
Response to referees for paper:  

 ” Forest soil carbon stock estimates in a nationwide inventory: evaluating 

performance of the ROMULv and Yasso07 models in Finland” by Lehtonen et 

al.  Submitted for publication in Geoscientific Model Development journal.  

 

Dear Editor,  

We acknowledge constructive comments and editorial remarks provided to our manuscript. 

We find comments useful and addressed them as described below (our reply is given in 

italics), note that page and line numbers refer to version with track changes done:  

 

Comments by Executive Editor: 

1. "The main paper must give the model name and version number (or other unique 

identifier) in the title." 

The above statement is part if the requirements for the model description papers. However, 

model evaluation papers are closely linked to model description papers and therefore it 

would be beneficial to specify the exact version of the models the evaluation was performed 

with in the title. Please consider this upon revision of your article. 

This was corrected accordingly and ROMUL is now ROMULv, where “v” refers to 

decomposition rates based on volumetric soil water measures, while Yasso07 is still Yasso07 

where “07” refers to the model version in question, this version was developed in 2007 and 

published by Tuomi et al. (2011). The difference between original ROMUL and ROMULv 

models was clarified on page 3 lines 23-28.  

 

Major comments by Referee 1:  

 

1.  Although some of the these estimations might be afflicted with uncertainty (for example, 

a spatial extrapolation of understorey vegetation by kriging for total Finland based on only 

18 plots is hardly meaningful), I think that a rough estimation of an important but difficult 

parameter is better than not account for it at all. 

 



Actually, we used much more data, and apologize it was not properly described in the earlier 

version of the paper. Text was modified on page 6 line 1 and on page 6 line 18 and it was 

made clear that only the biomass vs biomass cover relationship was made using data from 

18 stands (a total of 504 of 0.3*0.3 m2 sample squares), while co-kriging was based on 2501 

permanent sample plots with understorey cover measurements.  

2. There is only one important point which is not clear so far, the depth of the SOC 

estimates. I did not find any information about the depth for which SOC was predicted. 

Sections 2.4.2 and 2.4.3 about Yasso07 & ROMULv models were modified in order to 

describe how soil depth was defined with models. For Biosoil data this information was given 

in the section 2.5.  

3. From my point of view the structure of those models only allows a prediction for topsoils 

(0- 20 cm), for deeper parts stabilization mechanisms of mineral-associated SOC must be 

taken into account. At least, model performance should be tested not for the total depth 

but for different depth increments (e.g. 0-20, 20-40 cm etc.). 

We agree that models have their strength in estimation of decomposition of litter with 

varied quality. Both models still have compartments for stabile carbon, but these carbon 

pools are not depth-specific. In the Yasso07 model this pool is named as “humus” box, while 

in the ROMULv model this is named as “stabile humus” box (see fig.1). These boxes integrate 

stabile carbon accumulation from various processes, including that of mineral association. 

Both models are used in such applications (greenhouse gas inventories, evaluation of the 

effects of alternative forest management practices) where estimates for deeper soil layers 

are needed and the models are parametrized accordingly.    

Minor comments by Referee 1:  

Title: I would include “Forest soil carbon” and “Finland” 

The title was changed accordingly to: “Forest soil carbon stock estimates in a nationwide 

inventory: evaluating performance of the ROMULv and Yasso07 models in Finland” 

P1, L11: generally, the manuscript is well-written, but the first sentence of the abstract is 

not very good (“We test...weather data are enough...”), please rephrase. 

The beginning of the abstract was re-phrased.  

P2, L3: References for Sweden and Germany? 

References were added 

P2, L11: to reproduce 

This was corrected 



P2, L17: here is becomes clear for the first time that the paper is about forest SOC, however, 

this could be clarified from the beginning with a clear focus on forest SOC models and 

references to similar studies. 

The abstract of the paper was modified accordingly.  

P2, L20: CENTURY model 

This was corrected  

P5, L31: the kriging approach was only shortly mentioned. Due to its importance the overall 

performance of this important step should be described in more detail, e.g. by showing 

variograms. 

R code, variograms and cross-variograms of vegetation group coverages are shown in the 

Supplement.  

 

Major comments by Referee 2: 

 

1. Being able to predict the current inventory is very different than being able to accurately 

assess changes in carbon stocks due to land use or climate. The authors more or less make 

this point in the introductory comments but then go on to try to model the current 

inventory data as a means for improving soil carbon models. 

We fully agree with this comment. Estimation of C stock change is very different than 

estimation of the current soil carbon stocks with these models. However, the initial soil 

carbon stocks should be at right level in order to predict correct changes of soil carbon in 

future due to fact that soil C change is relative to stock size. Therefore it is essential to have 

soil C stock at right level to start with simulations. We added further clarification on page 2 

lines 23-25.  

2. Given the detailed inventory data already available, a spatial model seems to be the way 

to go to improve the national inventory. If the authors are trying to develop a model that 

can predict year-to-year variations in soil carbon stocks then calibrating models on a few 

sites with really good long-term data seems more powerful than trying to recreate mean 

latitudinal trends on soil carbon.  

Yes, we agree, and this is what we are aiming at, i.e. providing understanding on spatial 

representativeness of models by using wide spatially representative datasets. The reviewer 

also mentions ‘year-to-year’ development aspects of models. However, we’re not developing 

a model to predict year-to-year variability of stocks, but rather evaluating models from the 

perspective how well they are able to replicate latitudinal patterns of soil C. The 



performance of the models in the south – north gradients of vegetation productivity and 

climate is central for their wider applicability (e.g. for national GHG inventories), and implies 

whether the decomposition rates are at correct levels, and correctly sensitive to local mean 

climates. The idea of the paper is to identify locations and conditions where model 

performances are reduced, and if there are simple yet useful additional drivers that could be 

incorporated in future models based on these data. We modified objectives of the paper to 

be more clear, see page 3 from line 27.  

3. Additionally, most of the year-to-year change in soil carbon is going to come from land 

use and management decisions which have essentially been ignored here because this MS 

only focuses on established forests on upland soils. 

This is correct; our aim in the manuscript is to test how well these models are able to model 

soil carbon stocks. The ability of models to estimate C stocks at right level is a prerequisite 

for models to be able to model changes in soil carbon stock due to land-use changes and 

management events. Especially, estimates of C exchange fail on the land use conversions 

from forests to other uses, if original forest soil carbon stocks are systematically wrong by 

models. This was made clearer on page 2 lines 23-25.    

4. I really struggled with this paper. It seems that two separate ideas on model testing 

ending up getting merged together in this MS along with some new measurements on 

understory biomass and litter turnover. Given the goals of the paper, I would have thought 

that one model needed to be used that could have different levels of complexity added or 

removed. Given the fundamental differences between the Yasso07 and ROMUL models I do 

not see how it is possible to test the hypothesis that “accounting for soil properties” would 

improve model performance and then go on to say that time step (annual v. daily) might 

matter. The second hypothesis is only related to the ROMUL model. Since most of the 

hypothesis testing relates to the ROMUL model, why not just try to add a better litter 

module onto the ROMUL model and see if this matters? 

We agree with this point. Therefore we modified objectives of the paper and in the current 

version we clarify that the impact of soil texture and water holding capacity to soil carbon 

stock accumulation was evaluated primarily by comparing ROMULv model with and without 

soil water content data. We also wanted to include Yasso07 into the comparison due to fact 

that its decay parameters have been estimated from extensive database and mainly from 

Nordic countries. Comparing and seeing results of these two models in parallel is useful for 

GHG experts of many countries using Yasso07 for forest soils and land surface modelers (e.g. 

Yasso07 is implemented in JSBACH), but it lacks nitrogen dynamics rendering it incapable of 

simulating vegetation-soil dynamics under climate change. Text was modified on page 3 line 

23-30. 

5. Model success was never really defined. The author’s suggest that the ROMUL model 

with some information on soil water holding capacity is the superior model but based better 



representation of southern soil carbon data but the goodness-of-fit statistics presented in 

Fig 6 are equivocal on this point. 

Text was clarified at the end of the material and methods section on page 10 line 21->. There 

we justify the use RMSE as a measure of model performance.  

 

Minor comments by Referee 2: 

 

1. Abstract: need to emphasize that these models and model developments are only 

applicable to northern forests on upland soils. This probably goes for changing the title as 

well.  

Agree. The title was changed to: “Forest soil carbon stock estimates in a nationwide 

inventory: evaluating performance of the ROMULv and Yasso07 models in Finland”. Also text 

in the abstract was updated. 

2. page 1. L25: “However, the significance of different drivers of soil carbon stocks is still 

unknown”, this statement is a bit belittling to the soil carbon science community - we know 

a lot about what controls SOC levels. 

This is a valid point. We reformulated this sentence to be more precise and now we discuss 

about long term soil carbon accumulation, see page 2 line 2.  

3. page 1. L25: “On the other hand …”, this sentence is not a logical juxtaposition to the 

previous sentence. 

Text was corrected, see from page 2 line 6. 

4. page 2, beginning: “of these inventories is usually not adequate for national-level soil 

carbon stock change assessment”, inventories aren't meant for this purpose but many 

nations have or are now conducting re-sampling campaigns for this purpose. 

We agree with this comment 

5. page 2. Line 15 “The majority of countries apply soil carbon 5 models, like Yasso07 (Tuomi 

et al. 2011) and CENTURY (Parton et al. 1987) to estimate soil carbon stock changes. The 

scientific community is also aiming to predict future soil–climate change feedbacks on a 

global level using Earth system models (ESMs).”, there is a big difference between 

biogeochemical models developed for plot level investigations and ESMs running at large 

grid scales. I'd prefer the two not be lumped into the same discussion in this paragraph. 

There are severe limitations in data availability globally that ESMs have to deal with. 



We agree and in the current version GHG inventory models and ESM models are introduced 

in separate paragraphs on page 2, lines 13-31.  

6. page 2. L10. “Individual soil carbon models are tested against repeated soil inventories 

and it is found that models are able to estimate soil carbon stock change of the same 

magnitude as was measured.” , please give few citations for example 

References were added on page 2, line 27. 

7. page 2. L20. “add model between CENTURY and clay” 

This was implemented, page 3 line 3. 

8. page 3. L10. “ROMUL including the impact of nitrogen and soil water holding capacity to 

decomposition).”, according to below you are not testing nitrogen but only water in ROMUL 

v. Yasso? 

This has been misleadingly reported in the manuscript. A sentence was added under 2.3 

(page 7 line 18) to describe that we used constant N fractions by species and by biomass 

compartment. Also those nitrogen fractions were provided in the Supplement as a table.  

9. page 3. L30. “From the grid, only locations that were on upland soils and on forest, 

according to Food and Agriculture Organization of the United Nations (FAO) forest  

definitions were chosen. This classification is based on Multisource National Forest 

inventory products (Tomppo et al. 2008).”, this is an important point and I am struggling to 

fully understand how this was defined (i.e., for upland soil, what soil map or was a 

topopgraphic property used) and the impact this has on model evealuation. 

Text was clarified and the content of the Multisource National Forest inventory product is 

described in the text on page 4, lines 25-26. 

10. page 4. L5. NFI9 or NFI10 

Here we used sample trees of NFI10. We had a good routine for that in hands. Results for 

BEFs would be the same with using sample trees from NFI9 (there could be differences in the 

decimals).  

11. page 4. can you give a bit more information such as goodness-of-fit statistics for this 

model? 

Sample size and adjusted R2 were added into the text. See the end of section 2.1, page 5 line 

23. 

12. page. L15. “parts, if applicable. These models were estimated separately for southern 

and northern Finland.”, Good linear mixed models can be developed on a sample size of 

only 9? 



This was not properly described in the earlier version of the paper. Text was modified on 

page 5 and page 6 and it was made clear that biomass models were based on sampling done 

in total of 504 of 0.3*0.3 m2 sample squares from 18 forest stands, while co-kriging was 

done on 2501 permanent sample plots with understorey coverage measurements. Text was 

modified on page 6 line 1 and on page 6 line 18.  

13. page 7. L15. how do you get litter quality for each of the items listed in Table 2? I would 

think these properties would vary significantly for the same species depending on fertility 

status of the site. 

Text under “2.4.2 Yasso07” was modified and the reference to Yasso07 manual was added, 

see page 8 line 18.  

Litter quality (solubility ratios) varied by species, but not by site types. Unfortunately we 

don’t have litter quality data available by site types.  

14. page 7. L25 “Here, we used the Yasso07 model with Scandinavian parameters (Rantakari 

et al. 2012) and with global parameters, these being different from Tuomi et al., (2011) 

parameters.”, this is awkwardly phrased. I thought you use the global parameters of Tuomi 

et al. but this sentence makes it sound like you did something different. 

Text under “2.4.2 Yasso07” was modified and we explain that our parameter set is a 

preliminary version from those published by Tuomi et al. 2011. This set provides practically 

same results as those published and is used here due to fact that it has been earlier used by 

the Finnish GHG inventory. With MCMC parameter estimation methods one never gets 

exactly same results with models that have several parameters. See page 6 line 26.  

15. page 8. L5. “We applied the ROMUL model using daily time-steps of the environmental 

variables impacting the decomposition.”, how were litter inputs imputed at a daily timestep 

Litter was distributed evenly for each day of the year. This procedure was chosen due to 

unknown timing of the belowground litter and due to fact that we are here interested about 

long term C accumulation, not short term fluctuations of C between forests and atmosphere. 

Text was added on page 9 lines 19-20.  

16. page 8. L20. What depth are the models assumed to be working to? This will really 

impact how much root inputs there will be and the SWHC data including the 20/80 split of 

SWHC between O and M soil. 

Sections 2.4.2 and 2.4.3 about Yasso07 & ROMULv models were modified in order to 

describe how soil depth was defined with models. For Biosoil data this information was given 

in the section 2.4.4. See page 8 line 28 and page 9 23-25. 

17. page 9. L15. there is a lot of discussion material in the results section. I do not mind 

combined R&D sections but it has to be one or the other. 



Results section was re-organized. We introduced subtitles there and we removed texts that 

were discussing the findings with understorey litter. See pages 10 - 12.  

18. page 9. L15.  given this MS is focused on soil carbon model development not biomass 

model development, perhaps consider moving Fig 2 and 3 and Table 3 to supplemental 

material. 

We agree with this comment, those graphs and that table were moved into the Supplement 

of the manuscript.  

19. page 9. L25.  “Our estimate of mean litter input from trees was 1962 kg ha-1 and 903 kg 

ha-1 of carbon for southern and northern Finland, respectively”, are these values 

reasonable when compared to estimates of NPP? 

Comparison to modeled NPP values and measured litter fall data were added into the 

discussion under section 4, page 12 from line 32.  

20. page 10. L5. “the southernmost plots (Fig 3).”, wrong figure reference” 

This was corrected, page 11 line 27. 

21. page 10. L30. “We also found that litter input from understorey vegetation is equal of 

that from trees in northern Finland. This”, this seems like an important finding and shouldn't 

be buried within a model development paper. 

We re-organized results section and currently we have there two subtitles, 3.1. Performance 

of the soil carbon models and 3.2. Improved understorey litter input. We hope that using 

subtitles brings up the finding of the high understorey litter input in northern Finland. See 

page 11 lines 10-17 and page 12 line 13. 

22. page 11. L1. “To sum up, litter input from understorey vegetation has to be quantified 

properly when soil carbon models are parameterised.”, but this only mattered when the 

local parameterization of the model was used. Including understory litter actually decreased 

the performance of the global model. 

The reason why the performance of the global model was reduced with understorey litter is 

the fact that parametrization of the model has lacked that larger input of understorey litter 

(found in this paper) into the soil system. And now providing correct litter input (which is 

more than earlier thought) results higher C stocks compared to those measured. This is our 

point here. And we added a sentence on page 13 line 4-5 to clarify this.   

23. page 11. L20. “This result indicated that the quantity of precipitation alone was not a 

sufficient modifier for decomposition but when complemented with soil water holding 

capacity results improved. This finding supports the use of models including soil texture and 



water holding capacity.”, latitudinally averaged results improved but the site to site 

variability seems to have increased dramatically. 

This is true and we added “average latitudinal results” into the text, see page 13 line 25. Site 

to site variability increases due to fact that variation in the soil properties cause very 

different decomposition conditions under varying precipitation schemes (see Fig. 4).  

24. page 11. L20. “According to our results, the time step of the simulation plays a critical 

role; running”, BUT there were so many other differences between models that this is a 

hard conclusion to reach. You would have to run the same model at the different time steps 

to assess this. 

We agree, text was modified and now it says that our results support earlier findings, where 

…. This modification was done on page 13 from line 27.  

25 page 12. L1. “The use of water holding capacity was critical for accurate soil carbon stock 

estimation by the ROMUL model…”, you never defined what success looks like. An R2 of 

0.368 is considered success but an R2 of 0.367  is not? Or are you using RMSE? I would 

argue slope is perhaps the most important. 

We added text in the end of material and methods section, where we say: “We used root 

mean square error (RMSE) to rank these models applications due to its ability to take into 

account both accuracy and precision when comparing model estimates and data.” See page 

10 from line 21. 

Thereafter all judgements about performance of the models have been based on that.  

26. page 12. L5. “(Fig. 6). The fact that Yasso07 soil carbon stocks were more accurate when 

litter input of understory vegetation was omitted from simulations suggests that the model 

calibration did not account for the whole range of understory litter input.”, OR there are 

other important drivers (such as soil properties) that are missing from the model. 

We mean here that if Yasso07 would have been originally parametrized with our 

understorey litter input, thereafter it would have been able to model latitudinal trends of soil 

carbon in Finland. We added a sentence after, where we explain the meaning of this finding. 

See page 14 line 11.  

27. page 12. L5 “However, three model simulations out of six produced relatively accurate”, 

how defined? this is not a very quantitative term. 

This is true. We modified the text on page 14 line 16. And we added a RMSE threshold there.  

28. page 12. L10. “Our findings confirm the fact that GHG inventory methods and soil 

modules of Earth system models need to be improved by incorporating the impact of soil 



texture and soil moisture to decomposition. This is a prerequisite for unbiased soil carbon 

stock and stock change estimates.”, weak concluding comments. 

We modified our concluding remarks. See page 14 from line 20.  
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Abstract. We test whether litter quality, litter quantity and weather data are enough to estimate soil carbon stocks by models .  

Dynamic soil models are needed for estimating impact of weather and climate change on soil carbon stocks and fluxes . Here, 

we evaluate performance of Yasso07 and ROMULv models against forest soil carbon stock measurements. More specifically 

we ask, if litter quantity, -quality and weather data are sufficient drivers for soil carbon stock estimation. We also test 15 

whether inclusion of soil water holding capacity improves reliability of modelled soil carbon stock model estimates. Litter 

input of trees was estimated from stem volume maps provided by the National Forest Inventory, while understorey 

vegetation was estimated using new biomass models. The litter production rates of trees were based on previous earlier 

research, while for understorey biomass those were estimated from measured data. We applied Yasso07 and ROMULv 

models across Finland and ran those models into steady state; thereafter, measured soil carbon stocks were compared with 20 

model estimates. We found that the role of understorey litter input is was underestimated when the Yasso07 model is 

parameterised, especially in northern Finland. We also found that the inclusion of soil water holding capacity in the ROMUL 

ROMULv model improved predictions, especially in southern Finland. Our results imply that the ecosystem modelling 

community and greenhouse gas inventories should improve understorey litter estimation in the northern latitudes. Our 

simulations and measurements show that models using only litter quality, litter quantity and weather data  underestimate soil 25 

carbon stock in southern Finland and this underestimation is due to omission of the impact of droughts to the decomposition 

of organic layers. Our results also imply that the ecosystem modelling community and greenhouse gas inventories should 

improve understorey litter estimation in the northern latitudes. 
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1 Introduction 

Soil carbon is a significant component of terrestrial carbon stocks and understanding its dynamics under changing climate is 

crucial. However, the significance and interactions of different mechanism for long term carbon accumulation different 

drivers of soil carbon stocks isare still unknown and therefore often lack from models. If we want to understand the role of 

different abiotic and environmental factors to soil carbon stocks and their dynamics, we have to combine experimental 5 

research with process-based models. On the other hand, wee way forward is to  can establish soil carbon inventories in order 

to quantify soil carbon stocks and their change. Conventional soil inventories measuring various nutrients, carbon contents, 

bulk densities and stoniness (e.g. Gamfeldt et al. 2013) allow us to study the distribution of soil carbon across landscapes and 

correlations between different soil properties. Generally, it is shown that soil carbon inventories are able to produce soil 

maps and covariates between soil carbon quantities and other variables, such as various nutrients; although, the sample size 10 

of these inventories is usually not adequate for national-level soil carbon stock change assessment, with few exceptions (e.g., 

Sweden and Germany) (Gamfeldt et al. 2013, Grüneberg et al. 2014). 

