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Abstract. This study evaluated the impact of five, single- or double- moment bulk microphysics schemes (BMPS) on 13 
Weather Research and Forecasting (WRF, version 3.6.1) model simulations of seven, intense winter time cyclone 14 
events impacting the Mid-Atlantic United States. Five-day long WRF simulations were initialized roughly 24 hours 15 
prior to the onset of coastal cyclogenesis off the coast of North Carolina. Validation efforts focus on microphysics-16 
related storm properties including hydrometer mixing ratios, precipitation, and radar reflectivity by comparing model 17 
output to model analysis and available gridded radar and rainfall products across 35 WRF model simulations (5 18 
BMPSs and seven cases). Comparisons of column integrated mixing ratios and mixing ratio profiles revealed little 19 
variability in non-frozen hydrometeor species due to their common programming heritage, yet assumptions about 20 
snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities lead to 21 
considerable variability in frozen hydrometeor species and in turn radar reflectivities. WRF model simulations were 22 
found to produce similar precipitation coverage, but simulations favored excessively high precipitation amounts 23 
compared to observations and low to moderate (0.217–0.414) threat scores. Finally, comparison of contoured 24 
frequency with altitude (CFAD) plots between WRF and gridded observed radar reflectivity fields yielded notable 25 
variations between BMPSs with schemes favoring lower graupel mixing ratios and better aggregation assumptions 26 
compared more favorably to observations.  27 

1 Introduction 28 

Bulk microphysical parameterization schemes (BMPSs) within numerical weather prediction models have 29 
become increasingly complex and computationally expensive. Modern prognostic weather models, such as the 30 
Weather Research and Forecasting (WRF) model (Skamarock et al., 2008), offer BMPS options ranging from 31 
simplistic, warm rain physics (Kessler, 1969) to complex, six-class, two-moment microphysics (Morrison et al., 2009). 32 
Microphysics and cumulus parameterizations drive cloud and precipitation processes within numerical weather 33 
prediction models and directly or indirectly impacts radiation, moisture, aerosols, and other simulated processes. 34 
Citing its importance, Tao et al. (2011) detailed more than 36 published, microphysics-focused studies focusing on 35 
idealized simulations, hurricanes, or mid-latitude convection. More recently, the observational studies of Stark (2012) 36 
and Ganetis and Colle (2015) investigated microphysical species variability within United States (U.S.) east coast 37 
winter-time cyclones (locally called “nor’easters”) and have called for further studies investigating how microphysical 38 
parameterizations impact simulations of these powerful cyclones.   39 

A “nor’easter” is a large (~2000 km), mid-latitude cyclone occurring from October to April and is capable of 40 
bringing punishing winds, copious precipitation, and potential coastal flooding to the Northeastern U.S. (Kocin and 41 
Uccellini 2004; Jacobs et al., 2005; Ashton et al., 2008). This region is home to over 65 million people and produces 42 
16 billion U.S. dollars of daily economic output (Morath, 2016). Given its high output, nor’easter-related damages 43 
and disruptions can be extreme. Just ten strong, December nor’easters, between 1980 and 2011, produced 29.3 billion 44 
U.S. dollars in associated damages (Smith and Katz, 2013). BMPSs are key to accurate simulations of a nor’easter’s 45 
precipitation and microphysical properties and will be the focus of this study.  46 
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Recent nor’easter studies are scarce given the extensive research efforts in the 1980s. These historical studies 47 
addressed key nor’easter drivers including frontogenesis and baroclinicity (Bosart, 1981; Forbes et al., 1987; Stauffer 48 
and Warner, 1987), anticyclones (Uccelini and Kocin, 1987), latent heat release (Uccelini et al., 1987), and moisture 49 
transport by the low-level jet (Uccellini and Kocin, 1987; Mailhot and Chouinard, 1989). Despite extensive 50 
observational analyses, less attention has been provided to mid-latitude, winter cyclone simulations, especially those 51 
focused on BMPSs.  52 

Reisner et al. (1998) ran several single and double-moment BMPS Mesoscale Model Version 5 simulations of 53 
winter storms impacting the Colorado Front Range for the Winter Icing and Storms Project. Double moment-based 54 
simulations produced more accurate simulations of supercooled water and ice mixing ratios than those originating 55 
from single-moment schemes. However, single-moment simulations vastly improved when the snow-size distribution 56 
intercepts were derived from a diagnostic equation rather than from a fixed value.  57 

Wu and Pretty (2010) investigated how five, six-class BMPSs affected WRF simulations of four polar-low events 58 
(two over Japan, two over the Nordic Sea). Their simulations yielded nearly identical storm tracks, but notable cloud 59 
top temperature and precipitation errors. Overall, WRF single-moment BMPS (Hong and Lim, 2006) produced 60 
marginally better cloud and precipitation process simulations compared to other BMPSs. For warmer, tropical 61 
cyclones, Tao et al. (2011) investigated how four, six-class BMPSs impacted WRF simulations of Hurricane Katrina. 62 
They found BMPS choice minimally impacted storm track, yet sea-level pressure (SLP) varied up to 50 hPa.   63 

