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Abstract. High-resolution earth system model simulations generate enormous data volumes, and retaining the data from these
simulations often strains institutional storage resources. Further, these exceedingly large storage requirements negatively im-
pact science objectives by forcing reductions in data output frequency, simulation length, or ensemble size, for example. To
lessen data volumes from the Community Earth System Model (CESM), we advocate the use of lossy data compression
techniques. While lossy data compression does not exactly preserve the original data (as lossless compression does), lossy
techniques have an advantage in terms of smaller storage requirements. To preserve the integrity of the scientific simulation
data, the effects of lossy data compression on the original data should, at a minimum, not be statistically distinguishable from
the natural variability of the climate system, and previous preliminary work with data from CESM has shown this goal to be
attainable. However, to ultimately convince climate scientists that it is acceptable to use lossy data compression, we provide
climate scientists with access to publicly available climate data that has undergone lossy data compression. In particular, we
report on the results of a lossy data compression experiment with output from the CESM Large Ensemble (CESM-LE) Com-
munity Project, in which we challenge climate scientists to examine features of the data relevant to their interests, and attempt
to identify which of the ensemble members have been compressed and reconstructed. We find that while detecting distinguish-
ing features is certainly possible, the compression effects noticeable in these features are often unimportant or disappear in
post-processing analyses. In addition, we perform several analyses that directly compare the original data to the reconstructed
data to investigate the preservation, or lack thereof, of specific features critical to climate science. Overall, we conclude that
applying lossy data compression to climate simulation data is both advantageous in terms of data reduction and generally

acceptable in terms of effects on scientific results.
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1 Introduction

Earth system models are widely-used to study and understand past, present, and future climate states. The tremendous advances
in computational power (i.e., processor speeds) over the last 25 years have allowed earth system modelers to use finer temporal
and spatial model resolutions. While finer resolutions typically produce more accurate and realistic simulations, the resulting
data sets are often massive and may severely strain data storage resources. Because supercomputing storage capacities have not
increased as rapidly as processor speeds over the last 25 years, the cost of storing huge data volumes is becoming increasingly
burdensome and consuming larger and unsustainable percentages of computing center budgets (e.g., Kunkel et al. (2014)).

The Community Earth System Model (CESM) is a popular and fully-coupled climate simulation code (Hurrell et al., 2013)
whose development is led by the National Center for Atmospheric Research (NCAR). The CESM regularly produces large data
sets resulting from high-resolution runs and/or long timescales that strain NCAR storage resources. For example, to participate
in the Coupled Model Comparison Project Phase 5 (CMIP5, 2013) that led to the Intergovernmental Panel on Climate Change
(IPCC, 2016) Assessment Report 5 (ARS) (Stocker et al., 2013), CESM produced nearly 2.5 PB of raw output data that
were post-processed to obtain the 170 TB of data submitted to CMIP5 (Paul et al., 2015). Current estimates of the raw data
requirements for CESM for the up-coming CMIP6 project (Meehl et al., 2014) are in excess of 10 PB (Paul et al., 2015).
A second example of a data-intensive CESM project is the CESM-Large Ensemble (LE) Project (Kay et al., 2015), a large
ensemble climate simulation study. The CESM-LE Project is a publicly available collection of 180-year climate simulations
at approximately 1-degree horizontal resolution for studying internal climate variability. Storage constraints influenced the
frequency of data output and necessitated the deletion of the raw monthly output files. In particular, the initial 30 ensemble
member simulations generated over 300 TB of raw data, and less than 200 TB of processed and raw data combined could
be retained due to disk storage constraints. For large climate modeling projects such as CMIP and CESM-LE, reducing data
volumes via data compression would mitigate the data volume challenges by enabling more (or longer) simulations to be
retained, and hence allow for more comprehensive scientific investigations.

The impact of data compression on climate simulation data was addressed in Baker et al. (2014). In Baker et al. (2014), qual-
ity metrics were proposed to evaluate whether errors in the reconstructed CESM data (data that had undergone compression)
were smaller than the natural variability in the data induced by the climate model system. The results of the preliminary study
indicated that a compression rate of 5:1 was possible without statistically significant changes to the simulation data. While en-
couraging, our ultimate goal is to demonstrate that the effect of compression on the climate simulation can be viewed similarly
to the effect of a small perturbation in initial conditions or running the exact same simulation on a different machine. While
such minor modifications lead to data that are not bit-for-bit (BFB) identical, such modifications should not result in an altered
climate (Baker et al., 2015). With compression in particular, we must also ensure that nothing systematic (i.e., over-smoothing)
has been introduced. Therefore, to build confidence in data compression techniques and promote acceptance in the climate
community, our aim in this work is to investigate whether applying lossy compression impacts science results or conclusions

from a large and publicly available CESM dataset.
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To this end, we provided climate scientists with access to climate data via the CESM-LE project (Kay et al., 2015). We
contributed three additional ensemble members to the CESM-LE project and compressed and reconstructed an unspecified
subset of the additional three members. To determine whether the effects of compression could be detected in the CESM-LE
data, we then enlisted several scientists to attempt to identify which of the new members had undergone lossy compression by
using an analysis technique of their choosing (i.e., we did not specify what analysis technique each should use). In addition, we
provided a different group of scientists with both the original and reconstructed datasets and asked them to directly compare
features particular to their interests (again, we did not specify how this analysis should be done) and determine whether the
effects of compressing and reconstructing the data impacted climate features of interest. Indeed, a significant contribution
of our work was enabling scientists to evaluate the effects of compression on any features of the data themselves with their
own analysis tools (rather than relying solely on simple error metrics typically used in compression studies). Note that while
the three additional CESM-LE ensemble members were generated at NCAR, the scientists participating in the ensemble data
evaluations were from both NCAR and external institutions. The author list for this paper reflects both those who conducted the
study as well as those who participated in the lossy data evaluations (and whose work is detailed in this paper). For simplicity,
the term “we” in this paper can indicate any subset of the author list, and in Appendix A we detail which authors conducted
each of the data evaluations described in this work.

In this paper, we describe several of the analyses done by scientists and detail the results and the lessons that we learned from
their investigations. We demonstrate the potential of lossy compression methods to effectively reduce storage requirements with
little to no relevant information loss, and our work sheds light on what remains to be done to promote widespread acceptance
and use of lossy compression in earth system modeling. This paper is organized as follows. We first discuss background
information in Sect. 2. In Sec. 3, we describe our approach to demonstrating the effects of lossy compression on climate
science results. Then, in Sect. 4 and 5, we present selected results from data analyses evaluating compression effects in the
context on the CESM-LE data. Finally, we summarize the lessons learned from this study in Sect. 6 and offer concluding

thoughts in Sect. 7.

2 Background
In this section, we further discuss lossy data compression. We then provide additional details on the CESM-LE project datasets.
2.1 Data compression

Compression techniques are classified as either lossless or lossy. Consider a dataset X that undergoes compression, resulting
in the compressed dataset C ( X' = C). When the data is reconstructed, then C = X. If the compression technique is lossless,
then the original data is exactly preserved: X’ = X. Note that the commonly-used gzip compression utility is a lossless method.
If, on the other hand, the compression technique is lossy, then X’ ~ X’; the data is not exactly the same (e.g., Sayood (2012)).
Lossy compression methods generally give the user some control over the information loss via parameters that either control

the compression rate, precision, or absolute or relative error bounds. The effectiveness of compression is generally measured
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by a compression ratio (CR), which is the ratio of the size of the compressed file to that of the original file (c.f. Iverson et al.