According to the United Nations various international climate agreementsconvention, countries are requested to report 

annual carbon stock changes of soils under different land-uses and under land-use change. The majority of countries apply 

soil carbon models, like Yasso07 (Tuomi et al. 2011) and CENTURY (Parton et al. 1987) to estimate soil carbon stock 15 

changes. These annual submission are reviewed annually and methods should be transparent and verifiable favouring simple 

soil models instead of complex ones.   

The scientific community is also aiming to predict future soil–climate change feedbacks on a global level scale using Earth 

system models (ESMs). The ESMs are tested against soil carbon measurements in order to evaluate model performance but 

unfortunately results have been poor. Guenet et al. (2013) present a test whereby soil carbon stocks predicted by 20 

ORCHIDEE model were plotted at a plot level against measurements and failed to display any correlation. Similarly, Todd-

Brown et al. (2013) concluded that most ESMs are not able to reproduce measured soil carbon stocks at a grid level. This 

finding is somewhat alarming due to fact that it is essential to have correct initial carbon stocks with soil models, because 

carbon stock change estimates depend on those. Initial soil carbon stock estimates are particularly important when carbon 

stock changes of deforestation events are modelled.  25 

Individual soil carbon models are tested against repeated soil inventories and it is has been found that models are able to 

estimate soil carbon stock change of the same magnitude as was measured (Ortiz et al. 2009, Rantakari et al. 2012). The 

limitation of this conclusion was that uncertainties of both measurements and model estimates are often higher that actual 

estimates (Ortiz et al. 2013, Rantakari et al. 2012). While the uncertainties between model output and real measurements can 

establishreveal whether models agree with data or not, they put less emphasis on whether all the most important soil carbon 30 

stock drivers were included in these models.  

Simplistic soil carbon models like Yasso07 (Tuomi et al. 2011) are driven only by weather conditions and by litter input; 

while more complex models, like ROMUL ROMUL (Chertov et al. 2001) also include the nitrogen cycle and the impact of 
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soil water holding capacity on decomposition (Linkosalo et al. 2013). It is clear evident that soil properties affect soil carbon 

stocks (Schimel et al. 1994, Six et al. 2002) and therefore they are explicitly included in complex models. For example, in 

the CENTURY model clay content limits decomposition (Parton et al. 1987) and due to the low specific surface area of clay 

minerals in the model, clay rich soils have larger passive soil carbon stocks and lower C:N ratios (Parfitt et al. 1997). In 

simplistic models soil properties are omitted. For example, in Yasso07 the role of soil properties on soil carbon stock 5 

accumulation is included only implicitly through the model calibration with large datasets (Tuomi et al. 2011). Although the 

simpler models lack some predominant drivers of soil carbon accumulation, the strength of these models lies in their easier 

calibration with data; however, the impact of soil properties, especially nutrient status, on the accuracy of estimated soil 

carbon stock estimates needs to be re-evaluated in both CENTURY and Yasso07 models (Tupek et al. 2016). 

It is well known that decomposition and soil respiration is controlled by water content, whereby in dry soils lack of water 10 

slows down decomposition, while excess water reduces it by limiting oxygen diffusion (Skopp et al. 1990). For boreal forest 

conditions, Pumpanen et al. (2003) proposed a model whereby maximum soil respiration drops after the relative water 

content of soil reaches a level of 60%. The limiting effect of soil moisture on decomposition in dry or water-saturated soils is 

widely included in models, although the degree of this dependency varies widely between models (Sierra et al. 2015). 

In addition to the model structure, precise and accurate estimates of litter input quantity and quality are also essential for 15 

successful model applications. Stand-alone soil models rely on forest inventory data or other external estimates for getting 

correct litter inputs, while ecosystem models utilise plant sub-models to describe vegetation productivity and litter inputs. A 

common feature of ecosystem models and stand-alone soil models is that often understorey vegetation is neglected during 

the calibration and application of models, resulting in biased litter inputs. This omission is more critical in boreal landscapes 

where the contribution of understorey vegetation increases with northerly latitude. For example, Yuan et al. (2014) report 20 

that the bryophyte biomass contributes 20%–60% of the total normalized difference vegetation index (NDVI) in high 

northern latitudes.   

In order to assess the necessary drivers for soil carbon models in Finland we tested the performance of Yasso07 and 

ROMUL ROMULv models against measured nation-wide soil C data. The ROMULv refers to a modified ROMUL model 

version where decomposition rate functions are derived from the model presented by Pumpanen et al. (2003), and a simple 25 

volumetric soil water model (Linkosalo et al. 2013) is applied to drive those decomposition functions. 

We were specifically interested if the additional complexity of processes introduced by ROMULv improves the soil C stock 

estimate over Yasso07 model that is presently used by greenhouse gas (GHG) inventories of several countries. The Yasso07 

and ROMUL ROMULv models differed in their time steps (annually versus daily), determination of the litter quality (lit ter 

solubility versus nitrogen content and litter source) and complexity of drivers (ROMUL ROMULv including the impact of 30 

nitrogen and soil water holding capacity to decomposition). Specifically with these models we tested:  

1. Whether the litter quantity, species specific litter quality and weather data are enough to estimate spatial trends of 

carbon stocks in the upland soils of Finland. We hypothesise that by accounting for soil propertieswater holding capacity, 

ROMUL ROMULv would outperform, (i) ROMULv with constant soil water holding capacity and (ii) Yasso07 model with 
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different parametrisations (Yasso07 excludes soil properties entirely).  and that improving the estimation of understory litter 

input would positively affect accuracy of predicted soil carbon stocks. We hypothesise that an increased fraction of coarser 

soil textures, like sand, increases soil carbon stocks through increased drainage and reduced decomposition. 

2. Whether variation in soil water holding capacity affects carbon stocks through drought limitation on decomposition. 

We hypothesise that an increased fraction of coarser soil textures, like sand, increases soil carbon stocks through increased 5 

drainage and reduced decomposition. 

2.  Weather improving the estimation of understory litter input would positively affect accuracy of predicted soil 

carbon stocks. 

We use Yasso07 and ROMUL ROMULv soil models to estimate steady-state carbon stocks for upland soils in Finland on a 

spatial 10×10 km
2
 grid. We raun Yasso07 model with parameters based on Scandinavian data (Rantakari et al. 2012) and 10 

also with parameters based on global data (Tuomi et al. 2011). The parameterisation for the ROMUL ROMULv model was 

the same as in the original publication ROMUL model (Chertov et al. 2001), except for decomposition rate functions 

depending on soil water content derived from Linkosalo et al. (2013). Yasso07 and ROMUL ROMULv models run with 

identically estimated litter quantity, quality and climate data. In addition, the ROMUL ROMULv model was driven tested 

with both constant and varying soil water holding capacity as well as variable water holding capacity based on digital soil 15 

maps of Lilja and Nevalainen (2006) as in Linkosalo et al. (2013). Furthermore, we developed new models for the 

understorey litter input and apply them alongside soil carbon models for improved estimates of spatial variation of litter 

inputs. Simulated soil carbon stocks are evaluated against measured soil carbon stocks.  

 

2 Material and methods 20 

 

Soil carbon simulations were performed for 10 × 10km
2
 grid across Finland. This grid is used for meteorological data 

prediction (Venäläinen et al. 2005). Litter input was estimated for the same grid. From the grid, only locations that were on 

upland soils and on forest, according to Food and Agriculture Organization of the United Nations (FAO) forest definitions 

were chosen. This classification is based on Multisource National Forest Inventory products, which combine digital maps 25 

(including e.g. land-use and peatlands), forest inventory data and Landsat images (Tomppo et al. 2008).  

2.1 Tree biomass 

Firstly, stem volume maps by tree species from the National Forest Inventory 9 (NFI9, 1996-2003) were used, according to 

Tomppo et al. (2011), to account for large-scale variation of stem volume across Finland. These variations are primarily 

driven by soil properties, climate, site productivity, forest management techniques and tree species distribution.  30 

Secondly, biomass expansion factors (BEFs, Mg/m
3
) were estimated for main tree species groups, namely: Scots pine (Pinus 

sylvestris), Norway spruce (Picea abies) and for broadleaved species (mainly Betula sp.). These BEFs were estimated for 

each biomass component (foliage, branches, bark, stemwood, stump and woody roots). Biomasses were estimated for sample 
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trees in NFI10 based biomass models by Repola (2008, 2009); thereafter, mean BEFs were estimated at a cluster level (a 

cluster is formed of 10 to 15 field plots) by dividing the sum of given biomass components by the estimated sum of stem 

volumes. Biomass estimates for trees were based on biomass models, where diameter at breast height, tree height, crown 

height, increment of five years and bark thickness are used as predictors. To upscale BEFs across Finland, we applied 

collocated co-kriging (Bivand et al. 2008) by species group, to account for large-scale spatial correlation and co-variation of 5 

tree allometry. We used the gstat (Pebesma 2004) package of R (R Core Team 2014) for estimation. For Scots pine and 

Norway spruce we removed linear trends of latitude and longitude (using uniform coordinate system of Finland, YKJ), while 

for deciduous trees only trends of latitude were removed. For all species groups and components we assumed spherical 

variogram functions. For the details of the used biomass models see Appendix 7c by Statistics Finland (2014). Biomass 

components for each grid point were obtained by multiplying stem volume maps by species with component species -specific 10 

BEF estimates that were estimated via co-kriging for the same grid.  

Biomass of harvest residues and natural mortality were estimated based on forest statistics and NFI data (Ylitalo 2013). 

From statistics, we attained an estimate of the stem volume of annual loggings and natural mortality by region (forestry 

centres) and these were subsequently converted to biomass with BEFs. These BEFs were based on a subset of permanent 

sample plots of NFI9 (1996–2003) and NFI10 (2004–2008). BEFs for logging were estimated separately from the subset of 15 

logged plots and these logging specific BEFs were used in the estimation of biomass of harvest residues. Furthermore, 

energy use of stumps and harvest residues were deducted from regional soil inputs, based on regional wood energy use 

(Ylitalo 2013). For biomass of natural mortality, BEFs were estimated based on data from those trees that died on permanent 

sample plots between measurements. Thereafter the volume of natural mortality was multiplied with corresponding BEFs. 

This procedure followed principles of Finnish greenhouse gas (GHG) inventory (Statistics Finland 2014).  20 

Fine root biomass was estimated based on the work of Lehtonen et al. (2016). We selected a simple model formulation, 

where a natural logarithm of fine root mass was estimated as a function of the natural logarithm of stem volume. See Model 

1 in Lehtonen et al. (2016) for details (study has 95 sites with fine root data, and model 1 has an adj-R
2
 of 0.217). This model 

was used to approximate general fine root mass levels as a function of stem volume for each 10 × 10 km
2
 grid point. 

 25 

2.2 Understorey vegetation biomass 

 

In order to estimate the litter input of understorey vegetation to soils, we developed models for vegetation biomass. The 

relationship between the visually estimated percentage cover of plant species including vascular plants, bryophytes and 

lichens (projected onto the forest floor using 30 × 30 cm
2
 frames) and their living biomass was studied in 18 forest plots 30 

stands across Finland (Table 1). The plots are part of the International Co-operative Programme on Assessment and 

Monitoring of Air Pollution Effects on Forests (ICP) intensive monitoring plot network (e.g. Merilä et al. 2014). Altogether 

28 systematically selected biomass samples were taken once from each plot during the period 2002 to 2009. In total sample 
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size was 504 of 0.3×0.3 m
2
 vegetation plots having detailed biomass measurements by species. Vascular plants were divided 

into aboveground (shoots) and belowground (rhizomes and roots in organic layer) parts. The study was carried out at the 

time of maximum biomass and vegetation growth between the end of July and end of August. Half of the plots were located 

in the north (five in Pinus sylvestris, three in Picea abies and one in Betula pubescens dominated stands) and the other half 

were in the south (four in Pinus sylvestris, four in Picea abies and one in Betula pendula dominated stands). The site types of 5 

the plots ranged from poor to rich fertility level (Table 1). 

In order to predict the vegetation biomass, we built linear mixed models based on the relative coverage of five functional 

plant groups (dwarf shrubs, grasses, herbs, bryophytes and lichens). The biomass of understorey vegetation was estimated 

using models that correlate vegetation coverage with measured biomass. These models were estimated for the five 

aforementioned main species groups and for their belowground parts, if applicable. These models were estimated separately 10 

for southern and northern Finland. We used a linear mixed model with plot-level random effects using the lme command in 

nlme package (Pinheiro et al. 2012) of the R environment for the estimation (R Core Team 2014).  

Each model was weighted according to the land area of different site types in southern and northern Finland using the 

weights option in lme. This was done to ensure that the sample of understorey biomass plots did not underestimate the 

weight of the most common site types (those of medium fertility). The weighting was performed on land areas based on 15 

NFI11 data (Ylitalo 2013). Models were linearised by taking natural logarithms from biomass and coverage. For model 

parameters, bias correction and their uncertainties see Table 3.  

To quantify the biomass of understorey vegetation we used species-specific coverage measurements of 2501 permanent 

sample plots from 1995 forest inventory data (Mäkipää and Heikkinen 2003). We applied collocated co-kriging methods to 

account for the correlation between species groups and thereafter we generalised measured understorey coverage on a 10 × 20 

10 km
2
 grid on upland soils across Finland (Bivand et al. 2008). The co-kriging method was similar to that of BEF 

estimation described above. First, we de-trended all species group coverage (shrubs, herbs and grasses, lichens and 

bryophytes) by linear trends of latitude and longitude (using uniform coordinate system of Finland, YKJ). After that we 

estimated variograms and cross-variograms and applied co-kriging methods to predict coverage for understorey coverage for 

Finland by gstat package of R (R Core Team 2014) (for R code, variograms and cross-variograms, see Supplement). For all 25 

species groups we assumed spherical variograms with common range of 100 km.  

 

2.3 Litter input estimation 

To estimate litter input from living biomass components to the soil, litter turnover rates were used (Table 2). For needles, we 

used the detailed 10 × 10 km
2
 grid litter turnover rates reported by Tupek et al. (2015). For tree fine roots we assumed that 30 

the life span was 1.18 years for southern Finland and 2 years for northern Finland (Kleja et al. 2008, Leppälammi-Kujansuu 

et al. 2014). In order to interpolate fine root turnover rates for Finland we assumed a linear dependency for turnover rate and 
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mean temperature sum (mean for 1981–2010). For areas with a temperature sum (5 C˚ threshold) higher than 1200 degrees a 

turnover rate of 85% was used and for areas where temperature sums less than 700 degrees a rate of 50% was used. Turnover 

rates were interpolated between 700 and 1200 degrees (see Supplement).  

For branch and coarse roots litter, the constant turnover rates of the branches were used across Finland (Lehtonen et al. 2004, 

Muukkonen and Lehtonen 2004). For bark litter we assumed a constant ratio to stem biomass according to Viro (1955) and 5 

Mälkönen (1977). For fellings and natural mortality we assumed that all biomass was left to the site, excluding stems for 

wood used and harvesting residues for energy use. The quantity of wood use was based on regional forestry statistics (Ylitalo 

2013).  

The turnover rates of different functional plant groups were partly based on literature (Table 2) but we also estimated some 

rates from our own biomass samples of understorey vegetation described above. We calculated the proportion of the current -10 

year growth out of the total living biomass of dwarf shrub shoots to estimate the turnover rates for aboveground plant parts. 

We used the average values of deciduous and evergreen dwarf shrubs. Most of the grasses growing in boreal forests (like 

Deschampsia flexuosa) are perennial and we used the ratio between the living and dead biomass to estimate the turnover rate 

of those species. The aboveground parts of the most herb species (like Maiathemum bifolium) are annual, so we used 100% 

for their turnover rate. Furthermore, we used the number of annual growth segments in the green upper parts of the 15 

bryophytes to estimate their rate. We assumed that over a long time period the estimate for annual biomass growth 

corresponds to the amount of litter input to the soil from understorey vegetation. 

Nitrogen content of all litter components was derived from Komarov et al. (2007), for details see Supplement.  

 

 20 

2.4 Application of soil carbon models 

Carbon stocks were estimated by running Yasso07 and ROMUL ROMULv models into a steady state (i.e., a state where 

carbon input for the model equals carbon flux due to decomposition). For a dynamic model a steady state is a state to which 

model aims with given inputs. Here model inputs were: average climatic conditions (1961–2012) and litter inputs for each 

grid point, depending on dominant tree species and understorey vegetation coverage plus regional estimates of litter from 25 

harvestings and natural mortality (sc. forestry centres). If we assume that this average level of inputs and climate has 

remained steady over centuries, then our soils should approach steady state conditions. Litter inputs were given to these 

models as 10×10 km
2
 grid points and weather data of that given grid point was then used for model input.  

When evaluating model results for Yasso07, fresh woody litter and recently dead wood litter were excluded from model state 

variables, while all non-woody material and humus boxes (including more heavily decomposed material from fine-woody- 30 

and coarse-woody litter) were accounted as soil carbon stock. This separation was done as Yasso07 slows down 

decomposition of logs of high diameter, which increases soil steady state carbon stock estimates. Data from Biosoil does not 
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include dead wood masses in soil carbon stocks. For ROMUL ROMULv we included all model state variables to the 

comparison, noting that log size does not affect decomposition. 

2.4.1 Climate data 

Daily weather data for steady state simulations are available as kriging estimates since 1961 at a 10 × 10 km
2
 resolution 

across Finland (Venäläinen et al. 2005). Weather data for the grid points on upland soils and on forested land, according to 5 

multisource NFI, were included (Tomppo et al. 2008).  

Daily weather predictions for a 10×10 km
2
 grid were aggregated for the Yasso07 model from 1961 to 2012. The average 

temperature, temperature amplitude and precipitation of each grid cell were provided to Yasso07 to estimate the impact of 

climate on soil carbon stock steady states. The ROMUL ROMULv model was driven by mean daily temperature and 

precipitation for each grid cell. 10 

2.4.2 Yasso07 

The Yasso07 soil carbon model (Tuomi et al. 2011) is driven by litter quantity, litter quality and weather (temperature and 

precipitation). This model is widely used in the greenhouse gas inventories of European countries (e.g. , Finland, Norway and 

Switzerland). This model has been also successfully coupled with climate‐carbon cycle model ECHAM5/JSBACH (Thum et 

al. 2011). 15 

The Yasso07 is a simple dynamic model with fluxes and state variables. The model has five compartments: acid, water, 

ethanol, non-soluble and humus boxes. Division of the litter input according to the litter solubility was species specific and 

followed that of Finnish GHG inventory, based on the appendix of Yasso07 manual by Liski et al (2009). Organic matter 

flows between these boxes and to atmosphere variably according to weather conditions (Fig. 1). The model builds on the 

assumption that organic matter solubility defines litter quality, while decomposition rates while fluxes are estimated 20 

numerically, without a priori assumptions. The model was calibrated using a large database of litter and wood 

decomposition measurements, and measurements of age chronosequences of soil carbon stocks (Liski et al. 2005, Liski et al. 

