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Abstract

Ensemble-based techniques have been widely utilized in estimating uncertainties in
various problems of interest in geophysical applications. A new cloud retrieval
method is proposed based on the Particle Filter (PF) by using ensembles of cloud
information#n the framework of Gridpoint Statistical Interpolation system (GSI). The
PF cloud retrieval method is compared with the Multivariate and Minimum Residual
(MMR) method that was previously established and verified. Cloud retrieval
experiments involving a variety of cloudy types are conducted with the PF and MMR
methods respectively with measurements of Infrared radiances on multi-sensors
onboard both geostationary and polar satellites. It is found that the retrieved cloud
masks with both methods are consistent with other independent cloud products. MMR
is prone to producing ambiguous small-fraction clouds, while PF detects clearer cloud
signals, yielding closer heights of cloud top and cloud base to other references. More
collections of small fraction particles are able to effectively estimate the
semi-transparent high clouds. It is found that radiances with high spectral resolutions
contribute to quantitative cloud top and cloud base retrievals. In addition, a different
way of resolving the filtering problem over each model grid is tested to better
aggregate the weights with all available sensors considered, which is proven to be less
constrained by the ordering of sensors. Compared to the MMR method, the PF
method is overall more computationally efficient, and the cost of the model grid-based
PF method scales more directly with the number of computing nodes.

Keywords: cloud retrieval methods, particle filter, GSI system, cloud height
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1. Introduction

Modern polar orbiting and geostationary airborne instruments provide researchers
unprecedented opportunities for remote sensing of earth with continuous flows and
almost complete spectral coverage of data. The primary cloud retrieval products from
satellites are cloud mask (CM), cloud height (CH), effective cloud fraction (CF), and
vertical structures of clouds with larger temporal and spatial scales. These cloud
retrievals provide an immense and valuable combination for better initializing
hydrometeors in numerical weather prediction (NWP), (Wu and Smith, 1992) (Hu et
al., 2006) (Bayler et al., 2000) (Auligné et al., 2011) regulating the radiation budget
for the planet, and understanding the climate feedback mechanism (Brickner et al.,
2014; Rossow and Schiffer, 1991; Rossow et al., 1993). Advanced cloud retrieval
methods are able to retrieve clouds with multispectral techniques (Menzel et al., 1983;
Platnick et al., 2003), among which the minimization methods usually directly utilize
the difference between the modeled clear sky and the observed cloudy Infrared (IR)
radiances [e. g., the minimum residual method, (Eyre and Menzel, 1989); the
Minimum Local Emissivity Variance method, (Huang et al., 2004); and the
Multivariate Minimum Residual method, (Auligné, 2014a)]. Specially, the
Multivariate Minimum Residual (MMR) method is retrieving three dimensional
multi-layer clouds by minimizing a cost function at each field-of-view (FOV)
(Auligne, 2014b; Xu et al., 2015). MMR has been proven to be reliable in retrieving

the quantitative three dimensional cloud fractions with Infrared radiances from
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multiple infrared instruments. However, MMR has limitations in several aspects due
to its use of minimization for solution: 1) Part of the control variables accounting for
the cloud fraction for some certain levels are under-observed since the channels are
not sensitive to the existence of clouds for those heights. 2) When clouds at different
heights show opacities with the same spectral signal, MMR could lose the ability to
distinguish solutions involving clouds at those levels. 3) The computational cost for
the minimization procedure in MMR is rather considerable.

Ensemble-based techniques, that usually reside in short-term ensemble
forecasting (Berrocal et al., 2007; Shen and Min, 2015), assembling existing model
outputs (e. g., cloud retrievals) from varying algorithms (Zhao et al., 2012), or
ensemble Kalman filter (EnKF) in diversified forms (Snyder and Zhang, 2003), have
been widely developed in order to estimate the uncertainties of various problems in
geophysical applications. To better account for the non-linearity between the observed
radiance and the retrieval parameter, a novel prototype for detecting clouds and
retrieving their vertical extension inspired by the particle filter (Snyder and Zhang,
2003) (van Leeuwen, 2010) (Shen and Tang, 2015) technique and Bayesian theory
(Karlsson et al., 2015) is proposed in this study. As a competitive alternative for
MMR, the PF retrieval method has same critical inputs required and cloud retrieval
products as in MMR. A brief description of MMR and the new PF cloud retrieval
algorithm are provided in the following section. Section 3 describes the background
model, the data assimilation system, the radiative transfer models (RTMs), and the

