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Abstract 15 

Ensemble-based techniques have been widely utilized in estimating uncertainties in 16 

various problems of interest in geophysical applications. A new cloud retrieval 17 

method is proposed based on the Particle Filter (PF) by using ensembles of cloud 18 

information�in the framework of Gridpoint Statistical Interpolation system (GSI). The 19 

PF cloud retrieval method is compared with the Multivariate and Minimum Residual 20 

(MMR) method that was previously established and verified. Cloud retrieval 21 

experiments involving a variety of cloudy types are conducted with the PF and MMR 22 

methods respectively with measurements of Infrared radiances on multi-sensors 23 

onboard both geostationary and polar satellites. It is found that the retrieved cloud 24 

masks with both methods are consistent with other independent cloud products. MMR 25 

is prone to producing ambiguous small-fraction clouds, while PF detects clearer cloud 26 

signals, yielding closer heights of cloud top and cloud base to other references. More 27 

collections of small fraction particles are able to effectively estimate the 28 

semi-transparent high clouds. It is found that radiances with high spectral resolutions 29 

contribute to quantitative cloud top and cloud base retrievals. In addition, a different 30 

way of resolving the filtering problem over each model grid is tested to better 31 

aggregate the weights with all available sensors considered, which is proven to be less 32 

constrained by the ordering of sensors. Compared to the MMR method, the PF 33 

method is overall more computationally efficient, and the cost of the model grid-based 34 

PF method scales more directly with the number of computing nodes. 35 
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1. Introduction 37 

Modern polar orbiting and geostationary airborne instruments provide researchers 38 

unprecedented opportunities for remote sensing of earth with continuous flows and 39 

almost complete spectral coverage of data. The primary cloud retrieval products from 40 

satellites are cloud mask (CM), cloud height (CH), effective cloud fraction (CF), and 41 

vertical structures of clouds with larger temporal and spatial scales. These cloud 42 

retrievals provide an immense and valuable combination for better initializing 43 

hydrometeors in numerical weather prediction (NWP), (Wu and Smith, 1992) (Hu et 44 

al., 2006) (Bayler et al., 2000) (Auligné et al., 2011) regulating the radiation budget 45 

for the planet, and understanding the climate feedback mechanism (Brückner et al., 46 

2014; Rossow and Schiffer, 1991; Rossow et al., 1993). Advanced cloud retrieval 47 

methods are able to retrieve clouds with multispectral techniques (Menzel et al., 1983; 48 

Platnick et al., 2003), among which the minimization methods usually directly utilize 49 

the difference between the modeled clear sky and the observed cloudy Infrared (IR) 50 

radiances [e. g., the minimum residual method, (Eyre and Menzel, 1989); the 51 

Minimum Local Emissivity Variance method, (Huang et al., 2004); and the 52 

Multivariate Minimum Residual method, (Auligné, 2014a)]. Specially, the 53 

Multivariate Minimum Residual (MMR) method is retrieving three dimensional 54 

multi-layer clouds by minimizing a cost function at each field-of-view (FOV) 55 

(Auligné, 2014b; Xu et al., 2015). MMR has been proven to be reliable in retrieving 56 

the quantitative three dimensional cloud fractions with Infrared radiances from 57 



multiple infrared instruments. However, MMR has limitations in several aspects due 58 

to its use of minimization for solution: 1) Part of the control variables accounting for 59 

the cloud fraction for some certain levels are under-observed since the channels are 60 

not sensitive to the existence of clouds for those heights. 2) When clouds at different 61 

heights show opacities with the same spectral signal, MMR could lose the ability to 62 

distinguish solutions involving clouds at those levels. 3) The computational cost for 63 

the minimization procedure in MMR is rather considerable.  64 

Ensemble-based techniques, that usually reside in short-term ensemble 65 

forecasting (Berrocal et al., 2007; Shen and Min, 2015), assembling existing model 66 

outputs (e. g., cloud retrievals) from varying algorithms (Zhao et al., 2012), or 67 

ensemble Kalman filter (EnKF) in diversified forms (Snyder and Zhang, 2003), have 68 

been widely developed in order to estimate the uncertainties of various problems in 69 

geophysical applications. To better account for the non-linearity between the observed 70 

radiance and the retrieval parameter, a novel prototype for detecting clouds and 71 

retrieving their vertical extension inspired by the particle filter (Snyder and Zhang, 72 

2003) (van Leeuwen, 2010) (Shen and Tang, 2015) technique and Bayesian theory 73 

(Karlsson et al., 2015) is proposed in this study. As a competitive alternative for 74 