1998, Rantakari et al. 2012, Tuomi et al. 2011). The Yasso07 soil carbon model parameter values were estimated with 

Markov chain Monte Carlo (MCMC) methods for which the source code is publicly available through the model website 

(www.syke.fi) (Tuomi et al. 2011). Here, we used the Yasso07 model with Scandinavian parameters (Rantakari et al. 2012) 25 

and with global parameters, these being a preliminary version different from Tuomi et al., (2011) parameters (practically 

identical). Yasso07 was run with total litter input (from trees and understorey vegetation) and also with litter excluding that 

of understorey vegetation. The model was applied with annual time-steps. Model has been calibrated with litter input 

estimates and soil carbon measurements down to 1 meter soil depth. See the Supplement for more details of Yasso07. 

 30 

http://www.syke.fi/
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2.4.3 ROMULv 

ROMUL ROMUL is a soil organic matter decomposition model developed by Chertov et al., (2001). It describes the flux of 

organic matter through the decomposition process, separated in cohorts of different litter origins: leaves, shoots, trunks, 

coarse roots, fine roots and ground vegetation. Litter from above ground (leaves, shoots and stems) falls onto  the forest floor, 

whereas the root litter decomposes in the mineral soil layer. In the final stages, all decomposing matter ends up in a common 5 

storage of semi-stable humus residing in the mineral soil layer (Fig. 1). Decomposition rates of each cohort depend on the 

nitrogen and ash content of the specific litter type and for all cohorts the soil temperature and water content modify the 

decomposition rate. Here we used species specific nitrogen ratios for different litter fractions; these ratios were same across 

the country in given fraction of given species.  

In this paper we utilised a version of the ROMUL model, where we adopt decomposition rate functions depending on soil 10 

water content and the model for soil water dynamics as described in Linkosalo et al. (2013). We call this version of the 

model ROMULv (where the “v” refers to decomposition rates based on volumetric soil water measures).  The soil water 

holding capacity data was obtained from digital soil maps of Finland (Lilja and Nevalainen 2006). Total soil water holding 

capacity data was extracted to a 10 × 10 km
2
 grid, when available. To evaluate the impact of soil water holding capacity 

variability, we also repeated the ROMULv simulation assuming a constant soil water holding capacity for the whole 15 

simulation area. As the ROMULv model segregates the organic and mineral soil layers, we assumed that 20% of the total 

soil water holding capacity was in the organic layer and 80% in mineral soil layer. See the Supplement for more details of 

ROMULv, the source code and parameter estimates. 

We applied the ROMUL ROMULv model using daily time-steps of the environmental variables impacting the 

decomposition. The estimated annual litter input was evenly distributed for each day of year.  The ROMUL ROMULv model 20 

explicitly simulates the flux of nitrogen through the decomposition process and therefore produces estimates for minerali sed 

N in addition to the soil organic matter and N storages and CO2 release from the soil. All model parameters, except the 

decomposition rate, which is dependent on soil water content, were taken from the Chertov et al. (2001) paper. Although 

ROMULv model does not explicitly define depth of soil layers, but the soil water layer of 1 meter has been assumed 

implicitly when gravimetric water content is estimated. Therefore we assume that decomposition occurs in that same layer of 25 

1 meter.   

In this paper we adopt decomposition rate functions depending on soil water content and the model for soil water dynamics 

as described in Linkosalo et al. (2013). We applied the ROMUL model with soil water holding capacity data, obtained from 

digital soil maps of Finland (Lilja and Nevalainen 2006). Total soil water holding capacity data was extracted to a 10 × 10 

km
2
 grid, when available. To evaluate the impact of soil water holding capacity variability, we also repeated the ROMUL 30 

simulation assuming a constant soil water holding capacity for the whole simulation area. As the ROMUL model segregates 

the organic and mineral soil layers, we assumed that 20% of the total soil water holding capacity was in the organic layer and 

80% in mineral soil layer. See the Supplement for more details of ROMUL, the source code and parameter estimates. 
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2.4.4 Biosoil – soil carbon measurements 

The Biosoil dataset resulted from EU-funded Forest Focus monitoring program and includes measurements of soil carbon 

and various other ecosystem variables from 2006. Data consists of 521 sample plots located across Finland . These plots were 

established as a subset of 3009 permanent sample plots from 1985–86 (see Mäkipää and Heikkinen 2003). 5 

Biosoil sample plots have radii of 11.28 m (400 m
2
). Trees and understorey vegetation coverage were measured. Soil carbon 

samples were taken separately from the litter and humus layers and mineral soil layers at 0–10, 11–20, 21–40 and 41–80 cm 

depth. In total 10 or 20 subsamples were taken from the organic layers with a cylinder (diameter = 60 mm) and 10 tube 

(diameter = 23 mm). Alternatviely, 5 spade subsamples were taken from the 0–10 cm mineral soil layer, a further 5 spade 

subsamples were taken from the layers 11–20 and 21–40 cm and one subsample from the layer 41–80 cm. Viro (1952) rod 10 

penetration method was used to quantify the volume of stones and boulders in the surface soil layer. Several properties were 

analysed from soil samples in the laboratory: soil texture, cation exchange capacity (CEC), base saturation (BS), pH, organic 

carbon and total nitrogen concentrations. Aqua regia extractable P, Ca, K, Mg, Mn, Pb, Na, Ni, Fe and S were also measured 

(Derome et al. 2007). Soil carbon stocks were estimated down to 1 m depth by extrapolation of 40–80 cm measurements for 

the 80–100 cm layer.   15 

Measured soil carbon stocks were grouped into different latitudinal bands forming a gradient in Finland to which we 

compared soil carbon estimates from Yasso07 and ROMUL ROMULv models against measured data. Comparisons were 

made with two different widths of latitude bands: firstly we used bands of 100 km and thereafter bands of 20 km. Bands 

were included in the analysis when there were four or more Biosoil observations in a band. We also identified those Biosoil 

plots that had been under the Litorina Sea 7000–8000 BP (Miettinen 2004, Sohlenius et al. 1996) using map products 20 

produced by the Geological Survey of Finland (Eronen 1974). We used root mean square error (RMSE) to rank these models 

applications due to its ability to take into account both accuracy and precision when comparing model estimates and data.  

We also studied differences between mean stand and soil properties for two regions in southern Finland (Region 1 with a 

latitude below 60˚46’, and Region 2 with a latitude between 60˚46’ and 62˚34’). 

 25 

3 Results 

 

Aboveground biomass of dwarf shrub vegetation was twice as large in the North compared to the South (Fig. 2) and the 

difference was even more pronounced with belowground biomass (Fig. 3). For bryophytes we found large variability, 

especially when their ground coverage approached 100%; therefore, our model is valid up to 80% ground coverage and for 30 

ground coverage over 80% we estimate mean biomass of bryophytes to be 1124 kg ha
-1

 and 1055 kg ha
-1

,
 
respectively, for 

southern and northern Finland. All understorey biomass models displayed substantial unexplained variation, owing to the 

fact that we had only ground coverage [%] as an explanatory variable and because we pooled together different species into 

Formatted: Highlight

Formatted: Highlight



11 

 

these functional groups (e.g., dwarf shrubs with different leaf weights, like Vaccinium myrtillus and Empetrum nigrum). See 

Table 3 for model parameter values and their uncertainties.  

The amount of litterfall from trees and understorey vegetation showed opposite trends with latitude. Total litter input of trees 

and other vegetation in southern Finland was four times higher than that in northern Finland. Though, the understorey 

vegetation at northern sites displayed much higher litter inputs than those in southern Finland. According to our results , fall 5 

of understorey litter in eastern and northern Lapland was equal to that from trees (Fig. 4). We estimated mean litterfall from 

understorey vegetation to approximately equate to 473 kg ha
-1

 and 863 kg ha
-1 

of carbon
 
for southern and northern Finland, 

respectively. In the Finnish GHG inventory these estimates, based on Muukkonen et al. (2006), were 506 kg ha
-1 

and 665 kg 

ha
-1 

for southern and northern Finland, respectively. Our estimate of mean litter input from trees was 1962 kg ha
-1 

and 903 kg 

ha
-1 

of carbon for
 
southern and northern Finland, respectively. 10 

 

3.1. Performance of the soil carbon models 

 

The soil carbon stock estimates by Yasso07 model using global parameterisation (Tuomi et al. 2011) were systematically 

larger than measured data across Finland, whereas those obtained with Scandinavian parameterisation (Rantakari et al. 2012) 15 

were in the same magnitude as the Biosoil data (Fig. 24A and B). In addition to the realistic level of soil carbon stock, the 

model that was based on parameterisation with the Scandinavian data also reproduced decreasing soil carbon stock  trend 

from south to north, as displayed in the Biosoil data. Excluding understorey litter from the model input improved the match 

between Yasso07 soil carbon stocks simulated using global parameters and Biosoil data, whereas for Yasso07 using 

Scandinavian parameters, the same exclusion resulted in underestimation of soil carbon stocks, especially in northern 20 

Finland (Fig. 24C and D). The ROMUL ROMULv model predictions generally agreed with Biosoil data when soil water 

holding capacity was taken into account. The inclusion of soil water holding capacity in ROMUL ROMULv introduced high 

variation in soil carbon stocks between dry and moist grid points in southern Finland (Fig. 24E). When the ROMUL 

ROMULv model was driven with constant soil water holding capacity, it was unable to reproduce decreasing soil carbon 

stocks across Finland and the model underestimated carbon stocks, especially in the south (Fig. 24E and F). Large deviations 25 

between the data and the model estimates were also seen for the largest Biosoil soil carbon stocks of the southernmost plots 

(Fig 23).  

The ROMUL ROMULv model using the soil water holding capacity was the only model able to reproduce the increase in 

measured soil carbon stocks at the southernmost plots. All other models predicted a substantial decrease in the soil carbon 

stocks for southern region, which was not observed in measurements (Fig. 4). Soil properties of southernmost plots (Region 30 

1 (R1) with a latitude below 60˚46’) were different compared to soil properties of forests further north (Region 2 (R2) with a 

latitude between 60˚46’ and 62˚34’). The southern coast had lower silt content and higher sand content, but simultaneously 

higher carbon stocks in the organic layer than the other region (Table 34). Also understorey vegetation differed between 

these regions and the southern coast had lower sphagnum species and herbs species coverage, indicating that soils there were 
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drier. We also tested site type distributions between R1 and R2 but the p-value from a chi-square test was > 0.4, indicating 

that site fertilities did not differ. This is also supported by the measured C:N ratios, which did not differ between these 

regions (Table 34). These southern sites were also younger and 29% of plots were under the Littorina Sea ~7000–8000 years 

BP, while the share of younger soils was only 6% for the slightly more northern region.  

We found that Yasso07 model applications excluding litter input from understorey vegetation had the best agreement with 5 

the observed latitudinal gradient when evaluating with one-to-one plots (Fig. 6Fig. 3). The modelled and measured soil 

carbon stock fits were poor for the Yasso07 application with global parameters, including the understorey vegetation litter 

input and for the ROMUL ROMULv application not using soil water holding capacity data. These model applications 

showed no correlation with measurements and also failed to map the south to north soil carbon stock decrease (Fig. 6Fig. 3). 

The lowest root mean square error RMSE was obtained with the ROMUL ROMULv model applied with soil water holding 10 

capacity data indicating the best performance among these model applications.  

 

3.2 Improved understorey litter input 

 

The amount of litterfall from trees and understorey vegetation showed opposite trends with latitude. Total litter input of trees 15 

and other vegetation in southern Finland was four times higher than that in northern Finland following the temperature 

gradient (Fig. 4). Though, the understorey vegetation at northern sites displayed much higher litter inputs than those in 

southern Finland. According to our results, fall of understorey litter in eastern and northern Lapland was equal to that from 

trees (Fig. 4). We estimated mean litterfall from understorey vegetation to approximately equate to 0.0473 kg m
-2

 and 0.0863 

kg m
-2 

of carbon
 
for southern and northern Finland, respectively. Our estimate of mean litter input from trees was 0.1962 kg 20 

m
-2 

and 0.0903 kg m
-2 

of carbon for
 
southern and northern Finland, respectively.  

 

 

4 Discussion 

We tested whether litter quality, litter quantity and mean climate are sufficient for estimating spatial trends in soil carbon 25 

stocks and if soil texture with low water holding capacity introduces water limitation to decomposition. While testing our 

hypothesis we found that Yasso07 and ROMUL ROMULv models were able to predict carbon stocks of the same magnitude 

as that of measurements for Finland; however, these models experienced more challenges when their performance was 

evaluated for smaller regions, like the southern coast of Finland. 

We also found that litter input from understorey vegetation is equal of that from trees in northern Finland. This emphasises 30 

the large role of understorey vegetation in compensating trees in an ecosystem carbon cycle, especially under light and 

nutrient limited growth conditions. Total litter input varied from 0.4 to 0.01 kg m
-2

 of carbon from southern to northern 

Finland. These values agree with both, net primary production (NPP) estimates for trees that vary between 0.2 and 0.5 kg m
-2
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of carbon for southern Finland by Härkönen et al. (2010) and with measured litterfall values that range from 0.23 to 0.3 kg 

m
-2 

for Hyytiälä eddy covariance site (Ilvesniemi et al. 2009).     

To sum up, litter input from understorey vegetation has to be quantified properly when soil carbon models are parameteri sed. 

This means that model developers should have unbiased estimates of total carbon inputs into the soil system when they use 

litter estimates and soil carbon stocks to calibrate parameters that affect long term carbon accumulation. The results of our 5 

biomass models for the understorey agreed with previous estimates for southern Finland but for northern Finland our 

estimates were substantially larger. Yasso07 was parameterised using understorey litter inputs ranging from 40–60 g carbon 

m
-2

 a
-1 

and therefore Yasso07, with updated understorey litter estimates, overestimated the level of soil carbon stocks. Our 

data for understorey vegetation biomass was mostly from stands that were over 60 years old and therefore more data for 

younger sites are needed. Furthermore, the litter input of belowground understorey vegetation was uncertain due to limited 10 

data on the life span of roots. More research is therefore needed to confirm the high contribution of dwarf shrub vegetation to 

total belowground litter input. 

When evaluating modelled and measured soil carbon stocks against northern latitude we could see that two out of six 

simulations failed to map measured soil carbon stock decreases towards the north (Fig 4). Five model simulations showed 

that southern coast had less carbon than the next region further north, while the Biosoil data showed the opposite. Only the 15 

ROMUL ROMULv model, using soil water holding capacity data from Lilja and Nevalainen (2006) and applied as in 

Linkosalo et al. (2013), was able to estimate the largest soil carbon stocks for southern Finland, similar to Biosoil 

measurements (Fig. 5Fig. 2). This indicated that litter quality, litter quantity and climate data are not sufficient when 

estimating spatial trends of soil carbon stocks. When we evaluated Biosoil data for these regions, the southern sites were 

better drained and drier that those in North. Better drainage was indicated by higher sand content , significantly lower silt 20 

content and significantly lower Sphagnum and herb vegetation coverage (Table 34). We also found out that the southern 

coast experiences a 1.3 C˚ higher mean annual temperature than the next region to the north. Therefore, the organic layer was 

larger for southern coast likely due to limited decomposition during dry spells (Table 34). This result indicated that the 

quantity of precipitation alone was not a sufficient modifier for decomposition but when complemented with soil water 

holding capacity average latitudinal results improved. This finding supports the use of models including soil texture and 25 

water holding capacity.  

According to our resultsOur results support also earlier findings, where the time step of the simulation plays a critical role; 

running models with monthly and annual time steps excludes extreme conditions and may produce biased estimates of 

carbon stocks simply due to fact that non-linear models are run with mean conditions (Dalsgaard et al. 2016, Rantakari et al. 

2012)(Dalsgaard et al. 2016). This is especially critical with soil moisture, which has a bell shaped relation to decomposition 30 

(Sierra et al. 2015, Skopp et al. 1990). Compared to daily time steps of ROMUL, model simulations with longer time steps 

(e.g., a year as in Yasso07) exclude both extreme dry and extreme moist conditions, leading to underestimation of steady 

states soil carbon stocks. On the other hand, reduction of the decomposition rate during limited and excess water conditions 

are not well known. Sierra et al. (2015) compared the effect of moisture on decomposition in different models with the 
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largest variability for dry and saturated conditions. They showed that a moisture index of 0.2 can have a decomposition 

modifier between 0.2 and 1 and similarly with a moisture index of 1 this modifier can be anywhere between 0 and 1, 

depending on the model. These large discrepancies indicate differences between soil properties of sites used for model 

calibration and between conceptualisations of soil moisture.  

The Yasso07 and ROMUL ROMULv model simulations with litter input and climate data alone were not enough to 5 

reproduce the observed soil carbon stocks. Model application without soil moisture impacts on decomposition failed under 

conditions where soil drainage played a significant role in limiting decomposition. The use of water holding capacity was 

critical for accurate soil carbon stock estimation by the ROMUL ROMULv model, while Yasso07 performed best when the 

variation in litter input correlated with that of the observed soil carbon stocks (Fig. 6Fig. 3). The fact that Yasso07 soil 

carbon stocks (Tuomi et al. 2011) were more accurate when litter input of understory vegetation was omitted from 10 

simulations suggests that the model calibration did not account for the whole range of understory litter input. This implies 

that in future, improved estimates for understorey litter input are needed when Yasso07 or similar models will be 

parametrised for boreal conditions. In order to improve model performance, shorter time steps complemented with more 

detailed topography and soil properties are needed to map the impact of extreme events to soil carbon decomposition (e.g., 

droughts and water logging conditions). However, three model simulations out of six produced relatively accurate estimates 15 

of soil carbon stocks compared to the measurement means of smaller regions, having RMSE less than 1.1 for soil carbon 

stock  (Fig. 6Fig. 3). This suggests that improved calibration with updated understorey litter and accounting for the soil 

properties as with ROMUL ROMULv (using data on water holding capacity) produces model estimates that agree regionally 

with data. 

Our simulations and measurements show that models using only litter quality, litter quantity and weather data underestimate 20 

soil carbon stock in regions like southern Finland and this underestimation is due to omission of the impact of droughts to 

the decomposition of organic layers. Thus, we conclude that GHG inventory methods and soil modules of Earth system 

models need to be improved by incorporating the impact of soil texture and soil moisture to decomposition. This is a 

prerequisite for unbiased soil carbon stock and stock change estimates. 

Our findings confirm the fact that GHG inventory methods and soil modules of Earth system models need to be improved by 25 

incorporating the impact of soil texture and soil moisture to decomposition. This is a prerequisite for unbiased soil carbon 

stock and stock change estimates.  

Code availability 

The fortran code of the ROMUL ROMULv is given in the supplement, while fortran code for Yasso07 is available through 

website [http://code.google.com/p/yasso07ui/], for details see Supplement.  30 

http://code.google.com/p/yasso07ui/
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Table 1. Site description of ICP Forests Level II plots studied for understorey vegetation biomass.  

Plot 

no 
Area Region 

North 

coord. 

East 

coord. 