radiance observations applied in this study. Model configurations are also illustrated
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in section 3. In section 4, the single test within one FOV is conducted before the
performance of PF method is assessed by comparing its cloud retrievals with those
from MMR and other operational cloud products. Section 4 also discusses the
computational performance for the two methods. The conclusion and anticipated

future work are outlined in section 5.

2. Methodology

Essentially, the PF cloud retrieval scheme retrieves clouds with the same critical
inputs requested (i. e., clear sky radiance from the radiative transfer model and the
observed radiance) and the same cloud retrievals as outputs (i. e., three dimensional
cloud fractions, which is defined as the fraction of top of cloud as seen from a sensor)
with the MMR method. Both cloud retrieval schemes consist of finding cloud
fractions that allow best fit between the cloudy radiance from model and the
observation. We use c',c?,....c* to denote the array of vertical effective cloud
fractions for K model levels (c'for the surface and ¢* for the model top) and ¢° as
the fraction of clear sky with 0<c* <1, Vk €[0,K]. The constraint for the cloud
fraction is as follows,

c k
Zc =1 (1)

k=0

In this study, a cloud on one model level with a given fraction ¢* is assumed to
block the radiation from its lower model levels. The radiation originating from its

lower levels is assumed to contribute to the top of atmosphere radiance observed by
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the satellites only with the residual fractions.

The MMR method is an approach to retrieve cloud fractions using the
minimization technique. The residual of the modeled radiance and the observation is
normalized by the observed radiance, which results in the following cost function,
using ¢*, Vk €[0,K]as the control variables,

J(c® e’ ) = 12{

Rcloud _Robs 2
5 —} : (2)

R‘?bs
where R is the modeled cloudy radiance, and R** the observed radiance at
frequency v. This vertical cloud fraction c',c?,...,cand ¢ are control variables for

the cost function, where the simulated R is defined as
K
Rf'OUd(co,cl,cz,...,cK):coRf+chRf. 3)
k=1

Here R’ is the radiance calculated assuming an overcast black cloud at the model
level k and R’ the radiance calculated in the clear sky. Both R' and R® are
calculated using a forward radiative transfer model with model profiles of temperature
and moisture as inputs. Details of the schematic of the MMR method can be referred
in (Descombes et al., 2014; Xu et al., 2015).

Particle filter (PF) approach is one of the nonlinear filters for data assimilation
procedures to best estimate the initial state of a system or its parameters x;, which
describes the time evolution of the full probability density function p(x;) conditioned
by the dynamics and the observations. Similar to the study in (Mechri et al., 2014), the
bibliography on PF focuses on estimating the parameters, which are cloud fractions

c“in Eq. (3), in this study. While MMR retrieves the cloud fractions on each model
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vertical level by minimizing a cost function, PF calculates posterior weights for each
ensemble member based on the observation likelihood given that member. In its
simplest form, PF works by initializing a collection of cloud profiles as particles and
then estimating the cloud distributions by averaging those particles with their
corresponding weights. Each particle’s weight is computed with the difference
between the modeled cloudy radiance from the particle and the observed radiance.

As the probabilities of the cloud distribution are fully presented by the initial
particles, of particular interest is to evaluate different particle initialization schemes in
the PF method. Explicitly, the definition of particles corresponds with ensemble
members, i.e. one cloud profile as one of particles is corresponding to an ensemble
member.

Two approaches for generating particles are firstly designed; the first one is to
generate the perturbed samples C; ( Vie[Ln]) from the cloud profile in the
background denoted asC, =(c;,c;,...c, ) by inflating (deflating) the clouds with
small magnitudes ( C, =axC,,a =50%,55%,....150% ) and moving upward
(downward) with & =+5,+4...,—1,...—5as the vertical magnitude, where n is the
sample size. The perturbed cloud fractions are designated to replenish the ensemble
by introducing the prior information of the cloud distributions from the background
and to increase the ensemble spread.