(2012)):

CR(F) = f?lleessllZZ:((?C()) ' )

While lossless methods are often viewed as “safer” for scientific data, it is well known that lossless data compression
of floating point simulation data is difficult and often yields little benefit (e.g., Lindstrom and Isenburg (2006), Bicer et al.
(2013), Lakshminarasimhan et al. (2011)). The reason for the relative ineffectiveness of lossless methods on scientific data
(in contrast to image or audio data, for example) is that trailing digits of the fixed precision floating-point output data are
often essentially random, depending on the data type and the number of physically significant digits. Random numbers are a
liability for compression, thus giving lossy methods a significant advantage. Many recent efforts have focused on effectively
applying or adapting lossy techniques for scientific datasets (e.g., Lakshminarasimhan et al. (2011), Iverson et al. (2012),
Laney et al. (2013), Gomez and Cappello (2013), Lindstrom (2014)). In the climate modeling community in particular, lossy
data compression has been the subject of a number of recent studies (e.g, Woodring et al. (2011), Hiibbe et al. (2013), Bicer
et al. (2013), Baker et al. (2014), Kuhn et al. (2016), Silver and Zender (2016), Zender (2016)), though we are not aware of
comparable efforts on evaluating the effects on the scientific validity of the climate data and results.

A major obstacle inhibiting the adoption of lossy compression by many scientific communities is not technical, but rather
psychological in nature. For example, scientists who analyze the climate simulation data are often (understandably) reluctant
to lose bits of data in order to achieve smaller data volumes (hence the continued interest in lossless approaches, such as
recent work in Huang et al. (2016) and Liu et al. (2014)). In remarkable contrast, meteorological communities widely use
and trust the World Meteorological Organization (WMO) accepted GRIB2 (Day et al., 2007) file format, which encodes data
in a lossy manner. It should be noted, however, that difficulties can arise from GRIB2’s lossy encoding process, particularly
with new variables with large dynamic ranges or until official GRIB2 specification tables are released for new model output
(see, e.g., GFAS, 2015). While the preliminary work in Baker et al. (2014) indicated that GRIB2 was not as effective as other
compression methods on CESM data, a more extensive investigation of GRIB2 with climate data should be done in light of
the new techniques in Baker et al. (2015) and this paper before definitive conclusions are drawn. Nevertheless, the contrast
is notable between the meterological community’s wide-spread use and acceptance of GRIB2 and the climate community’s
apparent reluctance to adopt lossy methods, even when proven to be safe, flexible and more effective. In this context, when
applying lossy compression to scientific datasets, determining appropriate levels of precision or error, which result in only a
negligible loss of information, is critical to acceptance.

In summary, there are several salient points to recognize in the case for adopting lossy compression for climate simulation
data. First, the least few significant bits of data are usually noise resulting from the fixed-precision rounding error and are not
physically meaningful. Second, while 32-bit and 64-bit are meaningful data sizes for hardware, those sizes have no inherent
relevance to a particular climate simulation. In other words, there is not a compelling reason why 32-bits is the most accurate
representation for a particular variable on a particular grid resolution (e.g., consider saving fewer bits from a finer resolution

versus saving more bits from a coarser resolution). Finally, note that regardless of the precision of the simulation output data,
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this data has already been subjected to a lossy process via the chosen output frequency (e.g., hourly, daily, monthly). Therefore,
we argue that applying lossy compression to climate simulation data should not be regarded with more suspicion than carefully

choosing grid resolutions, output frequency, and computation precisions.
2.2 The CESM Large Ensemble project dataset

The CESM-LE project (Kay et al., 2015) is a community project that includes a publicly available ensemble of climate model
simulations generated for the purpose of studying internal climate variability. All data are currently available from the Earth
System Grid website (http://www.earthsystemgrid.org). The CESM-LE project is an ideal venue for this evaluation because of
its use of climate ensembles, struggle with storage limitations, and availability to the broader climate community. The project
began with a set of thirty ensemble members, each of which covers the period from 1920-2100. All simulations use the fully-
coupled 1-degree latitude/longitude version of CESM-CAMS. Historical forcing is used for the period 1920-2005 and RCP8.5
radiative forcing (i.e., forcing that reflects near past and future climate change, e.g. Lamarque et al. (2011)) thereafter. Ensemble
spread is generated using small round-off level differences in the initial atmospheric temperature field. Comprehensive details
on the experimental setup can be found in Kay et al. (2015).

CESM outputs raw data in NetCDF-formatted time-slice files, referred to as “history” files, for post-processing analysis.
Sample rates (e.g. daily, monthly, etc.) are determined for each variable by default, depending on the grid resolution, though a
user can specify a custom frequency if desired. When the floating-point data are written to these history files, they are truncated
from double-precision (64-bits) to single-precision (32-bits). For the CESM-LE project, monthly, daily, and 6-hourly history
file outputs were converted and saved as single variable timeseries, requiring approximately 1.2 TB of storage per ensemble
member. Complete output variable lists and sampling frequencies for each model can be found at https://www2.cesm.ucar.edu/
models/experiments/LENS/data-sets. We restrict our attention in this work to data from the atmospheric model component of
CESM, which is the Community Atmosphere Model (CAM). CAM output data for the CESM-LE simulations consists of 159
distinct variables, many of which are output at multiple frequencies: 136 have monthly output, 51 have daily output, and 25
have 6-hourly output (212 total variable outputs). Note that due to storage constraints, the 6-hourly data are only available

during three time periods: 1990-2005, 2026-2035, 2071-2080.

3 Approach

To provide climate scientists with the opportunity to determine whether the effects of lossy compression are detectable and to
solicit community feedback, we first designed a blind evaluation study in the context of the CESM-LE project. By utilizing the
CESM-LE project, we were able to question whether the effects of compression could be distinguished from model internal
variability. Three new simulation runs were setup identically to the original 30, differing only in the unique perturbation to the
initial atmospheric temperature field. We then contributed these three new additional ensemble members (labeled 31-33) to the
CESM-LE project, first compressing and reconstructing the atmospheric data output from two of the new ensemble runs (31

and 33). By not specifying which of the new ensemble members (or how many) had been subject to compression, we were able
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to gather feedback from scientists in the climate community detailing which ensemble member(s) they believed to have been
compressed and why. In addition, we supplied several scientists with both the original and reconstructed data for ensemble
members 31 and 33, allowing direct comparison of the two.

Participants were recruited in a number of ways, including announcements at conferences, advertisement on the CESM-LE
project web page, and direct e-mail to scientists working with CESM data. Participants in both the blind and not blind studies
were specialists in their fields, and while all participants were aware that multiple scientists were participating in the study,
their analyses were conducted independently. Because we did not specify how the data should be analyzed, participants studied
aspects of the data relevant to their interests, and the analysis described are a mixture of mathematical and visual approaches.
Note that if we determined that a particular analysis technique would provide more insight in a not blind context, then that
scientist was given both the original and reconstructed data (e.g., the results in Section 5). The analyses in Sections 4 and 5
were presented to give the reader a flavor of the types of post-processing analysis that occur in practice with CESM data as
well as the concerns that different scientists may have when using a data set that has undergone lossy compression.

For this study, we chose the publicly available fpzip algorithm (Lindstrom and Isenburg, 2006) for lossy data compression,
based on its superior performance on the climate data in Baker et al. (2014). The fpzip algorithm is particularly attractive
because it is fast at both compression and reconstruction, freely available, grid independent, and can be applied in both lossless
and lossy mode. The fpzip method uses predictive coding, and its lossy mode is invoked by discarding a specified number of
least significant bits before losslessly encoding the result, which results in a bounded relative error.

The diverse nature of climate model data necessitates determining the appropriate amount of compression (i.e., parameter) on
a per-variable basis (Baker et al., 2014). Some variables can be compressed more aggressively than others, and the appropriate
amount of compression can be influenced by characteristics of the variable field and properties of the compression algorithm.
For example, relatively smooth fields are typically easy to compress, whereas fields with jumps or large dynamic ranges often
prove more challenging. Further, if the internal variability is large for a particular variable across the ensemble, then more
compression error can be tolerated. With fpzip, controlling the amount of compression translates to specifying the number of
bits of precision to retain for each variable timeseries. Note that if a variable is output at more than one temporal frequency,
we do not assume that the same precision will be used across all output frequencies. Recall that the CAM timeseries data in
CESM-LE contain single-precision (32-bit) output. While one could specify that fpzip retains any number of bits (up to 32),
we restrict our choices to 16, 20, 24, 28, and 32, the latter of which is lossless for single-precision data.