Tree 

species 

Site 

type 

Forest 

type 

Stand 

age 

Basal 

area 

m2  

DF GR HE BR LI 
Year of 

sampling 

n 

above/below 

1 Sevettijärvi 1 7723 3573 1 5 UVET 210 13.52 x - - x x 2009 28/12 

2 Pallasjärvi 1 7543 3377 1 4 EMT 100 17.85 x - - x x 2003 28/28 

3 Pallasjärvi 1 7549 3384 2 3 HMT 150 15.42 x x x x - 2003 28/28 

4 Sodankylä 1 7472 3485 1 4 EMT 80 19.66 x - - x x 2003 28/28 

5 Kivalo 1 7360 3484 2 3 HMT 80 17.95 x x - x - 2002 28/28 

6 Kivalo 1 7364 3488 1 4 EMT 65 18.94 x - - x x 2002 28/28 

32 Kivalo 1 7371 3486 3 3 HMT 58 14.39 a a a x - 2009 28/0 

21 Oulanka 1 7359 3612 2 3 HMT 180 21.03 a a a x - 2009 28/0 

20 Lieksa 2 7012 3687 1 4 EVT 140 22.27 a - a x - 2009 28/0 

10 Juupajoki 2 6866 3353 1 4 VT 90 23.55 x x x x - 2002 28/28 

11 Juupajoki 2 6863 3359 2 2 OMT 90 30.4 x x x x - 2002 28/28 

12 Tammela 2 6730 3325 2 3 MT 70 33.08 x x x x - 2002 28/28 

13 Tammela 2 6727 3330 1 4 VT 70 29.27 x x x x - 2002 28/28 

16 Punkaharju 2 6854 3627 1 4 VT 90 31.95 x - x x - 2002 28/28 

17 Punkaharju 2 6858 3622 2 2 OMT 80 30.76 - - x x - 2002 28/28 

33 Punkaharju 2 6862 3622 3 1 OMaT 27 16.13 - a a - - 2009 28/0 

34 Luumäki 2 6763 3515 1 5 CT 60 13.55 x - - x x 2009 28/12 

35 Luumäki 2 6756 3513 2 3 MT 60 28.21 x x x x - 2009 28/12 

Region (1 = northern Finland, 2 = southern Finland); tree species (1 = Scots pine, 2 = Norway spruce and 3 = deciduous 

trees); site type (1–5, from rich to poor fertility level); forest site types (abbreviations explained in Salemaa et al. (2008), 

Table 1); plant species groups in biomass samples: DF = dwarf shrubs, GR = grasses, HE = herbs, BR = bryophytes and LI = 5 

lichens. x = biomass sample includes both aboveground and belowground (in organic soil layer) part of vegetation, a = 

sample includes only aboveground vegetation, - = plant group does not grow in the plot. n = number of samples (each sized 

30 x 30 cm
2
) for aboveground and belowground biomass.  
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Table 2. Litter turnover rates for tree and understorey biomass by component, species and region.  

Biomass 

component  

Species Region Value [%] Reference 

Leaves Scots pine  27% [18-34%] Tupek et al., (2015) 

Leaves  Norway spruce  13% [9-15%] Tupek et al., (2015) 

Leaves Broadleaved  79% Tupek et al., (2015) 

Branches Scots pine  2% Lehtonen et al. (2004) 

Branches Norway spruce  1.25% Muukkonen and Lehtonen (2004) 

Branches Broadleaved  1.35% Lehtonen et al. (2004) 

Bark Scots pine  0.3% (Mälkönen 1977, Viro 1955) 

Bark Norway spruce -   - (Mälkönen 1977, Viro 1955) 

Bark Broadleaved  0.01% (Mälkönen 1977, Viro 1955) 

Coarse roots Scots pine  2% Lehtonen et al. (2004) 

Coarse roots Norway spruce  1.25% Muukkonen and Lehtonen (2004) 

Coarse roots Broadleaved  1.35% Lehtonen et al. (2004) 

Fine roots Scots pine South 85% Kleja et al., (2008) 

Fine roots Norway spruce South 85% Kleja et al., (2008) 

Fine roots Broadleaved South 85%  Kleja et al., (2008) 

Fine roots Scots pine North 50% Leppälammi-Kujansuu et al., (2014) 

Fine roots Norway spruce North 50% Leppälammi-Kujansuu et al., (2014) 

Fine roots Broadleaved North 50% Leppälammi-Kujansuu et al., (2014) 

     

Aboveground Dwarf shrubs - 37% This study 

Belowground Dwarf shrubs - 8% This study& Helmisaari et al. (2015) 

Aboveground Grasses - 33% This study 

Belowground Grasses - 59% Leppälammi-Kujansuu et al., (2014) 

Aboveground Herbs - 100%  

Belowground Herbs - 59% This study & Leppälammi-Kujansuu et al., (2014) 

Aboveground Bryophytes - 42% This study 

Aboveground Lichen - 10% Kumpula et al., (2000) 
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Table 34. Mean soil and forest stand properties for R1 and R2 and 1.96 times their standard error of mean (SEM). R1 is south from 60˚46’, while R2 lies between 60˚46’ and 

62˚34’northern latitude. P-values based on two sided t-test, where group variances are assumed to be different variables where p-value < 0.05 are in bold. Sample sizes were 

31 and 127 plots, for southern (R1) and northern (R2) areas, respectively. For mean temperature and precipitation sample sizes were more than 150 based on Finnish 

Meteorological Institute (FMI) weather grid (Venäläinen et al. 2005). 

 

Sand [%] Silt [%] Clay [%] BS O [%] 
BS M 

[%] 

CEC O 

[cmol(+)/

kg] 

CEC M 

[cmol(+)/

kg] 

pH (H2O) C:N O C:N M 
Sphagnu

m [%] 

Lichen 

[%] 
Herb 

[%] 
G [m2] 

Decid 

[%] 

Spruce 

[%] 
Lito [%] 

R1 mean 
64.92 30.08 4.98 67.2 23.26 32.23 5.27 4.23 26.41 23.11 0.3 0.86 4.43 23.45 15.55 39.81 29 

R1 sem 
7.31 5.39 2.64 6.08 5.5 3.22 0.54 0.12 1.25 1.57 0.53 1.05 1.83 3.29 6.87 12.01 16 

R2 mean 
57.76 37.09 5.15 68.8 27.72 29.06 4.91 4.17 25.13 21.6 1.51 0.45 8.56 23.9 19.28 37.1 6 

R2 sem 
3.34 2.55 1.2 2.29 3.28 0.87 0.43 0.05 1.56 0.79 0.98 0.26 2.18 1.43 4.58 6.09 4 

p-value 

(t.test) 
0.09 0.03 0.91 0.63 0.18 0.07 0.31 0.4 0.21 0.1 0.04 0.48 0.01 0.81 0.38 0.69 0.01 

 

T mean 

[C] 

Prec 

[mm] 

extrCd 

[mg/kg] 

extrPb 

[mg/kg] 

extrK 

[mg/kg] 

extrP 

[mg/kg] 

extrNa 

[mg/kg] 

extrNi 

[mg/kg] 

extrCa 

[mg/kg] 

extrMg 

[mg/kg] 

extrFe 

[mg/kg] 

extrS 

[mg/kg] 

extrMn 

[mg/kg]  
TWI 

Altitude 

[dm] 

SOC O 

[Mg ha-1] 

SOC M 

[Mg ha-1] 

R1 mean 
4.91 580.71 0.48 47.88 1149.16 943.61 139.71 10.8 4638.39 992.52 5157.74 1435.39 459.47 6.97 588 25.82 31.65 

R1 sem 
0.09 6.25 0.05 3.62 138.59 80.16 14.87 1.03 1044.39 329.89 984.63 85.95 167.12 1.83 124 5 7.15 

R2 mean 
3.62 545.66 0.38 36.02 1225.03 940.32 131.19 11.07 4058.02 1063.51 4675.6 1380.96 537.84 8.79 1119 17.46 35.23 

R2 sem 
0.05 2.28 0.03 5.77 85.23 38.99 11.11 1.05 256.21 159.48 643.98 55.04 148.54 1.14 55 1.57 3.31 

p-value 

(t.test) 
0 0 0 0 0.37 0.94 0.38 0.73 0.3 0.71 0.43 0.31 0.5 0.1 0 0 0.38 

 5 

Here sand, silt and clay content are given as a percentage. Base saturation (BS). cation exchange capacity (CEC) and C:N ratios are given separately for organic layer (O) and for mineral soil 

layer (M). pH is measured in water. Abundance of ground vegetation given as percentage coverage. Basal area of trees (G) and relative shares of deciduous species and Norway spruce from 

basal area. Lito indicates the proportions of sites that were under the Littorina Sea 8000–7000 BP. Aqua regia extractable K, P, Na, Ni, Ca, Mg, Fe, S and Mn unit mg/kg. Topographical 

wetness index (TWI). Altitude of plots based on 10 m resolution map layer. Amount of carbon in organic and mineral soil horizon.  
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Figure 1: Schematic illustration of Yasso07 (left) and ROMULv (right) soil carbon models. Solid arrows indicate fluxes of organic matter, while dashed arrows indicate CO2 fluxes to 

atmosphere.  
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Figure 25. Latitudinal trends of measured and modelled soil carbon stocks across Finland. X-axis is the North coordinate 

according to Finnish YKJ system and Y-axis is the soil carbon stock Mg ha-1. Grey dots are individual model estimates and red 5 

line is a 2nd order loess fit. Panel A is Yasso07 with Rantakari et al. (2012) parameters, while B is with Tuomi et al. (2011) 
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parameters. C and D are same as A and B, but without understorey litter input. E and F are with ROMUL ROMULv model where 

E includes soil water holding capacity data and F is with constant soil water holding capacity. Black dots are means from Bio soil 

data for each latitude band and whiskers are 1.96 times standard error of the mean. 

 

 5 
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Figure 36. One-by-one plots for mean model estimates and mean Biosoil measurements of soil carbon stocks for 41 latitudinal 

bands across Finland. Panel A is Yasso07 with Rantakari et al. (2012) parameters, while B is with Tuomi et al. (2011) parameters. 

C and D are same as A and B but without understorey litter input. E and F are wi th ROMUL ROMULv model where E is with 

soil water holding capacity data and F is with constant soil water holding capacity. R 2, slope of the regression and the slope 

standard error are reported. RMSE is based on the difference between model estimate and measurements.  5 

 

 

Figure 4. Maps for total litter input [Mg ha-1], understorey litter input [Mg ha-1], mean annual temperature [C˚] and mean annual 

precipitation [mm].  
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Abstract.  Dynamic soil models are needed for estimating impact of weather and climate change on soil carbon stocks and 

fluxes. Here, we evaluate performance of Yasso07 and ROMULv models against forest soil carbon stock measurements. 

More specifically we ask, if litter quantity, -quality and weather data are sufficient drivers for soil carbon stock estimation. 

We also test whether inclusion of soil water holding capacity improves reliability of modelled soil carbon stock estimates. 15 

Litter input of trees was estimated from stem volume maps provided by the National Forest Inventory, while understorey 

vegetation was estimated using new biomass models. The litter production rates of trees were based on earlier research, 

while for understorey biomass those were estimated from measured data. We applied Yasso07 and ROMULv models across 

Finland and ran those models into steady state; thereafter, measured soil carbon stocks were compared with model estimates. 

We found that the role of understorey litter input was underestimated when the Yasso07 model is parameterised, especially 20 

in northern Finland. We also found that the inclusion of soil water holding capacity in the ROMULv model improved 

predictions, especially in southern Finland. Our simulations and measurements show that models using only litter quality, 

litter quantity and weather data underestimate soil carbon stock in southern Finland and this underestimation is due to 

omission of the impact of droughts to the decomposition of organic layers. Our results also imply that the ecosystem 

modelling community and greenhouse gas inventories should improve understorey litter estimation in the northern latitudes. 25 

1 Introduction 

Soil carbon is a significant component of terrestrial carbon stocks and understanding its dynamics under changing climate is 

crucial. However, the significance and interactions of different mechanism for long term carbon accumulation are still 

unknown and therefore often lack from models. If we want to understand the role of different abiotic and environmental 

factors to soil carbon stocks and their dynamics, we have to combine experimental research with process-based models. One 30 
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way forward is to establish soil carbon inventories in order to quantify soil carbon stocks and their change. Conventional soil 

inventories measuring various nutrients, carbon contents, bulk densities and stoniness (e.g. Gamfeldt et al. 2013) allow us to 

study the distribution of soil carbon across landscapes and correlations between different soil properties. Generally, it is 

shown that soil carbon inventories are able to produce soil maps and covariates between soil carbon quantities and other 

variables, such as various nutrients; although, the sample size of these inventories is usually not adequate for national-level 5 

soil carbon stock change assessment, with few exceptions (e.g., Sweden and Germany) (Gamfeldt et al. 2013, Grüneberg et 

al. 2014). 

According to the United Nations climate convention, countries are requested to report annual carbon stock changes of soils 

under different land-uses and under land-use change. The majority of countries apply soil carbon models, like Yasso07 

(Tuomi et al. 2011) and CENTURY (Parton et al. 1987) to estimate soil carbon stock changes. These annual submission are 10 

reviewed annually and methods should be transparent and verifiable favouring simple soil models instead of complex ones.   

The scientific community is also aiming to predict future soil–climate change feedbacks on a global scale using Earth system 

models (ESMs). The ESMs are tested against soil carbon measurements in order to evaluate model performance but 

unfortunately results have been poor. Guenet et al. (2013) present a test whereby soil carbon stocks predicted by 

ORCHIDEE model were plotted at a plot level against measurements and failed to display any correlation. Similarly, Todd-15 

Brown et al. (2013) concluded that most ESMs are not able to produce measured soil carbon stocks at a grid level. This 

finding is somewhat alarming due to fact that it is essential to have correct initial carbon stocks with soil models, because 

carbon stock change estimates depend on those. Initial soil carbon stock estimates are particularly important when carbon 

stock changes of deforestation events are modelled.  

Individual soil carbon models are tested against repeated soil inventories and it has been found that models are able to 20 

estimate soil carbon stock change of the same magnitude as was measured (Ortiz et al. 2009, Rantakari et al. 2012). The 

limitation of this conclusion was that uncertainties of both measurements and model estimates are often higher that actual 

estimates (Ortiz et al. 2013, Rantakari et al. 2012). While the uncertainties between model output and real measurements 

reveal whether models agree with data or not, they put less emphasis on whether all the most important soil carbon stock 

drivers were included in these models.  25 

Simplistic soil carbon models like Yasso07 (Tuomi et al. 2011) are driven only by weather conditions and by litter input; 

while more complex models, like ROMUL (Chertov et al. 2001) also include the nitrogen cycle and the impact of soil water 

holding capacity on decomposition. It is evident that soil properties affect soil carbon stocks (Schimel et al. 1994, Six et al. 

2002) and therefore they are explicitly included in complex models. For example, in the CENTURY model clay content 

limits decomposition (Parton et al. 1987) and due to the low specific surface area of clay minerals in the model, clay rich 30 

soils have larger passive soil carbon stocks and lower C:N ratios (Parfitt et al. 1997). In simplistic models soil properties are 

omitted. For example, in Yasso07 the role of soil properties on soil carbon stock accumulation is included only implicitly 

through the model calibration with large datasets (Tuomi et al. 2011). Although the simpler models lack some predominant 

drivers of soil carbon accumulation, the strength of these models lies in their easier calibration with data; however, the 
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impact of soil properties, especially nutrient status, on the accuracy of estimated soil carbon stock estimates needs to be re-

evaluated in both CENTURY and Yasso07 models (Tupek et al. 2016). 

It is well known that decomposition and soil respiration is controlled by water content, whereby in dry soils lack of water 

slows down decomposition, while excess water reduces it by limiting oxygen diffusion (Skopp et al. 1990). For boreal forest 

conditions, Pumpanen et al. (2003) proposed a model whereby maximum soil respiration drops after the relative water 5 

content of soil reaches a level of 60%. The limiting effect of soil moisture on decomposition in dry or water-saturated soils is 

widely included in models, although the degree of this dependency varies widely between models (Sierra et al. 2015). 

In addition to the model structure, precise and accurate estimates of litter input quantity and quality are also essential for 

successful model applications. Stand-alone soil models rely on forest inventory data or other external estimates for getting 

correct litter inputs, while ecosystem models utilise plant sub-models to describe vegetation productivity and litter inputs. A 10 

common feature of ecosystem models and stand-alone soil models is that often understorey vegetation is neglected during 

the calibration and application of models, resulting in biased litter inputs. This omission is more critical in boreal landscapes 

where the contribution of understorey vegetation increases with northerly latitude. For example, Yuan et al. (2014) report 

that the bryophyte biomass contributes 20%–60% of the total normalized difference vegetation index (NDVI) in high 

northern latitudes.   15 

In order to assess the necessary drivers for soil carbon models in Finland we tested the performance of Yasso07 and 

ROMULv models against measured nation-wide soil C data. The ROMULv refers to a modified ROMUL model version 

where decomposition rate functions are derived from the model presented by Pumpanen et al. (2003), and a simple 

volumetric soil water model (Linkosalo et al. 2013) is applied to drive those decomposition functions. 

We were specifically interested if the additional complexity of processes introduced by ROMULv improves the soil C stock 20 

estimate over Yasso07 model that is presently used by greenhouse gas (GHG) inventories of several countries. The Yasso07 

and ROMULv models differed in their time steps (annually versus daily), determination of the litter quality (litter solubility 

versus nitrogen content and litter source) and complexity of drivers (ROMULv including the impact of nitrogen and soil 

water holding capacity to decomposition). Specifically with these models we tested: 

1. Whether the litter quantity, species specific litter quality and weather data are enough to estimate spatial trends of 25 

carbon stocks in the upland soils of Finland. We hypothesise that by accounting for soil water holding capacity, ROMULv 

would outperform, (i) ROMULv with constant soil water holding capacity and (ii) Yasso07 model with different 

parametrisations (Yasso07 excludes soil properties entirely).  

2.  Weather improving the estimation of understory litter input would positively affect accuracy of predicted soil 

carbon stocks. 30 

We use Yasso07 and ROMULv soil models to estimate steady-state carbon stocks for upland soils in Finland on a spatial 

10×10 km
2
 grid. We ran Yasso07 model with parameters based on Scandinavian data (Rantakari et al. 2012) and also with 

parameters based on global data (Tuomi et al. 2011). The parameterisation for the ROMULv model was the same as in the 

original ROMUL model (Chertov et al. 2001), except for decomposition rate functions depending on soil water content 
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derived from Linkosalo et al. (2013). Yasso07 and ROMULv models run with identically estimated litter quantity, quality 

and climate data. In addition, the ROMULv model was tested with both constant soil water holding capacity as well as 

variable water holding capacity based on digital soil maps of Lilja and Nevalainen (2006). Furthermore, we developed new 

models for the understorey litter input and apply them alongside soil carbon models for improved estimates of spatial 

variation of litter inputs. Simulated soil carbon stocks are evaluated against measured soil carbon stocks.  5 

 

2 Material and methods 

 

Soil carbon simulations were performed for 10 × 10km
2
 grid across Finland. This grid is used for meteorological data 

prediction (Venäläinen et al. 2005). Litter input was estimated for the same grid. From the grid, only locations that were on 10 

upland soils and on forest, according to Food and Agriculture Organization of the United Nations (FAO) forest definitions 

were chosen. This classification is based on Multisource National Forest Inventory products, which combine digital maps 

(including e.g. land-use and peatlands), forest inventory data and Landsat images (Tomppo et al. 2008).  

2.1 Tree biomass 

Firstly, stem volume maps by tree species from the National Forest Inventory 9 (NFI9, 1996-2003) were used, according to 15 

Tomppo et al. (2011), to account for large-scale variation of stem volume across Finland. These variations are primarily 

driven by soil properties, climate, site productivity, forest management techniques and tree species distribution.  