Besides those perturbed particles, to represent the existence of one-layer cloud
on each model level with an even chance, another diversity set of profiles C;

( Vie[,K+1]) are also initialized, among which, C; stands for the profile with
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100% cloud fraction on the model level i (c'=100%) and 0% cloud on the rest levels.
In particular, C; defines 100% clear (c’=1). It is also interesting to discretize the
initial particles by setting the one-layer cloud with the value of ¢’ from 100% to 0% (e.
g., 100%, 90%, 80%, ..., 0% with 10% as the interval) and further from 100% to 0%
(e. g., 100%, 99%, 98%, 97%, ..., 0% with 1% as the interval). In this cases, c’=1-c' .
For each particle Cj, its simulated cloudy radiance R from the model background
can be obtained with Eq. (3).

A cost function J, is defined for each particle to measure how the particle fit the

observation as,

obs cloud
Rv - Rv,i

o

J,=( )% (4)

o is the specified observation error, which can be referred in the first paragraph in
section 4.1. The weight w' for each particle C| thus is calculated by comparing the

simulated R™™" and the observation R using the exponential function by

accumulating the J, for multiple frequency as

Robs _RcIAoud
. _Z( v v, )2
i N o
w =e ) (5)
Vie[Ln]. Here n is the particle size and o is the specified observation error,
which can be referred in the first paragraph in section 4.1. The final analyzed C, is
obtained by averaging the background particles C| with their corresponding weight,

as
p

CaZZWiCbi. (6)

i=1

In Eq. (6), the constraint referred in Eqg. (1) is not respected. Thus, after the analysis
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step for the particle filter, the final averaged cloud fractions €, are normalized by

Ck_ Ck
a K !
7
ch (7)
k=0

where Vk €[0,K].

3. Data and model configurations

3.1 Data

The Advanced Infrared Sounder (AIRS), the Infrared Atmospheric Sounding
Interferometer (1ASI), and the Cross-track Infrared Sounder (Crls) are among the
most advanced hyperspectral infrared sounders and thus are applied for retrieving
clouds with hundreds of channels (Blumstein et al., 2004) (Aumann et al., 2003) (Xu
et al., 2013) (Bao et al., 2015; Smith et al., 2015). The Radiance measurements from
Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Earth
Observing System (EOS) Terra or Aqua satellites are also well suited to extracting
valuable cloud information from the 36 spectral broadbands in the visible, near
infrared and infrared regions at high spatial resolution (1-5 km) (Ackerman, 1998).
Apart from the IR radiances from polar satellites, the Geostationary Operational
Environmental Satellites (GOES) Imager (Menzel and Purdom, 1994) provides a
continuous stream of data over the observing domain. In this study, GOES-13 (east)
and GOES-15 (west) are also utilized to obtain cloud fractions over the continental

United States (CONUS) domain. The GOES Imager used in this study is a
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five-channel (one visible, four infrared) imaging radiometer designed to sense
radiant and solar reflected energy. The instrument parameters for the sensors and the

setups for channel selections can be found in (Xu et al., 2015).

3.2 WRF, GSI and the radiative transfer model

The background fields are processed running the Weather Research and Forecast
(WRF) model (Skamarock et al., 2008). The MMR and PF cloud retrieval algorithms
are both implemented based on the gridpoint statistical interpolation data assimilation
system (GSI) (Wu et al., 2002) (Kleist et al., 2009), which is a widely used data
assimilation system in operations and researches in NWP. GSI is capable of ingesting
a large variety of satellite radiance observations and has developed capabilities for
data thinning, quality control, and satellite radiance bias correction. The Community
Radiative Transfer Model (Liu and Weng, 2006) (Han et al., 2006) was used as the
radiance forward operator for computing the clear-sky radiance and the radiance given

overcast clouds at each model level.