In Baker et al. (2014), the appropriate level of compression was chosen for each of the CAM variables in the dataset by
selecting the most aggressive (lowest CR) such that a suite of four quality metrics all passed. The quality metrics in Baker et al.
(2014) are largely based on evaluating the error in the reconstructed dataset in the context of an ensemble of simulations and test
for variables for Z-score, maximum pointwise error, bias, and correlation. The ensemble distribution is intended to represent
acceptable internal variability in the model, and the goal is that the error due to lossy compression should not be distinguishable
from the model variability as represented by the ensemble distribution. Note that for some variables, the lossless variant of a
compression algorithm was required to pass the suite of metrics. (In the case of fpzip, the lossless variant was required for

less than five percent of the variables.) While many of the variables present in the CAM dataset in Baker et al. (2014) are also
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present in the CESM-LE dataset studied here, we did not necessarily use the same fpzip parameter settings for the variables
common to both for several reasons. First, the data in Baker et al. (2014) were output as annual averages, which we would
expect to be smoother (and easier to compress) than the 6-hourly, daily and monthly data from CESM-LE. Also, the choices of
bits to retain with fpzip in Baker et al. (2014) were limited to 16, 24, and 32. And notably, the CAM variant in Baker et al. (2014)
used the spectral element (SE) dynamical core, whereas the CESM-LE CAM variant uses the finite volume (FV) dynamical
core. The dynamical core difference affects the dimensionality and layout of the output data, which impacts the effectiveness
of some compression algorithms. Thus, we started this study with no assumptions on what level of fpzip compression to use
for each variable.

To determine a reasonable level of compression for each of the 159 CESM-LE CAM variables, we created a test ensemble
of 101 12-month CESM simulations with a similar (but distinct) setup to the production CESM-LE simulations. Unlike the
test ensemble in Baker et al. (2014), which only produced annual averages, we output daily, 6-hourly, and monthly data for
the simulation year and created ensembles for each frequency of output for each variable (212 total). We then used the size
101 test ensemble to chose the fpzip parameters that yielded the lowest CR such that the suite of four quality metrics proposed
in Baker et al. (2014) all passed. We did not use CESM-LE members 1-30 for guidance when setting the fpzip precision
parameters for compressing the two new ensemble runs, but based all selections on the variability of the size 101 test ensemble.
(Note that an ensemble with 101 has more variability than one with 30 members) Finally, we mention that several variables
occasionally contain “missing” values (i.e., there is no data value at a grid point). While “fill” values (i.e., a defined fixed value
to represent missing data) can be handled by fpzip, it cannot process the locations with missing data (which would need to be
either populated with a fill value or masked out in a preprocessing step). Therefore the following CESM-LE variables are not
compressed at all: TOT_CLD_VISTAU, ABSORB, EXTINCT, PHIS, SOLIN, AODDUST2, LANDFRAC, and SFCO2_FFF.

The first two rows in Table 1 list the compression ratios for each of the output frequencies for both fpzip and the lossless
compression that is part of the NetCDF-4 library (z/ib). Note that applying the customized-by-variable fpzip parameters to a
single CESM-LE ensemble member (180 simulation years) yielded an average CR of 0.18 (more than a 5:1 reduction), which
is a 3.5x reduction over the lossless NetCDF4 library compression. The third row in Table 1, labeled “truncation”, indicates
the compression ratios possible with simple truncation if each variable was truncated to the same precision as specified for
Jpzip. (Table 2 lists how many variables out of the 212 total used each level of fpzip compression). Therefore, the differences
between the compression ratios for fpzip and truncation in Table 1 highlight the added value of fpzip’s predictor and encoder in
reducing data volumes over simple truncation. Note that Table 2 shows that the majority of the variables were able to use the

most agressive compression, fpzip-16.

4 Ensemble data evaluations

In this section, we describe selected analyses performed on the CESM-LE data that were conducted without prior knowledge
of which of the new ensemble members (31-33) had been subjected to lossy compression. These experiments were designed

to identify which new ensemble members had been compressed and reconstructed and to determine whether the compression-
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induced effects were significant. Note that because fpzip truncates values (and is therefore biased towards zero), one could
trivially compare the raw data files directly to determine which ensemble members had undergone compression and recon-
struction. However, analyses in this section and the next look for data discrepancies via various methods typically applied in

climate analysis.
41 CVDP

We first discuss results from the Climate Variability Diagnostic Package (CVDP) (Phillips et al., 2014), a publicly available
analysis tool for examining major modes of climate variability. In particular, the CVDP outputs a variety of key climate metrics,
which are immediately viewable via a website of images (e.g., means, standard deviations, coupled modes of variability,
atmospheric modes of variability, global trend maps, AMOC, timeseries data, etc.). The CVDP was used to document the
climate simulated by each member of the CESM-LE, and complete CVDP diagnostic data and images from several time
periods are available on the CESM-LE project diagnostics page (http://www.cesm.ucar.edu/experiments/cesm1.1/LE/). Global
trend maps are one of the key metrics in the CVDP, and in Fig. 1, we show the CVDP-generated global trend map for annual
air surface temperature (TAS) for historical simulation data (1920-2012). Note that this figure is comparable to Fig. 4 from
Kay et al. (2015), but for annual data of a longer historical period. The three additional ensemble members (31-33) are shown
in Fig. 1 as well. Also included are the reconstructed versions of 31 and 33, labeled 31-C and 33-C respectively. Note that there
is no discernible difference between 31 and 31-C and 33 and 33-C in this figure. This result is not unexpected as the types of
calculations that the CVDP conducts are unlikely to identify compression effects. For that reason, all of the CVDP diagnostic
data available on the CESM-LE project diagnostics page at present include the reconstructed variants of 31 and 33 (i.e., 31-C
and 33-C in our figure) instead of the original uncompressed data (31 and 33 in our figure). No anomalies or differences have
been reported for any of the CVDP diagnostic data for the CESM-LE project that include the reconstructed members 31 and
33.

4.2 Climate characteristics

We now describe an analysis aimed at determining whether the effects of the lossy compression could be distinguished from
the internal variability inherent in the climate model as illustrated by the CESM-LE project ensemble member spread. The
CESM-LE historical simulation (1920-2005) data is examined for ensemble members 2-33 (member 1 is excluded due to a
technicality related to its different starting date). Multiple characteristics of interest across the ensemble are examined: surface
temperature, top of the atmosphere model radiation, surface energy balance, precipitation and evaporation, and differenced

temperature fields. The effects of compression are discernable in several characteristics.
4.2.1 Surface temperature

First, we plot the global mean annual surface temperature evolution in Fig. 2. The three additional members (31-33) are within

the range of internal variability, and it cannot be determined which new member(s) has been compressed and reconstructed.
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Second, we examine the extreme values for surface temperature due to the often cited concern that applying compression to
scientific data could dampen the extremes. We calculate the difference between the maximum monthly average and minimum
monthly average surface temperature in 3-year segments. While the temperature difference was lowest for member 32 (which
was not compressed) in the first 6 years, this trend did not continue through the remaining 80 years. In fact, none of the

members 31-33 show any detectable surface temperature anomalies as compared to the rest of the ensemble members.
4.2.2 Top of the atmosphere model radiation

