20

25

Supplement - performance

Casper Rutjes', David Sarria’, Alexander B. Skeltved®, Alejandro Luque*, Gabriel Diniz>°, Nikolai @stgaard?, and

Ute Ebert!”’

ICentrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands

2 Astroparticules et Cosmologie, University Paris VII Diderot, CNRS/IN2P3, France
3Department of Physics and Technology, University of Bergen, 5020 Bergen, Norway
“Instituto de Astrofisica de Andalucia (IAA-CSIC), PO Box 3004, Granada, Spain

SInstituto Nacional de Pesquisas Espaciais, Brazil
SInstituto de Fisica, Universidade de Brasilia, Brazil

"Eindhoven University of Technology, Eindhoven, The Netherlands

Correspondence to: Casper Rutjes (casper.rutjes @cwi.nl)

1 Performance benchmark

As complementary, we also want to test how much time the
different codes need to complete an equivalent simulation.
We do not pretend to do an in-depth performance benchmark
of the codes, but we think this is an interesting piece of in-
formation for someone who is seeking for a code to be used
in the HEAP context. Since the programs are written in dif-
ferent languages (Fortran, C++ and Python) and may be run
on different machines with different architectures, we nor-
malized all the completion time with respect to a reference
computer configuration. And in the final paper we normal-
ized the results with the fastest code, intermediate results are
given in Tab. 1.

1.1 Procedure

First, one need to calculate the normalization factor Ny ser,
using the c++ code ‘pidec.cpp’, written by Xavier Gourdon,
and provided in the this supplementary material. It computes
8 digits of pi after a given digit position called n. It should be
compiled using the GNU g++ compiler with no options, in
particular no optimization options (eg ‘-O3”). The time taken
to complete it with 7 = 1000000 (usually about 10-20 min-
utes) is called ¢, s.,-. The code itself outputs it in the terminal,
and it is equivalent to the ‘user time’ given by the ‘time’ bash
command. The reference time ¢ is set to 1162 seconds, and
the normalization factor is then given by Ny ser = tuser/to-
The one million 1 MeV electron beam simulation is used
as the comparison case. If the considered code is parallelized,
it should run on one single thread, but any compilation op-

tions can be used to make it as fast as possible. In any case,
one should make several runs and get an average time to min-
imize the estimation error. This will give a simulation com-
pletion time that must be multiplied by N, to get the nor-
malized completion time.

30

2 Rutjes & Sarria: Evaluation of HEAP simulation tools

Table 1. Summary of the performance (completion time).

Code GEANT4D | GEANT4L | MC-PEPTITA | EGS5 | FLUKA GRRR GRRR
dt =25 ps dt =2.5ps
CPU Q9650 3.0Ghz Xeon E-3 1271 3.6Ghz Xeon X7350 2.9Ghz
pidec time (s) 1162s 596 s 1362s
Norm. Fact. 1 1.95 0.85
Sim. time (s) 206 241 21 040 425 109 3017 34451
Norm. Sim. (s) 206 241 21 040 829 213 2 564 29 283