3.3 Model configurations

The WREF is configured with 415*325 horizontal grids at 15-km grid spacing, and
40 vertical levels up to 50 hPa within the single CONUS domain. The MMR and PF
cloud detection schemes search the cloud top using approximately 150 hPa as the
highest extent for most cloudy cases. Other clouds higher 150 hPa, e.g. an anvil cloud

in a mature thunderstorm around tropopause at low latitude region will also be
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explored in future studies. Channels in the longwave region are utilized following the
channel selection scheme in (Xu et al., 2015). Since the final retrieval clouds are on
model grids, the retrieved cloud fractions within one FOV are essentially extrapolated
to its four neighboring model grid points. Generally, for each FOV, the retrieved
cloud fractions are extrapolated to its four neighboring model grid points. For polar
satellite pixels, the representative cloud fractions are extrapolated with an adaptive
radius with respect to their scan positions. The cloud detecting procedure for
retrieving clouds is conducted for each FOV from each individual sensor
independently and sequentially. Since the clouds are retrieved FOV by FOV and the
clouds on grids are referred immediately after one FOV is completed, there is no

obvious accuracy loss of radiance observations using this conservative method.

4, Experiments and results

The PF experiments apply two groups of particles as mentioned in section 2,
among which the group-2 particles contains solely 100% one-layer clouds. To reveal
how the setup of the initial particles impacts the results, apart from the MMR and PF
experiments, we included another advanced experiment, denoted as APF. APF
requires more sampled particles including ranges of cloud fractions spanning from 0%
to 100% at the interval of 10%. An additional experiment “APFg2”, similar to APF
but excluding the perturbed particles from the background in group-1 introduced in
section 2, was conducted to evaluate the added values from the group-one particles. In

this section, cloud retrieval experiments for several cases containing clouds of a



224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

variety of types are conducted for comparison reason. The GOES imager retrieved
products from National Aeronautics and Space Administration (NASA-Langley cloud
and radiation products) are applied as a reference to validate the cloud retrieving
methods for the CONUS domain with a large and uniform coverage of cloud mask. In
addition, the retrieved cloud products were also compared to available CloudSat
(Stephens et al., 2002) and MODIS level-2 cloud products (Platnick et al., 2003)
archived by the CloudSat Data Processing Center in Colorado State and NASA

respectively.

4.1 Single test at one field of view

The PF cloud retrieving algorithm retrieves the cloud distributions by averaging
those initial particles with their weights. Before the real case experiments are carried
out over the whole domain, we conduct a single cloud retrieving test at one FOV to
understand what differences can be explained by the differences in the basic initial

particles. In Eq. (5), the observation error o can be set proportional to the

obs

observation, equaling to ——, where r is the prescribed ratio. Thus, the cloud
r

k

signals on each level k are virtually determined by the extent of how close the Ifb

v

0
v

(and

for the clear part) gets to 1. An example of the ratio of the overcast

obs
v

k
v

radiance and the observed radiance for each model level is given in Fig. 1 of

obs
v

GOES-Imager for the channel 5 (~13.00 zm ). The clear sky radiance normalized by
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the observed radiance —

= is also shown at the level O (Fig. 1). It is expected that

v

the overcast radiance from the RTM decrease with the rising of the altitude. The cloud
signal is strongest around level 5, where R* fits R® most closely. The cloud
retrievals depend not only on the basic input profiles (i.e., the overcast radiance on
each level from RTM normalized by the observed radiance and the clear sky radiance
from RTM normalized by the observed radiance) and but also on the algorithm

applied for resolving the problem (e.g., MMR and PF in this study).
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Figure 1. Ratio of the overcast radiances versus the observed radiance starting from the level 1.
The ratio of the clear sky radiance normalized by the observed radiance corresponds to the level 0
(see text for explanation) for GOES-Imager for the channel 5. The approximate pressures
corresponding to the model levels are also denoted.

To reveal the roles of various initial particles, Fig. 2a shows the weights for

different particles on the given FOV for channel 5 of GOES-Imager for the case
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shown in Fig. 1. Particles in Fig. 1 include one-layer cloud in group 2 described in
section 2 with specified value of cloud fractions ¢* (on the x-axis) on specified model
levels & (on the y-axis) from 10% to 100% every 10%. With a fraction ¢* of

