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1 Responses to reviewers

1.1 Reviewer 1 comments

Responses to individual comments:

Comment 1: Data structures for layered meshes have been considered and implemented before - certainly in single-purpose

codes, but also in frameworks (DUNE’s prism- grid module, e.g.); I am aware that providing a survey of respective approaches5

to grid numbering in such packages might be impossible to do, but I think a general discussion on what options actually exist

(and what implications resp. choices might have) when designing the numbering scheme could make the paper stronger.

Answer: We have added some additional discussion in the introduction around alternative approaches to this same problem.

Comment 2: This is a bit related to the choice of title: at first reading I found myself expecting such a discussion; however,

the paper clearly focuses on the approach followed in Firedrake (which is fine in itself, but a bit in contrast to the generic title10

and the abstract).

Answer: The paper describes a numbering algorithm which is completely generic to finite element approaches. However,

it is true that the evaluation of the approach is in Firedrake. We have therefore reworked the title to explicitly mention that

the performance evaluation is in Firedrake. In addition we have added some mention of Firedrake as the tool for performance

evaluation in the abstract.15

Comment 3: You chose to number the DOFs of an entity contiguously, such that all DOFs of an edge (or cell) would be

contiguous in memory. However, for low order methods and when the key design goal is to allow vectorization, you might want

to strictly keep a stride-1 access on corresponding DOFs in layers - effectively this would mean exchanging the l and d2 loops

in Alg. 1. In any case, this choice depends on the type of operations we expect in simulations (whether we are strongly memory

or compute bound, what the memory access patterns are, etc.), so a discussion on this would be interesting.20
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Answer: We acknowledge that the ordering within each entity column is not unique. However, we do not see an obvious

advantage to interchanging as suggested here. We have commented on this in section 3.2.

Comment 4: As far as I got it, your concept of a stencil goes beyond the strict notion typically used for finite difference

methods on structured grids: your stencils may also include element-local operations in finite-element- type methods (requiring

a cell and its faces, edges, vertices) or also a face-based flux operation as in finite volume methods (which might require a face5

and its two adjacent cells). In any case, you might explain this in a bit more detail, and maybe state one or two examples.

Answer: The reviewer is entirely correct. We have made our definition of a stencil explicit in a new section 2.4.

Comment 5: What kind of unstructured mesh did you actually use for your results? You discuss in the paper that having

a structured mesh as base mesh is advantageous for performance. Hence you might even explicitly address this issue by

comparing results for a structured mesh (stored in an unstructured way) and one (or more?) typical unstructured meshes from10

applications.

Answer: In the problem setup, we have described how we generate the base mesh, using Gmsh. Although the domain of

computation is regular, the mesh itself is unstructured.

We believe the comparison to a topologically structured mesh is outwith the scope of the paper. In particular, the comments

relative to structured base meshes are in place to indicate that we are explicitly depriving ourselves of these advantages, since15

we are aiming for an iteration algorithm that gives good performance irrespective of the base domain. Our results demonstrate

that, for layered meshes, a reasonable base numbering (obtained in our case via RCM) is sufficient to obtain performance close

to hardware bounds at significantly fewer layers than are scientifically interesting.

Comment 6: As my only major suggestion, I would like to encourage you to switch from GFlop/s to GB/s in all performance

plots: as you are in a memory-bound regime and the numbering scheme primarily addresses achievable "valuable bandwidth",20

"GB/s" would be the natural metric.

Answer: We have clarified in section 4.3 that the relevant bound is, in fact, operation count, and not bandwidth. We were

ourselves surprised by this conclusion, however the performance results support this hypothesis. As such, GFlop/s is the correct

metric.

Comment 7: You might check whether having a log-scale for x-axes makes the results for few layers better visible25

Answer: We tried this, but it did not create a more useful figure.

Comment 8: It would be helpful to a add a sketch for illustration of the indexing scheme defined in Eq. (5)

Answer: We agree and have taken the opportunity to do so as Figure 3.

Comment 9: I was wondering what kind of stencil a DG0xDG0 discretization would produce for the residual; aren’t all

accesses element-local then? In general, would it make sense to add a table (or similar) that describes which entities are30

accessed for the various discretisations?

Answer: This is correct, and Figure 5 shows the degrees of freedom and therefore entities which are accessed in each case.

Additionally, we have fixed the suggested typos.
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1.2 Reviewer 2 comments

Responses to individual comments:

Comment 1: I assume that � defined as number of extruded layers stands for the number of vertices of a vertical mesh,

rather than the number of segments in the vertical. In this case, looking at Equation 5: d2 can be either 0 (for vertices) or 1

(for segments). Then the statement 0 l  �� d2 will let � go out of bounds, unless the second  symbol is replased by <.5

Similar observation for l-loop in Algorithm 3. In case this assumption is wrong, it should be made more clear what is meant

with layers.