Examining the top of the atmosphere (TOA) model radiation balance is of interest as compression could potentially violate
conservation of mass, energy or momentum. TOA imbalance is calculated as net shortwave (SW) radiation minus the net
longwave (LW) radiation. We found no discernable difference in the TOA radiation imbalance due to compression (that could
be distinguished from the ensemble variability) when we looked at members 1-33 in the time period 1920-2005 or the shorter
period from 1920-1940, shown in Fig. 3. Furthermore, the TOA radiation imbalance timeseries in Fig. 4 also indicates that
internal variability is masking any possible effects due to compression. Note that we also examined the top of the model net

LW and net SW radiation independently and that data did not indicate any anomalies in the new members either.
4.2.3 Surface energy balance

Surface energy balance is another popular climate model characteristic that is commonly calculated in climate model diagnos-
tics. The energy balance at the Earth’s surface indicates the heat storage in the climate system and is calculated as the sum of
the net solar flux at the surface (FSNS), the net longwave flux at the surface (FLNS), the surface latent heat flux (LHFLX), and
surface sensible heat flux (SHFLX) (e.g., see Raschke and Ohmura (2005)). We calculated the imbalance in the surface energy
for each month using the monthly average output of variables FSNS, FLNS, LHFLX, and SHFLX. Fig. 5 shows the mean
imbalance over the period from 1920-2005. Note that members 31 and 33 (both of which were compressed) fall far outside
the range of internal variability. We found that the difference in surface energy balance for 31 and 33 is attributable to lower
levels of the surface latent heat flux (LHFLX) for the reconstructed members, as seen in Fig. 6. We note that this larger surface
energy imbalance persists in the later CESM-LE sets from 2006-2080.

We examined the four CESM-LE variables involved in the surface energy balance calculation. We found that LHFLX was
compressed more aggressively than the other three variables (fpzip-16 versus fpzip-24). Therefore, we repeated the surface
energy balance calculation with LHFLX subjected to fpzip-24 (instead of fpzip-16) and found that the surface energy balance
anomalies for members 31 and 33 disappear. Fig. 7 shows the new result. Clearly relationships between variables can be
important when determining an appropriate amount of compression to apply, especially in the context of derived variables. We

further discuss this lesson in Sect. 6.
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4.2.4 Precipitation and evaporation

Next we evaluated precipitation (the sum of variables PRECC and PRECL) across the ensemble, shown in Fig. 8, supposing
that precipitation levels could be lower in 31 and 33 due to reduced surface latent heat flux (LHFLX); however, members 31 and
33 do not stand out in the context of precipitation. Evaporation, on the other hand, is directly calculated from latent heat flux
(LHFLX) via a constant conversion factor (accounting for water density and latent heat of evaporation) that we determined
from the first ensemble member (such that precipitation and evaporation were equal). A look at the evaporation across the
ensemble showed lower levels of evaporation corresponding to members 31 and 33, resulting in the precipitation/evaporation
imbalance shown in Fig. 9.

Both PRECC and PRECL were compressed with fpzip-24, whereas LHFLX used fpzip-16. As with the previously discussed
surface energy balance calculation, the size of the anomalies in Fig. 9 points to the issue of a derived variable calculated from
variables with differing levels of compression-induced error. Therefore, if we redo the precipitation/evaporation imbalance
using LHFLX compressed with fpzip-24, the discrepancy between members 31 and 33 and the rest of the ensemble disappears,
e.g. Fig. 10.

4.2.5 Differenced temperature field

Difference fields are useful for indicating whether key features of the field have been preserved (e.g. gradients). For each of
the ensemble members, we calculate the difference field for the near-surface air temperature (TREFHT) field monthly mean
for October 1920. In particular, we calculate the difference in near-surface air temperature between pairs of neighboring grid
points first in longitudinal direction and then in latitudinal direction. Looking at the distribution of all these differences for
each member via mean, median, interquartile range (IQR), and skewness, we found that reconstructed members were outliers
only in terms of the IQR. The IQR is the third (upper) quartile minus the first (lower) quartile and indicates the spread of the
distribution. Reconstructed members 31 and 33 have an IQR near 0.25, which is larger than that of any of the other ensemble
members, which are all close to 0.1. Note that the median of the two reconstructed member’s difference distributions is exactly
zero. In fact, of all the differences calculated for each member, the value zero occurs less than one-tenth of a percent among
the original members, but it occurs in about a third of the reconstructed ensemble members 31 and 33. This result means that
neighboring values are often the same after compression, whereas they were not exactly the same originally. This detectable
effect with a lossy method is expected as some precision has been lost. However, the difference is not necessarily relevant
for analysis. For example, for temperature, one could argue that the last several digits were likely simulation noise and were,
therefore, unimportant in terms of scientific conclusions. However, if compression dampens the minimum and maximum values
that occur in the neighbor differences temperature field, this effect would be problematic. We calculated the difference between
the minimum and maximum values in the differenced temperature field for each ensemble member for every month from 1920
to 2005. This calculation characterizes the largest temperature gradients that occur for each month. We show the October 1920
results in Fig. 11, which indicate that nothing is amiss with members 31 and 33 (which was also the case for all of the other

months from 1920-2005).
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In general, though, determining whether compression caused an overall smoothing effect on the data is perhaps better viewed
by examining spatial contrast plots showing the North-South and East-West differences for the near-surface air temperature for
the ensemble members. For ensemble member 31, Fig. 12 shows both the original (labeled “Member 31”°) and reconstructed
(labeled “Member 31-C”) data from October of 1920. Note that the scale of the color bar would need to be greater than +/-10
degrees to represent all gradients, but at that scale differentiating the smaller gradients is difficult and no compression effects
can be detected. Therefore, the rightmost plots in Fig. 12 have a color bar scale tightly restricted to +/-.5 degrees. At this
restricted scale, one can notice the effects of lossy compression largely over the ocean in areas where the original gradient was
quite small already. However, when the color scale is slightly expanded to +/-1.5 degrees (in the leftmost plots), it is difficult to

discern any differences between 31 and 31-C, and the larger gradients over land coastlines and ridges dominate, as expected.
4.3 Ensemble variability patterns

The idea behind the following analysis was to determine whether lossy compression would introduce detectable small scale
variability patterns into the climate data. To this end, we reconstructed each large ensemble member (1-33) from a basis set
derived from the variability from each other member of the large ensemble, with the idea that the complete basis set derived
from the compressed members would be able to explain less variance in the other simulations (because some of the higher
modes would not be well-represented).

In particular, we followed the following procedure. For each ensemble member (1-33), we did a singular value decomposition
(SVD) analysis to determine the EOFs (Empirical Orthogonal Functions) in the spatial dimension on the monthly temperature
field for 900 months. Note that we examined a subset of the grid-cells to reduce computational costs. We then projected each of
the remaining 32 ensemble members onto the resulting EOF basis and calculated the unexplained variance. Figure 13 provides
the sum of the unexplained variance (mean-squared error) in temperature for each ensemble member (note that the expectation
value has been subtracted for clarity). Figure 13 indicates that members 31 and 33 are outliers, meaning that their set of EOFs is
less appropriate as a basis set to describe the variability in the other ensemble members; this is due to loss of precision induced
by lossy compression (which primarily affects the high frequency modes).