one-cloud layer at a given level k£ and a fraction of ¢®=1—c*of clear sky, the

simulated cloudy radiance can be denoted as R™ =c*R* +(1—c*)R’. Hence the

0 obs

theoretical one-layer cloud fraction is solved as ¢* :%by fitting R™“to R’.
R —R

v v

As expected, for one-layer cloud with full fraction, c¢®equals to 100% . Since with the
concept that R* > R***, no cloud can be present below level 5 since this would implies
a R“larger than the observation (or a ¢’ larger than 100%). It seems that clouds
can be described by different possible states as particles with both large fractions and
small fractions. Low clouds are easily estimated by one-layer cloud profile with large
fractions (larger than 10%). The particles with small-fraction high clouds gain some
weights to retrieve high clouds. The particle with the one-layer cloud on level 13
seems to gain least weight compared to the others levels. The weights for the particles
with cloud fractions from 0% to 100% at the interval of 1% are also presented in Fig.
2b. By including more small-fraction one-layer clouds, the clouds around level 13 can
be reproduced by the group of refined particles with 1% as the interval for
approximate 10% cloud fractions. However, changing the level of the cloud for the
fixed fraction (10%) does not seem to change the outgoing radiance much, probably
due to the channel’s low weight function peak (~750hPa).

The normalized J, in Eq. (6) for different levels with a specific cloud fraction

from 0% to 100% every 10% are shown in the bottom panel of Fig. 3, with 10% and
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1% as the intervals in Fig. 3c and Fig. 3d respectively. Here, J, can be further derived
as

R’ R
2 0 v k v \2
Jo =r (1-(,' R‘?bs —C Robs) (8),

v

obs K
with o = ; and Rf'°“d(c°,cl,cz,...,cK)=CORS+chRf.
k=1

From Fig. 3a, it is found that J, is smallest around level-5 with 100% cloud
fraction (denoted as 1 in legend) for the thin black line, with respect to the fact that
the overcast radiance fits the observed radiance most closely for level-5
approximately. The grey line with 10% cloud fraction (0.1 in the legend) corresponds
to the existence of a weight peak on level 19 in Fig. 2a. In addition, the gap between
the grey line with 0.1 and the other lines from 0.2 to 1 explains why there's less
continuity around level 13. Fig. 3b shows a similar pattern to Fig. 3a, except with
densely-distributed J, values around the level 13 from 0.1 to 1 in the legend. Those
contiguous black lines in Fig. 3b are associated with the set of particles with cloud

fractions from 10% to 100% at the interval of 1%.
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4.2 Cloud profiles

The retrieval experiments for a real case are conducted at 1100 UTC 3 June 2012
when AIRS measurements and the CloudSat “2B-GEOPROF” products (Mace, 2004)
are available. The vertical cross sections of the cloud fraction field of a real case are
illustrated to further check how different collections of initial particles impact the
retrieved cloud profiles. The standard radar reflectivity profiles from the CloudSat are
shown in Fig. 4a as the validation source; Fig. 4b, Fig. 4c, and Fig. 4d show the cross
sections of the cloud fractions along the CloudSat orbit tracks from the MMR, PF and
APF experiments. The vertical structures of the clouds from MMR compare well with
the radar reflectivity from CloudSat by retrieving the high clouds around 47N° and
low clouds around 52N°. The PF experiment has difficulties in detecting the cloud
tops appropriately. PF tends to detect a large quantity of low clouds; by adding a set of
particles with small-fraction clouds in APF, higher clouds can be reproduced, which is
consistent with the implications from Fig. 2b and 3b. APF detects clear strong cloud
signals and removes the cloud fractions on near-surface levels around 36 N°
successfully. Since the existences of ground-layer radar reflectivity are likely
corresponding to the strong reflection from the underlying surface of the earth, the
height of cloud bases of MMR and PF are not compared in this sub-section. The
experiments with larger size of particles including 0% to 20% (at the interval of 1%)
plus 30% to 100% (at the interval of 10%) or of 0% to 100% (at the interval of 1%)
one-layer cloud profiles (introduced in section 2) yield similar results from APF but

are much more costly (not shown).
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Figure 4. (a) The radar reflectivity (units: DBZ) cross sections from CloudSat, (b) the MMR
retrieved cloud fractions (units: %) cross sections, (c) the PF retrieved cloud fractions, and (d) the
APF retrieved cloud fractions valid at 1100 UTC 3 June 2012.

