
Reply to Reviewer (2)’s comments on gmd-2016-150

We would like to thank the reviewer for careful and thorough reading of this

manuscript and for the constructive suggestions. Here are our responses to the

reviewer’s comments.

Comments to author:

General comments:

The aim of the paper is to introduce a new retrieval cloud method, based on the

particle filter approach. Since several very different configuration of cloud can lead

to the same observed radiance, PF appears as nice tool for this problem. While

similar use of the PF have been introduced in other domains (see comment 1 below),

this is a new applications in this fields. The proposed method is compared with state

of the art

(MMR) where several particle generating techniques have been considered. The

results are well presented with an pedagogical situation to explore the potential of

the method, and real cases. The benefit of the PF are a better retrieval at a lower cost

compared with the MMR. The manuscript can be improved to facilitate its reading

following the comments, and minor revision are required.

Comments:

1) The bibliography on PF focuses on classical data assimilation consideration to

estimate initial state. However, PF can also be used to parameter estimation or

disaggregation which is similar to what introduced here, see eg Mechri et al. (2015).

Hence you should clearly state the difference between the use of PF in classical DA

and the present one, even if this relies on the same formalism, and improve the

bibliography on this aspect.

------------------------------------

Reply: We reorganized the methodology part and added statements as “Particle filter

(PF) approach is one of the nonlinear filters for data assimilation procedures to best

estimate the initial state of a system or its parameters xt, which describes the time



evolution of the full probability density function p(xt) conditioned by the dynamics

and the observations. Similar to (Mechri et al., 2014), the bibliography on PF

focuses on estimating the parameters, which are the cloud fractions kc in Eq. (3), in

this study.” in paragraph 3 in section 2.

2) Par 1, sec 2, L82: Precise the idea of cloud retrieval: this is implicit but for self

consistency it is better to explain (generation of radiance from model, compared with

observation, if they match then the cloud structure is found).

------------------------------------

Reply: Agreed. More statements are added as “Both cloud retrieval schemes consist

of finding cloud fractions that allow best fit between the cloudy radiance from model

and the observation.” in the first paragraph in section 2.

3) L87: Precise the level associated with upper script k (k=1 means near the surface ..

or top atmosphere as encountered in NWP models – Fig. 1 explains it corresponds to

the surface, but this should be written) ?

------------------------------------

Reply: Accepted. In the revised manuscript, “We use K21 c,...,c,c to denote the

array of vertical effective cloud fractions for K model levels ( 1c for the surface and

Kc for the model top) and 0c as the fraction of clear sky with

]K,0[  1,0  kck . ” in section 2.

4) L87: “effective” is not clear, it should be better to explain as the fraction of top of

cloud as seen from a sensor.

------------------------------------

Reply: Accepted. We revised the statements as “Essentially, the PF cloud retrieval

scheme retrieves clouds with the same critical inputs requested (i. e., clear sky

radiance from the radiative transfer model and the observed radiance) and the same



cloud retrievals as outputs (i. e., three dimensional cloud fractions, which is defined

as the fraction of top of cloud as seen from a sensor) with the MMR method.” in

place of effective three dimensional cloud fractions).

5) L88: Following the previous point 4), with the condition 10  kc , precise that





K

0

1
k

kc at this place, with a label for this equation (the sum can be suppressed

from L101).

------------------------------------

Reply: Agreed. We labelled the equation and suppressed the sum from L101.

6) L111: the definition of what is a particle is crucial since it use to be model state in

classical dynamical system that is not the case here. Hence, you should precise

explicitly that P stands for the vector )K( c,...,c,c 10c . In the notation, P can be

interpreted as a function ck.. I think better to use )K( c,...,c,c 10C for the particle in

place of the notation P that could lead to confusion with the probability notation

underlined with the particle filter approach. (see point 13 below)

------------------------------------

Reply: Accepted. We adopted the reviewer’s idea that using )K10( c,...,c,cC to

interpret the particle, which makes the notations more clear.

7) L113: “typical” provide reference to previous work showing the method is known

or suppress “typical”.

------------------------------------

Reply: Agreed. We deleted “typical” in the sentence.

8) L115: add an subscript b to kc in bP as k
bc

------------------------------------



Reply: Done.

9) L115: “inflating, deflating, moving” should be illustrate using a regular 2D mesh,

a

simple figure would illustrates the fact that moving can suppress some fraction (a

cloud becoming masked by another at upper level).

------------------------------------

Reply: Done. The first one is to generate the perturbed samples i
bC ( ]n,1[ i )

from the cloud profile in the background denoted as ),...,,(C K10
b bbb ccc by inflating

(deflating) the clouds with small magnitudes ( %150%,...,55%,50,CC bb   )

and moving upward (downward) with 5,...1...,4,5 z as the vertical

magnitude, where n is the sample size.

10) L111-126: the two approaches (L113) are not clearly separated, make two

different paragraph one for each method (L114: the perturbation; L120 L123 the

full/fractional one level top cloud)

------------------------------------

Reply: Accepted.

11) L126: precise that for one-layer cloud at level i, the clear sky fraction is 0c =

1- ic

------------------------------------

Reply: Accepted.

12) L130: Eq.(3) means the comparison is done for one frequency.. what happens

with other frequency (robustness, sensitivity) ? MMR relies on multiple frequency.

At the opposite the PF seems to be used with only one. Please clarify this point /

explain



more precisely what is done.

------------------------------------

Reply: PF also is conducted based on multiple frequency. We revised the manuscript

as “The weight iw for each particle i
bC thus is calculated by comparing the

simulated cloud
,ivR and the observation obs

vR using the exponential function by

accumulating the Jo for multiple frequency as

,
2

cloudobs

)(




v

iν,ν RR

i ew 

(5)

]p,1[ i .” in sixth paragraph in section 2.