Figure 14 shows the same result in an alternative way. Each subplot uses a set of EOFs (900 total) derived from a member of
the large ensemble (subplots are only shown for members 21-33, as 1-20 share similar characteristics to the other members not
subject to compression). The remaining 32 members are projected onto the EOF basis set, and we calculate the variance of the
principal components in the rest of the ensemble (900 x 32 samples). The anomaly of this curve relative to the ensemble mean
case is plotted in the subplots in Fig. 14. The subplot x-axes represent the 900 EOFs, and the y-axis indicates the magnitude of
the temperature variance. The subplots for ensemble members 31 and 33 indicate that when the rest of the ensemble members
projected onto their EOFs, those modes of rank 500 or greater exhibit lower than expected variance. Again, the reconstructed
members do not contain the high frequency information present in the rest of the ensemble. Of note is that when we alternatively
first derived EOFs in members 1-30 and then projected members 31 and 33 onto that basis set, no differences were detected as
expected. Given that the differences are only noticeable in the higher EOFs (which are not typically examined), it appears that

the compressed members are not (noticeably) under-representing any of the true modes of variability.
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A natural question is whether the detected differences in variances for members 31 and 33 could impact science results.
Clearly the large scale patterns of variability, long term trends, and regionally averaged properties would all be unaffected
because they can be represented with a fraction of this number of EOF modes (i.e., many fewer than 500). Analyses that
could potentially be affected by the truncation of EOF modes greater than 500 include such features as point-scale extreme
temperatures or precipitation. We partially address this issue in Sect. 5.1 by investigating the extremes. However, in future
work we will further explore whether compression-induced damping of high frequency elements (spatially or temporally) has

relevant effects that exceed the noise stemming from the model’s floating-point calculations.
4.4 Coherent structures
4.4.1 Overview of Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is used for the extraction of coherent structures, or the study of recurring patterns in
spatio-temporal fields. The POD technique was first introduced in the context of fluid turbulence by Lumley (1967) in order to
analyze the velocity field of fluid flows. POD has since been adapted for use within a number of different disciplines, such as
oceanography, chemistry, and model order reduction (Carbone et al., 2011). The aim of POD is to provide an optimal basis set
to represent the dynamics of a spatio-temporal field, which allows the identification of the essential information contained in
the signal by means of relatively few basis elements (modes).

In particular, given a spatio-temporal field I (x,t), POD calculates a set of modes & in a certain Hilbert space adapted to the
field I(«,t) such that

I(z,t) = Zai(t)dh(w), 2)

where a;(t) is a time-varying coefficient. From a mathematical point of view, POD permits the maximization of the projection
of the field I(x,t) on ®:
(((z,1), di(x)))

(¢i(x), di(z))
This defines a constrained Euler-Lagrange maximization problem, the solution of which is a Fredholm integral equation of the
first kind:

Max(m (3)

/ (I (.1, 1(& 1)) (' )da' = N (), @

Q

where (a,b) is the inner product, angle brackets indicate the time average, €2 is the spatial domain, ¢; () is an eigenfunction,
and ); is a real positive eigenvalue. If the spatial domain €2 is bounded, this decomposition provides a countable, infinite, set of
sorted eigenvalues \; (with Ay > Ay > A3 > ...). Then the field "energy", by the analogy with the fluid turbulence application,

can be written as:

((2,t)) = Z)‘iv 5)
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where \; represents the average energy of the system projected onto the axis ¢;(x) in the eigenfunction space. In general, the
eigenfunction ¢; () does not depend on the functions of the linearized problem, but emerges directly from the observations of
the field I(«,t). When the sum in Equation (2) is truncated to N terms, it contains the largest possible energy with respect to

any other linear decomposition belonging to the family of EOFs (i.e. PCA, SVD) of the same truncation order (Lumley, 1967).
4.4.2 Application to ensemble data

For this study, we utilize POD to investigate whether lossy compression introduced any detectable artifacts that could indicate
which ensemble member(s) of the new set 31-33 had been compressed and to determine whether any such artifacts were
acceptable or not (i.e, in terms of impact on the physics of the problem). We examined the monthly averaged output of four
variables: Z3 (geopotential height above sea level), CCN3 (cloud condensation nuclei concentration), U (zonal wind) and
FSDSC (clear sky downwelling solar flux at surface). For each variable and for each ensemble member (1-33), POD was
applied to a period of 25 years (300 time slices beginning with Jan. 2006) to obtain the modes and the energy associated
with each mode. This methodology enables the identification of any perturbations introduced by the compression method into
the dynamics of the field. In addition, we can characterize the impact of the compression, if any, with respect to the inherent
variability within the ensemble.

To illustrate this process, the "energy" fraction A as a function of the mode number N is reported in Fig. 15 for variable Z3
from ensemble member 28. Note that the distribution of A is composed of different branches (groups of modes) characterized
by a power-law behavior. The first branches (a, b and c) represent the dominant scales (structures) in the field and contain
the greater part of the energy of the original field. These structures can be considered mother structures, and, analogously to
the fluid turbulence case, they represent the "energy injection" point for the smaller structures. In other words, the large scale
structures transfer energy to smaller and smaller scale structures. When a break is found in the distribution, the energy transfer
is stopped, and a new cascade begins that is unrelated to the previous one. For the highest modes (~scale of the resolution) the
energy is quite low, and the modes have a minimal impact on the “physics”. Beyond this point the modes can be considered
uncorrelated noise, which is generally associated with the thermal noise of the floating point calculations, rather than anything
physically meaningful. Therefore by comparing the energy distribution of the decomposition modes of the new ensemble
members 31 -33 with their inherent variability, it should be possible to both identify the presence of any perturbations due to
the compression algorithm as well as the scale at which the perturbations are significant.

The four plots in Figure 16 correspond to each of the 4 variables analyzed. First, panel (a) shows the energy distribution
of the modes of the POD of new ensemble members 31-33, superimposed on the median of the original ensemble members
(1-30). To highlight the differences of the energy distributions of the modes of the decomposition of members 31-33 with
respect to the median of the original ensemble members, their relative errors are reported in panel (b) together with the natural
variability observed within the original ensemble. Finally, panel (c) reports the distribution of the root-mean-square Z-score
(RMSZ) of the energy distribution for the original ensemble members together with the RMSZ of the energy distribution of
members 31-33. The plot corresponding to variable Z3 in Figure 16 clearly shows that the RMSZ values for members 31 and

33 are outliers in panel (c), suggesting that there are some artifacts in the distribution energy of the modes of their relative
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PODs, potentially caused by lossy compression. However, when comparing these errors with the natural variability observed
within the original ensemble, it appears clear that such anomalies are mainly visible in the lowest energy modes (> 150). Since
the lowest energy modes are generally attributed to thermal noise in floating point calculations, if these artifacts are due to
lossy compression, they do not affect any coherent structures attributable to the physics of the problem (i.e., the climate). Note
that ensemble members 31 and 33 for variables U and FSDSC exhibit errors in the energy distribution that in a few instances
exceed the natural variability within the ensemble as shown in panel (b), but the exceedence is not great enough to clearly
indicate them as outliers in panel (c). (Recall that ensemble member 32 was not compressed.) Finally, the errors in the energy
distribution of the modes of the decomposition for ensemble members 31-33 for variable CCN3 are well within the variation
explained by the natural variability of the original ensemble members, and therefore no outliers were observed.

This analysis performed on a limited number of variables shows that the compression of the ensemble members has either no
effect if compared with the natural variability observed within the ensemble, or (for Z3) affects only the lowest energy modes.
We note that the outcome of this analysis could potentially be different if applied to higher temporal resolution output data as

lossy compression could impact finer scale patterns differently.

5 The original and reconstructed data

In this section, we describe analyses performed on the CESM-LE data that were conducted with the knowledge that members
31 and 33 had been compressed and reconstructed. In addition, we provided both the original and reconstructed versions of 31

and 33 for these experiments.
5.1 Climate extremes
5.1.1 Overview of extreme value theory

Extreme value theory, as the name implies, focuses on extremes, more precisely on the upper tail distributional features. For
extremes, the Gaussian paradigm is not applicable. To see this, suppose that we are interested in annual maxima of daily
precipitation. In this case, the probability density function (pdf) is skewed, bounded by zero on the left side, and very large
values (greater than two standard deviations) can be frequently observed. These three features cannot be captured by a normal
distribution and other statistical modeling tools are needed.