Shi et al. (2010) evaluated several WRF single-moment BMPSs during a lake-effect snow event. Simulated radar 64 
reflectively and cloud top temperature validation revealed that WRF accurately simulated the onset, termination, cloud 65 
cover, and band extent of a lake-effect snow event, however snowfall totals at fixed points were less accurate due to 66 
interpolation of the mesoscale grid. They found BMPSs produced only minimal simulation differences because cold 67 
temperatures and weak vertical velocities prevented graupel generation. Reeves and Dawson (2013) investigated WRF 68 
sensitivity to eight BMPSs during a December 2009 lake-effect snow event. Their study found precipitation rates and 69 
snow coverage were sensitive to BMPSs because vertical velocities exceeded hydrometeor terminal fall speeds in half 70 
of their simulations. Vertical velocity differences were attributed to varying BMPS frozen hydrometeor assumptions 71 
concerning snow density values, temperature-dependent snow-intercepts, and graupel generation terms.  72 

Similar to previous studies, we will evaluate WRF winter storm simulations and their sensitivity to six- and seven-73 
class BMPSs, but our primary focus will be microphysical properties and precipitation. The remainder of this paper 74 
is divided into three sections. Section 2 explains the methodology and analysis methods. Section 3 shows the results. 75 
Finally section 4 describes the conclusions, its implications, and prospects for future research.  76 

2 Methods 77 

2.1 Study design 78 

We utilized WRF version 3.6.1 (hereafter W361) which solves a set of fully-compressible, non-hydrostatic, 79 
Eulerian equations in terrain-following coordinates (Skamarock et al., 2008). Figure 1 shows the four-domain WRF 80 
model grid configuration with 45-, 15-, 5-, and 1.667-km grid spacing used for this study. This grid also has 61 vertical 81 
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levels, a 50-hPa (~20 km) model top, two-way feedback, and turns off cumulus parametrization in Domains 3 and 4. 82 
The fourth domain is convection-resolving and moves for each simulation set (Fig. 1). Global Forecasting System 83 
model operational analysis (GMA) data was used for WRF boundary conditions. This model configuration (except 84 
the 4th domain) and the below parameterizations are identical to those in Nicholls and Decker (2015) and are consistent 85 
with past and present WRF model studies at NASA-Goddard Space Flight Center (i.e., Shi et al., 2010; Tao et al. 86 
2011). Model parameterizations include: 87 

 Longwave radiation: New Goddard Scheme (Chou and Suarez, 1999; Chou and Suarez, 2001) 88 
 Shortwave radiation: New Goddard Scheme (Chou and Suarez, 1999) 89 
 Surface layer: Eta similarity (Monin and Obukhov, 1954; Janjic, 2002) 90 
 Land surface: NOAH (Chen and Dudhia, 2001) 91 
 Boundary layer: Mellor-Yamada-Janjic (Mellor and Yamada 1982; Janjic 2002)  92 
 Cumulus parameterization: Kain-Fritsch (Kain, 2004) (Not applied to domains 3 and 4) 93 
This study investigates the same, diverse, selectively chosen sample of seven nor’easter cases from Nicholls and 94 

Decker (2015) detailed in Table 1 and storm tracks are shown in Fig. 1. The seven, nor’easter cases in Table 1 include 95 
at least one event per month (October–March) and are sorted by month rather than chronological order. In Table 1, 96 
the Northeast Snowfall Impact Scale (NESIS) value serves as proxy for storm severity (1 is notable and 5 extreme) 97 
and its value depends upon the population impacted, area affected, and snowfall severity (Kocin and Uccellini, 2004). 98 
Early and late season storms (Cases 1, 2, and 7) did not have snow and thus do not have a NESIS rating. 99 

Five-day, WRF model simulations were initialized 24 hours prior to the first precipitation impacts in the highly 100 
populated Mid-Atlantic region and prior to the onset of rapid, coastal cyclogenesis. A 24 hour lead time provides 101 
sufficient time for WRF to fully-develop mesoscale circulations and atmospheric vertical structure (Kleczek et al., 102 
2014) and also to establish key surface baroclinic zones and sensible and latent heat fluxes (Bosart, 1981; Uccelini 103 
and Kocin, 1987; Kuo et al., 1991; Mote et al., 1997; Kocin and Uccellini, 2004; Yao et al., 2008). We define the first 104 
precipitation impact time as the first 0.5 mm (~0.02 inch) precipitation reading from the New Jersey Weather and 105 
Climate Network (D. A. Robinson, pre-print, 2005) associated with a nor’easter event. A smaller threshold is not used 106 
to avoid capturing isolated showers occurring well ahead of the primary precipitation shield.  107 

To investigate BMPS influence upon W361 nor’easter simulations, five BMPS are used (Table 2). As shown in 108 
Table 2, the selected schemes include three, six-class, three-ice, single-moment schemes Lin (Lin6; Lin et al., 1983; 109 
Rutledge and Hobbs, 1984), Goddard Cumulus Ensemble (GCE6; Tao et al., 1989; Lang et al., 2007, and WRF single 110 
moment (WSM6; Hong and Lim 2006), a seven-class, four-ice, single-moment scheme (GCE7; Lang et al. 2014), and 111 
finally, a six-class, three-ice, double-moment scheme (WRF double-moment, six class (WDM6; Lim and Hong 112 
2010)). For this study, we ran 35 W361 simulations covering five BMPS and seven nor’easter cases.  113 