MMR, the PF retrieval method has same critical inputs required and cloud retrieval 75 

products as in MMR. A brief description of MMR and the new PF cloud retrieval 76 

algorithm are provided in the following section. Section 3 describes the background 77 

model, the data assimilation system, the radiative transfer models (RTMs), and the 78 

radiance observations applied in this study. Model configurations are also illustrated 79 



in section 3. In section 4, the single test within one FOV is conducted before the 80 

performance of PF method is assessed by comparing its cloud retrievals with those 81 

from MMR and other operational cloud products. Section 4 also discusses the 82 

computational performance for the two methods. The conclusion and anticipated 83 

future work are outlined in section 5. 84 

2. Methodology 85 

Essentially, the PF cloud retrieval scheme retrieves clouds with the same critical 86 

inputs requested (i. e., clear sky radiance from the radiative transfer model and the 87 

observed radiance) and the same cloud retrievals as outputs (i. e., three dimensional 88 

cloud fractions, which is defined as the fraction of top of cloud as seen from a sensor) 89 

with the MMR method. Both cloud retrieval schemes consist of finding cloud 90 

fractions that allow best fit between the cloudy radiance from model and the 91 

observation. We use K21 c,...,c,c  to denote the array of vertical effective cloud 92 

fractions for K model levels ( 1c for the surface and Kc  for the model top) and 0c  as 93 

the fraction of clear sky with ]K,0[  1,0  kck . The constraint for the cloud 94 

fraction is as follows, 95 
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In this study, a cloud on one model level with a given fraction kc  is assumed to 97 

block the radiation from its lower model levels. The radiation originating from its 98 

lower levels is assumed to contribute to the top of atmosphere radiance observed by 99 



the satellites only with the residual fractions.  100 

   The MMR method is an approach to retrieve cloud fractions using the 101 

minimization technique. The residual of the modeled radiance and the observation is 102 

normalized by the observed radiance, which results in the following cost function, 103 

using ]K,0[  , kck as the control variables, 104 
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where cloud
vR  is the modeled cloudy radiance, and obs

vR  the observed radiance at 106 

frequency v. This vertical cloud fraction K21 c,...,c,c and 0c  are control variables for 107 

the cost function, where the simulated cloud
vR  is defined as 108 
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Here k
vR  is the radiance calculated assuming an overcast black cloud at the model 110 

level k and 0
vR  the radiance calculated in the clear sky. Both k

vR  and 0
vR  are 111 

calculated using a forward radiative transfer model with model profiles of temperature 112 

and moisture as inputs. Details of the schematic of the MMR method can be referred 113 

in (Descombes et al., 2014; Xu et al., 2015).  114 

Particle filter (PF) approach is one of the nonlinear filters for data assimilation 115 

procedures to best estimate the initial state of a system or its parameters xt, which 116 

describes the time evolution of the full probability density function p(xt) conditioned 117 

by the dynamics and the observations. Similar to the study in (Mechri et al., 2014), the 118 

bibliography on PF focuses on estimating the parameters, which are cloud fractions 119 

kc in Eq. (3), in this study. While MMR retrieves the cloud fractions on each model 120 



vertical level by minimizing a cost function, PF calculates posterior weights for each 121 

ensemble member based on the observation likelihood given that member. In its 122 

simplest form, PF works by initializing a collection of cloud profiles as particles and 123 

then estimating the cloud distributions by averaging those particles with their 124 

corresponding weights. Each particle’s weight is computed with the difference 125 

between the modeled cloudy radiance from the particle and the observed radiance.  126 

As the probabilities of the cloud distribution are fully presented by the initial 127 

particles, of particular interest is to evaluate different particle initialization schemes in 128 

the PF method. Explicitly, the definition of particles corresponds with ensemble 129 

members, i.e. one cloud profile as one of particles is corresponding to an ensemble 130 

member.  131 

Two approaches for generating particles are firstly designed; the first one is to 132 

generate the perturbed samples i
bC ( ]n,1[ i ) from the cloud profile in the 133 

background denoted as ),...,,(C K10
b bbb ccc by inflating (deflating) the clouds with 134 

small magnitudes ( %150%,...,55%,50,CC bb   ) and moving upward 135 

(downward) with 5,...1...,4,5 z as the vertical magnitude, where n is the 136 

sample size. The perturbed cloud fractions are designated to replenish the ensemble 137 

by introducing the prior information of the cloud distributions from the background 138 

and to increase the ensemble spread.  139 

Besides those perturbed particles, to represent the existence of one-layer cloud 140 

on each model level with an even chance, another diversity set of profiles i
bC  141 

( ]1K,1[ i ) are also initialized, among which, i
bC  stands for the profile with 142 