One classical approach is to study block maxima, e.g., the largest annual value of daily temperatures. In this example, the
block size is 365 days. The statistical analysis of block maxima is based on the well- developed extreme value theory (EVT),
originating from the pioneering work of Fisher and Tippett (1928) and regularly improved upon during the last decades (e.g.,
De Haan and Ferreira (2005)). This theory indicates that the generalized extreme value distribution (GEV) represents the
ideal candidate for modeling the marginal distribution of block maxima. This probabilistic framework is frequently applied
in climate and hydrological studies dealing with extremes (e.g., Zwiers et al. (2013), Katz et al. (2002)). Nowadays, more

complex statistical models, such as the multivariate EVT (e.g., De Haan and Ferreira (2005), Beirlant et al. (2004), Embrechts
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et al. (1997)), also provide a theoretical blueprint to represent dependencies among maxima recorded at different locations. For
this work, however, we won’t address the question of spatial dependencies for extremes. We assume that every grid point can
be treated independently and a GEV can be fitted at each location.

Mathematically, the GEV is defined by its three-parameter cumulative distribution function (cdf):

y—p\ e
G(y) = exp —(HEO) , ©6)
Jr

where 1, 0 > 0 and £ are called the location, scale and shape parameter with the constraint that 1+¢#-# > 0. The & parameter
defines the tail behavior with three possible types: & = 0 (Gumbel), £ > 0 (Fréchet) and ¢ < 0 (Weibull). Temperature extremes
often follow a Weibull distribution (e.g., Zwiers et al. (2013)). In particular, a negative shape parameter implies a finite upper
bound given by p — % For other examples in environmental area, the Gumbel family has been used to model daily maxima of
methane (Toulemonde et al., 2013) and precipitation maxima are often described by a Fréchet distribution (see, e.g., Cooley
et al. (2007)). In terms of risk analysis, the scalar £ is the most important parameter of the GEV parameters. For this reason,

most of our analysis will be based on assessing if and how ¢ changes with compression.
5.1.2 Application to ensemble data

We focus our analysis on four variables from the ensemble data: average convective and large-scale precipitation rate (PRECT)
over the output period, maximum convective and large-scale precipitation rate (PRECTMX), minimum surface temperature
over output period (TSMN), and maximum surface temperature over output period (TSMX). We study TSMX, PRECTMX
and PRECT using annual block maxima, and TSMN using annual block minima (the GEV can be applied by multiplying
by —1). Concerning the inference of the GEV parameters, most classical approaches, including MLE (maximum likelihood
estimation), MOM (method of moments), and Bayesian methods, can be used. As the shape parameter for precipitation and
temperatures extremes is classically between —.5 and .5, we opt for the so-called Probability Weighted Moments (PWM) (e.g.,
Ana and de Haan (2015)), which has a long tradition in statistical hydrology (e.g., Landwehr et al. (1979), Hosking and Wallis
(1987)) and has been applied in various settings (e.g., Toreti et al. (2014)). Besides its simplicity, the PWMs approach usually
performs reasonably well compared to other estimation procedures (e.g., Caeiro and Gomes (2011)). Additional arguments in
favor of PWMs are that they are typically quickly computed, an important feature in our setup, and do not provide aberrant
values for negative ¢ like the MLE. To apply this estimation technique to temperature min and max, global warming trends
have to be removed. This was done by removing the trend with a local non-parametric regression (using the loess function in
R).

Figure 17 summarizes our findings concerning the shape parameter &. Each row represents a variable of interest. We only
show results for one of the two compressed ensemble members as the results are practically identical. The histograms corre-
spond to the empirical pdf obtained from all uncompressed runs. This can be compared to the blue pdf of the compressed run.
For our four atmospheric variables, one cannot make the distinction between the compressed and uncompressed runs, which
indicates that compression did not systematically change the distribution of the shape parameters. The middle panels display

the range of the estimated £ at each grid point from the ensemble of 31 uncompressed runs. This gives us information on the
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variability among the 31 uncompressed runs, which can be compared to the difference between a compressed run and its un-
compressed counterpart (the right panels). As indicated by the dark blue color (meaning low values), the ensemble variability
is much higher than the variability due to compression. In summary, this analysis indicates that compression does not cause
any systematic change in the distribution of the estimated shape parameters and that the changes introduced by compression

fall well within the variability of the ensemble.
5.2 Causal signatures

The goal of causal discovery in this context is to identify potential cause-effect relationships from a dataset to better understand
or discover the dynamic processes at work in a system. Causal discovery tools have been developed from probabilistic graphical
models (e.g., detailed in Pearl (1988) and Spirtes et al. (2000)), which are a graphical representation of probable dependencies
between variables in high dimensional space. In particular, causal discovery methods reveal more than simply correlation,
but rather the patterns of information flow and interactions. To determine the flow of information, the initial assumption is
made that every variable (graph node) is causally connected to every other variable. Then conditional independence tests (e.g.
testing for vanishing partial correlations) are used to disprove causal connections, resulting in a remaining “interaction map”
of causal connections (that may or may not be given direction through additional techniques). Such tools were initially applied
in the fields of social sciences and economics, but have more recently been applied successfully to climate science data (e.g.,
Chu et al. (2005), Ebert-Uphoff and Deng (2012a), Ebert-Uphoff and Deng (2012b), Zerenner et al. (2014)). For example, for
atmospheric data, one could imagine using causal discovery methods to understand large-scale atmospheric processes in terms
of information flow around the earth.

Of interest here is determining whether compressing the climate data in the CESM-LE dataset affected the flow of informa-
tion. Using causal discovery for this purpose is proposed in Hammerling et al. (2015), where interaction maps were generated
for both the original and reconstructed data. We call these interaction maps causal signatures. This type of analysis is unique to
this compression study as it is aimed at inter-variable relationships. Recall that the number of daily variables contained in the
CESM-LE datasets is 51. To simplify the analysis, we created a subset of 15 daily variables. The subset was chosen such that
only one variable was kept from each like-variable group. For example, eight of the 51 total daily variables report temperature
in some form: at several defined pressure surfaces, at the surface, and at a near-surface reference height (TREFHT), and, there-
fore, we only include the temperature variable TREFHT in the subset. We then developed temporal interaction maps for the
15 daily variables that show interactions across different lag times between variables. We performed this analysis for several
different temporal scales, i.e. we identified separate signatures considering lag times between variables that are multiples of 1,
5, 10, 20, 30, or 60 days, in order to capture interactions for example on a daily (1 day) or monthly (30 days) scale. Recall that
these interaction maps are highlighting potential cause and effect relationships. Figure 18 contains the interaction map for the
daily time scale (lag times are multiples of one day) for the original data for CESM-LE member 31, and the 15 variables are
indicated in the ovals. Note that only the weak connection between SHFLX (surface sensible heat flux) and FSNTOA (net solar
flux at top of atmosphere), which is indicated by a dotted line, is missing in the map corresponding to the reconstructed data.

In general, the maps for all of the lagged times only indicated tiny differences between the initial and reconstructed datasets.
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This result indicates that compressing and reconstructing the climate data has not negatively impacted the flow of information

in terms of detectable cause-effect relationships in the data.
5.3 AMWSG diagnostics package

The publicly available and popular AMWG (Atmosphere Working Group) Diagnostics Package (AMWG-DP) computes cli-
matological means of CESM simulation data from CAM and produces plots and tables of the mean climate in a variety of
formats. The AMWG-DP uses monthly output to evaluate climate characteristics such as seasonal cycles, intraseasonal vari-
ability, Madden-Julian Oscillation (MJO), El Nino-Southern Oscillation (ENSO), and the diurnal cycle. The AMWG-DP can
be used to compare model simulation output of observational and reanalysis data or to compare output from two simulations.
Therefore, comparing the compressed and reconstructed CESM-LE ensemble members via the AMWG-DP is a natural choice.
Note that the AWMG-DP is available at https://www2.cesm.ucar.edu/working-groups/amwg/amwg-diagnostics-package.