2.2 Verification and analysis techniques 114 

Model validation and analysis efforts focused on comparisons of WRF to GMA, Stage IV precipitation (Fulton 115 
et al. 1998; Y. Lin and K.E. Mitchell, preprints, 2005), and Multi-Radar, Multi-Sensor (MRMS) 3D volume radar 116 
reflectivity (Zhang et al. 2016). GMA offers six-hourly, gridded dynamical fields, including water vapor, with global 117 
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coverage. Stage IV is a six-hourly, 4-km resolution, gridded precipitation product covering the United States and is 118 
derived from rain gauge and radar data. Finally, MRMS is two minute, 1.3-km resolution, gridded 3D volume radar 119 
mosaic product derived from S- and C-band radars covering the United States and Southern Canada (Zhang et al. 120 
2016). MRMS serves as an operational successor to the better known National Mosaic and Multi-Sensor QPE (NMQ; 121 
Zhang et al. 2011) radar mosaic products. Both Stage IV and MRMS, however are limited by the detection range of 122 
their surface-based assets. All cross comparisons between WRF and these validation data were conducted at identical 123 
grid resolution.  124 

Analysis of WRF model microphysical, precipitation, and simulated radar output was comprised of three main 125 
parts: precipitable mixing ratios and domain-averaged mixing ratio profiles, simulated precipitation, and simulated 126 
radar reflectivity. Precipitable mixing ratio are calculated for all six microphysical species (vapor, cloud ice, cloud 127 
water, snow, rain, and graupel) using the equation for precipitable water: 128 

𝑃𝑃𝑃𝑃𝑃𝑃 = 1
𝜌𝜌𝜌𝜌 ∫ 𝑤𝑤𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑      (1) 129 

In Eq. (1), PMR is the precipitable mixing ratio in mm, ρ is the density of water (1000 kg m-3); g is the gravitational 130 
constant (9.8 m s-2); psfc is the surface pressure (Pa), ptop is the model top pressure (Pa); w is the mixing ratio (kg kg-131 
1); dp is the change in atmospheric pressure between model levels (Pa). Only water vapor can be validated because 132 
the other species are nonexistent in GMA and ground and space validation microphysical data are lacking, especially 133 
over the data-poor North Atlantic (Li et al., 2008; Lebsock and Su, 2014). Similarly, mixing ratio profiles will only 134 
be inter-compared amongst BMPSs because satellite-derived cloud ice profile products (e.g., CloudSat 2C-ICE; Deng 135 
et al. 2013), have a narrow scan width (1.3–1.7 km) and do not have direct overpass of Domain 4 during coastal 136 
cyclogenesis. WRF-simulated precipitation fields and their distribution were qualitatively compared to Stage IV data 137 
and then evaluated with bias and threat score (critical success index; Wilks, 2011). Finally, contoured frequency with 138 
altitude diagrams (CFADs) will validate WRF against observed MRMS data as in similar radar validation efforts of 139 
Yuter and Houze (1995), Lang et al. (2011) and Lang et al. (2014). A CFAD offers the advantage of preserving 140 
frequency distribution information, yet is insensitive to both spatial and temporal mismatches. Additionally, CFAD 141 
scores will also be calculated at each height level and evaluated with time using Eq (2).  142 

𝐶𝐶𝐶𝐶 = 1 − ∑ |𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚−𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡|ℎ 
200

                  (2) 143 

In (2), CS is the CFAD score and PDFm and PDFo (%) are the probability density functions (PDF) at constant 144 
height for the model-simulated and observed radar reflectivity, respectively. The CFAD score ranges between 0 (no 145 
PDF overlap) to 1 (identical PDFs).  146 

3. Results 147 

3.1 Hydrometeor species analysis 148 

Figure 2 displays precipitable mixing ratios (mm) for six microphysics species (water vapor, cloud water, graupel, 149 
cloud ice, rain, and snow) from Case 5, Domain 4 at 06 UTC February 2010. Corresponding simulated radar 150 
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reflectivity (dBZ) at 4,000 m is shown as Fig. 3. This case and time was selected for its negligible storm track error, 151 
centralized location in Domain 4, and expansive radar reflectivity coverage at 4,000 m where hydrometeor mixing 152 
ratios are high. Notably, MRMS are currently not available for this date. To supplement these data, Figs. 4 and 5 153 
depict composite mixing ratios, temperature, and vertical velocity profiles for Case 5 (Fig. 4) and over all seven cases 154 
(Fig. 5) from Domain 4. Composite profiles are averaged over the residence time of the nor’easter within Domain 4 155 
(24-30 hours). To emphasize the fraction of supercooled water, two sets of dashed black lines are added to each panel 156 
in Figs. 4 and 5 to indicate the 0°C and -40°C heights from each model simulation. We exclude hail from our analysis 157 
because it is unique to GCE7 and it mixing ratio values are an order of magnitude smaller than other species.   158 

Comparing Figs. 2 and 4 to Fig. 3, reveals a strong correspondence between radar reflectivity signatures and 159 
particular precipitable hydrometeor species structures, especially graupel and snow and to a lesser extent cloud water. 160 
Analysis of Fig. 4 reveals that cloud water at 4,000 m is super-cooled and graupel mixing ratios values are near their 161 
peak and given the corresponding precipitation mixing ration values in Fig. 2, these two species are well correlated 162 
with the strongest, convective reflectivity signatures (> 35 dBZ). Fig. 4 also reveals snow mixing ratio, except for 163 
Lin6 are also comparatively high at this level, yet precipitable snowfall values better correlate best with moderate 164 
reflectivity (20-35 dBZ) regions within the broader, more stratiform, precipitation shield. Notably, for Lin6, reduced 165 
snow mixing ratios are partially offset by an increase of graupel mixing ratio values within the precipitation shield. 166 
Inter-BMPS mixing ratio variability amongst BMPSs, both at this level and throughout the troposphere, is due to 167 
identifiable trends within the underlying assumptions made by BMPSs and will explained in more detail below. 168 