13) L134: with the notation C, Eq.(4) becomes
i

b

p

1i

i PwC 


a which is

less confusing than with notation P.

------------------------------------

Reply: Accepted.

14) L135: what is mean by updating ? (resampling strategy? analysis step?) I guess

you mean analysis step for the particule filter, this should be clarified.

------------------------------------

Reply: Corrected. The revised sentence is “After the analysis step for the particle

filter, the final averaged cloud fractions...”

15) L135: precise that the average cloud fraction is no more normalised since the

constraint (equation labelled from the above comments point 5) is not respected from

the average Eq.(4) – average of state is no more a real state.

------------------------------------

Reply: Agreed. We added statements as “In Eq. (6), the constraint referred in Eq. (1)

is not respected. Thus, after the analysis step for the particle filter, the final averaged

cloud fractions
k
ac are normalized by...”



16) L202: Eq.(7) --->Eq.(3)

------------------------------------

Reply: Corrected. Since we added two new equations in ahead of Eq. (3), Eq. (3) is

labelled as Eq. (5) in the revised manuscript.

17) L203: modify the notation for the prescribed ratio o_f is meaningless (use r, or

something else, or explain why this notation is used).

------------------------------------

Reply: Agreed.

We re-wrote the sentence as “In Eq. (3), the observation error  can be set

proportional to the observation, equaling to
r

Robsv , where r is the prescribed ratio.”

in the revised manuscript.

18) L221-224: The particle used there corresponds to the groupe2 described

previously, this should be reminded.

------------------------------------

Reply: Agreed.

In second paragraph of section 4.1., we added explanations of particles as “To reveal

the roles of various initial particles, Fig. 2a shows the weights for different particles

of one-layer cloud in group 2 described in section 2 with specified value of cloud

fractions (on the x-axis) on specified model levels (on the y-axis) from 10% to 100%

every 10% on the given FOV for channel 5 of GOES-Imager for the case shown in

Fig. 1.”

19) L224: Detail that the observation can be explained by different possible state

and in particular as a fraction ic of one-cloud layer at a given level i and a fraction

of icc 10 of clear sky since 0iicloud )1( v
i

vv RcRcR  for levels i upper than level



5. Hence the theoretical one-layer cloud fraction is the solution of

0iiobs )1( v
i

vv RcRcR  that is by
i
vv

obs
vvi

RR

RR
c





0

0

. No cloud can be present below

level 5 since this would implies an cloud
vR larger then the observation (or a ic larger

than 100%). Provide a representation of the theoretical one-layer fraction so to

introduce Fig2. This said, it is then easier to conclude that the weight in Fig2a 2b

reproduce these possible situation with a maximum weight concentrated when the

fraction is near the theoretical one given above.

------------------------------------

Reply: Accepted. We add theoretical representation in the second paragraph in

section 4.1 as “With a fraction kc of one-cloud layer at a given level k and a

fraction of
kcc 10

of clear sky, the simulated cloudy radiance can be denoted as

0cloud )1( v
kk

v
k

v RcRcR  . Hence the theoretical one-layer cloud fraction is solved as

k
vv

obs
vvk

RR

RR
c





0

0

by fitting cloud
vR to 0

vR . As expected, for one-layer cloud with full

fraction,
5c equals to 100% . Since with the concept that 1 k

v
k
v RR , no cloud can be

present below level 5 since this would implies a cloud
vR larger than the observation

(or a ic larger than 100%).”

20) L236: What is the normalized Jo ? I guess this should corresponds to the

exponent

in Eq.(3), but this is not introduced before. Provides the expression of Jo as a

function

of cloud fraction, it will be easier to understand what represents Fig. 2(c-d)

, when ),0,...0ck,...,0(kC with Kc set to 0, 0.1,...1 (c) and ...(d)

------------------------------------

Reply: Agreed. We add more explanations in section 2 as “A cost function Jo is



defined for each particle to measure how the particle fit the observation as,

2
cloudobs

)(


iν,ν
o
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J




(4)”

and also add sentence in section 4.1 as “Here, Jo can be further derived as

2
obs
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Abstract15

Ensemble-based techniques have been widely utilized in estimating uncertainties in16

various problems of interest in geophysical applications. A new cloud retrieval17

method is proposed based on the efficient Particle Filter (PF) by using ensembles of18

cloud information in the framework of Gridpoint Statistical Interpolation system19

(GSI). The PF cloud retrieval method is compared with the Multivariate and20

Minimum Residual (MMR) method that was previously established and verified.21

Cloud retrieval experiments involving a variety of cloudy types are conducted with22

the PF and MMR methods respectively with measurements of Infrared radiances on23

multi-sensors onboard both geostationary and polar satellites. It is found that the24

retrieved cloud masks with both methods are consistent with other independent cloud25

products. MMR is prone to producing ambiguous small-fraction clouds, while PF26

detects clearer cloud signals, yielding closer heights of cloud top and cloud base to27

other references. More collections of small fraction particles are able to effectively28

estimate the semi-transparent high clouds. It is found that radiances with high spectral29

resolutions contribute to quantitative cloud top and cloud base retrievals. In addition,30

a different way of resolving the filtering problem over each model grid is tested to31

better aggregate the weights with all available sensors considered, which is proven to32

be less constrained by the ordering of sensors. Compared to the MMR method, the PF33

method is overall more computationally efficient, and the cost of the model grid-based34