100% cloud fraction on the model level i (ci=100%) and 0% cloud on the rest levels. 143 

In particular, 0
bC  defines 100% clear (c0=1). It is also interesting to discretize the 144 

initial particles by setting the one-layer cloud with the value of ci from 100% to 0% (e. 145 

g., 100%, 90%, 80%, …, 0% with 10% as the interval) and further from 100% to 0% 146 

(e. g., 100%, 99%, 98%, 97%, …, 0% with 1% as the interval). In this cases, c0=1-ci . 147 

For each particle i
bC , its simulated cloudy radiance cloud

,ivR from the model background 148 

can be obtained with Eq. (3).  149 

    A cost function Jo is defined for each particle to measure how the particle fit the 150 

observation as, 151 

.)( 2
cloudobs


iν,ν

o

RR
J


                        (4) 152 

 is the specified observation error, which can be referred in the first paragraph in 153 

section 4.1. The weight iw  for each particle i
bC  thus is calculated by comparing the 154 

simulated cloud
,ivR  and the observation obs

vR  using the exponential function by 155 

accumulating the Jo for multiple frequency as 156 
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]n,1[ i . Here n is the particle size and  is the specified observation error, 158 

which can be referred in the first paragraph in section 4.1. The final analyzed Ca is 159 

obtained by averaging the background particles i
bC  with their corresponding weight, 160 

as  161 
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In Eq. (6), the constraint referred in Eq. (1) is not respected. Thus, after the analysis 163 



step for the particle filter, the final averaged cloud fractions 
k
ac  are normalized by 164 
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where ]K,0[ k .  166 

3. Data and model configurations  167 

3.1 Data 168 

The Advanced Infrared Sounder (AIRS), the Infrared Atmospheric Sounding 169 

Interferometer (IASI), and the Cross-track Infrared Sounder (CrIs) are among the 170 

most advanced hyperspectral infrared sounders and thus are applied for retrieving 171 

clouds with hundreds of channels (Blumstein et al., 2004) (Aumann et al., 2003) (Xu 172 

et al., 2013) (Bao et al., 2015; Smith et al., 2015). The Radiance measurements from 173 

Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Earth 174 

Observing System (EOS) Terra or Aqua satellites are also well suited to extracting 175 

valuable cloud information from the 36 spectral broadbands in the visible, near 176 

infrared and infrared regions at high spatial resolution (1–5 km) (Ackerman, 1998). 177 

Apart from the IR radiances from polar satellites, the Geostationary Operational 178 

Environmental Satellites (GOES) Imager (Menzel and Purdom, 1994) provides a 179 

continuous stream of data over the observing domain. In this study, GOES-13 (east) 180 

and GOES-15 (west) are also utilized to obtain cloud fractions over the continental 181 

United States (CONUS) domain. The GOES Imager used in this study is a 182 



five-channel (one visible, four infrared) imaging radiometer designed to sense 183 

radiant and solar reflected energy. The instrument parameters for the sensors and the 184 

setups for channel selections can be found in (Xu et al., 2015). 185 

3.2 WRF, GSI and the radiative transfer model 186 

The background fields are processed running the Weather Research and Forecast 187 

(WRF) model (Skamarock et al., 2008). The MMR and PF cloud retrieval algorithms 188 

are both implemented based on the gridpoint statistical interpolation data assimilation 189 

system (GSI) (Wu et al., 2002) (Kleist et al., 2009), which is a widely used data 190 

assimilation system in operations and researches in NWP. GSI is capable of ingesting 191 

a large variety of satellite radiance observations and has developed capabilities for 192 

data thinning, quality control, and satellite radiance bias correction. The Community 193 

Radiative Transfer Model (Liu and Weng, 2006) (Han et al., 2006) was used as the 194 

radiance forward operator for computing the clear-sky radiance and the radiance given 195 

overcast clouds at each model level. 196 

3.3 Model configurations  197 

The WRF is configured with 415*325 horizontal grids at 15-km grid spacing, and 198 

40 vertical levels up to 50 hPa within the single CONUS domain. The MMR and PF 199 

cloud detection schemes search the cloud top using approximately 150 hPa as the 200 

highest extent for most cloudy cases. Other clouds higher 150 hPa, e.g. an anvil cloud 201 

in a mature thunderstorm around tropopause at low latitude region will also be 202 



explored in future studies. Channels in the longwave region are utilized following the 203 

channel selection scheme in (Xu et al., 2015). Since the final retrieval clouds are on 204 

model grids, the retrieved cloud fractions within one FOV are essentially extrapolated 205 

to its four neighboring model grid points. Generally, for each FOV, the retrieved 206 

cloud fractions are extrapolated to its four neighboring model grid points. For polar 207 

satellite pixels, the representative cloud fractions are extrapolated with an adaptive 208 

radius with respect to their scan positions. The cloud detecting procedure for 209 

retrieving clouds is conducted for each FOV from each individual sensor 210 

independently and sequentially. Since the clouds are retrieved FOV by FOV and the 211 

clouds on grids are referred immediately after one FOV is completed, there is no 212 

obvious accuracy loss of radiance observations using this conservative method. 213 