All evaluated BMPSs share a common heritage in the Lin6 scheme. With the exception of the two-moment cloud 169 
water and rain and CCN-cloud droplet feedbacks in WDM6, the BMPSs differ primarily in how each addresses frozen 170 
hydrometeor species (cloud ice, graupel, and snow).  Their common programming heritage is evident from the nearly 171 
identical (exception: WDM6) rain mixing ratio profiles (Figs. 4 and 5) and precipitable water vapor (Fig. 2) and is 172 
consistent with Wu and Petty (2010). WDM6, unlike single-moment BMPSs, explicitly forecasts CCN, rain and cloud 173 
droplet number concentrations and does not apply derivative equations (Hong et al., 2010). The forecasts result 174 
produce minimal changes to maximum mixing ratio height (Figs. 4 and 5) and precipitable rain coverage (Fig. 2), yet 175 
rain mixing ratios remain higher aloft and decrease sharply towards the surface unlike in single-moment simulations. 176 

Similar to rain mixing ratios, cloud water mixing ratios exhibit little variability in either the precipitable cloud 177 
water extent (Fig. 6) or the maximum mixing ratio height and freezing level (Fig. 7), but maximum mixing ratio values 178 
vary even between single-moment BMPSs. Differing allowances in the amount of ice supersaturation between GCE7 179 
(Chern et al. 2016) and WSM6 (Hong et al. 2010) are likely to account for the differences in the maximum cloud 180 
water mixing ratios. Although in WDM6 cloud water is double-moment, the maximum mixing ratios are only 181 
decreased slightly relative to WSM6. This result suggests that WDM6-forecasted cloud water number concentrations 182 
are likely close to prescribed 300 cm-3 number concentration assumed in WSM6 (Hong et al. 2010) and/or the larger-183 
scale environment/forcing is a dominant factor as water supersaturation are negligible.  184 

Amongst the BMPSs, Figs. 2, 4, and 5 show that precipitable snow and snow mixing ratios vary considerably 185 
with Lin6 and GCE6 having the smallest and highest amounts of snow, respectively. Dudhia et al. (2008) and Tao et 186 
al. (2011) attribute low snow mixing ratios in Lin6 to its high rates of dry collection of snow by graupel, its low snow 187 
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size distribution intercept (decreased surface area), and its auto-conversion of snow to either graupel or hail at high 188 
mixing ratios. GCE6 turns off dry collection of snow and ice by graupel, greatly increasing the snow mixing ratios at 189 
the expense of graupel and reducing snow riming efficiency (Lang et al. 2007). Snow growth in GCE6 is further 190 
augmented by its assumption of water saturation for the vapor growth of cloud ice to snow (Reeves and Dawson, 191 
2013; Lang et al. 2014).  GCE7 addressed the vapor growth issue of GCE6 and applied numerous other changes 192 
including the introduction and of a snow size and density mapping, snow breakup interactions, a relative humidity 193 
(RH) correction factor, and a new vertical-velocity-dependent ice super saturation assumption (Lang el al., 2007; Lang 194 
et al., 2011; Lang et al., 2014; Chern et al., 2016; Tao et al., 2016). Despite the reduced efficiency of vapor growth of 195 
cloud ice to snow stemming from the both the new RH correction factor and the ice super saturation adjustment, the 196 
new snow mapping and enhanced cloud ice to snow auto-conversion in GCE7 offset this potential reduction and keep 197 
GCE snowfall mixing ratio higher than in non-GCE BMPSs. Unlike Lin6, WSM6 and WDM6 assume grid cell graupel 198 
and snow fall speeds are identical (Dudhia et al., 2008) and that ice nuclei concentration is a function of temperature 199 
(Hong et al., 2008). These two aspects, effectively eliminate the accretion of snow by graupel and increase snow 200 
mixing ratios at colder temperatures (Dudhia et al., 2008; Hong et al., 2008).  Figure 4 and 5 show the height of 201 
maximum snow mixing ratio is roughly conserved in all non-Lin6 BMPSs. Lin6’s assumption of non-uniform graupel 202 
and snow fall speeds and dry collection of snow by graupel reduce snow mixing ratios in the middle troposphere and 203 
raise its maximum snow mixing ratio height. 204 

Compared to snow, graupel mining ratios are generally smaller for non-Lin6 schemes due to Lin6’s assumption 205 
of dry collection by snow dominates species growth which was proven unrealistic by Stith et al. (2002). GCE7 is in 206 
many ways at opposition to Lin6, where it simulations generate the most snow, yet the least graupel. GCE7 includes 207 
graupel size mapping, but the combination of the snow size mapping (decrease snow size aloft,  increases snow surface 208 
area, and enhances vapor growth), the addition of deposition conversion processes (graupel/hail particles experiencing 209 
deposition growth at colder temperatures are converted to snow), and a reduction in super cooled droplets available 210 
for riming (cloud ice generation is augmented, see below) all favor snow growth at the expense of graupel (Lang et 211 
al. 2014; Chern et al., 2016; Tao et al., 2016). Consistent with Reeves and Dawson (2013), graupel mixing ratios value 212 
are typically 30-50 % of their snow counterparts for WSM6 and WDM6. 213 