PF method scales more directly with the number of computing nodes.35

Keywords: cloud retrieval methods, particle filter, GSI system, cloud height36



1. Introduction37

Modern polar orbiting and geostationary airborne instruments provide researchers38

unprecedented opportunities for earth remote sensing with continuous flows and39

almost complete spectral coverage of data. The primary cloud retrieval products from40

satellites are cloud mask (CM), cloud height (CH), effective cloud fraction (CF), and41

vertical structures of clouds with larger temporal and spatial scales. These cloud42

retrievals provide an immense and valuable combination for better initializing43

hydrometeors in numerical weather prediction (NWP), (Wu and Smith, 1992; Hu et44

al., 2006; Bayler et al., 2000; Auligné et al., 2011) regulating the radiation budget for45

the planet, and understanding the climate feedback mechanism (Rossow and Schiffer,46

1991; Rossow et al., 1993; Brückner et al., 2014). Advanced cloud retrieval methods47

are able to retrieve clouds with multispectral techniques (Menzel et al., 1983; Platnick48

et al., 2003), among which the minimization methods usually directly utilize the49

difference between the modeled clear sky and the observed cloudy Infrared (IR)50

radiances (e. g., the minimum residual method, (Eyre and Menzel, 1989); the51

Minimum Local Emissivity Variance method, (Huang et al., 2004); and the52

Multivariate Minimum Residual method, (Auligné, 2014a)). Specially, the53

Multivariate Minimum Residual (MMR) method is retrieving three dimensional54

multi-layer clouds by minimizing a cost function at each field-of-view (FOV)55

(Auligné, 2014b; Xu et al., 2015). MMR has been proven to be reliable in retrieving56

the quantitative three dimensional cloud fractions with Infrared radiances from57



multiple infrared instruments. However, MMR has limitations in several aspects due58

to its use of minimization for solution: 1) Part of the control variables accounting for59

the cloud fraction for some certain levels are under-observed since the channels are60

not sensitive to the existence of clouds for those heights. 2) When clouds at different61

heights show opacities with the same spectral signal, MMR could lose the ability to62

distinguish solutions involving clouds at those levels. 3) The computational cost for63

the minimization procedure in MMR is rather considerable.64

Ensemble-based techniques, that usually reside in short-term ensemble65

forecasting (Berrocal et al., 2007), assembling existing model outputs (e. g., cloud66

retrievals) from varying algorithms (Zhao et al., 2012), or ensemble Kalman filter67

(EnKF) in various forms (Snyder and Zhang, 2003), have been widely developed in68

order to estimate the uncertainties of all kinds of problems in geophysical applications.69

To better account for the non-linearity between the observed radiance and the retrieval70

parameter, a novel prototype for detecting clouds and retrieving their vertical71

extension inspired by the particle filter (Snyder and Zhang, 2003; van Leeuwen, 2010;72

Shen and Tang, 2015) technique and Bayesian theory (Karlsson et al., 2015) is73

proposed in this study. As a competitive alternative for MMR, the PF retrieval method74

has same critical inputs required and cloud retrieval products as in MMR. A brief75

description of MMR and the new PF cloud retrieval algorithm are provided in the76

following section. Section 3 describes the background model, the data assimilation77

system, the radiative transfer models (RTMs), and the radiance observations applied78

in this study. Model configurations are also illustrated in section 3. In section 4, the79



single test within one FOV is conducted before the performance of PF method is80

assessed by comparing its cloud retrievals with those from MMR and other81

operational cloud products. Section 4 also discusses the computational performance82

for the two methods. The conclusion and anticipated future work are outlined in83

section 5.84

2. Methodology85

Essentially, the PF cloud retrieval scheme retrieves clouds with the same critical86

inputs requested (i. e., clear sky radiance from the radiative transfer model and the87

observed radiance) and the same cloud retrievals as outputs (i. e., three dimensional88

cloud fractions, which is defined as the fraction of top of cloud as seen from a sensor)89

with the MMR method. Both cloud retrieval schemes consist of finding cloud90

fractions that allow best fit between the cloudy radiance from model and the91

observation. We use K21 c,...,c,c to denote the array of vertical effective cloud92

fractions for K model levels ( 1c for the surface and Kc for the model top) and 0c as93

the fraction of clear sky with ]K,0[  1,0  kck . The constraint for the cloud94

fraction is as follows,95





K

0

1
k

kc (1)96

In this study, a cloud on one model level with a given fraction kc is assumed to97

block the radiation from its lower model levels. The radiation originating from its98

effective
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lower levels is assumed to contribute to the top of atmosphere radiance observed by99

the satellites only with the residual fractions.100

The MMR method is an approach to retrieve cloud fractions using the101

minimization technique. The residual of the modeled radiance and the observation is102

normalized by the observed radiance, which results in the following cost function,103

using ]K,0[  , kck as the control variables,104

,
2

1
),...,,,(

2

obs

obscloud
K210  







 


v ν

νν

R

RR
ccccJ (2)105

where cloud
vR is the modeled cloudy radiance, and obs

vR the observed radiance at106

frequency v. This vertical cloud fraction K21 c,...,c,c and 0c are control variables for107

the cost function, where the simulated cloud
vR is defined as108

.),...,,,(
K

1

00K210cloud 



k

k
v

k
vv RcRcccccR (3)109

Here k
vR is the radiance calculated assuming an overcast black cloud at the model110

level k and 0
vR the radiance calculated in the clear sky. Both k

vR and 0
vR are111

calculated using a forward radiative transfer model with model profiles of temperature112

and moisture as inputs. Details of the schematic of the MMR method can be referred113

in (Xu et al., 2015; Descombes et al., 2014).114

Particle filter (PF) approach is one of the nonlinear filters for data assimilation115

procedures to best estimate the initial state of a system or its parameters xt, which116

describes the time evolution of the full probability density function p(xt) conditioned117

by the dynamics and the observations. Similar to (Mechri et al., 2014), the118

bibliography on PF focuses on estimating the parameters, which are cloud fractions119

