main
spatial patterns of particle concentrations are recurrent and 70

well modelled. The chemical species that are best modelled
are either species with a long atmospheric lifetime (PM10)
or species well spatially constrained on the domain (such as
NO2 mainly due to anthropogenic emissions). For particles,
the results depend on the size distribution: the largest parti- 75

cles are better simulated than the finest ones.
The conclusions are different for the temporal correlation.

The scores are calculated using daily observations and mod-
elled outputs. Thus, these scores reflect the ability of the
model to retrieve the day to day variability. As for the spatial 80

correlation, scores are good for the meteorological variables.
For the aerosol, and mainly for the long-lived species (such
as mineral dust), the temporal correlation is also correct as
the Imv values: Imv=0.33 and 0.49 for AOD and ANG re-
spectively. But for the short-live species the temporal corre- 85

lation and the Imv values are low. This means that improve-
ments are required in priority for the day to day variability
compared to the locations of emissions. This may probably
be due to the atmospheric transport, the spatial variability of
10m wind speed being poorly simulated. But, on overall, the 90

temporal correlation is better for the studied year than for
the others, showing that the problem is highly variable from
year to year, but the model is significantly able to catch the
evolution of the atmospheric composition.

Acknowledgements. This study is partly funded by the French Min- 95

istry in charge of Ecology.

6 Code and/or data availability

This study presenting a methodology using existing data and
models, all required information are already included in this
article.
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