Although cloud ice mixing ratios are up to ninety percent smaller than those for snow (GCE6), cloud ice mixing 214 
ratios still vary greatly amongst the BMPSs as illustrated in Figs. 2, 4, and 5. Cloud ice mixing ratios are highest in 215 
GCE7 and lowest in Lin6. Wu and Petty (2010) similarly found low cloud ice mixing ratios in Lin6 simulations and 216 
ascribe it to dry collection by cloud ice by graupel and its fixed cloud-ice size distribution. Similar to Lin6, GCE6 217 
uses a monodispersed cloud-ice size distribution (20 μm diameter), but assumes vapor growth of cloud ice to snow 218 
under an assumption of water saturation conditions (yet supersaturated with respect ice) leading to higher cloud ice 219 
amounts, but also increased cloud ice to snow conversion rates (Lang et al., 2011; Tao et al., 2016). GCE7 blunt this 220 
cloud ice to snow conversion term using a RH correction factor which is dependent upon ice supersaturation which is 221 
itself dependent up vertical velocity. Additionally, GCE7, also includes contact and immersion freezing terms (Lang 222 
et al., 2011), makes the cloud ice collection by snow efficiency a function of snow size (Lang et al., 2011; Lang et al., 223 
2014), sets a maximum limit on cloud-ice particle size (Tao et al., 2016), makes ice nuclei concentrations follows the 224 
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Cooper curve (Cooper, 1986; Tao et al., 2016), and it allows cloud ice to persist in ice subsaturated conditions (i.e., 225 
RH for ice ≥ 70%) (Lang et al, 2011; Lang et al., 2014). Despite the increased cloud ice-to-snow auto conversion 226 
(Lang et al. 2014; Tao et al. 2016), all the above changes nearly doubled cloud ice amounts in GCE7 than in GCE6 227 
(See Fig. 2). Similar to GCE7, WSM6 runs generate larger cloud ice mixing ratios than Lin6, which Wu and Petty 228 
(2010) attribute to excess cloud glaciation at temperatures between 0°C and -20°C and its usage of fixed cloud ice size 229 
intercepts. Additionally, both WSM6 and WDM6 include ice sedimentation terms which promote smaller cloud ice 230 
amounts (Hong et al., 2008). Despite their varying assumptions, the maximum cloud ice amounts for both Case 5 and 231 
overall (Figs. 4 and 5) are consistent between BMPSs.  232 

3.2 Stage IV precipitation analysis 233 

Excess precipitation, whether frozen or not, is one of the most potentially crippling impacts from a nor’easter. 234 
WRF precipitation is generated from its microphysics and cumulus parameterization; the latter is turned for Domains 235 
3 (5 km grid spacing) and 4 (1.667-km grid spacing).  Figures 6 and 7 show Domain 3, 24-hour accumulated 236 
precipitation, their difference from Stage IV, and the associated probability and cumulative distribution functions 237 
(PDF and CDF, respectively) of precipitation for Cases 5 and 7. As for our composite microphysics plots, the data 238 
accumulation period only covers the nor’easter’s residence time in Domain 4. We focus on Domain 3 rather than 239 
Domain 4 because the latter is located near the boundary of the Stage IV dataset where its radar-based data tends to 240 
fade. Cases 5 and 7 are shown here because these cases have near-shore tracks (Fig. 1) good coverage of their 241 
associated precipitation by Stage IV. Table 3 includes threat score and bias information for all seven cases their 242 
associated standard deviation statistics. Both threat score and bias assume a 10 mm precipitation accumulation 243 
threshold value, which as seen in Figs. 6 and 7 is approximately the 25th percentile of accumulated precipitation.    244 

Table 3 shows Case 4 as a clear outlier where its low threat score and bias values deviate more than two standard 245 
deviation from the composite mean due to its non-coastal track (Fig. 1) and thus it will be excluded from this section 246 
of the analysis. For the remaining six cases, Table 4 indicates low (0.217; Lin6, Case 2) to moderate (0.414; Lin6, 247 
Case 5) threat scores and a 10 mm precipitation contour spatial covers an area far exceeding Stage IV (bias range: 248 
1.47 [Lin6, Case 7] – 4.05 [GCE7, Case 3]). Inter-BMPS barely varied with threat score and biases varying only up 249 
to an order of magnitude less than the threat and bias scores themselves. Consistent with Hong et al. (2010), threat 250 
score and bias values for WSM6 are equal to or improved upon by WDM6 due to its inclusion of a cloud condensation 251 
nuclei (CCN) feedback. Overall, WDM6 generated marginally better simulated precipitation fields and has the lowest 252 
threat score in four out of six cases and it also has the lowest model mean (0.322), yet Lin6 was found to be the least 253 
bias in four out of six cases and it also has the lowest model mean (2.55).  254 

As illustrated Figs. 6 and 7, all WRF simulations tended to generate similar coverage to Stage IV, but its 255 
precipitation values tended to be smaller than for corresponding grid points in WRF resulting in low to moderate 256 
forecast skill and excessively heavy precipitation totals as illustrates in the PDF and CDF diagrams. Previous 257 
modelling studies of strong-convection by Ridout et al. (2005) and Dravitzki and McGregor (2011) found both GFS 258 
and Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) produced too much light precipitation and 259 
too much heavy precipitation, which stands in contrast to our results, which show the opposite tendency. Unlike these 260 
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two studies, nor’easters often track over the data spare North Atlantic, a region with no rain gauge data and is at the 261 
operation range limits of S-band radars. These issues could lead to an under bias in Stage IV precipitation data, 262 
especially near the data edges, which likely suggests that threat scores and biases are likely closer to observations than 263 
shown. Marginal changes in accumulated precipitation (<10 mm) between BMPS simulations and threat scores is 264 
consistent with investigation of simulation precipitation during warm-season events and quasi-stationary front (Fritsch 265 
and Carbone, 2004; Wang and Clark 2010). 266 