]K,0[  1,0  kck :
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kc in Eq. (3), in this study. While MMR retrieves the cloud fractions on each model120

vertical level by minimizing a cost function, PF calculates posterior weights for each121

ensemble member based on the observation likelihood given that member. In its122

simplest form, PF works by initializing a collection of cloud profiles as particles and123

then estimating the cloud distributions by averaging those particles with their124

corresponding weights. Explicitly, each particle’s weight is computed with the125

difference between the modeled cloudy radiance from the particle and the observed126

radiance.127

As the probabilities of the cloud distribution are fully presented by the initial128

particles, of particular interest is to evaluate different particle initialization schemes in129

the PF method. Explicitly, the definition of particles corresponds with ensemble130

members, i.e. one cloud profile as one of particles is corresponding to an ensemble131

member.132

Two approaches for generating particles are firstly designed; the first one is to133

generate the perturbed samples i
bC ( ]n,1[ i ) from the cloud profile in the134

background denoted as ),...,,(C K10
b bbb ccc by inflating (deflating) the clouds with135

small magnitudes ( %150%,...,55%,50,CC bb   ) and moving upward136

(downward) with 5,...1...,4,5 z as the vertical magnitude, where n is the137

sample size. The perturbed cloud fractions are designated to replenish the ensemble138

by introducing the prior information of the cloud distributions from the background139

and to increase the ensemble spread.140

typical
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Besides those perturbed particles, to represent the existence of one-layer cloud141

on each model level with an even chance, another diversity set of profiles i
bC142

( ]K,0[ i ) are also initialized, among which, i
bC stands for the profile with 100%143

cloud fraction on the model level i (ci=100%) and 0% cloud on the rest levels. In144

particular, 0
bC defines 100% clear (c0=1). It is also interesting to discretize the initial145

particles by setting the one-layer cloud with the value of ci from 100% to 0% (e. g.,146

100%, 90%, 80%, …, 0% with 10% as the interval) and further from 100% to 0% (e.147

g., 100%, 99%, 98%, 97%, …, 0% with 1% as the interval). In this cases, c0=1-ci . For148

each particle i
bC , its simulated cloudy radiance cloud

,ivR from the model background can149

be obtained with Eq. (2).150

A cost function Jo is defined for each particle to measure how the particle fit the151

observation as,152

.)( 2
cloudobs


iν,ν

o

RR
J


 (4)153

The weight iw for each particle i
bC thus is calculated by comparing the simulated154

cloud
,ivR and the observation obs

vR using the exponential function by accumulating the155

Jo for multiple frequency as156

,
2

cloudobs

)(




v

iν,ν RR

i ew 
(5)157

]p,1[ i . Here p is the particle size and  is the specified observation error, which158

can be referred in the first paragraph in section 4.1. The final analyzed Ca is obtained159

by averaging the background particles i
bC with their corresponding weight, as160

Pib
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.CwC i
b

p

1i

i
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 (6)161

In Eq. (6), the constraint referred in Eq. (1) is not respected. Thus, after the analysis162

step for the particle filter, the final averaged cloud fractions
k
ac are normalized by163

,K

0




k

k

k
k
a

c

c
c

(7)164

where ]K,0[ k .165

3. Data and model configurations166

3.1 Data167

The Advanced Infrared Sounder (AIRS), the Infrared Atmospheric Sounding168

Interferometer (IASI), and the Cross-track Infrared Sounder (CrIs) are among the169

most advanced hyperspectral infrared sounders and thus are applied for retrieving170

clouds with hundreds of channels (Blumstein et al., 2004) (Aumann et al., 2003; Xu171

et al., 2013; Smith et al., 2015). The Radiance measurements from Moderate172

Resolution Imaging Spectroradiometer (MODIS) onboard the Earth Observing173

System (EOS) Terra or Aqua satellites are also well suited to extracting valuable174

cloud information from the 36 spectral broadbands in the visible, near infrared and175

infrared regions at high spatial resolution (1–5 km) (Ackerman, 1998). Apart from176

the IR radiances from polar satellites, the Geostationary Operational Environmental177

Satellites (GOES) Imager (Menzel and Purdom, 1994) provides a continuous stream178

4
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of data over the observing domain. In this study, GOES-13 (east) and GOES-15179

(west) are also utilized to obtain cloud fractions over the continental United States180

(CONUS) domain. The GOES Imager used in this study is a five-channel (one181

visible, four infrared) imaging radiometer designed to sense radiant and solar182

reflected energy. The instrument parameters for the sensors and the setups for183

channel selections can be found in (Xu et al., 2015).184

3.2 WRF, GSI and the radiative transfer model185

The background fields are processed running the Weather Research and Forecast186

(WRF) model (Skamarock et al., 2008). The MMR and PF cloud retrieval algorithms187

are both implemented based on the gridpoint statistical interpolation data assimilation188

system (GSI) (Wu et al., 2002; Kleist et al., 2009), which is a widely used data189

assimilation system in operations and researches in NWP. GSI is capable of ingesting190

a large variety of satellite radiance observations and has developed capabilities for191

data thinning, quality control, and satellite radiance bias correction. The Community192

Radiative Transfer Model (Liu and Weng, 2006; Han et al., 2006) was used as the193

radiance forward operator for computing the clear-sky radiance and the radiance given194

overcast clouds at each model level.195

3.3 Model configurations196

The WRF is configured with 415*325 horizontal grids at 15-km grid spacing, and197