Because the AMWG-DP produces over 600 tables and plots, we just highlight a couple of results here. First we show
vertical contour plots produced by the AMWG-DP (from Diagnostics Set 4) comparing the original and reconstructed variants
of ensemble member 31 for relative humidity (RELHUM) in Fig. 19. We chose to look at RELHUM because it was compressed
aggressively with fpzip-16, yielding a compression ratio (CR) of 0.09. While the max values are not identical (101.66 versus
101.86), the contour plots certainly appear very similar at this scale.

Now we show surface pressure (PS), as it is a “popular” variable to view with the AMWG-DP. Variable PS was compressed
with fpzip-20, yielding a CR of 0.13. Figure 20 compares the original and reconstructed variants of ensemble member 31 via
horizontal contour plots (from Diagnostics Set 5). Note that while the mean, max, and min values differ slightly, the plots
themselves are indistinguishable and similar conclusions could be drawn.

Finally, we look at a portion of one of the AMWG-DP tables for global annual means for the 2006-2099 data (from Di-
agnostics Set 1) shown in Table 3. In particular, the AMWG-DP derived variables RESTOM and RESSURF are important
diagnostics as they indicate the top of model residual energy balance and the surface residual energy balance, respectively,
and Table 3 indicates that their computed values for the compressed and original cases are identical (to the precision used by
AMWG-DP). Recall that top of the model energy imbalance was examined in Sect. 4.2.2 and is simply the difference between
the net solar flux (shortwave radiation) at the top of the model (FSNT) and the net longwave flux at the top of the model
(FLNT). Monthly variables FSNT and FLNT were both compressed by fpzip-24. The AMWG-DP results for RESTOM agree
with the findings in Section 4.2.2 that indicate that the compression error cannot be distinguished from the ensemble variability.
However, this simple diagnostic calculation warrants further discussion. We note that compressing FSNT with fpzip-16 and
FLNT with fpzip-20 was acceptable in terms of passing the four quality metrics used to determine compression levels (see
discussion in Section 3). However, because we knew in advance of applying compression that calculating the top of the model
balance (FSNT - FSLT) is a key diagnostic check for climate scientists, we preemptively used less aggressive compression for
both variables (as subtracting like-sized quantities would magnify the error due to compression). For example, had we instead

used FSNT with fpzip-16 and FLNT with fpzip-20, this would have resulted in relative errors of 0.3% and 0.02% for FSNT and
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FLNT respectively, but in a relative error for the derived quantity RESTOM of 8.0%, which is noticeably larger (corresponding
to RESTOM values of 7.553 and 8.211W/m?)

The AWMG-DP derived quantity RESSURF for surface residual energy balance in Table 3 is notably on target in the
compressed data. In contrast, when the surface energy balance was investigated in Sect. 4.2.3, Fig. 5 indicated that the effects
of compression were noticeable in the surface energy calculation (due to aggressive compression of the surface latent heat
flux, LHFLX). In both Sect. 4.2.3 and AMWG-DP, the surface energy balance was calculated as (FSNS - FLNS - SHFLX -
LHFLX). However, the difference is that the AMWG-DP does not use the LHFLX variable from the output data, but instead
calculates surface latent heat flux via surface water flux (QFLX) and four precipitation variables (PRECC, PRECL, PRECSC,
and PRECSL). As a result, compression of variable LHFLX did not affect the AMWG-DP’s calculation of surface energy

balance.

6 Lessons learned

By providing climate scientists with access to data that had undergone lossy compression, we received valuable feedback and
insights into the practicalities of applying data compression to a large climate dataset. Here we summarize the underlying

themes or lessons that we learned from this lossy compression evaluation activity.
6.1 Relationships between variables

When determining appropriate levels of compression, relationships between variables can be an important consideration, par-
ticularly in the context of derived variables. As an example, we refer to the surface energy balance anomaly detected and
discussed in Sect. 4.2.3. Had all four variables been compressed to the same precision, the surface energy balance in the recon-
structed members would not have stood out (i.e., Fig. 5 versus Fig. 7). Derived variables are quite popular in post-processing
analysis, and it is unrealistic to expect to know how the output data will be used at the time it is generated (and compressed).
However, many derived variable calculations are quite standard (e.g., surface energy balance, top of the atmosphere energy
balance, etc.), and these often-computed derived variables should be considered when determining appropriate levels of com-

pression for variables used in their calculations.
6.2 Detectable versus consequential

A skilled researcher would likely be able to detect effects of lossy compression on data. However, the fact that the compression
effects are detectable does not mean that they are also relevant and/or important. Recall that CESM model calculations happen
in 64-bit precision, but the history files for post-processing analysis are output in 32-bit precision. Certainly there is no reason
to believe that 32 bits are of consequence for every variable, and for many variables the trailing digits are model noise that
would not impact scientific conclusions drawn from the data. For example, one would not expect to need 32-bits of precision to

look at temperature and detect a warming trend. On the other hand, one may not want to study high-frequency scale events such
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as precipitation with data that has undergone aggressive compression. In general, understanding the precision and limitations

of the data being used is critical to any post-processing analysis.
6.3 Individual treatment of variables

We confirmed the assertion in Baker et al. (2014) that determining the appropriate amount of compression must be done on a
variable-by-variable basis. In particular, there is not a “one-size-fits-all” approach to compressing climate simulation variables,
and it does not make sense to assume that 32 bits is the right precision for every variable. Further, customizing compression per
variable could also include applying other types of compression algorithms to different variables as well (e.g. transform-based
methods such as wavelets), which is a topic of future study. Knowing what precision is needed for each variable for CESM, or
even more generally for CMIP (discussed in Sect. 1), would clearly facilitate applying lossy compression. We note that defining

such a standard is non-trivial and would need to be fluid enough to accommodate new variables and time/space resolutions.
6.4 Implications for compression algorithms

Achieving the best compression ratio without negatively impacting the climate simulation data benefits from a thorough under-
standing how a particular algorithm achieves compression. For example, we are aware that the type of loss introduced by fpzip
is of the exact same kind that is already applied to the original double-precision (64-bit) data when truncating (or, more com-
monly, rounding) to single precision (32-bit) for the CESM history file. Because of its truncation approach, fpzip is much less
likely to affect extreme values or have smoothing effect on the data, as opposed to, for example, a tranform-based approach.
Further, Fig. 6 illustrates that naive truncation is not ideal. An improvement would be to inject random bits or at least round
rather than truncate the values (i.e., append bits 100...0 instead of bits 000...0 to the truncated floats). Both of these modi-
fications could be done as a post-processing step after the data have been reconstructed. Although the temperature gradients
(as shown in Fig. 11) are not problematic in this study, injecting random bits would also reduce the number of zero gradients.
On a related note, a compression algorithm that provides information about the compression error at each grid point could
potentially be very useful in terms of customizing how aggressively to compress particular climate simulation variables.
Finally, an important issue for climate data is the need for compression algorithms to seamlessly handle both missing values
and fill values. As mentioned previously, variables that occasionally have no value at all (i.e., missing) at seemingly random
grid points require special handling by the compression algorithm itself or in a pre- and/or post-processing step. Similarly, the

non-regular presence of large-magnitude fill values (typically O(103°) in CESM) can be problematic as well.

7 Concluding remarks

In general, lossy data compression can effectively reduce climate simulation data volumes without negatively impacting sci-
entific conclusions. However, by providing climate researchers with access to a large dataset that had undergone compression
(and soliciting feedback), we now better appreciate the complexity of this task. All of the lessons detailed in the previous sec-

tion highlight the importance of being data- and science-aware when applying data compression and performing data-analysis.
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To reap the most benefit in terms of achieving low compression ratios without introducing statistically significant data effects
requires an understanding of the characteristics of the data, their science use, and the properties (i.e., strengths and weaknesses)
of the compression algorithm. In fact, many considerations for applying lossy compression to climate simulation data align
with those needed to carefully choose grid resolution, data output frequency, and computation precision, all of which effect
the validity of the resulting simulation data. Further, our compression research thus far has focused on evaluating individual
variables, and this study highlights that issues can arise when compressing multiple variables or using derived variables. Our
ongoing research on compression methods will focus on incorporating the multivariate aspects of compression and ultimately

developing a tool to auto-determine appropriate compression (and therefore acceptable precision) for a given variable.