3.3 MRMS and radar reflectivity analysis 267 

Figure 8 show statistical CFADs for Case 4, Domain 4 constructed over a 24 hour period (12 UTC 26–27 January 268 
2015) with 0°C and -40°C heights at approximately 3,000 and 9,000 m above mean sea level (not shown). Similar to 269 
the previous section, all CFAD and CFAD products are based only upon the 24-30 hour period a nor’easter resided 270 
within Domain 4. We selected Case 7 because its radar volume data from NMQ has been reprocessed with the latest 271 
algorithms associated with MRMS. To supplement Fig. 8, MRMS and WRF simulated radar reflectivities are shown 272 
at 4,000 and 9,500 m above mean sea level on 18 UTC 26 January 2015 are shown as Figs. 9 and 10, respectively. 273 
These two heights were selected because they pass through the two MRMS dBZ frequency maxima shown in Fig. 8. 274 
Finally, Fig. 11 shows CFAD scores with height and time and their differences over the same time period as Fig. 8. 275 

Figure 8 show a wider ranges of dBZ values (up to 40 dBZ) from WRF simulations than from MRMS (up to 27 276 
dBZ) below the melting layer. Qualitatively, all model simulations below the melting layer have dBZ frequency ranges 277 
exceeding that of MRMS, yet only Lin6 and especially GCE7 correctly capture the core of maximum frequencies 278 
between 5-10 dBZ. All other schemes produce this same core, but at values over 10 dBZ. Figure 9 illustrates these 279 
radar reflectivity differences at the 4,000 m above sea level where radar reflectivity values from GCE6, WSM6, and 280 
WDM6 simulations are often 15 dBZ or more greater than MRMS. Between 3,000 and 6,000 m, only GCE7 produces 281 
a narrow core of maximum frequency values below 10 dBZ consistent with MRMS. Lang et al. (2014) attribute the 282 
narrow core to changes in aggregation which made it both temperature and mixing ratio dependent and to the new 283 
snow map. Together these changes favored the production of small hydrometeors at colder temperature and larger 284 
hydrometeors at warmer temperatures. Eventually above 6,500 m, all WRF CFADs collapse to very small radar 285 
reflectivities values (< 5 dBZ) whereas the core of dBZ frequencies increases in MRMS up through 11 km. As Fig. 286 
10 shows, at 9,500 m in altitude radar reflectivity coverage has become spotty and quite sensitive to even small radar 287 
signatures.  288 

Consistent with the above discussion, CFAD scores with height and time (Fig. 11) show Lin6 to qualitatively 289 
perform best overall, however, GCE7 simulations below 5,000 m typically attained even higher CFAD scores. Other 290 
BMPSs as shown in Fig. 8 typically favor unrealistically higher reflectivity values and the exhibit lower CFAD scores 291 
in the melting layer which is likely associated with higher graupel and cloud ice concentrations. Further aloft, 292 
aggregation of hydrometeors toward smaller sizes and entrainment likely cut off cloud tops in GCE7 and results in its 293 
lower CFAD scores above 6,000 m. The other six cases produce similar tendencies in their CFAD and CFAD scores 294 
as noted above for Case 7, except cloud heights become higher and CFADs become wider with the introduction of 295 
stronger convection with early and late season events.   296 
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4 Conclusions  297 

The role and impact of five BMPSs upon seven, W361 nor’easter simulations is investigated and validated against 298 
GMA, Stage IV precipitation, and MRMS 3D volume reflectivity. Tested BMPSs include four single-moment (Lin6, 299 
GCE6, GCE7, and WSM6) and one double-moment BMPSs (WDM6). Simulated hydrometer mixing ratios show 300 
general similarities for non-frozen hydrometeor species (cloud water and rain) due to their common Lin6 heritage. 301 
However, frozen hydrometeor species (snow, graupel, cloud ice) demonstrate considerably larger variability between 302 
BMPSs. Larger changes exist for frozen species due to different assumptions about snow and graupel intercepts, 303 
degree of allowable ice supersaturation, snow and graupel density maps, and terminal velocities made by each BMPS. 304 
WRF-Stage IV accumulated precipitation comparisons reveal WRF demonstrate that although WRF generates 305 
precipitation fields of similar coverage to Stage IV precipitation intensities tended to be higher than observations and 306 
resulting in low to moderate (0.217–0.414) threat scores with WDM6 demonstrating marginally better forecast skill 307 
than its single-moment counterparts. Finally, MRMS-based CFAD and CFAD scores show Lin6 and GCE7 to be 308 
notably better than GCE6, WSM6 and WDM6 in the lower troposphere, with GCE7 being the only BMPS scheme to 309 
produce the narrow core of maximum frequencies below10 dBZ due to its temperature and mixing ratio dependent 310 
aggregation and new snow map. Above 5,000 m GCE7 however becomes less skilled the combination of smaller 311 
hydrometers and entrainment reduced it cloud top height relative to other BMPSs.  312 