40 vertical levels up to 50 hPa within the single CONUS domain. The MMR and PF198

(
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cloud detection schemes search the cloud top using approximately 150 hPa as the199

highest extent for most cloudy cases. Other clouds higher 150 hPa, e.g. an anvil cloud200

in a mature thunderstorm around tropopause at low latitude region will also be201

explored in future studies. Channels in the longwave region are utilized following the202

channel selection scheme in (Xu et al., 2015). Since the final retrieval clouds are on203

model grids, the retrieved cloud fractions within one FOV are essentially extrapolated204

to its four neighboring model grid points. Generally, for each FOV, the retrieved205

cloud fractions are extrapolated to its four neighboring model grid points. For polar206

satellite pixels, the representative cloud fractions are extrapolated with an adaptive207

radius with respect to their scan positions. The cloud detecting procedure for208

retrieving clouds is conducted for each FOV from each individual sensor209

independently and sequentially. Since the clouds are retrieved FOV by FOV and the210

clouds on grids are referred immediately after one FOV is completed, there is no211

obvious accuracy loss of radiance observations using this conservative method.212

4. Experiments and results213

The PF experiments apply two groups of particles as mentioned in section 2,214

among which the group-2 particles contains solely 100% one-layer clouds. To reveal215

how the setup of the initial particles impacts the results, apart from the MMR and PF216

experiments, we included another advanced experiment, denoted as APF. APF217

requires more sampled particles including ranges of cloud fractions spanning from 0%218

to 100% at the interval of 10%. An additional experiment “APFg2”, similar to APF219
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but excluding the perturbed particles from the background in group-1 introduced in220

section 2, was conducted to evaluate the added values from the group-one particles. In221

this section, cloud retrieval experiments for several cases containing clouds of a222

variety of types are conducted for comparison reason. The GOES imager retrieved223

products from National Aeronautics and Space Administration (NASA-Langley cloud224

and radiation products) are applied as a reference to validate the cloud retrieving225

methods for the CONUS domain with a large and uniform coverage of cloud mask. In226

addition, the retrieved cloud products were also compared to available CloudSat227

(Stephens et al., 2002) and MODIS level-2 cloud products (Platnick et al., 2003)228

archived by the CloudSat Data Processing Center in Colorado State and NASA229

respectively.230

4.1 Single test at one field of view231

The PF cloud retrieving algorithm retrieves the cloud distributions by averaging232

those initial particles with their weights. Before the real case experiments are carried233

out over the whole domain, we conduct a single cloud retrieving test at one FOV to234

understand what differences can be explained by the differences in the basic initial235

particles. In Eq. (5), the observation error  can be set proportional to the236

observation, equaling to
r

Rv
obs

, where r is the prescribed ratio. Thus, the cloud237

signals on each level k are virtually determined by the extent of how close the
obs
v

k
v

R

R
238

(and
obs
v

v

R

R0

for the clear part) gets to 1. An example of the ratio of the overcast239

7
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radiance and the observed radiance
obs
v

k
v

R

R
for each model level is given in Fig. 1 of240

GOES-Imager for the channel 5 (~13.00 m ). The clear sky radiance normalized by241

the observed radiance
obs
v

v

R

R0

is also shown at the level 0 (Fig. 1). It is expected that242

the overcast radiance from the RTM decrease with the rising of the altitude. The cloud243

signal is strongest around level 5, where k
vR fits obs

vR most closely. The cloud244

retrievals depend not only on the basic input profiles (i.e., the overcast radiance on245

each level from RTM normalized by the observed radiance and the clear sky radiance246

from RTM normalized by the observed radiance) and but also on the algorithm247

applied for resolving the problem (e.g., MMR and PF in this study).248

249
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l m
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l
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 (h
Pa

)

Clear Sky
250

Figure 1. Ratio of the overcast radiances versus the observed radiance starting from the level 1.251

The ratio of the clear sky radiance normalized by the observed radiance corresponds to the level 0252

(see text for explanation) for GOES-Imager for the channel 5. The approximate pressures253

corresponding to the model levels are also denoted.254



To reveal the roles of various initial particles, Fig. 2a shows the weights for255

different particles of one-layer cloud in group 2 described in section 2 with specified256

value of cloud fractions kc (on the x-axis) on specified model levels k (on the y-axis)257

from 10% to 100% every 10% on the given FOV for channel 5 of GOES-Imager for258

the case shown in Fig. 1. With a fraction kc of one-cloud layer at a given level k and259

a fraction of kcc 10 of clear sky, the simulated cloudy radiance can be denoted as260

0cloud )1( v
kk

v
k

v RcRcR  . Hence the theoretical one-layer cloud fraction is solved as261

k
vv

obs
vvk

RR

RR
c





0

0

by fitting cloud
vR to 0

vR . As expected, for one-layer cloud with full262

fraction, 5c fits most closely to 100% . Since with the concept that 1 k
v

k
v RR , no263

cloud can be present below level 5 since this would implies a cloud
vR larger than the264

observation (or a ic larger than 100%). It seems that clouds can be described by265

different possible states as particles with both large fractions and small fractions. Low266

clouds are easily estimated by one-layer cloud profile with large fractions (larger than267

10%). The particles with small-fraction high clouds gain some weights to retrieve268

high clouds. The particle with the one-layer cloud on level 13 seems to gain least269

weight compared to the others levels. The weights for the particles with cloud270

fractions from 0% to 100% at the interval of 1% are also presented in Fig. 2b. By271

including more small-fraction one-layer clouds, the clouds around level 13 can be272

reproduced by the group of refined particles with 1% as the interval for approximate273