Secondly, biomass expansion factors (BEFs, Mg/m
3
) were estimated for main tree species groups, namely: Scots pine (Pinus 

sylvestris), Norway spruce (Picea abies) and for broadleaved species (mainly Betula sp.). These BEFs were estimated for 

each biomass component (foliage, branches, bark, stemwood, stump and woody roots). Biomasses were estimated for sample 20 

trees in NFI10 based biomass models by Repola (2008, 2009); thereafter, mean BEFs were estimated at a cluster level (a 

cluster is formed of 10 to 15 field plots) by dividing the sum of given biomass components by the estimated sum of stem 

volumes. Biomass estimates for trees were based on biomass models, where diameter at breast height, tree height, crown 

height, increment of five years and bark thickness are used as predictors. To upscale BEFs across Finland, we applied 

collocated co-kriging (Bivand et al. 2008) by species group, to account for large-scale spatial correlation and co-variation of 25 

tree allometry. We used the gstat (Pebesma 2004) package of R (R Core Team 2014) for estimation. For Scots pine and 

Norway spruce we removed linear trends of latitude and longitude (using uniform coordinate system of Finland, YKJ), while 

for deciduous trees only trends of latitude were removed. For all species groups and components we assumed spherical 

variogram functions. For the details of the used biomass models see Appendix 7c by Statistics Finland (2014). Biomass 

components for each grid point were obtained by multiplying stem volume maps by species with component species-specific 30 

BEF estimates that were estimated via co-kriging for the same grid.  

Biomass of harvest residues and natural mortality were estimated based on forest statistics and NFI data (Ylitalo 2013). 

From statistics, we attained an estimate of the stem volume of annual loggings and natural mortality by region (forestry 
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centres) and these were subsequently converted to biomass with BEFs. These BEFs were based on a subset of permanent 

sample plots of NFI9 (1996–2003) and NFI10 (2004–2008). BEFs for logging were estimated separately from the subset of 

logged plots and these logging specific BEFs were used in the estimation of biomass of harvest residues. Furthermore, 

energy use of stumps and harvest residues were deducted from regional soil inputs, based on regional wood energy use 

(Ylitalo 2013). For biomass of natural mortality, BEFs were estimated based on data from those trees that died on permanent 5 

sample plots between measurements. Thereafter the volume of natural mortality was multiplied with corresponding BEFs. 

This procedure followed principles of Finnish greenhouse gas (GHG) inventory (Statistics Finland 2014).  

Fine root biomass was estimated based on the work of Lehtonen et al. (2016). We selected a simple model formulation, 

where a natural logarithm of fine root mass was estimated as a function of the natural logarithm of stem volume. See Model 

1 in Lehtonen et al. (2016) for details (study has 95 sites with fine root data, and model 1 has an adj-R
2
 of 0.217). This model 10 

was used to approximate general fine root mass levels as a function of stem volume for each 10 × 10 km
2
 grid point. 

 

2.2 Understorey vegetation biomass 

 

In order to estimate the litter input of understorey vegetation to soils, we developed models for vegetation biomass. The 15 

relationship between the visually estimated percentage cover of plant species including vascular plants, bryophytes and 

lichens (projected onto the forest floor using 30 × 30 cm
2
 frames) and their living biomass was studied in 18 forest stands 

across Finland (Table 1). The plots are part of the International Co-operative Programme on Assessment and Monitoring of 

Air Pollution Effects on Forests (ICP) intensive monitoring plot network (e.g. Merilä et al. 2014). Altogether 28 

systematically selected biomass samples were taken once from each plot during the period 2002 to 2009. In total sample size 20 

was 504 of 0.3×0.3 m
2
 vegetation plots having detailed biomass measurements by species. Vascular plants were divided into 

aboveground (shoots) and belowground (rhizomes and roots in organic layer) parts. The study was carried out at the time of 

maximum biomass and vegetation growth between the end of July and end of August. Half of the plots were located in the 

north (five in Pinus sylvestris, three in Picea abies and one in Betula pubescens dominated stands) and the other half were in 

the south (four in Pinus sylvestris, four in Picea abies and one in Betula pendula dominated stands). The site types of the 25 

plots ranged from poor to rich fertility level (Table 1). 

In order to predict the vegetation biomass, we built linear mixed models based on the relative coverage of five functional 

plant groups (dwarf shrubs, grasses, herbs, bryophytes and lichens). The biomass of understorey vegetation was estimated 

using models that correlate vegetation coverage with measured biomass. These models were estimated for the five 

aforementioned main species groups and for their belowground parts, if applicable. These models were estimated separately 30 

for southern and northern Finland. We used a linear mixed model with plot-level random effects using the lme command in 

nlme package (Pinheiro et al. 2012) of the R environment for the estimation (R Core Team 2014).  
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Each model was weighted according to the land area of different site types in southern and northern Finland using the 

weights option in lme. This was done to ensure that the sample of understorey biomass plots did not underestimate the 

weight of the most common site types (those of medium fertility). The weighting was performed on land areas based on 

NFI11 data (Ylitalo 2013). Models were linearised by taking natural logarithms from biomass and coverage. For model 

parameters, bias correction and their uncertainties see Supplement (Table S1, Fig. S1 and Fig. S2).  5 

To quantify the biomass of understorey vegetation we used species-specific coverage measurements of 2501 permanent 

sample plots from 1995 forest inventory data (Mäkipää and Heikkinen 2003). We applied collocated co-kriging methods to 

account for the correlation between species groups and thereafter we generalised measured understorey coverage on a 10 × 

10 km
2
 grid on upland soils across Finland (Bivand et al. 2008). The co-kriging method was similar to that of BEF 

estimation described above. First, we de-trended all species group coverage (shrubs, herbs and grasses, lichens and 10 

bryophytes) by linear trends of latitude and longitude (using uniform coordinate system of Finland, YKJ). After that we 

estimated variograms and cross-variograms and applied co-kriging methods to predict coverage for understorey coverage for 

Finland by gstat package of R (R Core Team 2014) (for R code, variograms and cross-variograms, see Supplement). For all 

species groups we assumed spherical variograms with common range of 100 km.  

 15 

2.3 Litter input estimation 

To estimate litter input from living biomass components to the soil, litter turnover rates were used (Table 2). For needles, we 

used the detailed 10 × 10 km
2
 grid litter turnover rates reported by Tupek et al. (2015). For tree fine roots we assumed that 

the life span was 1.18 years for southern Finland and 2 years for northern Finland (Kleja et al. 2008, Leppälammi-Kujansuu 

et al. 2014). In order to interpolate fine root turnover rates for Finland we assumed a linear dependency for turnover rate and 20 

mean temperature sum (mean for 1981–2010). For areas with a temperature sum (5 C˚ threshold) higher than 1200 degrees a 

turnover rate of 85% was used and for areas where temperature sums less than 700 degrees a rate of 50% was used. Turnover 

rates were interpolated between 700 and 1200 degrees (see Supplement).  

For branch and coarse roots litter, the constant turnover rates of the branches were used across Finland (Lehtonen et al. 2004, 

Muukkonen and Lehtonen 2004). For bark litter we assumed a constant ratio to stem biomass according to Viro (1955) and 25 

Mälkönen (1977). For fellings and natural mortality we assumed that all biomass was left to the site, excluding stems for 

wood used and harvesting residues for energy use. The quantity of wood use was based on regional forestry statistics (Ylitalo 

2013).  

The turnover rates of different functional plant groups were partly based on literature (Table 2) but we also estimated some 

rates from our own biomass samples of understorey vegetation described above. We calculated the proportion of the current-30 

year growth out of the total living biomass of dwarf shrub shoots to estimate the turnover rates for aboveground plant parts. 

We used the average values of deciduous and evergreen dwarf shrubs. Most of the grasses growing in boreal forests (like 
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Deschampsia flexuosa) are perennial and we used the ratio between the living and dead biomass to estimate the turnover rate 

of those species. The aboveground parts of the most herb species (like Maiathemum bifolium) are annual, so we used 100% 

for their turnover rate. Furthermore, we used the number of annual growth segments in the green upper parts of the 

bryophytes to estimate their rate. We assumed that over a long time period the estimate for annual biomass growth 

corresponds to the amount of litter input to the soil from understorey vegetation. 5 

Nitrogen content of all litter components was derived from Komarov et al. (2007), for details see Supplement.  

 

 

2.4 Application of soil carbon models 

Carbon stocks were estimated by running Yasso07 and ROMULv models into a steady state (i.e., a state where carbon input 10 

for the model equals carbon flux due to decomposition). For a dynamic model a steady state is a state to which model aims 

with given inputs. Here model inputs were: average climatic conditions (1961–2012) and litter inputs for each grid point, 

depending on dominant tree species and understorey vegetation coverage plus regional estimates of litter from harvestings 

and natural mortality (sc. forestry centres). If we assume that this average level of inputs and climate has remained steady 

over centuries, then our soils should approach steady state conditions. Litter inputs were given to these models as 10×10 km
2
 15 

grid points and weather data of that given grid point was then used for model input.  

When evaluating model results for Yasso07, fresh woody litter and recently dead wood litter were excluded from model state 

variables, while all non-woody material and humus boxes (including more heavily decomposed material from fine-woody- 

and coarse-woody litter) were accounted as soil carbon stock. This separation was done as Yasso07 slows down 

decomposition of logs of high diameter, which increases soil steady state carbon stock estimates. Data from Biosoil does not 20 

include dead wood masses in soil carbon stocks. For ROMULv we included all model state variables to the comparison, 

noting that log size does not affect decomposition. 

2.4.1 Climate data 

Daily weather data for steady state simulations are available as kriging estimates since 1961 at a 10 × 10 km
2
 resolution 

across Finland (Venäläinen et al. 2005). Weather data for the grid points on upland soils and on forested land, according to 25 

multisource NFI, were included (Tomppo et al. 2008).  

Daily weather predictions for a 10×10 km
2
 grid were aggregated for the Yasso07 model from 1961 to 2012. The average 

temperature, temperature amplitude and precipitation of each grid cell were provided to Yasso07 to estimate the impact of 

climate on soil carbon stock steady states. The ROMULv model was driven by mean daily temperature and precipitation for 

each grid cell. 30 
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2.4.2 Yasso07 

The Yasso07 soil carbon model (Tuomi et al. 2011) is driven by litter quantity, litter quality and weather (temperature and 

precipitation). This model is widely used in the greenhouse gas inventories of European countries (e.g., Finland, Norway and 

Switzerland). This model has been also successfully coupled with climate‐carbon cycle model ECHAM5/JSBACH (Thum et 

al. 2011). 5 

The Yasso07 is a simple dynamic model with fluxes and state variables. The model has five compartments: acid, water, 

ethanol, non-soluble and humus boxes. Division of the litter input according to the litter solubility was species specific and 

followed that of Finnish GHG inventory, based on the appendix of Yasso07 manual by Liski et al (2009). Organic matter 

flows between these boxes and to atmosphere variably according to weather conditions (Fig. 1). The model builds on the 

assumption that organic matter solubility defines litter quality, while decomposition rates while fluxes are estimated 10 

numerically, without a priori assumptions. The model was calibrated using a large database of litter and wood 

decomposition measurements, and measurements of age chronosequences of soil carbon stocks (Liski et al. 2005, Liski et al. 

1998, Rantakari et al. 2012, Tuomi et al. 2011). The Yasso07 soil carbon model parameter values were estimated with 

Markov chain Monte Carlo (MCMC) methods for which the source code is publicly available through the model website 

(www.syke.fi) (Tuomi et al. 2011). Here, we used the Yasso07 model with Scandinavian parameters (Rantakari et al. 2012) 15 

and with global parameters, these being a preliminary version from Tuomi et al., (2011) parameters (practically identical). 

Yasso07 was run with total litter input (from trees and understorey vegetation) and also with litter excluding that of 

understorey vegetation. The model was applied with annual time-steps. Model has been calibrated with litter input estimates 

and soil carbon measurements down to 1 meter soil depth. See the Supplement for more details of Yasso07. 

 20 

2.4.3 ROMULv 

ROMUL is a soil organic matter decomposition model developed by Chertov et al., (2001). It describes the flux of organic 

matter through the decomposition process, separated in cohorts of different litter origins: leaves, shoots, trunks, coarse roots, 

fine roots and ground vegetation. Litter from above ground (leaves, shoots and stems) falls onto the forest floor, whereas the 

root litter decomposes in the mineral soil layer. In the final stages, all decomposing matter ends up in a common storage of 25 

semi-stable humus residing in the mineral soil layer (Fig. 1). Decomposition rates of each cohort depend on the nitrogen and 

ash content of the specific litter type and for all cohorts the soil temperature and water content modify the decomposition 

rate. Here we used species specific nitrogen ratios for different litter fractions; these ratios were same across the country in 

given fraction of given species.  

In this paper we utilised a version of the ROMUL model, where we adopt decomposition rate functions depending on soil 30 

water content and the model for soil water dynamics as described in Linkosalo et al. (2013). We call this version of the 

model ROMULv (where the “v” refers to decomposition rates based on volumetric soil water measures). The soil water 

http://www.syke.fi/
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holding capacity data was obtained from digital soil maps of Finland (Lilja and Nevalainen 2006). Total soil water holding 

capacity data was extracted to a 10 × 10 km
2
 grid, when available. To evaluate the impact of soil water holding capacity 

variability, we also repeated the ROMULv simulation assuming a constant soil water holding capacity for the whole 

simulation area. As the ROMULv model segregates the organic and mineral soil layers, we assumed that 20% of the total 

soil water holding capacity was in the organic layer and 80% in mineral soil layer. See the Supplement for more details of 5 

ROMULv, the source code and parameter estimates. 

We applied the ROMULv model using daily time-steps of the environmental variables impacting the decomposition. The 

estimated annual litter input was evenly distributed for each day of year.  The ROMULv model explicitly simulates the flux 

of nitrogen through the decomposition process and therefore produces estimates for mineralised N in addition to the soil 

organic matter and N storages and CO2 release from the soil. All model parameters, except the decomposition rate, which is 10 

dependent on soil water content, were taken from the Chertov et al. (2001) paper. Although ROMULv model does not 

explicitly define depth of soil layers, but the soil water layer of 1 meter has been assumed implicitly when gravimetric water 

content is estimated. Therefore we assume that decomposition occurs in that same layer of 1 meter.   

 

2.4.4Biosoil – soil carbon measurements 15 

The Biosoil dataset resulted from EU-funded Forest Focus monitoring program and includes measurements of soil carbon 

and various other ecosystem variables from 2006. Data consists of 521 sample plots located across Finland. These plots were 

established as a subset of 3009 permanent sample plots from 1985–86 (see Mäkipää and Heikkinen 2003). 

Biosoil sample plots have radii of 11.28 m (400 m
2
). Trees and understorey vegetation coverage were measured. Soil carbon 

samples were taken separately from the litter and humus layers and mineral soil layers at 0–10, 11–20, 21–40 and 41–80 cm 20 

depth. In total 10 or 20 subsamples were taken from the organic layers with a cylinder (diameter = 60 mm) and 10 tube 

(diameter = 23 mm). Alternatviely, 5 spade subsamples were taken from the 0–10 cm mineral soil layer, a further 5 spade 

subsamples were taken from the layers 11–20 and 21–40 cm and one subsample from the layer 41–80 cm. Viro (1952) rod 

penetration method was used to quantify the volume of stones and boulders in the surface soil layer. Several properties were 

analysed from soil samples in the laboratory: soil texture, cation exchange capacity (CEC), base saturation (BS), pH, organic 25 

carbon and total nitrogen concentrations. Aqua regia extractable P, Ca, K, Mg, Mn, Pb, Na, Ni, Fe and S were also measured 

(Derome et al. 2007). Soil carbon stocks were estimated down to 1 m depth by extrapolation of 40–80 cm measurements for 

the 80–100 cm layer.   

Measured soil carbon stocks were grouped into different latitudinal bands forming a gradient in Finland to which we 

compared soil carbon estimates from Yasso07 and ROMULv models against measured data. Comparisons were made with 30 

two different widths of latitude bands: firstly we used bands of 100 km and thereafter bands of 20 km. Bands were included 

in the analysis when there were four or more Biosoil observations in a band. We also identified those Biosoil plots that had 

been under the Litorina Sea 7000–8000 BP (Miettinen 2004, Sohlenius et al. 1996) using map products produced by the 
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Geological Survey of Finland (Eronen 1974). We used root mean square error (RMSE) to rank these models applications due 

to its ability to take into account both accuracy and precision when comparing model estimates and data. 

We also studied differences between mean stand and soil properties for two regions in southern Finland (Region 1 with a 

latitude below 60˚46’, and Region 2 with a latitude between 60˚46’ and 62˚34’). 

 5 

3 Results 

 

3.1. Performance of the soil carbon models 

 

The soil carbon stock estimates by Yasso07 model using global parameterisation (Tuomi et al. 2011) were systematically 10 

larger than measured data across Finland, whereas those obtained with Scandinavian parameterisation (Rantakari et al. 2012) 

were in the same magnitude as the Biosoil data (Fig. 2A and B). In addition to the realistic level of soil carbon stock, the 

model that was based on parameterisation with the Scandinavian data also reproduced decreasing soil carbon stock trend 

from south to north, as displayed in the Biosoil data. Excluding understorey litter from the model input improved the match 

between Yasso07 soil carbon stocks simulated using global parameters and Biosoil data, whereas for Yasso07 using 15 

Scandinavian parameters, the same exclusion resulted in underestimation of soil carbon stocks, especially in northern 

Finland (Fig. 2C and D). The ROMULv model predictions generally agreed with Biosoil data when soil water holding 

capacity was taken into account. The inclusion of soil water holding capacity in ROMULv introduced high variation in soil 

carbon stocks between dry and moist grid points in southern Finland (Fig. 2E). When the ROMULv model was driven with 

constant soil water holding capacity, it was unable to reproduce decreasing soil carbon stocks across Finland and the model 20 

underestimated carbon stocks, especially in the south (Fig. 2E and F). Large deviations between the data and the model 

estimates were also seen for the largest Biosoil soil carbon stocks of the southernmost plots (Fig 2).  

The ROMULv model using the soil water holding capacity was the only model able to reproduce the increase in measured 

soil carbon stocks at the southernmost plots. All other models predicted a substantial decrease in the soil carbon stocks for 

southern region, which was not observed in measurements (Fig. 4). Soil properties of southernmost plots (Region 1 (R1) 25 

with a latitude below 60˚46’) were different compared to soil properties of forests further north (Region 2 (R2) with a 

latitude between 60˚46’ and 62˚34’). The southern coast had lower silt content and higher sand content, but simultaneously 

higher carbon stocks in the organic layer than the other region (Table 3). Also understorey vegetation differed between these 

regions and the southern coast had lower sphagnum species and herbs species coverage, indicating that soils there were drier. 

We also tested site type distributions between R1 and R2 but the p-value from a chi-square test was > 0.4, indicating that site 30 

fertilities did not differ. This is also supported by the measured C:N ratios, which did not differ between these regions (Table 

3). These southern sites were also younger and 29% of plots were under the Littorina Sea ~7000–8000 years BP, while the 

share of younger soils was only 6% for the slightly more northern region.  
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We found that Yasso07 model applications excluding litter input from understorey vegetation had the best agreement with 

the observed latitudinal gradient when evaluating with one-to-one plots (Fig. 3). The modelled and measured soil carbon 

stock fits were poor for the Yasso07 application with global parameters, including the understorey vegetation litter input and 

for the ROMULv application not using soil water holding capacity data. These model applications showed no correlation 

with measurements and also failed to map the south to north soil carbon stock decrease (Fig. 3).The lowest RMSE was 5 

obtained with the ROMULv model applied with soil water holding capacity data indicating the best performance among 

these model applications.  