The study has shown that although subtle in the large-scale environment, cloud microphysics do make small, but 313 
noticeable impacts in the microphysical and precipitation properties of a nor’easter. While no BMPS leads to 314 
consistently improved precipitation forecast skill, the underlying assumptions do make notable change in the 315 
composition of radar reflectivity structure which itself can vary notably from observed radar reflectivity structures. 316 
Follow-on studies could investigate additional nor’easter cases or simulate other weather phenomena (polar lows, 317 
monsoon rainfall, drizzle, etc.). Results covering multiple phenomena may provide guidance to model users in their 318 
selection of BMPS for a given computational cost. Additionally, potential studies could specifically address key 319 
aspects of a nor’easter’s structure (such as the low-level jet) or validation of model output against current and recently 320 
available satellite-based datasets from MODIS (Justice et al., 2008), CloudSat (Stephens et al., 2008), CERES, and 321 
GPM (Hou et al. 2014). Finally, other validation methods including object-oriented (Marzban and Sandgathe, 2006) 322 
or fuzzy verification (Ebert 2008) could be utilized.  323 

5 Code availability 324 

WRF version 3.6.1 is publically available for download from the WRF Users’ Page (http://www2.mmm.ucar.edu/ 325 
wrf/users/download/get_sources.html).  326 

6 Data availability 327 

 GFS model analysis data boundary condition data can be obtained from the NASA’s open access, NOMADS 328 
data server (ftp://nomads.ncdc.noaa.gov/GFS/Grid3/). Stage IV precipitation data is publically available from the 329 
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National Data and Software Facility at the University Center for Atmospheric Research (http://data.eol.ucar.edu/cgi-330 
bin/codiac/fgr_form/id=21.093).  331 
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Table 1. Nor’easter case list. The NESIS number is included for storm severity reference. Mean sea-level pressure 484 
(MSLP) indicates maximum cyclone intensity in GMA. The last two columns denote the first and last times for each 485 
model run. GMA storm tracks are displayed in Fig. 1. 486 
 487 

Case 

Number 
NESIS 

MSLP 

(hPa) 
Event Dates 

Model Run Start 

Date 

Model Run End 

Date 

1 N/A 991.5 15–16 Oct 2009 10/15 00UTC 10/20 00UTC 

2 N/A 989.5 07–09 Nov 2012 11/06 18UTC 11/11 18UTC 

3 4.03 972.6 19–20 Dec 2009 12/18 18UTC 12/23 18UTC 

4 2.62 980.5 26–28 Jan 2015 01/25 12UTC 01/30 12 UTC 

5 4.38 979.7 05–07 Feb 2010 02/05 06UTC 02/10 06UTC 

6 1.65 1005.5 02–03 Mar 2009 03/01 00UTC 03/06 00UTC 

7 N/A 993.5 12–14 Mar 2010 03/11 18UTC 03/16 18UTC 

 488 
489 
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Table 2. Applied bulk microphysics schemes and their characteristics. The below table indicates simulated mixing 490 
ratio species and number of moments. Mixing ratio species include: QV = water vapor, QC = cloud water, QH = hail, 491 
QI = cloud ice, QG = graupel, QR = rain, QS = snow.  492 

Microphysics 

Scheme 
QV QC QH QI QG QR QS  Moments Citation 

Lin6 X X  X X X X 1 
Lin et al. (1983);             

Rutledge and Hobbs (1984) 

GCE6 X X  X X X X 1 
Tao et al. (1989);                   

Lang et al. (2007) 

GCE7 X X X X X X X 1 Lang et al. (2014) 

WSM6 X X  X X X X 1 Hong and Lim (2006) 

WDM6 X X   X X X X 2 (QC, QR) Lim and Hong (2010) 

  493 
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Table 3. Stage IV-relative, accumulated precipitation threat scores and biases assuming a threshold value of 10 mm 494 
(25th percentile of 24 hour accumulated precipitation). Bolded value denote the model simulation with the threat score 495 
closest to 1 (perfect forecast) or a bias values closest to 1 (number of forecasted cells matches observations). The 496 
lower two panels indicate the number of standards deviations (stdev) each threat score and bias value deviates from 497 
the composite (all models + all cases) mean. 498 
 499 

  500 

Threat Score 1 2 3 4 5 6 7 Mean Mean w/o 4 

Lin6 0.289 0.217 0.291 0.091 0.414 0.304 0.332 0.277 0.308 
GCE6 0.286 0.243 0.320 0.091 0.406 0.291 0.356 0.285 0.317 
GCE7 0.288 0.235 0.319 0.096 0.405 0.300 0.337 0.283 0.314 
WSM6 0.293 0.237 0.315 0.093 0.404 0.292 0.356 0.284 0.316 
WDM6 0.290 0.243 0.329 0.094 0.411 0.299 0.357 0.289 0.322 

         
 

Bias 1 2 3 4 5 6 7 Mean Mean w/o 4 

Lin6 2.47 3.53 2.72 7.82 2.22 2.90 1.47 3.30 2.55 
GCE6 2.37 3.88 2.85 8.09 2.26 2.93 1.64 3.43 2.66 
GCE7 2.52 4.05 2.85 7.76 2.23 2.82 1.57 3.40 2.67 
WSM6 2.47 3.75 2.86 8.13 2.26 2.93 1.62 3.43 2.65 
WDM6 2.37 3.80 2.76 8.09 2.23 2.82 1.57 3.38 2.59 