4. Experiments and results 214 

The PF experiments apply two groups of particles as mentioned in section 2, 215 

among which the group-2 particles contains solely 100% one-layer clouds. To reveal 216 

how the setup of the initial particles impacts the results, apart from the MMR and PF 217 

experiments, we included another advanced experiment, denoted as APF. APF 218 

requires more sampled particles including ranges of cloud fractions spanning from 0% 219 

to 100% at the interval of 10%. An additional experiment “APFg2”, similar to APF 220 

but excluding the perturbed particles from the background in group-1 introduced in 221 

section 2, was conducted to evaluate the added values from the group-one particles. In 222 

this section, cloud retrieval experiments for several cases containing clouds of a 223 



variety of types are conducted for comparison reason. The GOES imager retrieved 224 

products from National Aeronautics and Space Administration (NASA-Langley cloud 225 

and radiation products) are applied as a reference to validate the cloud retrieving 226 

methods for the CONUS domain with a large and uniform coverage of cloud mask. In 227 

addition, the retrieved cloud products were also compared to available CloudSat 228 

(Stephens et al., 2002) and MODIS level-2 cloud products (Platnick et al., 2003) 229 

archived by the CloudSat Data Processing Center in Colorado State and NASA 230 

respectively.  231 

4.1 Single test at one field of view  232 

The PF cloud retrieving algorithm retrieves the cloud distributions by averaging 233 

those initial particles with their weights. Before the real case experiments are carried 234 

out over the whole domain, we conduct a single cloud retrieving test at one FOV to 235 

understand what differences can be explained by the differences in the basic initial 236 

particles. In Eq. (5), the observation error  can be set proportional to the 237 

observation, equaling to 
r

Rv
obs

, where r  is the prescribed ratio. Thus, the cloud 238 

signals on each level k are virtually determined by the extent of how close the 
obs
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 for the clear part) gets to 1. An example of the ratio of the overcast 240 

radiance and the observed radiance 
obs
v

k
v

R

R
 for each model level is given in Fig. 1 of 241 

GOES-Imager for the channel 5 (~13.00 m ). The clear sky radiance normalized by 242 



the observed radiance 
obs
v

v

R

R0

 is also shown at the level 0 (Fig. 1). It is expected that 243 

the overcast radiance from the RTM decrease with the rising of the altitude. The cloud 244 

signal is strongest around level 5, where k
vR  fits obs

vR  most closely. The cloud 245 

retrievals depend not only on the basic input profiles (i.e., the overcast radiance on 246 

each level from RTM normalized by the observed radiance and the clear sky radiance 247 

from RTM normalized by the observed radiance) and but also on the algorithm 248 

applied for resolving the problem (e.g., MMR and PF in this study). 249 
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Figure 1. Ratio of the overcast radiances versus the observed radiance starting from the level 1. 252 

The ratio of the clear sky radiance normalized by the observed radiance corresponds to the level 0 253 

(see text for explanation) for GOES-Imager for the channel 5. The approximate pressures 254 

corresponding to the model levels are also denoted. 255 

To reveal the roles of various initial particles, Fig. 2a shows the weights for 256 

different particles on the given FOV for channel 5 of GOES-Imager for the case 257 



shown in Fig. 1. Particles in Fig. 1 include one-layer cloud in group 2 described in 258 

section 2 with specified value of cloud fractions kc (on the x-axis) on specified model 259 

levels k (on the y-axis) from 10% to 100% every 10%. With a fraction kc  of 260 

one-cloud layer at a given level k and a fraction of kcc 10 of clear sky, the 261 

simulated cloudy radiance can be denoted as 0cloud )1( v
kk

v
k

v RcRcR  . Hence the 262 

theoretical one-layer cloud fraction is solved as 
k
vv

obs
vvk

RR

RR
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
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0

by fitting cloud
vR to 0

vR . 263 

As expected, for one-layer cloud with full fraction, 5c equals to 100% . Since with the 264 

concept that 1 k
v

k
v RR , no cloud can be present below level 5 since this would implies 265 

a cloud
vR larger than the observation (or a ic larger than 100%). It seems that clouds 266 

can be described by different possible states as particles with both large fractions and 267 

small fractions. Low clouds are easily estimated by one-layer cloud profile with large 268 

fractions (larger than 10%). The particles with small-fraction high clouds gain some 269 

weights to retrieve high clouds. The particle with the one-layer cloud on level 13 270 

seems to gain least weight compared to the others levels. The weights for the particles 271 

with cloud fractions from 0% to 100% at the interval of 1% are also presented in Fig. 272 