 

3.2 Improved understorey litter input 

 10 

The amount of litterfall from trees and understorey vegetation showed opposite trends with latitude. Total litter input of trees 

and other vegetation in southern Finland was four times higher than that in northern Finland following the temperature 

gradient (Fig. 4). Though, the understorey vegetation at northern sites displayed much higher litter inputs than those in 

southern Finland. According to our results, fall of understorey litter in eastern and northern Lapland was equal to that from 

trees (Fig. 4). We estimated mean litterfall from understorey vegetation to approximately equate to 0.0473 kg m
-2

 and 0.0863 15 

kg m
-2 

of carbon
 
for southern and northern Finland, respectively. Our estimate of mean litter input from trees was 0.1962 kg 

m
-2 

and 0.0903 kg m
-2 

of carbon for
 
southern and northern Finland, respectively.  

 

 

4 Discussion 20 

We tested whether litter quality, litter quantity and mean climate are sufficient for estimating spatial trends in soil carbon 

stocks and if soil texture with low water holding capacity introduces water limitation to decomposition. While testing our 

hypothesis we found that Yasso07 and ROMULv models were able to predict carbon stocks of the same magnitude as that of 

measurements for Finland; however, these models experienced more challenges when their performance was evaluated for 

smaller regions, like the southern coast of Finland. 25 

We also found that litter input from understorey vegetation is equal of that from trees in northern Finland. This emphasises 

the large role of understorey vegetation in compensating trees in an ecosystem carbon cycle, especially under light and 

nutrient limited growth conditions. Total litter input varied from 0.4 to 0.01 kg m
-2

 of carbon from southern to northern 

Finland. These values agree with both, net primary production (NPP) estimates for trees that vary between 0.2 and 0.5 kg m
-2

 

of carbon for southern Finland by Härkönen et al. (2010) and with measured litterfall values that range from 0.23 to 0.3 kg 30 

m
-2 

for Hyytiälä eddy covariance site (Ilvesniemi et al. 2009).     

To sum up, litter input from understorey vegetation has to be quantified properly when soil carbon models are parameterised. 

This means that model developers should have unbiased estimates of total carbon inputs into the soil system when they use 

litter estimates and soil carbon stocks to calibrate parameters that affect long term carbon accumulation. The results of our 
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biomass models for the understorey agreed with previous estimates for southern Finland but for northern Finland our 

estimates were substantially larger. Yasso07 was parameterised using understorey litter inputs ranging from 40–60 g carbon 

m
-2

 a
-1 

and therefore Yasso07, with updated understorey litter estimates, overestimated the level of soil carbon stocks. Our 

data for understorey vegetation biomass was mostly from stands that were over 60 years old and therefore more data for 

younger sites are needed. Furthermore, the litter input of belowground understorey vegetation was uncertain due to limited 5 

data on the life span of roots. More research is therefore needed to confirm the high contribution of dwarf shrub vegetation to 

total belowground litter input. 

When evaluating modelled and measured soil carbon stocks against northern latitude we could see that two out of six 

simulations failed to map measured soil carbon stock decreases towards the north (Fig 4). Five model simulations showed 

that southern coast had less carbon than the next region further north, while the Biosoil data showed the opposite. Only the 10 

ROMULv model, using soil water holding capacity data from Lilja and Nevalainen (2006) was able to estimate the largest 

soil carbon stocks for southern Finland, similar to Biosoil measurements (Fig. 2). This indicated that litter quality, litter 

quantity and climate data are not sufficient when estimating spatial trends of soil carbon stocks. When we evaluated Biosoil 

data for these regions, the southern sites were better drained and drier that those in North. Better drainage was indicated by 

higher sand content, significantly lower silt content and significantly lower Sphagnum and herb vegetation coverage (Table 15 

3). We also found out that the southern coast experiences a 1.3 C˚ higher mean annual temperature than the next region to 

the north. Therefore, the organic layer was larger for southern coast likely due to limited decomposition during dry spells 

(Table 3). This result indicated that the quantity of precipitation alone was not a sufficient modifier for decomposition but 

when complemented with soil water holding capacity average latitudinal results improved. This finding supports the use of 

models including soil texture and water holding capacity.  20 

Our results support also earlier findings, where the time step of the simulation plays a critical role; running models with 

monthly and annual time steps excludes extreme conditions and may produce biased estimates of carbon stocks simply due 

to fact that non-linear models are run with mean conditions (Dalsgaard et al. 2016, Rantakari et al. 2012). This is especially 

critical with soil moisture, which has a bell shaped relation to decomposition (Sierra et al. 2015, Skopp et al. 1990). 

Compared to daily time steps of ROMUL, model simulations with longer time steps (e.g., a year as in Yasso07) exclude both 25 

extreme dry and extreme moist conditions, leading to underestimation of steady states soil carbon stocks. On the other hand, 

reduction of the decomposition rate during limited and excess water conditions are not well known. Sierra et al. (2015) 

compared the effect of moisture on decomposition in different models with the largest variability for dry and saturated 

conditions. They showed that a moisture index of 0.2 can have a decomposition modifier between 0.2 and 1 and similarly 

with a moisture index of 1 this modifier can be anywhere between 0 and 1, depending on the model. These large 30 

discrepancies indicate differences between soil properties of sites used for model calibration and between conceptualisations 

of soil moisture.  

The Yasso07 and ROMULv model simulations with litter input and climate data alone were not enough to reproduce the 

observed soil carbon stocks. Model application without soil moisture impacts on decomposition failed under conditions 
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where soil drainage played a significant role in limiting decomposition. The use of water holding capacity was critical for 

accurate soil carbon stock estimation by the ROMULv model, while Yasso07 performed best when the variation in litter 

input correlated with that of the observed soil carbon stocks (Fig. 3). The fact that Yasso07 soil carbon stocks (Tuomi et al. 

2011) were more accurate when litter input of understory vegetation was omitted from simulations suggests that the model 

calibration did not account for the whole range of understory litter input. This implies that in future, improved estimates for 5 

understorey litter input are needed when Yasso07 or similar models will be parametrised for boreal conditions. In order to 

improve model performance, shorter time steps complemented with more detailed topography and soil properties are needed 

to map the impact of extreme events to soil carbon decomposition (e.g., droughts and water logging conditions). However, 

three model simulations out of six produced relatively accurate estimates of soil carbon stocks compared to the measurement 

means of smaller regions, having RMSE less than 1.1 for soil carbon stocks (Fig. 3). This suggests that improved calibration 10 

with updated understorey litter and accounting for the soil properties as with ROMULv (using data on water holding 

capacity) produces model estimates that agree regionally with data. 

Our simulations and measurements show that models using only litter quality, litter quantity and weather data underestimate 

soil carbon stock in regions like southern Finland and this underestimation is due to omission of the impact of droughts to 

the decomposition of organic layers. Thus, we conclude that GHG inventory methods and soil modules of Earth system 15 

models need to be improved by incorporating the impact of soil texture and soil moisture to decomposition. This is a 

prerequisite for unbiased soil carbon stock and stock change estimates. 

Code availability 

The fortran code of the ROMULv is given in the supplement, while fortran code for Yasso07 is available through website 

[http://code.google.com/p/yasso07ui/], for details see Supplement.  20 
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Table 1. Site description of ICP Forests Level II plots studied for understorey vegetation biomass.  

Plot 

no 
Area Region 

North 

coord. 

East 

coord. 

Tree 

species 

Site 

type 

Forest 

type 

Stand 

age 

Basal 

area 

m2  

DF GR HE BR LI 
Year of 

sampling 

n 

above/below 

1 Sevettijärvi 1 7723 3573 1 5 UVET 210 13.52 x - - x x 2009 28/12 

2 Pallasjärvi 1 7543 3377 1 4 EMT 100 17.85 x - - x x 2003 28/28 

3 Pallasjärvi 1 7549 3384 2 3 HMT 150 15.42 x x x x - 2003 28/28 

4 Sodankylä 1 7472 3485 1 4 EMT 80 19.66 x - - x x 2003 28/28 

5 Kivalo 1 7360 3484 2 3 HMT 80 17.95 x x - x - 2002 28/28 

6 Kivalo 1 7364 3488 1 4 EMT 65 18.94 x - - x x 2002 28/28 

32 Kivalo 1 7371 3486 3 3 HMT 58 14.39 a a a x - 2009 28/0 

21 Oulanka 1 7359 3612 2 3 HMT 180 21.03 a a a x - 2009 28/0 

20 Lieksa 2 7012 3687 1 4 EVT 140 22.27 a - a x - 2009 28/0 

10 Juupajoki 2 6866 3353 1 4 VT 90 23.55 x x x x - 2002 28/28 

11 Juupajoki 2 6863 3359 2 2 OMT 90 30.4 x x x x - 2002 28/28 

12 Tammela 2 6730 3325 2 3 MT 70 33.08 x x x x - 2002 28/28 

13 Tammela 2 6727 3330 1 4 VT 70 29.27 x x x x - 2002 28/28 

16 Punkaharju 2 6854 3627 1 4 VT 90 31.95 x - x x - 2002 28/28 

17 Punkaharju 2 6858 3622 2 2 OMT 80 30.76 - - x x - 2002 28/28 

33 Punkaharju 2 6862 3622 3 1 OMaT 27 16.13 - a a - - 2009 28/0 

34 Luumäki 2 6763 3515 1 5 CT 60 13.55 x - - x x 2009 28/12 

35 Luumäki 2 6756 3513 2 3 MT 60 28.21 x x x x - 2009 28/12 

Region (1 = northern Finland, 2 = southern Finland); tree species (1 = Scots pine, 2 = Norway spruce and 3 = deciduous 

trees); site type (1–5, from rich to poor fertility level); forest site types (abbreviations explained in Salemaa et al. (2008), 

Table 1); plant species groups in biomass samples: DF = dwarf shrubs, GR = grasses, HE = herbs, BR = bryophytes and LI = 5 

lichens. x = biomass sample includes both aboveground and belowground (in organic soil layer) part of vegetation, a = 

sample includes only aboveground vegetation, - = plant group does not grow in the plot. n = number of samples (each sized 

30 x 30 cm
2
) for aboveground and belowground biomass.  
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Table 2. Litter turnover rates for tree and understorey biomass by component, species and region.  

Biomass 

component  

Species Region Value [%] Reference 

Leaves Scots pine  27% [18-34%] Tupek et al., (2015) 

Leaves  Norway spruce  13% [9-15%] Tupek et al., (2015) 

Leaves Broadleaved  79% Tupek et al., (2015) 

Branches Scots pine  2% Lehtonen et al. (2004) 

Branches Norway spruce  1.25% Muukkonen and Lehtonen (2004) 

Branches Broadleaved  1.35% Lehtonen et al. (2004) 

Bark Scots pine  0.3% (Mälkönen 1977, Viro 1955) 

Bark Norway spruce -   - (Mälkönen 1977, Viro 1955) 

Bark Broadleaved  0.01% (Mälkönen 1977, Viro 1955) 

Coarse roots Scots pine  2% Lehtonen et al. (2004) 

Coarse roots Norway spruce  1.25% Muukkonen and Lehtonen (2004) 

Coarse roots Broadleaved  1.35% Lehtonen et al. (2004) 

Fine roots Scots pine South 85% Kleja et al., (2008) 

Fine roots Norway spruce South 85% Kleja et al., (2008) 

Fine roots Broadleaved South 85%  Kleja et al., (2008) 

Fine roots Scots pine North 50% Leppälammi-Kujansuu et al., (2014) 

Fine roots Norway spruce North 50% Leppälammi-Kujansuu et al., (2014) 

Fine roots Broadleaved North 50% Leppälammi-Kujansuu et al., (2014) 

     

Aboveground Dwarf shrubs - 37% This study 

Belowground Dwarf shrubs - 8% This study& Helmisaari et al. (2015) 

Aboveground Grasses - 33% This study 

Belowground Grasses - 59% Leppälammi-Kujansuu et al., (2014) 

Aboveground Herbs - 100%  

Belowground Herbs - 59% This study & Leppälammi-Kujansuu et al., (2014) 

Aboveground Bryophytes - 42% This study 

Aboveground Lichen - 10% Kumpula et al., (2000) 



21 

 

Table 3. Mean soil and forest stand properties for R1 and R2 and 1.96 times their standard error of mean (SEM). R1 is south from 60˚46’, while R2 lies between 60˚46’ and 

62˚34’northern latitude. P-values based on two sided t-test, where group variances are assumed to be different variables where p-value < 0.05 are in bold. Sample sizes were 

31 and 127 plots, for southern (R1) and northern (R2) areas, respectively. For mean temperature and precipitation sample sizes were more than 150 based on Finnish 

Meteorological Institute (FMI) weather grid (Venäläinen et al. 2005). 

 

Sand [%] Silt [%] Clay [%] BS O [%] 
BS M 

[%] 

CEC O 

[cmol(+)/

kg] 

CEC M 

[cmol(+)/

kg] 

pH (H2O) C:N O C:N M 
Sphagnu

m [%] 

Lichen 

[%] 

Herb 

[%] 
G [m2] 

Decid 

[%] 

Spruce 

[%] 
Lito [%] 

R1 mean 
64.92 30.08 4.98 67.2 23.26 32.23 5.27 4.23 26.41 23.11 0.3 0.86 4.43 23.45 15.55 39.81 29 

R1 sem 
7.31 5.39 2.64 6.08 5.5 3.22 0.54 0.12 1.25 1.57 0.53 1.05 1.83 3.29 6.87 12.01 16 

R2 mean 
57.76 37.09 5.15 68.8 27.72 29.06 4.91 4.17 25.13 21.6 1.51 0.45 8.56 23.9 19.28 37.1 6 

R2 sem 
3.34 2.55 1.2 2.29 3.28 0.87 0.43 0.05 1.56 0.79 0.98 0.26 2.18 1.43 4.58 6.09 4 

p-value 

(t.test) 
0.09 0.03 0.91 0.63 0.18 0.07 0.31 0.4 0.21 0.1 0.04 0.48 0.01 0.81 0.38 0.69 0.01 

 

T mean 

[C] 

Prec 

[mm] 

extrCd 

[mg/kg] 

extrPb 

[mg/kg] 

extrK 

[mg/kg] 

extrP 

[mg/kg] 

extrNa 

[mg/kg] 

extrNi 

[mg/kg] 

extrCa 

[mg/kg] 

extrMg 

[mg/kg] 

extrFe 

[mg/kg] 

extrS 

[mg/kg] 

extrMn 

[mg/kg]  
TWI 

Altitude 

[dm] 

SOC O 

[Mg ha-1] 

SOC M 

[Mg ha-1] 

R1 mean 
4.91 580.71 0.48 47.88 1149.16 943.61 139.71 10.8 4638.39 992.52 5157.74 1435.39 459.47 6.97 588 25.82 31.65 

R1 sem 
0.09 6.25 0.05 3.62 138.59 80.16 14.87 1.03 1044.39 329.89 984.63 85.95 167.12 1.83 124 5 7.15 

R2 mean 
3.62 545.66 0.38 36.02 1225.03 940.32 131.19 11.07 4058.02 1063.51 4675.6 1380.96 537.84 8.79 1119 17.46 35.23 

R2 sem 
0.05 2.28 0.03 5.77 85.23 38.99 11.11 1.05 256.21 159.48 643.98 55.04 148.54 1.14 55 1.57 3.31 

p-value 

(t.test) 
0 0 0 0 0.37 0.94 0.38 0.73 0.3 0.71 0.43 0.31 0.5 0.1 0 0 0.38 

 5 

Here sand, silt and clay content are given as a percentage. Base saturation (BS). cation exchange capacity (CEC) and C:N ratios are given separately for organic layer (O) and for mineral soil 

layer (M). pH is measured in water. Abundance of ground vegetation given as percentage coverage. Basal area of trees (G) and relative shares of deciduous species and Norway spruce from 

basal area. Lito indicates the proportions of sites that were under the Littorina Sea 8000–7000 BP. Aqua regia extractable K, P, Na, Ni, Ca, Mg, Fe, S and Mn unit mg/kg. Topographical 

wetness index (TWI). Altitude of plots based on 10 m resolution map layer. Amount of carbon in organic and mineral soil horizon.  

 10 
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Figure 1: Schematic illustration of Yasso07 (left) and ROMULv (right) soil carbon models. Solid arrows indicate fluxes of organic matter, while dashed arrows indicate CO2 fluxes to 

atmosphere.  
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Figure 2. Latitudinal trends of measured and modelled soil carbon stocks across Finland. X-axis is the North coordinate according 

to Finnish YKJ system and Y-axis is the soil carbon stock Mg ha-1. Grey dots are individual model estimates and red line is a 2nd 5 

order loess fit. Panel A is Yasso07 with Rantakari et al. (2012) parameters, while B is with Tuomi et al. (2011) parameters. C and D 



24 

 

are same as A and B, but without understorey litter input. E and F are with ROMULv model where E includes soil water holding 

capacity data and F is with constant soil water holding capacity. Black dots are means from Biosoil data for each latitude band 

and whiskers are 1.96 times standard error of the mean. 

 

 5 
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Figure 3. One-by-one plots for mean model estimates and mean Biosoil measurements of soil carbon stocks for 41 latitudinal bands 

across Finland. Panel A is Yasso07 with Rantakari et al. (2012) parameters, while B is with Tuomi et al. (2011) parameters. C and 

D are same as A and B but without understorey litter input. E and F are with ROMULv model where E is with soil water holding 

capacity data and F is with constant soil water holding capacity. R2, slope of the regression and the slope standard error are 

reported. RMSE is based on the difference between model estimate and measurements.  5 

 

 

Figure 4. Maps for total litter input [Mg ha-1], understorey litter input [Mg ha-1], mean annual temperature [C˚] and mean annual 

precipitation [mm].  

 10 
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1. Fineroot turnoverate modeling 

Fineroot turnoverrates were based on Kleja et al. (2008) and to Leppälammi-Kujansuu et al. (2014). It 

was assumed that the turnoverrate of fineroots is 85% in Southern Finland in areas where temperature 

sum during the growing season (with 5 Cº treshold) is more than 1200. For Northern Finland we used 

turnoverate of 50% when temperature sum was less than 700. For sites where temperature sums were 

between 700 and 1200 we interpolated the turnoverrate with a simple linear regression, 

y = b0 + b1 × x, where  

y is the turnoverrate and b0 equals 0.0007, b1 equals 0.001 and x is degree days that varies between 700 

and 1200 degrees.  

 

2. Estimation of understorey biomass  

Here we provide parameter estimates for understorey models (Table S1) and figures for model fits 

(Figs. S1 & S2). 

 

Table S1. Parameter estimates for understorey models by species groups and regions. Where β0 is the 

intercept and β1 is a slope of the fixed part of the model and bc is the bias correction. Var b0, Cov bob1 

and Var b1 originate from variance-covariance matrix of the fixed part of the model. Var pop lists 

unexplained variance and Var plt lists unexplained variance after plot as a random effect.  

 
 

Group Com. Reg. β0 β1 bc Varβ0 Covβo β1 Varβ1 Var Pop Var Plt 

Dwarf shrub Ab NF 3.62 0.948 0.135 0.115 -0.028 0.008 0.285 0.136 

Dwarf shrub Ab SF 2.653 1.107 0.186 0.081 -0.015 0.005 0.45 0.16 

Grass Ab - 2.75 0.918 0.292 0.129 -0.03 0.01 0.688 0.273 

Herb Ab - 1.116 1.08 0.445 0.074 -0.018 0.008 0.832 0.572 

Bryophytes Ab - 3.13 0.795 0.281 0.301 -0.072 0.018 0.633 0.306 

Lichen Ab - 3.69 0.894 0.109 0.047 -0.012 0.005 0.27 0.175 

Shrub Bl NF 6.278 0.45 0.161 0.086 -0.02 0.006 0.315 0.241 

Shrub Bl SF 3.73 0.831 0.458 0.15 -0.035 0.011 1.06 0.867 

Grass Bl NF 3.368 0.589 0.639 0.169 -0.039 0.017 1.423 0.859 

Herb Bl SF 1.877 0.906 0.709 0.27 -0.067 0.03 1.195 0.898 

Com. = compartment: Ab = aboveground, Bl = belowground 

Reg. = region: NF = northern Finland, SF = southern Finland 



 

Figure S1: Models and data points for aboveground understorey biomass (A = Dwarf shrubs in northern Finland, B = Dwarf 

shrubs in southern Finland, C = Grasses, D = Herbs, E = Mosses and F = Lichen). Solid line based on modelling that takes into 

account site fertility distribution for Finland by weighting, while dashed line is the estimate without weights. 