          
Threat Score 

Stats: 
All 

Stdev 0.094 All 
Mean 0.284 

     
Threat Score 1 2 3 4 5 6 7  

 
Lin6 0.06 -0.71 0.08 -2.05 1.39 0.22 0.52   

GCE6 0.03 -0.43 0.39 -2.05 1.31 0.08 0.77   

GCE7 0.05 -0.52 0.38 -2.00 1.29 0.18 0.57   

WSM6 0.10 -0.50 0.34 -2.03 1.28 0.09 0.77   

WDM6 0.07 -0.43 0.48 -2.02 1.36 0.16 0.78   

          
Bias Stats All 

Stdev 2.008 All 
Mean 3.389 

     
Bias 1 2 3 4 5 6 7  

 
Lin6 -0.46 0.07 -0.33 2.21 -0.58 -0.24 -0.96   

GCE6 -0.51 0.24 -0.27 2.34 -0.56 -0.23 -0.87   

GCE7 -0.43 0.33 -0.27 2.18 -0.58 -0.28 -0.91   

WSM6 -0.46 0.18 -0.26 2.36 -0.56 -0.23 -0.88   

WDM6 -0.51 0.20 -0.31 2.34 -0.58 -0.28 -0.91   
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 501 
Figure 1. Nested WRF configuration used in simulations. The large panel shows the first 3 model domains (45-, 15-502 
, 5- km grid spacing, respectively). The smaller panels show the location of domain 4 (1.667-km resolution) for each 503 
of the seven cases. The colored lines show the cyclone track as indicated by GMA for each nor’easter case.   504 
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 505 
Figure 2. Domain 4 (1.667 km grid spacing), precipitable mixing ratios (mm) at 06 UTC 06 Feburary 2010. Shown 506 
abbreviations for mixing ratios include: QV = water vapor, QC = cloud water, QG = graupel, QI = cloud ice, QR = 507 
rain, QS = snow.  508 
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 509 
Figure 3. Simulated radar reflectivity (dBZ) at 4,000 m above mean sea level and their difference at the same time as 510 
Fig. 2. 511 
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 512 
Figure 4. Domain 4 (1.167-km grid spacing), composite mixing ratios (kg kg-1), temperature (K), and vertical velocities 513 
(cm s-1) composited over Case 5 (00 UTC 6–7 January 2010). The black dashed lines denote the height above mean sea 514 
level (MSL) where the air temperature is 0°C or -40°C. The upper-left panel shows composited and model-averaged 515 
profiles of temperature (red line) and vertical velocity (blue). Mixing ratio species abbreviations are QCLOUD (cloud 516 
water), QGRAUP (graupel), QICE (cloud ice), QRAIN (rain), QSNOW (snow) and QHAIL (hail).  517 
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 518 
Figure 5. Domain 4 (1.167-km grid spacing), composite mixing ratios (kg kg-1), temperature (K), and vertical velocities 519 
(cm s-1) composited over all seven nor’easter events. The black dashed lines denote the height above mean sea level 520 
(MSL) where the air temperature is 0°C or -40°C. The upper-left panel shows composited and model-averaged profiles 521 
of temperature (red line) and vertical velocity (blue). Mixing ratio species abbreviations are QCLOUD (cloud water), 522 
QGRAUP (graupel), QICE (cloud ice), QRAIN (rain), QSNOW (snow) and QHAIL (hail). 523 

524 



 24 

 525 
Figure 6. Case 5, 24-hour precipitation accumulation and their differences (mm, small panels) and corresponding 526 
probability density and cumulative distribution functions (big panel) of these same data derived from Stage IV and 527 
WRF model output. Accumulation period is from 00 UTC 06 February 2010 – 00 UTC 07 February 2010. Shown 528 
differences are model - Stage IV (StIV).  529 
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 530 
 531 

Figure 7. Case 7, 24-hour precipitation accumulation and their differences (mm, small panels) and corresponding 532 
probability density and cumulative distribution functions (big panel) of these same data derived from Stage IV and 533 
WRF model output. Accumulation period is from 18 UTC 12 March 2010 – 18 UTC 13 March 2010. Shown 534 
differences are model - Stage IV (StIV).  535 
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 536 
Figure 8. Contoured frequency with altitude diagram (CFAD) of radar reflectivity and indicated differences from Case 537 
4 (January 2015). Data accumulation period spans 12 UTC 26 January 2015 – 12 UTC 27 January 2015 during the transit 538 
of the nor’easter through WRF model domain 4 (1.167 km grid spacing).  The y-axis shows height above mean sea level 539 
(HMSL).  540 
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 541 
Figure 9. MRMS radar reflectivity and WRF simulated radar reflectivity (dBZ) at 4,000 m above sea level at 18 UTC 542 
26 January 2015. Show radar reflectivity differences are as indicated.  543 
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 544 
Figure 10. MRMS observed radar and WRF simulated radar reflectivity (dBZ) at 9,500 m above sea level at 18 UTC 545 
26 January 2015. Show radar reflectivity differences are as indicated. 546 
 547 
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 548 
Figure 11. Domain 4 (1.667 km grid spacing), hourly CFAD scores (See Eq. 2) of radar reflectivity and indicated 549 
differences from Case 4 starting 12 UTC 26 January 2015 and ending on 12 UTC 27 January 2015. The time period 550 
corresponds to the same time period as in Figure 5. The y-axis shows height above mean sea 551 
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