2b. By including more small-fraction one-layer clouds, the clouds around level 13 can 273 

be reproduced by the group of refined particles with 1% as the interval for 274 

approximate 10% cloud fractions. However, changing the level of the cloud for the 275 

fixed fraction (10%) does not seem to change the outgoing radiance much, probably 276 

due to the channel’s low weight function peak (~750hPa). 277 

The normalized Jo in Eq. (6) for different levels with a specific cloud fraction 278 

from 0% to 100% every 10% are shown in the bottom panel of Fig. 3, with 10% and 279 



1% as the intervals in Fig. 3c and Fig. 3d respectively. Here, Jo can be further derived 280 

as     281 
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From Fig. 3a, it is found that Jo is smallest around level-5 with 100% cloud 284 

fraction (denoted as 1 in legend) for the thin black line, with respect to the fact that 285 

the overcast radiance fits the observed radiance most closely for level-5 286 

approximately. The grey line with 10% cloud fraction (0.1 in the legend) corresponds 287 

to the existence of a weight peak on level 19 in Fig. 2a. In addition, the gap between 288 

the grey line with 0.1 and the other lines from 0.2 to 1 explains why there's less 289 

continuity around level 13. Fig. 3b shows a similar pattern to Fig. 3a, except with 290 

densely-distributed Jo values around the level 13 from 0.1 to 1 in the legend. Those 291 

contiguous black lines in Fig. 3b are associated with the set of particles with cloud 292 

fractions from 10% to 100% at the interval of 1%.   293 
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Figure 2. The weights for different particles with specified cloud fractions on the x-axis at one 295 

chosen model level shown on the y-axis from 0% to 100% (a) at the interval of 10% and (b) at the 296 

interval of 1%.  297 
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Figure 3. The normalized Jo (a) at the interval of 10% and (b) at the interval of 1%. In (b), the 299 

normalized Jo from 0.1 to 1 are all denoted as black lines. 300 

 301 
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4.2 Cloud profiles   303 

The retrieval experiments for a real case are conducted at 1100 UTC 3 June 2012 304 

when AIRS measurements and the CloudSat “2B-GEOPROF” products (Mace, 2004) 305 

are available. The vertical cross sections of the cloud fraction field of a real case are 306 

illustrated to further check how different collections of initial particles impact the 307 

retrieved cloud profiles. The standard radar reflectivity profiles from the CloudSat are 308 

shown in Fig. 4a as the validation source; Fig. 4b, Fig. 4c, and Fig. 4d show the cross 309 

sections of the cloud fractions along the CloudSat orbit tracks from the MMR, PF and 310 

APF experiments. The vertical structures of the clouds from MMR compare well with 311 

the radar reflectivity from CloudSat by retrieving the high clouds around 47N° and 312 

low clouds around 52N°. The PF experiment has difficulties in detecting the cloud 313 

tops appropriately. PF tends to detect a large quantity of low clouds; by adding a set of 314 

particles with small-fraction clouds in APF, higher clouds can be reproduced, which is 315 

consistent with the implications from Fig. 2b and 3b. APF detects clear strong cloud 316 

signals and removes the cloud fractions on near-surface levels around 36 N° 317 

successfully. Since the existences of ground-layer radar reflectivity are likely 318 

corresponding to the strong reflection from the underlying surface of the earth, the 319 

height of cloud bases of MMR and PF are not compared in this sub-section. The 320 

experiments with larger size of particles including 0% to 20% (at the interval of 1%) 321 

plus 30% to 100% (at the interval of 10%) or of 0% to 100% (at the interval of 1%) 322 

one-layer cloud profiles (introduced in section 2) yield similar results from APF but 323 

are much more costly (not shown). 324 



 325 

 326 

Figure 4. (a) The radar reflectivity (units: DBZ) cross sections from CloudSat, (b) the MMR 327 

retrieved cloud fractions (units: %) cross sections, (c) the PF retrieved cloud fractions, and (d) the 328 

APF retrieved cloud fractions valid at 1100 UTC 3 June 2012.  329 

The vertical profiles of the averaged cloud fractions from MMR, PF, and APF are 330 

plotted in Fig. 5 at 1100 UTC 3 June 2012 with AIRS. Both MMR and PF 331 

experiments yield ambiguous cloud distributions, whereas APF retrieves much 332 

stronger cloud signals constrained between level-2 to level-20 (approximately from 333 