10% cloud fractions. However, changing the level of the cloud for the fixed fraction274

(10%) does not seem to change the outgoing radiance much, probably due to the275

channel’s low weight function peak (~750hPa).276
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The normalized Jo in Eq. (6) for different levels with a specific cloud fraction277

from 0% to 100% every 10% are shown in the bottom panel of Fig. 2, with 10% and278

1% as the intervals in Fig. 2c and Fig. 2d respectively. Here, Jo can be further derived279

as280

2
obsobs

0
02 )1(

ν

k
vk

ν

v
o R

R
c

R

R
crJ  (8),281

with
r

Robsv and 



K

1

00K210cloud ),...,,,(
k

k
v

k
vv RcRcccccR .282

From Fig. 2c, it is found that Jo is smallest around level-5 with 100% cloud283

fraction (denoted as 1 in legend) for the thin black line, with respect to the fact that284

the overcast radiance fits the observed radiance most closely for level-5285

approximately. The gray line with 10% cloud fraction (0.1 in the legend) corresponds286

to the existence of a weight peak on level 19 in Fig. 2a. In addition, the gap between287

the gray line with 0.1 and the other lines from 0.2 to 1 explains why there's less288

continuity around level 13. Fig. 2d shows a similar pattern to Fig. 2c, except with289

densely-distributed Jo values around the level 13 from 0.1 to 1 in the legend. Those290

contiguous black lines in Fig. 2d are associated with the set of particles with cloud291

fractions from 10% to 100% at the interval of 1%.292

293
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Figure 2. The weights for different particles with specified cloud fractions on the x-axis at one297

chosen model level shown on the y-axis from 0% to 100% (a) at the interval of 10% and (b) at the298

interval of 1%. The normalized Jo (c) at the interval of 10% and (d) at the interval of 1%. In (d),299

the normalized Jo from 0.1 to 1 are all denoted as black lines.300

4.2 Cloud profiles301

The retrieval experiments for a real case are conducted at 1100 UTC 3 June 2012302

when AIRS measurements and the CloudSat “2B-GEOPROF” products (Mace, 2004)303
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are available. The vertical cross sections of the cloud fraction field of a real case are304

illustrated to further check how different collections of initial particles impact the305

retrieved cloud profiles. The standard radar reflectivity profiles from the CloudSat are306

shown in Fig. 3a as the validation source; Fig. 3b, Fig. 3c, and Fig. 3d show the cross307

sections of the cloud fractions along the CloudSat orbit tracks from the MMR, PF and308

APF experiments. The vertical structures of the clouds from MMR compare well with309

the radar reflectivity from CloudSat by retrieving the high clouds around 47N° and310

low clouds around 52N°. The PF experiment has difficulties in detecting the cloud311

tops appropriately. PF tends to detect a large quantity of low clouds; by adding a set of312

particles with small-fraction clouds in APF, higher clouds can be reproduced, which is313

consistent with the implications from Fig. 2b and 2d. APF detects clear strong cloud314

signals and removes the cloud fractions on near-surface levels around 36 N°315

successfully. Since the existences of ground-layer radar reflectivity are likely316

corresponding to the strong reflection from the underlying surface of the earth, the317

height of cloud bases of MMR and PF are not compared in this sub-section. The318

experiments with larger size of particles including 0% to 20% (at the interval of 1%)319

plus 30% to 100% (at the interval of 10%) or of 0% to 100% (at the interval of 1%)320

one-layer cloud profiles (introduced in section 2) yield similar results from APF but321

are much more costly (not shown).322

323



324

Figure 3. (a) The radar reflectivity (units: DBZ) cross sections from CloudSat, (b) the MMR325

retrieved cloud fractions (units: %) cross sections, (c) the PF retrieved cloud fractions, and (d) the326

APF retrieved cloud fractions valid at 1100 UTC 3 June 2012.327

The vertical profiles of the averaged cloud fractions from MMR, PF, and APF are328

plotted in Fig. 4 at 1100 UTC 3 June 2012 with AIRS. Both MMR and PF329

experiments yield ambiguous cloud distributions, whereas APF retrieves much330

stronger cloud signals constrained between level-2 to level-20 (approximately from331

950hPa to 400hPa). More clouds around level 10 are retrieved (approximately 750hPa)332

in MMR, while PF is prone to retrieving clouds near surface levels. Note that MMR333

retrieves much higher cloud tops and lower cloud bases compared to APF. The cloud334

base from PF is lowest; the cloud top from MMR and PF is comparable. Only the335

APF related methods will be further discussed in later sections owing to the missing336

of high clouds using PF.337

338



339

Figure 4. The mean cloud fraction on all model levels for the experiments MMR, PF, and APF340

with AIRS observations valid at 1100 UTC 3 June 2012.341

4.3 Cloud mask342

Comparison experiments on real cases are further performed for over longer time343

period from 0000 UTC 12 December 2013 to 0700 UTC 12 December 2013. The344

cloud mask is marked as cloudy when there is a recognizable existence of cloud on345

any level from MMR or PF retrievals. Both the NASA GOES Imager products and the346

MMR-retrieved fields are interpolated to the same 0.1°×0.1° latitude–longitude grid347

with 0 for clear and 1 for cloudy before the comparisons for verification. Fig. 5 shows348

the hits, false_alarms and misses locations with the use of GOES-Imager, MODIS,349

CrIS, AIRS, and IASI radiances in the retrieval algorithms at 0700 UTC 12 December350