The vertical profiles of the averaged cloud fractions from MMR, PF, and APF are
plotted in Fig. 5 at 1100 UTC 3 June 2012 with AIRS. Both MMR and PF
experiments yield ambiguous cloud distributions, whereas APF retrieves much
stronger cloud signals constrained between level-2 to level-20 (approximately from
950hPa to 400hPa). More clouds around level 10 are retrieved (approximately 750hPa)
in MMR, while PF is prone to retrieving clouds near surface levels. Note that MMR
retrieves much higher cloud tops and lower cloud bases compared to APF. The cloud
base from PF is lowest; the cloud top from MMR and PF is comparable. Only the
APF related methods will be further discussed in later sections owing to the missing

of high clouds using PF.
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Figure 5. The mean cloud fraction on all model levels for the experiments MMR, PF, and APF

with AIRS observations valid at 1100 UTC 3 June 2012.

4.3 Cloud mask

Comparison experiments on real cases are further performed for over longer time
period from 0000 UTC 12 December 2013 to 0700 UTC 12 December 2013. The
cloud mask is marked as cloudy when there is a recognizable existence of cloud on
any level from MMR or PF retrievals. Both the NASA GOES Imager products and the
MMR-retrieved fields are interpolated to the same 0.1°x0.1° latitude—longitude grid
with O for clear and 1 for cloudy before the comparisons for verification. Fig. 6 shows
the hits, false alarms and misses locations with the use of GOES-Imager, MODIS,
CrlIS, AIRS, and IASI radiances in the retrieval algorithms at 0700 UTC 12 December
2013. Note that, cloud mask retrievals from both the MMR and APF hit the clear and

cloudy events well in Fig. 6a and 6b. In most areas, the MMR experiment
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overestimated the cloud mask with more false alarm events compared to the APF
experiment, since the MMR solution is an “overly smoothed” estimation of the true
vertical profile. It seems that the accuracy of cloud detection is lower for areas with
high altitude than under tropical conditions, indicating that the smaller lapse rate in
the atmosphere will lead radiance less sensitivity to clouds over polar areas. Fig. 6¢
shows the cloud mask results from the APFg2 experiment without the perturbed
particles in group-1 introduced in section 2. There is no large discrepancy between
Fig. 6b and Fig. 6c, suggesting that the particles in group-2 that fully span the
possibility of the cloud distributions, are more determinant in retrieving the cloud

mask.
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Figure 6. The false alarms, misses, and hits for clear and cloudy event locations with (a) the MMR
method, (b) the APF method, and (c) the APF method but without the group-1 particles (see text

for detailed explanations) valid at 0700 UTC 15 December 2013.

4.4 Cloud top and base pressure

The retrieved cloud top pressures (CTP) and cloud bottom pressures (CBP) from
this study along with the NASA GOES cloud products are illustrated in Fig. 7. The
CTPs from both methods are in good accordance with the NASA cloud products for
high clouds (from 100 hPa to 600 hPa) in Fig. 7a, 7c, and 7e. The retrieved cloud top
heights from MMR are overall higher than those from the NASA reference, especially
for lower clouds at approximately 750-1000 hPa (e. g., between longitude -100° and
-90°). On the other hand, the CTPs from APF are much closer to those in the
reference for both high and low clouds. APF overestimates the CBPs for some low
clouds (putting the clouds too low) in Fig. 7f; the overestimation of the CBP is even

more obvious from MMR in most regions in Fig. 7d.
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Figure 7. The cloud top pressure (left panels) from (a) the NASA GOES retrieval, (c) the MMR
method, (e) the APF method, and the cloud bottom pressure (right panels) from (b) the NASA
GOES retrieval, (d) the MMR method, (f) the APF method valid at 0700 UTC 15 December 2013.

The CTPs from NASA GOES cloud products for more hours (0300UTC,

0500UTC, 0700UTC) together with the independent CTP retrievals from MODIS
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level-2 products (http://modis-atmos.gsfc.nasa.gov/IMODO06 L 2/) are plotted in Fig. 8.