950hPa to 400hPa). More clouds around level 10 are retrieved (approximately 750hPa) 334 

in MMR, while PF is prone to retrieving clouds near surface levels. Note that MMR 335 

retrieves much higher cloud tops and lower cloud bases compared to APF. The cloud 336 

base from PF is lowest; the cloud top from MMR and PF is comparable. Only the 337 

APF related methods will be further discussed in later sections owing to the missing 338 

of high clouds using PF. 339 



 340 

 341 

Figure 5. The mean cloud fraction on all model levels for the experiments MMR, PF, and APF 342 

with AIRS observations valid at 1100 UTC 3 June 2012.  343 

4.3 Cloud mask  344 

Comparison experiments on real cases are further performed for over longer time 345 

period from 0000 UTC 12 December 2013 to 0700 UTC 12 December 2013. The 346 

cloud mask is marked as cloudy when there is a recognizable existence of cloud on 347 

any level from MMR or PF retrievals. Both the NASA GOES Imager products and the 348 

MMR-retrieved fields are interpolated to the same 0.1°×0.1° latitude–longitude grid 349 

with 0 for clear and 1 for cloudy before the comparisons for verification. Fig. 6 shows 350 

the hits, false_alarms and misses locations with the use of GOES-Imager, MODIS, 351 

CrIS, AIRS, and IASI radiances in the retrieval algorithms at 0700 UTC 12 December 352 

2013. Note that, cloud mask retrievals from both the MMR and APF hit the clear and 353 

cloudy events well in Fig. 6a and 6b. In most areas, the MMR experiment 354 



overestimated the cloud mask with more false alarm events compared to the APF 355 

experiment, since the MMR solution is an “overly smoothed” estimation of the true 356 

vertical profile. It seems that the accuracy of cloud detection is lower for areas with 357 

high altitude than under tropical conditions, indicating that the smaller lapse rate in 358 

the atmosphere will lead radiance less sensitivity to clouds over polar areas. Fig. 6c 359 

shows the cloud mask results from the APFg2 experiment without the perturbed 360 

particles in group-1 introduced in section 2. There is no large discrepancy between 361 

Fig. 6b and Fig. 6c, suggesting that the particles in group-2 that fully span the 362 

possibility of the cloud distributions, are more determinant in retrieving the cloud 363 

mask. 364 

 365 
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Figure 6. The false alarms, misses, and hits for clear and cloudy event locations with (a) the MMR 367 

method, (b) the APF method, and (c) the APF method but without the group-1 particles (see text 368 

for detailed explanations) valid at 0700 UTC 15 December 2013.  369 

4.4 Cloud top and base pressure 370 

The retrieved cloud top pressures (CTP) and cloud bottom pressures (CBP) from 371 

this study along with the NASA GOES cloud products are illustrated in Fig. 7. The 372 

CTPs from both methods are in good accordance with the NASA cloud products for 373 

high clouds (from 100 hPa to 600 hPa) in Fig. 7a, 7c, and 7e. The retrieved cloud top 374 

heights from MMR are overall higher than those from the NASA reference, especially 375 

for lower clouds at approximately 750-1000 hPa (e. g., between longitude -100° and 376 

-90°). On the other hand, the CTPs from APF are much closer to those in the 377 

reference for both high and low clouds. APF overestimates the CBPs for some low 378 

clouds (putting the clouds too low) in Fig. 7f; the overestimation of the CBP is even 379 

more obvious from MMR in most regions in Fig. 7d. 380 

 381 
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 382 

Figure 7. The cloud top pressure (left panels) from (a) the NASA GOES retrieval, (c) the MMR 383 

method, (e) the APF method, and the cloud bottom pressure (right panels) from (b) the NASA 384 

GOES retrieval, (d) the MMR method, (f) the APF method valid at 0700 UTC 15 December 2013. 385 

The CTPs from NASA GOES cloud products for more hours (0300UTC, 386 

0500UTC, 0700UTC) together with the independent CTP retrievals from MODIS 387 



level-2 products (http://modis-atmos.gsfc.nasa.gov/MOD06_L2/) are plotted in Fig. 8. 388 

Different sub-periods of the MODIS cloud retrieval products (e.g., Fig. 8b valid at 389 