2013. Note that, cloud mask retrievals from both the MMR and APF hit the clear and351

cloudy events well in Fig. 5a and 5b. In most areas, the MMR experiment352
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overestimated the cloud mask with more false alarm events compared to the APF353

experiment, since the MMR solution is an “overly smoothed” estimation of the true354

vertical profile. It seems that the accuracy of cloud detection is lower for areas with355

high altitude than under tropical conditions, indicating that the smaller lapse rate in356

the atmosphere will lead radiance less sensitivity to clouds over polar areas. Fig. 5c357

shows the cloud mask results from the APFg2 experiment without the perturbed358

particles in group-1 introduced in section 2. There is no large discrepancy between359

Fig. 5b and Fig. 5c, suggesting that the particles in group-2 that fully span the360

possibility of the cloud distributions, are more determinant in retrieving the cloud361

mask.362

363

Hit (clear)

False alarm

Missing

Hit(cloudy)

(a) (b)

(c)

364



Figure 5. The false alarms, misses, and hits for clear and cloudy event locations with (a) the MMR365

method, (b) the APF method, and (c) the APF method but without the group-1 particles (see text366

for detailed explanations) valid at 0700 UTC 15 December 2013.367

4.4 Cloud top and base pressure368

The retrieved cloud top pressures (CTP) and cloud bottom pressures (CBP) from369

this study along with the NASA GOES cloud products are illustrated in Fig. 6. The370

CTPs from both methods are in good accordance with the NASA cloud products for371

high clouds (from 100 hPa to 600 hPa) in Fig. 6a, 6c, and 6e. The retrieved cloud top372

heights from MMR are overall higher than those from the NASA reference, especially373

for lower clouds at approximately 750-1000 hPa (e. g., between longitude -100° and374

-90°). On the other hand, the CTPs from APF are much closer to those in the375

reference for both high and low clouds. APF overestimates the CBPs for some low376

clouds (putting the clouds too low) in Fig. 6f; the overestimation of the CBP is even377

more obvious from MMR in most regions in Fig. 6d.378

379



(a) (b)

(c) (d)

(e) (f)

380

Figure 6. The cloud top pressure (left panels) from (a) the NASA GOES retrieval, (c) the MMR381

method, (e) the APF method, and the cloud bottom pressure (right panels) from (b) the NASA382

GOES retrieval, (d) the MMR method, (f) the APF method valid at 0700 UTC 15 December 2013.383

The CTPs from NASA GOES cloud products for more hours (0300UTC,384

0500UTC, 0700UTC) together with the independent CTP retrievals from MODIS385



level-2 products (http://modis-atmos.gsfc.nasa.gov/MOD06_L2/) are plotted in Fig. 7.386

Different sub-periods of the MODIS cloud retrieval products (e.g., Fig. 7b valid at387

0320 UTC, Fig. 7c at 0325, and Fig. 7d at 0330 UTC) are chosen to approach the388

valid times in Fig. 7a, Fig. 7e, and Fig. 7h respectively. The CTPs from both cloud389

products agree well for both high and low clouds, confirming that NASA GOES cloud390

products are overall reliable for verifying the cloud retrievals and MODIS level-2391

products can also be applied for validations.392



393

Figure 7. The cloud top pressure for (a) 0300UTC from the GOES NASA retrieval, (b) 0320UTC,394

(c) 0325UTC, (d) 0330UTC from MODIS level-2 products; (e) 0500UTC from the GOES NASA395

retrieval, (f) 0500UTC, (g) 0505UTC; (h) 0700UTC from the GOES NASA retrieval, (i)396

0635UTC, (j) 0640UTC, and (k) 0645UTC from MODIS level-2 products.397



Fig. 8 presents the correlation coefficients and biases of the CTP and CBP verified398

against the NASA GOES and MODIS retrievals. The solid lines denote the results399

regarding the CTP and CBP versus the NASA GOES products from 0000 UTC to400

0700 UTC, while the dots describe the CTP results versus the cloud top retrievals in401

NASA MODIS level-2 products at 0320UTC, 0325UTC, 0330UTC, 0500UTC,402

0505UTC, 0635UTC, 0640UTC, and 0645UTC. Here the negative bias means that the403

retrieved clouds are higher than the reference. Vice versa, the positive bias indicates404

the clouds are put too low. We conducted another experiment “APFimg” that applies405

solely GOES Imager data to check the added value from the high spectral resolution406

radiances (such as, CrIS, AIRS, and IASI). In Fig. 8a, the correlations between the407

retrievals from MMR and the NASA GOES retrievals are comparable with from APF408

for most hours; APF gains overall higher correlations with the CTPs in the MODIS409

retrievals. From the bias in Fig. 8b, it seems that the CTPs from MMR are410

underestimated (putting the clouds too high) consistently against both retrievals with411

GOES and MODIS radiances. Fig. 8c shows that the correlations are weaker for412

MMR compared to others all the time. In Fig. 8d, the positive CBP biases from MMR413

are remarkable, while the CBP biases from APF are largely reduced. Generally,414

APFimg degrades the CTP and CBP results consistently, suggesting that radiances415

with high spectral resolutions are able to improve the vertical descriptions of cloud416

profiles. It is found that the clouds retrieved with APFg2 are shrunken in terms of417

cloud depth with notably lower cloud top and higher cloud base compared to APF,418

when excluding the perturbed particles in the first group.419
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421

Figure 8. (a) Correlation coefficient, (b) bias for the cloud top pressure, (c) correlation coefficient,422

and (d) bias for the cloud bottom pressure versus the NASA GOES retrievals from 0600 UTC 15423

December 2013 to 0700 UTC 15 December 2013. Black and blue dots denote results versus the424

MODIS level-2 cloud top pressure retrieval valid at 0320UTC, 0325UTC, 0330UTC, 0500UTC,425