Different sub-periods of the MODIS cloud retrieval products (e.g., Fig. 8b valid at
0320 UTC, Fig. 8c at 0325, and Fig. 8d at 0330 UTC) are chosen to approach the
valid times in Fig. 8a, Fig. 8e, and Fig. 8h respectively. The CTPs from both cloud
products agree well for both high and low clouds, confirming that NASA GOES cloud
products are overall reliable for verifying the cloud retrievals and MODIS level-2

products can also be applied for validations.
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Figure 8. The cloud top pressure for (a) 0300UTC from the GOES NASA retrieval, (b) 0320UTC,

(c) 0325UTC, (d) 0330UTC from MODIS level-2 products; (e) 0500UTC from the GOES NASA

retrieval, (f) 0500UTC, (g) 0505UTC; (h) 0700UTC from the GOES NASA retrieval, (i)

0635UTC, (j) 0640UTC, and (k) 0645UTC from MODIS level-2 products.
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Fig. 9 presents the correlation coefficients and biases of the CTP and CBP verified
against the NASA GOES and MODIS retrievals. The solid lines denote the results
regarding the CTP and CBP versus the NASA GOES products from 0000 UTC to
0700 UTC, while the dots describe the CTP results versus the cloud top retrievals in
NASA MODIS level-2 products at 0320UTC, 0325UTC, 0330UTC, 0500UTC,
0505UTC, 0635UTC, 0640UTC, and 0645UTC. Here the negative bias means that the
retrieved clouds are higher than the reference. Vice versa, the positive bias indicates
the clouds are put too low. We conducted another experiment “APFimg” that applies
solely GOES Imager data to check the added value from the high spectral resolution
radiances (such as, CrlS, AIRS, and IASI). In Fig. 9a, the correlations between the
retrievals from MMR and the NASA GOES retrievals are comparable with from APF
for most hours; APF gains overall higher correlations with the CTPs in the MODIS
retrievals. From the bias in Fig. 9b, it seems that the CTPs from MMR are
underestimated (putting the clouds too high) consistently against both retrievals with
GOES and MODIS radiances. Fig. 9c shows that the correlations are weaker for
MMR compared to others all the time. In Fig. 9d, the positive CBP biases from MMR
are remarkable, while the CBP biases from APF are largely reduced. Generally,
APFimg degrades the CTP and CBP results consistently, suggesting that radiances
with high spectral resolutions are able to improve the vertical descriptions of cloud
profiles. It is found that the clouds retrieved with APFg2 are shrunken in terms of
cloud depth with notably lower cloud top and higher cloud base compared to APF,

when excluding the perturbed particles in the first group.
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Figure 9. (a) Correlation coefficient, (b) bias for the cloud top pressure, (c) correlation coefficient,

and (d) bias for the cloud bottom pressure versus the NASA GOES retrievals from 0600 UTC 15

December 2013 to 0700 UTC 15 December 2013. Black and blue dots denote results versus the

MODIS level-2 cloud top pressure retrieval valid at 0320UTC, 0325UTC, 0330UTC, 0500UTC,

0505UTC, 0635UTC, 0640UTC, and 0645UTC. The valid times for the MODIS level-2 data are

shown on the top of the x-axis.
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4.5 Computational issues

Fig. 10a represents the elapsed times for the MMR and APF experiments and the
counts of radiance observations in use are shown in Fig. 10b from 0000 UTC to 0700
UTC 12 December 2013. The profile of computing time in MMR is quite different
from that in PF. The cost of MMR is dominated by the heavy minimization procedure,
while APF is more associated with the processes of initializing particles and
calculating weights for all the particles. The computing times were measured from
cloud retrieving runs with 64 MPI-tasks on a single computing node in an IBM
iDataPlex Cluster. The measured wall clock computing times show that generally
MMR is computationally more expensive for most of the time than APF. It seems the
wall clock times for MMR are generally proportional to the data amount used. While
for the APF experiment, the wall clock time is mostly determined by the particles size
and partly affected by the channel number, such as for 2013121202 and 2013121206,
when the total counts of the hyperspectral sensors (IASI, Crls, and AIRS) are large.
The PF experiments using particles of one-layer cloud with 100% cloud fractions

usually take less than 5 minutes for the same periods (not shown).
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Figure 10. (a) The elapsed time and (b) the data count from 0000 UTC to 0700 UTC 15 December

2013.