0320 UTC, Fig. 8c at 0325, and Fig. 8d at 0330 UTC) are chosen to approach the 390 

valid times in Fig. 8a, Fig. 8e, and Fig. 8h respectively. The CTPs from both cloud 391 

products agree well for both high and low clouds, confirming that NASA GOES cloud 392 

products are overall reliable for verifying the cloud retrievals and MODIS level-2 393 

products can also be applied for validations. 394 



 395 

Figure 8. The cloud top pressure for (a) 0300UTC from the GOES NASA retrieval, (b) 0320UTC, 396 

(c) 0325UTC, (d) 0330UTC from MODIS level-2 products; (e) 0500UTC from the GOES NASA 397 

retrieval, (f) 0500UTC, (g) 0505UTC; (h) 0700UTC from the GOES NASA retrieval, (i) 398 

0635UTC, (j) 0640UTC, and (k) 0645UTC from MODIS level-2 products.  399 



Fig. 9 presents the correlation coefficients and biases of the CTP and CBP verified 400 

against the NASA GOES and MODIS retrievals. The solid lines denote the results 401 

regarding the CTP and CBP versus the NASA GOES products from 0000 UTC to 402 

0700 UTC, while the dots describe the CTP results versus the cloud top retrievals in 403 

NASA MODIS level-2 products at 0320UTC, 0325UTC, 0330UTC, 0500UTC, 404 

0505UTC, 0635UTC, 0640UTC, and 0645UTC. Here the negative bias means that the 405 

retrieved clouds are higher than the reference. Vice versa, the positive bias indicates 406 

the clouds are put too low. We conducted another experiment “APFimg” that applies 407 

solely GOES Imager data to check the added value from the high spectral resolution 408 

radiances (such as, CrIS, AIRS, and IASI). In Fig. 9a, the correlations between the 409 

retrievals from MMR and the NASA GOES retrievals are comparable with from APF 410 

for most hours; APF gains overall higher correlations with the CTPs in the MODIS 411 

retrievals. From the bias in Fig. 9b, it seems that the CTPs from MMR are 412 

underestimated (putting the clouds too high) consistently against both retrievals with 413 

GOES and MODIS radiances. Fig. 9c shows that the correlations are weaker for 414 

MMR compared to others all the time. In Fig. 9d, the positive CBP biases from MMR 415 

are remarkable, while the CBP biases from APF are largely reduced. Generally, 416 

APFimg degrades the CTP and CBP results consistently, suggesting that radiances 417 

with high spectral resolutions are able to improve the vertical descriptions of cloud 418 

profiles. It is found that the clouds retrieved with APFg2 are shrunken in terms of 419 

cloud depth with notably lower cloud top and higher cloud base compared to APF, 420 

when excluding the perturbed particles in the first group. 421 



0320 0325 0330 0500 0505 0635 0640 0645 0320 0325 0330 0500 0505 0635 0640 0645

(a) (b)

(c) (d)

MODIS Time (hhmm) MODIS Time (hhmm)

 422 

Figure 9. (a) Correlation coefficient, (b) bias for the cloud top pressure, (c) correlation coefficient, 423 

and (d) bias for the cloud bottom pressure versus the NASA GOES retrievals from 0600 UTC 15 424 

December 2013 to 0700 UTC 15 December 2013. Black and blue dots denote results versus the 425 

MODIS level-2 cloud top pressure retrieval valid at 0320UTC, 0325UTC, 0330UTC, 0500UTC, 426 

0505UTC, 0635UTC, 0640UTC, and 0645UTC. The valid times for the MODIS level-2 data are 427 

shown on the top of the x-axis.  428 



4.5 Computational issues 429 

Fig. 10a represents the elapsed times for the MMR and APF experiments and the 430 

counts of radiance observations in use are shown in Fig. 10b from 0000 UTC to 0700 431 

UTC 12 December 2013. The profile of computing time in MMR is quite different 432 

from that in PF. The cost of MMR is dominated by the heavy minimization procedure, 433 

while APF is more associated with the processes of initializing particles and 434 

calculating weights for all the particles. The computing times were measured from 435 

cloud retrieving runs with 64 MPI-tasks on a single computing node in an IBM 436 

iDataPlex Cluster. The measured wall clock computing times show that generally 437 

MMR is computationally more expensive for most of the time than APF. It seems the 438 

wall clock times for MMR are generally proportional to the data amount used. While 439 

for the APF experiment, the wall clock time is mostly determined by the particles size 440 

and partly affected by the channel number, such as for 2013121202 and 2013121206, 441 

when the total counts of the hyperspectral sensors (IASI, CrIs, and AIRS) are large. 442 

The PF experiments using particles of one-layer cloud with 100% cloud fractions 443 

usually take less than 5 minutes for the same periods (not shown). 444 
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Figure 10. (a) The elapsed time and (b) the data count from 0000 UTC to 0700 UTC 15 December 446 