8 Code and data availability

All data for the CESM-LE project (including compressed and reconstructed members 31 an 33) are available via the Earth
System Grid (http://www.earthsystemgrid.org). Also see https://www?2.cesm.ucar.edu/models/experiments/LENS for more de-
tailed information on the CESM-LE data. The CESM software is available from http://www2.cesm.ucar.edu/model, and
CESM-LE data was generated with the CAMS configuration described in Kay et al. (2015). The fpzip compression utility

is available from https://computation.llnl.gov/casc/fpzip/.

Appendix A: Lossy compression evaluations

Table 4 lists which co-authors conducted the ensemble data evaluations described in Sections 4 and 5.
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Scientific Computing Research.
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Table 1. Impact in terms of compression ratios (CR) of lossy compression with fpzip, lossless compression with NetCDF-4, and simple

truncation for a CESM-LE ensemble member.

Method Monthly Daily 6-hourly Average

fpzip 15 22 18 18
NetCDF-4 .51 .70 .63 .62
truncation .61 58 .60 .69

Table 2. The number of variables that used each fpzip compression level (in terms of number of bits retained). Note that NC means “not

compressed” due to missing values.

Number of bits retained 16 20 24 28 32 NC

Monthly variable 75 31 15 1 6

Daily variables 29 11 11 0 0 0
6-hourly variables 12 8 4 0 0 1
Total 116 50 30 1 6 9
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Figure 1. CVDP-generated global maps of historical (1920-2012) annual surface air temperature trends for the 30 original individual CESM-
LE ensembles member, the three new members (31-33), and the reconstructed data from new members 31 and 33 (contained in the lower

right box).
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Figure 2. Annual global mean surface temperature evolution for 1920-2005. CESM-LE members 2-30 are indicted in gray and the three new

members (31-33) are designated in the legend. Note that members 31 and 33 have been subjected to lossy compression.
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Figure 3. Global mean of top of model energy imbalance for 1920-1940 for CESM-LE members 2-30 and the three new members (31-33).

Note that members 31 and 33 have been subjected to lossy compression.
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Figure 4. Top of model energy imbalance for 1920-2005. CESM-LE members 2-30 are indicted in gray and the three new members (31-33)

are designated in the legend. Note that members 31 and 33 have been subjected to lossy compression.

Mean Surface Energy Imbalance 1920-2005

11+

0.6

# Ensemble

Figure 5. Mean surface energy imbalance for 1920-2005 for CESM-LE members 2-30 and new members 31-33. Note that members 31 and

33 have been subjected to lossy compression.
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Figure 6. Mean surface latent heat flux (LHFLX) for 1920-2005 for CESM-LE members 2-30 and new members 31-33. Note that members

31 and 33 have been subjected to lossy compression.
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Figure 7. Mean surface energy imbalance for 1920-2005 for CESM-LE members 2-30 and new members 31-33 with adjusted compression
level (fpzip-24) for LHFLX. Note that members 31 and 33 have been subjected to lossy compression.
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Figure 8. Mean precipitation for 1920-2005 for CESM-LE members 2-30 and new members 31-33. Note that members 31 and 33 have been

subjected to lossy compression.
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Figure 9. The balance between precipitation and evaporation for 1920-2005 for CESM-LE members 2-30 and new members 31-33. Note that

the compression level for LHFLX is fpzip-16 (in contrast to Figure 10). Also, members 31 and 33 have been subjected to lossy compression.

29



5 x10°8 Precipitation - Evaporation 1920-2005

[mm day'1]

i3 S Y Y Y

Figure 10. The balance between precipitation and evaporation for 1920-2005 for CESM-LE members 2-30 and new members 31-33 with
adjusted compression level for LHFLX (fpzip-24). Note the difference in scale between this plot and that in Figure 9. Also, members 31 and

33 have been subjected to lossy compression.
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Figure 11. Difference between maximum and minimum values occurring in the neighbor differences surface temperature field (TREFHT)

for each ensemble member for October 1920. Note that members 31 and 33 have been subjected to lossy compression.
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Figure 12. A comparison of the difference maps (i.e., gradients) for the surface temperature field (TREFHT) for ensemble members 31

(original) and 31-C (reconstructed) for October 1920. Note that the color scale for the left maps has a smaller range than for the right maps.

31



Reconstruction error anomaly

0 5 10 15 20 25 30 35
Member used for basis set

) L L

Figure 13. The sum of the mean-squared error in temperature field when the other ensemble members’ variance is projected onto a single

member’s EOF basis. Note that members 31 and 33 have been subjected to lossy compression.
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Figure 14. The subplot x-axes represent the 900 EOFs. The y-axes indicate the magnitude of the temperature variance. The ensemble member

number is indicated in each subplot title, and members 31 and 33 have been subjected to lossy compression
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uncorrelated structures
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Figure 15. Energy distribution of the modes of the POD for variable Z3 for ensemble member 28. Superimposed power laws indicate the
“energy cascades” in correlated modes, and three principal scales are present: a, b and c. The limit of the cascade is labeled z, and the shaded

area indicates modes associated with noise.
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Figure 16. For each of the four variables studied, we show the following: a) Energy distribution of the modes of the POD for ensemble
members 31-33, superimposed on the median of the original ensemble members (1-30); (b) relative errors of the energy distributions of
the modes of the POD for new ensemble members 31-33 and the median of the original ensemble together with the natural variability
observed within the uncompressed ensemble; (c) RMSZ distribution of the energy distribution for the 30 members of the original ensemble

together with the RMSZ score of the energy distribution of new members 31-33. Note that members 31 and 33 have been subjected to lossy

compression.
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Figure 17. GEV shape parameter £ variability, see Eq. (5.1.1). The left, middle and right panels correspond to the pdf of &, its range
among compressed runs and its difference between a compressed and uncompressed run, respectively. The four variables shown are TSMN
(minimum surface temperature), TSMX (maximum surface temperature), PRECT (average convective and large-scale precipitation rate), and

PRECTMX (maximum convective and large-scale precipitation rate).
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1.3.3.4 1.3.3.445

Figure 18. Causal signature interaction map for CESM-LE member 31. Blue lines delineate instantaneous connections and red lines indicate
connections with a time lag. The number(s) next to each line give the number of days from potential cause to potential effect. The single
dotted line between SHFLX and FSNTOA indicates a very weak instantaneous connection. Note that the causal signature for reconstructed

CESM-LE member 31C is identical to this figure, except that the weak connection between SHFLX and FSNTOA is no longer present.
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Figure 19. Vertical contour plot of DJF (December-January-February) zonal means for relative humidity (RELHUM) for 2006-2099 for

ensemble member 31. The data in the left subplot has undergone lossy compression (i.e., 31-C) and the right subplot contains the original

data.
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Figure 20. Horizontal contour plot of DJF (December-January-February) means for surface pressure (PS) for 2006-2099 for ensemble

member 31. The data in the top subplot has undergone lossy compression (i.e., 31-C) and the bottom subplot contains the original data.

Table 3. Subset of AMWG Diagnostics Set 1: Annual Means Global. RESTOM and RESSURF are AMWG-DP derived variables for the top

of model residual energy balance and the surface residual energy balance, respectively. RMSE indicates the root mean squared error. Units

are W/m?.

Variable Compressed Case  Original Case  Difference = RMSE
RESTOM  2.016 2.016 0.000 0.001
RESSURF  1.984 1.984 0.000 0.000
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