0505UTC, 0635UTC, 0640UTC, and 0645UTC. The valid times for the MODIS level-2 data are426
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shown on the top of the x-axis.427

4.5 Computational issues428

Fig. 9a represents the elapsed times for the MMR and APF experiments and the429

counts of radiance observations in use are shown in Fig.9b from 0000 UTC to 0700430

UTC 12 December 2013. The profile of computing time in MMR is quite different431

from that in PF. The cost of MMR is dominated by the heavy minimization procedure,432

while APF is more associated with the processes of initializing particles and433

calculating weights for all the particles. The computing times were measured from434

cloud retrieving runs with 64 MPI-tasks on a single computing node in an IBM435

iDataPlex Cluster. The measured wall clock computing times show that generally436

MMR is computationally more expensive for most of the time than APF. It seems the437

wall clock times for MMR are generally proportional to the data amount used. While438

for the APF experiment, the wall clock time is mostly determined by the particles size439

and partly affected by the channel number, such as for 2013121202 and 2013121206,440

when the total counts of the hyperspectral sensors (IASI, CrIs, and AIRS) are large.441

The PF experiments using particles of one-layer cloud with 100% cloud fractions442

usually take less than 5 minutes for the same periods (not shown).443



(a) (b)

444

Figure 9. (a) The elapsed time and (b) the data count from 0000 UTC to 0700 UTC 15 December445

2013.446

4.6 Resolving the filtering problem on model grids447

As explained in subsection 3.3, the filtering problem is resolved in the radiance448

observational space at each FOV of each sensor independently and sequentially. For449

each FOV, the retrieved cloud fractions are extrapolated to its neighboring model grid450

points afterwards. We order the sensors in the cloud retrieving procedure as451

GOES-Imager, MODIS, CrIS, AIRS, and IASI, aiming to optimize the vertical clouds452

using sensors featured with sufficient spectral resolutions. As a consequence, the453

retrievals from the last sensor determine the final output to the most extent, causing454

the cloud retrievals highly subjective to the ordering of the sensors. On the other hand,455

it means the information from other prior sensors will be more or less discarded. In456

this section, a different way of resolving the filtering problem is preliminarily tested,457

in which the weights for each particle are aggregated over all available sensors by458



calling the forward radiative transfer model on neighbouring model grids.459

Fig. 10 shows the clouds retrievals from the grid-based method. It is noted that460

the grid-based scheme yields slightly worse results of CTP and neutral results of CBP461

compared with those from the observation-based (FOV-based) scheme, indicating that462

the hyperspectral sensors probably favor the retrieved CTP and CBP in the463

FOV-based scheme, which are available for most of the time. It is worth pointing out464

that the ordering of different sensors has nearly no effect on the final cloud retrievals,465

when the weights of the particles are calculated in model space (not shown). The final466

cloud retrieval is no longer overwritten by the retrieval from the last sensor but is a467

total solution with all the sensors fairly considered, instead. The computational cost of468

retrieving clouds in model space is comparable or slightly heavier than that in469

observation space. The computational cost of the grid-based scheme scales with the470

number of the computing nodes more directly, compared to that of the FOV-based471

scheme.472
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(a) (b)

(c) (d)

473

Figure 10. (a) Correlation coefficient, (b) bias for the cloud top pressure, (c) correlation474

coefficient, and (d) bias for the cloud bottom pressure versus the NASA GOES retrievals from475

0000 UTC to 0700 UTC 15 December 2013.476

5. Discussion and conclusion477



This study presents a new cloud retrieval method based on the particle filter (PF)478

in the framework of GSI, as a competitive alternative to the MMR method. The479

behaviors of different particle initializations are demonstrated on one single field of480

view and the CONUS domain respectively. Comparisons between the PF and the481

MMR method are conducted in terms of the features of cloud mask, cloud top, cloud482

base, and the vertical distributions of clouds. It was found that the PF method483

retrieves clear cloud signals while MMR is more ambiguous in detecting clouds. By484

adding more small-fraction particles, high clouds can be better interpreted. From the485

statistical results, it was found that MMR underestimates the cloud top pressures (put486

the clouds top too high) and overestimates the cloud bottom pressures (put the clouds487

top too low) as well. APF improves both the retrievals of cloud tops and cloud bases488

remarkably, especially for the cloud bases. As expected, radiances with high spectral489

resolutions contribute to quantitative cloud top and cloud base retrievals. In addition,490

a different way of resolving the filtering problem over each model grid is tested to491

aggregate the weights with all available sensors considered, which is proven to be less492

constrained by the ordering of sensors. Last but not least, the PF method is overall493

more computationally efficient; the cost of the model grid-based PF method scales494

more directly with the number of the computing nodes.495

In future work, validation studies using multispectral imagers on geostationary496

satellites, spaceborne lidars (or radar), and surface site data will continue, and the497

results will be used to update the retrieval algorithm. Maximizing the consistency in498

the products across platforms and optimizing the synergistic use of multiple-source499



radiances in the new algorithm are important aspects. To estimate the flow dependent500

uncertainties in the cloud analysis and in the forecasts, the ensemble nowcasting with501

three dimensional cloud fractions via the rapid-update cycling mode is also planned.502

Increasing the highest extent cloudy cases will be included in future studies. Finally,503

the use of cloud liquid water and ice mixing ratios retrieved from the cloud fractions504

using multi-sensor radiances to pre-process the first guess in numerical weather505

forecast is another promising application.506

Code and/or data availability507

The MMR cloud retrieval codes can be obtained freely from508

(http://www2.mmm.ucar.edu/wrf/users/wrfda/). The other codes can be obtained by509

emails from the authors.510
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