 



 
 
Figure S2. Models and data points for belowground understorey biomass (A = Dwarf shrubs in northern Finland, B = Dwarf 

shrubs in southern Finland, C = Grasses and D = Herbs). Solid line based on modelling that takes into account site fertility 

distribution for Finland by weighting, while dashed line is the estimate without weights.   

 

R code for variograms and cross-variograms of vegetation group coverages and resulting figure with 

semivariance as a function of distance (Fig. S3).  

 

 



library(gstat) 

library(sp) 

### peite34 object includes data for vegetation coverages and plot locations across Finland 

coordinates(peite34) = c('x','y') 

################### 

g.r <- gstat(NULL, "dwarf shrubs", r1~x+y,data = peite34,  model = v.fitr1, nmax=200) 

g.r <- gstat(g.r, "grass&herb", r2~x+y,data = peite34,  model = v.fitr2, nmax=200) 

g.r <- gstat(g.r, "bryophyte", r3~x+y,data = peite34,  model = v.fitr3, nmax=200) 

g.r <- gstat(g.r, "lichen", r4~x,data = peite34,  model = v.fitr4, nmax=200)  

vm <- variogram(g.r) 

vm.fit <- fit.lmc(vm,g.r,vgm(1200,"Sph",100,300)) 

plot(vm, vm.fit) 

## thereafter predictions of the understorey coverage for each location by vegetation groups 

cok.maps <- predict(vm.fit, nfi10loc) 



 

Figure S3. Variograms and cross-variograms for different functional types of understorey vegetation.  

 

3. Nitrogen content of the litterfall 

Table S2. Nitrogen content of litterfall as ratios from mass, based on Komarov et al. (2007).  

 
 Foliage Branches Stem wood Fine roots Coarse roots Total 

Scots pine    0.003 0.004 0.0014 0.0047 0.0024 - 

Norway spruce 0.0045 0.0035 0.002 0.0035 0.003 - 

Deciduous 0.007 0.004 0.0015 0.005 0.0045 - 

Understorey
1
 - - - - - 0.006 

 

4. Soil carbon model Yasso07 

Parameters for the Yasso07 have been estimated with Markov Chain Monte Carlo (MCMC) methods 

where litter bag, wood decomposition and soil carbon stock data were used to calibrate model 

parameters. Maximum posterior parameters estimates used in this study were based on works by 

Rantakari et al. (2012) and for earlier version of the global Yasso07 parameterisation that is a close 

                                                 
1
 The nitrogen content of the understorey litterfall was estimated to be 0.6% from dry mass.   



variant of the Tuomi et al. (2011) publication (Table S2).  Model have been described more in detail in 

papers where individual components have been reported (Tuomi et al. 2009, Tuomi et al. 2011, Tuomi 

et al. 2008)  

 

Fortran code of the Yasso07 model is available here:  

http://code.google.com/p/yasso07ui/ 

Table S2. Yasso07 maximum a posterior (MAP) point estimates Scandinavian (Rantakari et al. 2012) 

and global parameterization (Tuomi et al. 2011).  

  

Parameter Scandinavia

n 

Global Unit Meaning 

aA 0.52 0.72 
a
-1

 
decomposition rate of A 

aW 3.55 5.9 
a
-1

 
decomposition rate of W 

aE 0.35 0.28 
a
-1

 
decomposition rate of E 

aN 0.27 0.031 

 

a
-1

 
decomposition rate of N 

p1 0.04 0.48 

 

. mass flow from W to A 

p2 0.03 0.01 . mass flow from E to A 

p3 0.98 0.83 . mass flow from N to A 

p4 0.64 0.99 . mass flow from A to W 

p5 0.31 0.00 . mass flow from E to W 

p6 0.019 0.01 . mass flow from N to W 

p7 0.023 0.00 . mass flow from A to E 

p8 0.01 0.00 . mass flow from W to E 

p9 0.001 0.02 . mass flow from N to E 

p10 0.34 0.00 . mass flow from A to N 

p11 0.042 0.015 . mass flow from W to N 

p12 0.09 0.95 . mass flow from E to N 

b1 0.09 0.95 
C

-1
 

temperature dependence parameter 

b2 -0.0023 -1.4 
10

-

3
C

-2
 

temperature dependence parameter 

y -2.94 -1.21 
m

-1
 

precipitation dependence parameter 

pH 0.15 4.5 

 

10
-3

 
mass flow from A,W,E,N to humus 

aH -0.24 -1.6 

 

10
-3

 

a
-1

 

humus decomposition coefficient 

roo1 -0.539 -1.71 
cm

-1
 

size dependence parameter 

roo2 1.186 0.86 
cm

-2
 

size dependence parameter 

r -0.264 -0.306 . size dependence parameter 

 

5. Soil carbon model ROMULv 

 

ROMUL decomposition model describes the flux of soil organic matter (SOM) through the soil 

http://code.google.com/p/yasso07ui/


decomposition process, divided into separate parallel paths of matter based on the different origins of 

the litter (Chertov and Komarov 1997, Chertov et al. 2001). All fluxes have essentially the same pattern 

of flux. The litter entering the decomposition process is stored in a store of undecomposed litter (H). 

This then decomposes into a mixture of partly decomposed (humified) SOM (F). The SOM in the F 

fraction is decomposed by different types of organisms (fungi, bacteria and earthworms) and end up in 

storage of semi-stable humus (H). These fluxes (for litter of different origins) are for SOM, but the 

model also describes a parallel decomposition process for nitrogen in soil, following the same pattern 

of storages and fluxes. 

 

Litter → L → F → H 

 

In each transition from one storage to another, the rate of decomposition depends on the nitrogen 

content of the storage (calculated from the ratio of the SOM storage and the corresponding N storage) 

and the ash content of the litter (fixed percentage for each litter source). These transfer rates are 

adjusted with coefficient functions depending on soil temperature and soil water content. During each 

transition, a fraction of the pool is mineralized – SOM released as CO2 and N released into a pool of 

mineralized N available to plants, while most of the matter moves to the next pool in the decomposition 

process. The litter from different sources follow different routes, until they all end up in a common pool 

of semi-stable humus (H). Finally, also the matter in the H pool slowly decomposes. In each transition 

from one pool to another, the rate of SOM and N decomposition is the same, except for the transition 

from F pool to H; here the C:N ratio of the transition is characteristic for all decomposer classes (fungi, 

bacteria and earthworms), and in this phase the N content of the soil is enriched. 

 

The litter from aboveground (leaves, shoots and trunks) fall onto the forest floor, whereas the root litter 

(fine roots and coarse roots) decomposes in the mineral soil layer. For the two layers, the 

decomposition rates based on SOM properties are mostly similar, but the environmental conditions 

(temperature and soil moisture) may differ for the two layers, resulting in different decomposition rates. 

The semi-stable storage H is common for all fluxes and resides in the mineral soil layer. 

 

The original ROMUL model uses decomposition rate functions that use gravimetric measures of soil 



water as input. As these figures are somewhat tedious to calculate and would require detailed 

information of the soil characteristics, such as soil density and precise thickness of the soil layers, we 

used instead a modification presented by Linkosalo et al. (2013) named here as ROMULv. In their 

paper they produced decomposition rate functions that are based on volumetric soil water measures, 

and a volumetric soil water model to predict the variation in the soil water content, driven by 

environmental measures. The volumetric soil water model was easier to apply for multiple simulation 

points, as it only needs the total potential soil water storage (i.e. difference between field capacity and 

wilting point) to characterize the soil for the simulations of relative soil water content.  

 

The description of the original ROMUL model is available from here: 

http://ecomodelling.ru/ 

For the source code used in this study, see the end of this document.  
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Source code of the ROMULv model used here 

 

 

 

Main program loop (meta-code): 

 

Initialize ROMUL (read initial values from file) 

 

Loop_over_data { 

 

  read meteorological data 

  calculate soil temperature 

 

  calculate evapotranspiration 

  calculate soil water status 

 

  calculate decomposition and update soil storages 

} 

 

write ROMUL results 

 

 

 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

c This implementation of the ROMUL model is based on  

c Chertov et al. 2001, with "new functions" from  

c Komarov et at. 2008. 

c 

c Tapio Linkosalo (METLA) & Annikki Mäkelä (UH) 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 



 

       subroutine ROMUL(litter,litter_N,T,SW,Navail, 

     +                site, year, init) 

 

 implicit none 

 

c litterfall by cohort, soil temperature and water content for organic (==1)  and mineral soil layer 

(==2)   

c init-parameter for initializing the model (1), normal simulation (0) or output the results (2). 

  

      double precision litter(11), litter_N(11) 

      real T(2), SW(2) 

       

c mass storages are save-variables, values persist from one call to another 

c First dimension of pools is for the SOM cohort, the second for spatial locations 

c (except only one pool per geographic location for humus) 

      double precision Lpool(11,4000), Fpool(11,4000) 

      double precision LNpool(11,4000), FNpool(11,4000) 

      double precision Hpool(4000), HNpool(4000) 

      save Lpool, Fpool, Hpool, LNpool, FNpool, HNpool 

       

      double precision Navail(4000) 

 real time, Nup, fnf, gnf, fnwb, Ndemand, qctot 

 integer site, year, init 

       

      integer local_year 

      static local_year 

 

c declare decomposition coefficient functions 

      real f_1, f_2, f_3, f_4, f_5, f_6 

      real g_1, g_2, g_3, g_4, g_5, g_6 

c 

c * N pools etc 

c 

c  litter in 11 separate pools 

c  all have L and F fractions, one H fraction 

c  all fractions have SOM and N 

c  cohorts are order thus: 

c     1   foliage 

c     2   branches 

c     3   stems 

c     4   fine roots 

c     5   coarse roots 

c     11  ground vegetation 

c  Note! Cohorts 6 to 10 are for felling residues, but in this version 

c  they are calculated in corresponding litter cohorts (6->1 etc.) 

 

c parameters - following ROMUL  

c 

c kL  specific rate of leaching (yr-1) 1.0 



c kDL(i)  specific rate of litter decomposition (yr-1) 0.3 

c kDF(i) specific rate of SOM decomposition (yr-1) 0.3 

c  kTL(i) specific rate of transfer from litter to SOM  (yr-1) 

c kTF(i) specific rate of transfer from SOM to humus, comp. 1  (yr-1) 0.3 

c kTF2(i) specific rate of transfer from SOM to humus, comp. 2  (yr-1) 0.3 

c kDH  specific rate of humus decomposition (yr-1) 1/6000 

c kUG  maximum specific N uptake rate of ground vegetation (yr-1) 100 

c DeposN  N deposition (free input) (kg yr-1) 1 

c 

c     ash_cont(i) ash content of cohorts 

c     fnf     foliar N concentration in live foliage 

c gnf  retention of foliar N when shedding foliage 0.45 

c 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 

c Declare internal variables 

 

      double precision DeposN, LeachN 

 double precision d_Lpool(11),d_Fpool(11),d_HumusPool 

      double precision d_LNpool(11),d_FNpool(11),d_HumusNPool 

 double precision d_Navail 

      double precision fn(11) 

 real kL, kM, DM 

      double precision kDL(11), kDH 

      double precision kDF(11) 

      double precision kTL(11) 

      double precision kTF(11),kTF2(11) 

      real LKP_decomp 

      double precision K_1S_rma, K_2S_rma,K_3S_rma, k_1L_rma,K_2L_rma 

      double precision k_3L_rma, k_4_rma,k_5_rma,k_6_rma 

      double precision ML, MF(11), MFres(11), MH, gamma, GVN1, GVN2 

 double precision N_release, FH_FluxB, FH_fluxL, FHN_FluxB, FHN_fluxL 

      double precision MF_flux, MF_min 

      double precision H_miner, H_C, C_C, DeltaB, DeltaL, dL 

      double precision x1, x2, ash_cont(11) 

      integer inttime, i, j, k, inttimetot 

      double precision Lpoolsum(5),Fpoolsum(5),LNpoolsum(5),FNpoolsum(5) 

      double precision littersum(5), Fpooltot(2), FNpooltot(2), H_CN 

      double precision Lpooltot(2), LNpooltot(2) 

      double precision NFconc(2), NLconc(2) 

 double precision step 

      

       

c assign parameter values       

 data kL 

     1 /0.12/ 

 

      data (ash_cont(i) , i=1,11) 

     1 /0.02,  0.02,  0.01,  0.02,  0.02, 0.02, 0.02, 0.01,  



     1 0.02, 0.01, 0.04/ 

       

      data fnf, gnf  /0.02, 0.45/ 

       

      data DeposN, kM, DM /2., 2., 0.3/ 

      data ML, gamma, C_C / 0.1, 0.8, 0.5/ 

      data deltaB, deltaL /24., 12.8/ 

 

      

      dL = 1 

       

       

       

       

c read inputs when coming to this subroutine for the first time (init = 1) 

      if (init.eq.1) then 

    open(unit=25,file='soil.dat',status = 'old', err = 999) 

         do 100 i = 1, site 

          read(25,*) j, (Lpool(j,i),j=1,5),Lpool(11,i), 

     +                     (Fpool(j,i),j=1,5),Fpool(11,i), 

     +                        Hpool(i), 

     +            (LNpool(j,i),j=1,5),LNpool(11,i), 

     +            (FNpool(j,i),j=1,5),FNpool(11,i), 

     +            HNpool(i) 

              

100      continue 

    close(25)  

         goto 998 

999      write(*,*) "failed to open soil.dat" 

          

          

         local_year = 0 

          

998         return 

      endif 

 

       

c write storages to file when coming to this subroutine for the last time (init = 2) 

      if (init.eq.2) then 

    open(unit=25,file='soil.dat',status = 'old') 

 

         write(*,*) "writing soil.dat..." 

         do 101 i = 1, site 

              write(25,997) i,(Lpool(j,i),j=1,5),Lpool(11,i), 

     +                        (Fpool(j,i),j=1,5),Fpool(11,i), 

     +         Hpool(i), 

     +        (LNpool(j,i),j=1,5),LNpool(11,i), 

     +        (FNpool(j,i),j=1,5),FNpool(11,i), 

     +            HNpool(i) 

997   format(i5,12f12.2,f14.2,12f12.5,f14.3) 



101      continue 

    close(25)  

         return 

      endif 

 

 

c Daily calculation starts here!       

          

         do 65 i = 1, 11 

             fn(i) = litter_N(i)/litter(i) 

65       continue 

          

c "step" is for substeN of differential calculation, with daily weather data 

c no substeN needed. 

            step = 1 

          

c compute specific rate parameters as functions of ash content and N content 

c compute total N in litter 

 

c first the N concentration for the F-pools: 

c index 1 = organic layer, and 2 = mineral soil 

 

      Lpooltot(1) = Lpool(1,site) + Lpool(2,site) + Lpool(3,site) +  

     +                Lpool(11,site) 

      LNpooltot(1) = LNpool(1,site) + LNpool(2,site) + LNpool(3,site) + 

     +                LNpool(11,site) 

      Fpooltot(1) = Fpool(1,site) + Fpool(2,site) + Fpool(3,site) +  

     +                Fpool(11,site) 

      FNpooltot(1) = FNpool(1,site) + FNpool(2,site) + FNpool(3,site) + 

     +                FNpool(11,site) 

      Fpooltot(2) = Fpool(4,site) + Fpool(5,site) 

      FNpooltot(2) = FNpool(4,site) + FNpool(5,site)  

 

 

      NFconc(1) = FNpooltot(1) / Fpooltot(1) 

      NFconc(2) = FNpooltot(2) / Fpooltot(2) 

      NLconc(1) = LNpooltot(1) / Lpooltot(1) 

      NLconc(2) = LNpooltot(2) / Lpooltot(2) 

       

       

      do 25 i = 1,5 

                     

          if(i.ge.4) then 

              kDL(i) = k_1S_rma(ash_cont(i), fn(i)) *  

     *            f_1(T(2)) * LKP_decomp(SW(2), 0.55) 

             kDF(i) = k_2S_rma(ash_cont(i), NFconc(2)) *  

     *            f_2(T(2)) * LKP_decomp(SW(2), 0.55) 

              kTL(i) = k_3S_rma(ash_cont(i), fn(i)) *  

     *            f_3(T(2)) *LKP_decomp(SW(2), 0.55) 

          else 



              kDL(i) = k_1L_rma(ash_cont(i), fn(i)) *  

     *            f_1(T(1)) * LKP_decomp(SW(1), 0.7) 

              kDF(i) = k_2L_rma(ash_cont(i), NFconc(1)) *  

     *            f_2(T(1)) * LKP_decomp(SW(1), 0.7) 

              kTL(i) = k_3L_rma(ash_cont(i), fn(i)) *  

     *            f_3(T(1)) * LKP_decomp(SW(1), 0.7) 

          endif 

           

          kTF(i) = k_4_rma(ash_cont(i), NFconc(2)) *  

     *            f_4(T(2)) * LKP_decomp(SW(2), 0.55) 

          kTF2(i) = k_5_rma(ash_cont(i), NFconc(2)) * 

     *            f_5(T(2)) * LKP_decomp(SW(2), 0.55) 

           

25    continue 

      

          kDL(11) = k_1L_rma(ash_cont(11), fn(11)) *  

     *            f_1(T(1)) * LKP_decomp(SW(1), 0.7) 

          kDF(11) = k_2L_rma(ash_cont(11), NFconc(1)) *  

     *            f_2(T(1)) * LKP_decomp(SW(1), 0.7) 

          kTL(11) = k_3L_rma(ash_cont(11), fn(11)) *  

     *            f_3(T(1)) * LKP_decomp(SW(1), 0.7) 

           

          kTF(11) = k_4_rma(ash_cont(11), NFconc(2)) *  

     *            f_4(T(1)) * LKP_decomp(SW(1), 0.55) 

          kTF2(11) = k_5_rma(ash_cont(11), NFconc(1)) * 

     *            f_5(T(1)) * LKP_decomp(SW(1), 0.55) 

                 

       

      kDH = k_6_rma() * f_6(T(2)) * LKP_decomp(SW(2), 0.55) 

           

       

       

 

c update N pools 

 

 Nup = 0. 

 

c      do 100 inttime = 1, inttimetot 

           

 

 

      LeachN = kL * Navail(site) 

      LeachN = max(LeachN, 0.) 

 

      

c C pools: derivatives 

 

      FH_fluxB = 0. 

      FH_fluxL = 0. 

      FHN_fluxB = 0. 



      FHN_fluxL = 0. 