4.6 Resolving the filtering problem on model grids

As explained in subsection 3.3, the filtering problem is resolved in the radiance
observational space at each FOV of each sensor independently and sequentially. For
each FOV, the retrieved cloud fractions are extrapolated to its neighboring model grid
points afterwards. We order the sensors in the cloud retrieving procedure as
GOES-Imager, MODIS, CrlIS, AIRS, and IASI, aiming to optimize the vertical clouds
using sensors featured with sufficient spectral resolutions. As a consequence, the
retrievals from the last sensor determine the final output to the most extent, causing
the cloud retrievals highly subjective to the ordering of the sensors. On the other hand,
it means the information from other prior sensors will be more or less discarded. In
this section, a different way of resolving the filtering problem is preliminarily tested,

in which the weights for each particle are aggregated over all available sensors by
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calling the forward radiative transfer model on neighbouring model grids.

Fig. 11 shows the clouds retrievals from the grid-based method. It is noted that
the grid-based scheme yields slightly worse results of CTP and neutral results of CBP
compared with those from the observation-based (FOV-based) scheme, indicating that
the hyperspectral sensors probably favor the retrieved CTP and CBP in the
FOV-based scheme, which are available for most of the time. It is worth pointing out
that the ordering of different sensors has nearly no effect on the final cloud retrievals,
when the weights of the particles are calculated in model space (not shown). The final
cloud retrieval is no longer overwritten by the retrieval from the last sensor but is a
total solution with all the sensors fairly considered, instead. The computational cost of
retrieving clouds in model space is comparable or slightly heavier than that in
observation space. The computational cost of the grid-based scheme scales with the
number of the computing nodes more directly, compared to that of the FOV-based

scheme.
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Figure 11. (a) Correlation coefficient, (b) bias for the cloud top pressure, (c) correlation
coefficient, and (d) bias for the cloud bottom pressure versus the NASA GOES retrievals from

0000 UTC to 0700 UTC 15 December 2013.

5. Discussion and conclusion
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This study presents a new cloud retrieval method based on the particle filter (PF)
in the framework of GSI, as a competitive alternative to the MMR method. The
behaviors of different particle initializations are demonstrated on one single field of
view and the CONUS domain respectively. Comparisons between the PF and the
MMR method are conducted in terms of the features of cloud mask, cloud top, cloud
base, and the vertical distributions of clouds. It was found that the PF method
retrieves clear cloud signals while MMR is more ambiguous in detecting clouds. By
adding more small-fraction particles, high clouds can be better interpreted. From the
statistical results, it was found that MMR underestimates the cloud top pressures (put
the clouds top too high) and overestimates the cloud bottom pressures (put the clouds
top too low) as well. APF improves both the retrievals of cloud tops and cloud bases
remarkably, especially for the cloud bases. As expected, radiances with high spectral
resolutions contribute to quantitative cloud top and cloud base retrievals. In addition,
a different way of resolving the filtering problem over each model grid is tested to
aggregate the weights with all available sensors considered, which is proven to be less
constrained by the ordering of sensors. Last but not least, the PF method is overall
more computationally efficient; the cost of the model grid-based PF method scales
more directly with the number of the computing nodes.

In future work, validation studies using multispectral imagers on geostationary
satellites, spaceborne lidars (or radar), and surface site data will continue, and the
results will be used to update the retrieval algorithm. Maximizing the consistency in

the products across platforms and optimizing the synergistic use of multiple-source
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radiances in the new algorithm are important aspects. To estimate the flow dependent
uncertainties in the cloud analysis and in the forecasts, the ensemble nowcasting with
three dimensional cloud fractions via the rapid-update cycling mode is also planned.
Increasing the highest extent cloudy cases will be included in future studies. Finally,
the use of cloud liquid water and ice mixing ratios retrieved from the cloud fractions
using multi-sensor radiances to pre-process the first guess in numerical weather

forecast is another promising application.

Code and/or data availability

The MMR cloud retrieval codes can be obtained freely from
(http://www2.mmm.ucar.edu/wrf/users/wrfda/). The other codes can be obtained by
emails from the authors.
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