2013.  447 

4.6 Resolving the filtering problem on model grids 448 

As explained in subsection 3.3, the filtering problem is resolved in the radiance 449 

observational space at each FOV of each sensor independently and sequentially. For 450 

each FOV, the retrieved cloud fractions are extrapolated to its neighboring model grid 451 

points afterwards. We order the sensors in the cloud retrieving procedure as 452 

GOES-Imager, MODIS, CrIS, AIRS, and IASI, aiming to optimize the vertical clouds 453 

using sensors featured with sufficient spectral resolutions. As a consequence, the 454 

retrievals from the last sensor determine the final output to the most extent, causing 455 

the cloud retrievals highly subjective to the ordering of the sensors. On the other hand, 456 

it means the information from other prior sensors will be more or less discarded. In 457 

this section, a different way of resolving the filtering problem is preliminarily tested, 458 

in which the weights for each particle are aggregated over all available sensors by 459 



calling the forward radiative transfer model on neighbouring model grids.  460 

Fig. 11 shows the clouds retrievals from the grid-based method. It is noted that 461 

the grid-based scheme yields slightly worse results of CTP and neutral results of CBP 462 

compared with those from the observation-based (FOV-based) scheme, indicating that 463 

the hyperspectral sensors probably favor the retrieved CTP and CBP in the 464 

FOV-based scheme, which are available for most of the time. It is worth pointing out 465 

that the ordering of different sensors has nearly no effect on the final cloud retrievals, 466 

when the weights of the particles are calculated in model space (not shown). The final 467 

cloud retrieval is no longer overwritten by the retrieval from the last sensor but is a 468 

total solution with all the sensors fairly considered, instead. The computational cost of 469 

retrieving clouds in model space is comparable or slightly heavier than that in 470 

observation space. The computational cost of the grid-based scheme scales with the 471 

number of the computing nodes more directly, compared to that of the FOV-based 472 

scheme. 473 
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Figure 11. (a) Correlation coefficient, (b) bias for the cloud top pressure, (c) correlation 475 

coefficient, and (d) bias for the cloud bottom pressure versus the NASA GOES retrievals from 476 

0000 UTC to 0700 UTC 15 December 2013. 477 

5. Discussion and conclusion 478 



This study presents a new cloud retrieval method based on the particle filter (PF) 479 

in the framework of GSI, as a competitive alternative to the MMR method. The 480 

behaviors of different particle initializations are demonstrated on one single field of 481 

view and the CONUS domain respectively. Comparisons between the PF and the 482 

MMR method are conducted in terms of the features of cloud mask, cloud top, cloud 483 

base, and the vertical distributions of clouds. It was found that the PF method 484 

retrieves clear cloud signals while MMR is more ambiguous in detecting clouds. By 485 

adding more small-fraction particles, high clouds can be better interpreted. From the 486 

statistical results, it was found that MMR underestimates the cloud top pressures (put 487 

the clouds top too high) and overestimates the cloud bottom pressures (put the clouds 488 

top too low) as well. APF improves both the retrievals of cloud tops and cloud bases 489 

remarkably, especially for the cloud bases. As expected, radiances with high spectral 490 

resolutions contribute to quantitative cloud top and cloud base retrievals. In addition, 491 

a different way of resolving the filtering problem over each model grid is tested to 492 

aggregate the weights with all available sensors considered, which is proven to be less 493 

constrained by the ordering of sensors. Last but not least, the PF method is overall 494 

more computationally efficient; the cost of the model grid-based PF method scales 495 

more directly with the number of the computing nodes. 496 

In future work, validation studies using multispectral imagers on geostationary 497 

satellites, spaceborne lidars (or radar), and surface site data will continue, and the 498 

results will be used to update the retrieval algorithm. Maximizing the consistency in 499 

the products across platforms and optimizing the synergistic use of multiple-source 500 



radiances in the new algorithm are important aspects. To estimate the flow dependent 501 

uncertainties in the cloud analysis and in the forecasts, the ensemble nowcasting with 502 

three dimensional cloud fractions via the rapid-update cycling mode is also planned. 503 

Increasing the highest extent cloudy cases will be included in future studies. Finally, 504 

the use of cloud liquid water and ice mixing ratios retrieved from the cloud fractions 505 

using multi-sensor radiances to pre-process the first guess in numerical weather 506 

forecast is another promising application. 507 

Code and/or data availability 508 

The MMR cloud retrieval codes can be obtained freely from 509 

(http://www2.mmm.ucar.edu/wrf/users/wrfda/). The other codes can be obtained by 510 

emails from the authors. 511 
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