 

      do 10 i = 1,5 

           

          d_Lpool(i) = litter(i) + litter(i+5) -  

     -        (kDL(i) + kTL(i)) * Lpool(i,site) 

           

          d_Fpool(i) = kTL(i) * Lpool(i,site)  

     1                 -(kDF(i) + kTF(i) + kTF2(i)) * Fpool(i,site)  

           

          FHN_fluxB = FHN_fluxB + kTF(i) * FNpool(i,site)  

          FHN_fluxL = FHN_fluxL + kTF2(i) * FNpool(i,site)  

          FH_fluxB = FH_fluxB + kTF(i) * Fpool(i,site) 

          FH_fluxL = FH_fluxL + kTF2(i) * Fpool(i,site)  

           

10    continue 

           

           

 

          d_Lpool(11) = litter(11)  -  

     -        (kDL(11) + kTL(11)) * Lpool(11,site) 

           

          d_Fpool(11) = kTL(11) * Lpool(11,site)  

     1                 -(kDF(11) + kTF(11) + kTF2(11)) * Fpool(11,site)  

           

          FHN_fluxB = FHN_fluxB + kTF(11) * FNpool(11,site)  

          FHN_fluxL = FHN_fluxL + kTF2(11) * FNpool(11,site)   

          FH_fluxB = FH_fluxB + kTF(11) * Fpool(11,site) 

          FH_fluxL = FH_fluxL + kTF2(11) * Fpool(11,site)  

       

       

       

           d_HumusPool = DeltaB * FHN_fluxB + DeltaL * FHN_fluxL  

     +                 - kDH * Hpool(site) 

  

c calculate MF(i)  

 

      do 11 i = 1,5 

           

          if((100.*NFconc(2) - 1.16 * 100.*NFconc(1)) . le. 0.44) then 

              MF(i) = 0.1 

          else  

              if((100.*NFconc(2) - 1.16*100.*NFconc(1)) . le. 1.50) then 

                  MF(i) = 0.5 

              else 

                  MF(i) = 1.0 

              endif 

          endif 

           

          



11    continue 

 

          if((100.*NFconc(2) - 1.16 * 100.*NFconc(1)) . le. 0.44) then 

              MF(11) = 0.1 

          else  

              if((100.*NFconc(2) - 1.16*100.*NFconc(1)) . le. 1.50) then 

                  MF(11) = 0.5 

              else 

                  MF(11) = 1.0 

              endif 

          endif 

           

       

       

       

c MF_flux is transferred from F to H, MF_min is released 

       

      MF_flux = 0. 

      MF_min = 0. 

       

      do 20 i = 1,5 

           

 

          d_LNpool(i) = litter_N(i) + litter_N(i+5)  

     1                 - (ML*kDL(i) + kTL(i)) * LNpool(i,site) 

           

            

          d_FNpool(i) = (kTL(i)) * LNpool(i,site)  

     1                  - MF(i) * kDF(i) * FNpool(i,site) 

     1                  -(kTF(i) + kTF2(i)) * FNpool(i,site)  

 

          MF_flux = MF_flux + (1-MF(i)) * kDF(i) * FNpool(i,site) 

          MF_min = MF_min + MF(i) * kDF(i) * FNpool(i,site) 

           

          Lflux(i,site) = Lflux(i,site) + ML*kDL(i) * LNpool(i,site) 

          Fflux(i,site) = Fflux(i,site) + MF(i)*kDF(i) * FNpool(i,site) 

 

           

           

20    continue 

 

       

       

          d_LNpool(11) = fn(11) * litter(11)  

     1                 - (ML*kDL(11) + kTL(11)) * LNpool(11,site) 

           

            

          d_FNpool(11) = (kTL(11)) * LNpool(11,site)  

     1                  - MF(11) * kDF(11) * FNpool(11,site) 

     1                  -(kTF(11) + kTF2(11)) * FNpool(11,site)  



 

          MF_flux = MF_flux + (1-MF(11)) * kDF(11) * FNpool(11,site) 

          MF_min = MF_min + MF(11) * kDF(11) * FNpool(11,site) 

  

           

       

       if(HNpool(site) .gt. 0.) then 

          H_CN = Hpool(site) / HNPool(site) / 2. 

      else 

          H_CN = 100. 

      endif 

       

      if(H_CN .gt. 8.) then 

          MH = 0.8 

      else 

          MH = 1. 

      endif 

       

           

          d_HumusNPool =  

     +                   - kDH * MH * HNpool(site) 

     1                   + gamma * (FHN_fluxB + FHN_fluxL) 

           

 

       

C  Calculate mineralised carbon 

       

      H_miner = kDH * Hpool(site) + FH_fluxB + FH_fluxL 

     1                 - DeltaB * FHN_fluxB - DeltaL * FHN_fluxL 

     1                 - DeltaB * kM * Navail(site) 

       

      do 15 i = 1,5 

          H_miner = H_miner + kDL(i) * Lpool(i,site) 

     +              + kDF(i) * Fpool(i,site) 

15    continue 

       

          H_miner = H_miner + kDL(11) * Lpool(11,site) 

     +              + kDF(11) * Fpool(11,site) 

 

       

      H_C = C_C * H_miner 

      C_sum(site) = C_sum(site) + H_C 

       

c calculate N release 

 

      N_release =    kDH * MH * HNpool(site)  

     1              + (1. - gamma) *(FHN_fluxB + FHN_fluxL)      

     1                 + DeposN 

c     1                - kM * Navail(site) + DeposN 

 



      Hflux(site) = Hflux(site) + kDH* MH * HNpool(site) 

       

       

      do 16 i = 1,5 

          N_release = N_release + ML * kDL(i) * LNpool(i,site)  

     1                + MF(i) * kDF(i) * FNpool(i,site) 

 

 

16    continue 

       

          N_release = N_release + ML * kDL(11) * LNpool(11,site)  

     1                + MF(11) * kDF(11) * FNpool(11,site) 

 

 

   d_Navail = N_release  - LeachN  

c     1             - N_coeff_TR * Ndemand   

c     1             - N_coeff_GV1 * Gr_GVegN1 - N_coeff_GV2 *  Gr_GVegN2 

 

 

c Update pools - use simple Euler 

 

      do 17 i = 1, 5 

c daily version -> step equals one!          

          Lpool(i,site) = Lpool(i,site) + d_Lpool(i) * step 

          Fpool(i,site) = Fpool(i,site) + d_Fpool(i) * step 

          LNpool(i,site) = LNpool(i,site) + d_LNpool(i) * step 

          FNpool(i,site) = FNpool(i,site) + d_FNpool(i) * step 

17    continue 

       

          Lpool(11,site) = Lpool(11,site) + d_Lpool(11) * step 

          Fpool(11,site) = Fpool(11,site) + d_Fpool(11) * step 

          LNpool(11,site) = LNpool(11,site) + d_LNpool(11) * step 

          FNpool(11,site) = FNpool(11,site) + d_FNpool(11) * step 

 

       

      HPool(site) = HPool(site) + d_HumusPool * step 

 HNPool(site) = HNPool(site) + d_HumusNPool * step 

 Navail(site) = Navail(site) + d_Navail * step 

       

      N_sum(site) = N_sum(site) + d_Navail * step 

       

c      Navail(site) = max(Navail(site), 0.) 

 

 

     

       

      return 

      end subroutine ROMUL 

 

 



 

 

 

c ----------------------------------------------------------------------------- 

c The functions for rate of decomposition modifiers depending on temperature  

c of the corresponding cohort. These new functions are from Komarov et al. 2008. 

c 

c Tapio Linkosalo October 2008 

c ----------------------------------------------------------------------------- 

 real function f_1(T) 

 

  real T 

 

  if (T .LE. -5.0 .OR. T .GT. 60.0) then 

   f_1 = 0 

  endif 

  if (T .GT. -5.0 .AND. T .LE. 1.0) then 

   f_1 = 0.1595 + 0.0319 * T 

  endif 

  if (T . GT. 1.0 .AND. T .LE. 35.0) then 

   f_1 = 0.1754 * exp(0.0871 * T) 

  endif 

  if (T . GT. 35.0 .AND. T .LE. 60.0) then 

   f_1 = 8.791 - 0.1465 * T 

  endif 

 

  return 

 end 

c ----------------------------------------------------------------------------- 

 real function f_2(T) 

 

  real T 

 

  if (T .LE. -5.0 .OR. T .GT. 60.0) then 

   f_2 = 0 

  endif 

  if (T .GT. -5.0 .AND. T .LE. 1.0) then 

   f_2 = 0.1595 + 0.0319 * T 

  endif 

  if (T . GT. 1.0 .AND. T .LE. 35.0) then 

   f_2 = 0.1754 * exp(0.0871 * T) 

  endif 

  if (T . GT. 35.0 .AND. T .LE. 60.0) then 

   f_2 = 3.690 - 0.0615 * T 

  endif 

 

  return 

 end 

c ----------------------------------------------------------------------------- 

 real function f_3(T) 



 

  real T 

 

  if (T .LE. -3.0) then 

   f_3 = 0 

  endif 

  if (T .GT. -3.0 .AND. T .LE. 7.0) then 

   f_3 = 1.3 

  endif 

  if (T .GT. 7.0 .AND. T .LE. 60.0) then 

   f_3 = 1.472 - T * 0.0245 

  endif 

  if (T. GT. 60.0) then 

   f_3 = 0 

  endif  

 

  return 

 end 

c ----------------------------------------------------------------------------- 

 real function f_4(T) 

 

  real T 

 

  if (T .LE. -5.0) then 

   f_4 = 0 

  endif 

  if (T .GT. -5.0 .AND. T .LE. 1.0) then 

   f_4 = 0.1595 + 0.0319 * T 

  endif 

  if (T .GT. 1.0 .AND. T .LE. 20.0) then 

   f_4 = 0.1754 * exp(0.0871 * T) 

  endif 

  if (T .GT. 20.0 .AND. T .LE. 40.0) then 

   f_4 = 1 

  endif 

  if (T .GT. 40.0 .AND. T .LE. 80.0) then 

   f_4 = 2.0 - 0.025 * T  

  endif 

  if (T. GT. 80.0) then 

   f_4 = 0 

  endif  

 

  return 

 end 

c ----------------------------------------------------------------------------- 

 real function f_5(T) 

 

  real T 

 

  if (T .LE. -5.0) then 



   f_5 = 0 

  endif 

  if (T .GT. -5.0 .AND. T .LE. 1.0) then 

   f_5 = 0.078 + 0.0156 * T 

  endif 

  if (T .GT. 1.0 .AND. T .LE. 13.0) then 

   f_5 = 0.0675 * exp(0.2088 * T) 

  endif 

  if (T .GT. 13.0 .AND. T .LE. 25.0) then 

   f_5 = 1 

  endif 

  if (T .GT. 25.0 .AND. T .LE. 50.0) then 

   f_5 = 2.0 - 0.04 * T  

  endif 

  if (T. GT. 50.0) then 

   f_5 = 0 

  endif  

 

  return 

 end 

c ----------------------------------------------------------------------------- 

 real function f_6(T) 

 

  real T 

 

  if (T .LE. -5.0) then 

   f_6 = 0 

  endif 

  if (T .GT. -5.0 .AND. T .LE. 1.0) then 

   f_6 = 0.1595 + 0.0319 * T 

  endif 

  if (T .GT. 1.0 .AND. T .LE. 27.5) then 

   f_6 = 0.1754 * exp(0.0871 * T) 

  endif 

  if (T .GT. 27.5 .AND. T .LE. 35.0) then 

   f_6 = 1.95 

  endif 

  if (T .GT. 35.0 .AND. T .LE. 60.0) then 

   f_6 = 4.68 - 0.078 * T  

  endif 

  if (T. GT. 60.0) then 

   f_6 = 0 

  endif  

 

  return 

 end 

c ----------------------------------------------------------------------------- 

c 

c     Decomposition rate function for volumetric soil water content (theta) (where 

c     theta = 0 == wilting point and theta = 1 == saturation), based on paper 



c     Linkosalo, Kolari & Pumpanen 2013. 

c 

c -----------------------------------------------------------------------------       

      real function LKP_decomp(theta, porosity) 

       

          real  theta, porosity, P1, P2 

       

          P1 = 3.83 * theta ** 1.25 

          P2 = 4.43 * (1-theta)**0.8854 

          LKP_decomp = min(P1,P2,1.) 

 

          return 

          end 

       

 

c ----------------------------------------------------------------------------- 

c The following are the k coefficients for the decomposition rate, depending on 

c litter ash and N content. The two values are given as parameters (absolute  

c values g/g, NOT percentage as in Romul equations!) so that the same functions 

c can be used whether the parameter values are for a specific cohort or litter 

c in general. These are the "new" functions as in Komarov et al. 2008. 

c 

c TL October 2008.  

c ----------------------------------------------------------------------------- 

 double precision function k_1L_rma(ash, N) 

 

  double precision ash, N 

 

  k_1L_rma = 0.0005 + 0.54 * N 

 

  return 

 end 

c ----------------------------------------------------------------------------- 

 double precision function k_1S_rma(ash, N) 

 

  double precision ash, N 

 

  k_1S_rma = 0.0136 + 0.06 * ash 

 

  return 

 end 

c ----------------------------------------------------------------------------- 

 double precision function k_2L_rma(ash, N) 

 

  double precision ash, N 

 

  k_2L_rma = 0.00060 

 

  return 

 end 



c ----------------------------------------------------------------------------- 

 double precision function k_2S_rma(ash, N) 

 

  double precision ash, N 

 

  k_2S_rma = 0.00126 

 

  return 

 end 

c ----------------------------------------------------------------------------- 

 double precision function k_3L_rma(ash, N) 

 

  double precision ash, N 

 

 

  k_3L_rma = 0.0089 + 0.78 * N 

 

  return 

 end 

c ----------------------------------------------------------------------------- 

 double precision function k_3S_rma(ash, N) 

 

  double precision ash, N 

 

 

  if (ash .LT. 0.18) then 

              k_3s_rma = 0.0394 - 0.21 * ash 

  else 

              k_3S_rma = 0.0394 - 0.21 * 0.18 

  endif 

 

  return 

 end 

c ----------------------------------------------------------------------------- 

 double precision function k_4_rma(ash, N) 

 

  double precision ash, N 

 

  if (N .LE. 0.02) then 

   k_4_rma = 0.05 * N 

  else 

   k_4_rma = 0.001 

  endif 

 

 return 

 end 

c ----------------------------------------------------------------------------- 

 double precision function k_5_rma(ash, N) 

 

  double precision ash, N 



 

  if (N .LE. 0.005) then 

   k_5_rma = 0 

  else 

   if (N .GE. 0.02) then 

    k_5_rma = 0.007 

   else 

    k_5_rma = 0.007 * (100*(2*N - 0.01)/3) 

   endif 

  endif 

 return 

 end 

c ----------------------------------------------------------------------------- 

 double precision function k_6_rma() 

       

    k_6_rma = 0.00006 

 

 return 

 end 

c ----------------------------------------------------------------------------- 

 

 

c **************************************************************** 

c 

c Subroutine simulates the soil water content in two layers, 

c organic layer on top and mineral soil layer in bottom. 

c 

c Model presented in Linkosalo, Kolari and Pumpanen 2013. 

c 

c Input/output parameters: SW (SoilWater, absolute, in mm) 

c      theta (output for calc, 0 = WP and 1 = sat) 

c      prec (precipitation, in mm) 

c      ET_tot (total evapotranspiration in mm) 

c 

c Local parameters per layer: saturation (mm), FC (mm), WP (mm), tau (days) 

c         ET_ratio (split of ET between layers) 

c 

c **************************************************************** 

 

      Subroutine two_layer_soil_water(SoilW, SWmax, theta, prec, ET_tot)  

 

c local variables 

       integer i 

       real theta(2), SoilW(2), ET_tot, prec 

          real FC(2), WP(2), saturation(2), ET(2) 

       real tau_soil(2), ET_ratio, overflow 

       real P1, P2, P_H, P_M 

          real SWmax(2) 

           

c     Soil water submodel parameters 



 ET_ratio = 0.256107371   

 tau_soil(1) = 0.894587365 

 tau_soil(2) = 9.418136372 

 saturation(1) = SWmax(1)/0.65 

 saturation(2) = SWmax(2)/0.65 

      wp(1) = 0 

      wp(2) = 0 

      FC(1) = WP(1) + SWmax(1) 

      FC(2) = WP(2) + SWmax(2) 

       

c Split evapotranspiration for the two layers          

 ET(1) = ET_ratio * ET_tot 

 if(ET(1) .gt. SoilW(1)) then 

  ET(1) = SoilW(1) 

 endif 

 ET(2) = ET_tot - ET(1) 

         

   

c Soilwater of organic layer from previous day over field capacity? -> overflow           

 if (SoilW(1) .gt. FC(1)) then 

  overflow = (SoilW(1) - FC(1)) / tau_soil(1) 

   SoilW(1) = FC(1) 

 else 

  overflow = 0 

 endif 

           

 SoilW(1) = SoilW(1) + prec - ET(1) 

 

c New soil water of organic layer over saturation -> immediately drainage 

 if (SoilW(1) .gt. saturation(1)) then 

  overflow = overflow + (SoilW(1) - saturation(1)) 

  SoilW(1) = saturation(1) 

 endif 

 

c          SoilW(2) = max(SoilW(2), SoilWP(2)) 

           

c Mineral soil over FC -> overflow 

 if (soilW(2) .gt. FC(2)) then 

  soilW(2) = soilW(2) - (soilW(2) - FC(2)) / tau_soil(2) 

 endif 

           

c Now add new water and subtract ET 

 SoilW(2) = SoilW(2) + overflow - ET(2) 

           

 if (soilW(2) .gt. saturation(2)) then 

  soilW(2) = saturation(2) 

c  overflow = saturation(2) - SoilW(2) 

 endif 

           

 if (SoilW(2) .lt. WP(2)) then 



  ET(2) = ET(2) - (WP(2) - SoilW(2)) 

   soilW(2) = WP(2) 

 endif 

           

 ET_tot = ET(1) + ET(2) 

 

 theta(1) = (soilW(1) - WP(1)) / (Saturation(1) - WP(1)) 

 theta(2) = (soilW(2) - WP(2)) / (Saturation(2) - WP(2)) 

           

 

 return 

      end     

 

 

c--------------------------------------------------------------------------- 

c 

c Evapotranspiration function based loosely on paper  

c Duursma et al. Tree Physiology 2008, but the dependency of ET on irradiation 

c modified by T. Linkosalo and fitted to Hyytiälä data in spring 2009 

c 

c--------------------------------------------------------------------------- 

 real function EvapoTranspiration (Temp, PAR, VPD, x, CO2effect, 

     +   CO2ppm, REW, fDET) 

 

c   

 real ET 

 real Temp, PAR, VPD, x, REW, fDET 

      real beta, tau, x0, kappa, a_1, a_2, CO2ppm 

 integer CO2effect 

 

c parameters hard-coded... 

  

 beta = 0.016752  

 tau = 14.39305  

 x0 = -6.94684 

 kappa = -0.000263  

 a_1 = 0.0007  

 a_2 = 0.0837  

 

 

c calculate S and D functions 

  x = x + (Temp - x)/tau 

  fS = max(0.0, x - x0) 

  fD = exp(kappa * VPD) 

   

c calculate ET 

  ET = beta * PAR * fS * fD + a_1*PAR + a_2 

 

c Convert ET from mol/m2/d to g/m2/d 

  ET = ET * 18 



 

c Convert ET from g/m2/d to mm/d  (ET/rho and m -> mm) 

  ET = ET / 1000 

 

  fDET = 1 

 

  if (REW .LT. 0.4) then 

   fDET = REW/0.4 

   ET = ET * fDET 

  endif 

 

  EvapoTranspiration = ET 

  return 

      end 

     

 

c--------------------------------------------------------------------------- 

      subroutine SoilTemperature(ST, T) 

 

      implicit none 

       

      real ST(2), T, adj_T(2) 

 

c parameters for soil temperature model 

      real minimum_temp(2), tau(2) 

      minimum_temp(1) = -0.13 

      minimum_temp(2) = 0.24 

 tau(1) = 14.9 

 tau(2) = 10.5 

       

      adj_T(1) = max(T, minimum_temp(1)) 

      adj_T(2) = max(T, minimum_temp(2)) 

 

      ST(1) = ST(1) + (adj_T(1) - ST(1)) / tau(1) 

      ST(2) = ST(2) + (adj_T(2) - ST(2)) / tau(2) 

       

      return 

      end 

           

 

  

 

 

 