Answer: � is in fact the number of segments in the vertical. We have explicitly defined � accordingly and ensured that the

usage is consistent throughout the manuscript.

Comment 2: The title suggests that besides a memory layout for function spaces, also a numbering strategy in the horizontal10

would be discussed.

Answer: We do not think that the title implies this, however, we have changed the title in response to reviewer 1. We hope

that this title is less ambiguous in what it is suggesting the contributions of the paper are. We feel that the contributions of the

paper are expressly stated and the title does not read contrary to those claims.

Comment 3: Looking at Figure 3., how is the numbering of n+# related to m+#, and possibly nodes internal to the15

triangle? Are m+# and n+# related to different function spaces?

Answer: The nodes internal to the triangle would be numbered in a similar way, but we feel that this would unnecessarily

complicate the figure. Because the horizontal mesh is unstructured, there is no simple relationship between m and n, however

our results show that using a suitable ordering of the horizontal mesh (such that m and n are typically "close") is important

for performance. A given function space will have degrees of freedom associated with one or more entity types, for example20

a continuous cubic space in the horizontal combined with a continuous linear mesh in the vertical would have the degrees of

freedom shown in the figure, plus one degree of freedom per horizontal facet.

Comment 4: Given the title I would have expected to see discussed what would be the impact (on e.g. performance) to

number n+# (as in Figure 3) first in vertical fashion (zig-zag up-down, rather than right-left).

Answer: Reviewer 1 also had a similar comment. We acknowledge that the ordering in each entity column is not unique. We25

do not see an obvious advantage to zig-zag up-down as opposed to left-right numbering. We have added some text to section

3.2 in this vein. We note that we do not believe the title claims that this is the best numbering algorithm on extruded meshes,

merely an approach which works well.

Comment 5: It would help to see a visualisation of a practical numbering for a mesh of a few triangles and few levels, for

a few function function space configurations, besides Algorithm 1.30

Answer: We do not believe this would add clarity to the paper. For example, the newly added Figure 3 merely numbers the

topological entities on a single extruded triangle and is already complex.

Comment 6: In Algorithm 1, first “dofsfs” is assigned with round brackets, later with square brackets.

Answer: Thanks, fixed.
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Comment 7: In Algorithm 1, the second last line makes reference to l, which is invalid outside the vertical loop.

Answer: Thanks, fixed.

Comment 8: In Algorithm 1, perhaps exchanging loops l and d2 can avoid the last 2 lines by looping l in 0,1, ...,�� 1� d2?

(possibly without changing the resulting order)

Answer: Unfortunately this would change the resulting numbering.5

Comment 9: In Algorithm 3, can I assume that for a single DG-DG cell-entity, (dof0,dof1, ...,dofk�1) are contiguous?

Answer: Yes.

Comment 10: In Algorithm 3, subscript fs in Lfs(v) missing

Answer: Thanks, fixed.

Comment 11: In Algorithm 3, d2 unassigned, should be referenced as subscript of V?10

Answer: Fixed by making d2 an explicit input to the algorithm.

Comment 12: In Figure 5, almost none of the results have reached as mentioned the “performance plateau” with 100 layers

for the badly ordered mesh. It would be interesting to see how many layers are required for all discretizations to reach this

plateau.

Answer: The reviewer is correct that in the badly ordered case almost none of the results have reached the performance15

plateau, we have reworded the discussion to address this. We do not believe that extending the experiment until we achieve

some plateau in the "bad" case would be of practical interest since typical simulations have tens, not hundreds of layers in the

vertical.

Comment 13: Is there an expected benefit in going higher order to reach the plateau with less layers?

Answer: There is indeed an expected benefit in going to high order, we have added a note to this effect at the end of the20

discussion.
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Abstract. We present a generic algorithm for numbering and then efficiently iterating over the data values attached to an

extruded mesh. An extruded mesh is formed by replicating an existing mesh, assumed to be unstructured, to form layers of

prismatic cells. Applications of extruded meshes include, but are not limited to, the representation of 3D high aspect ratio

domains employed by geophysical finite element simulations. These meshes are structured in the extruded direction. The

algorithm presented here exploits this structure to avoid the performance penalty traditionally associated with unstructured5

meshes. We evaluate our algorithm
:::
the

:::::::::::::
implementation

:::
of

:::
this

:::::::::
algorithm

::
in

:::
the

::::::::
Firedrake

:::::
finite

:::::::
element

::::::
system

:
on a range

of low compute intensity operations which constitute worst cases for data layout performance exploration. The experiments

show that having structure along the extruded direction enables the cost of the indirect data accesses to be amortized after

10-20 layers as long as the underlying mesh is well-ordered. We characterise the resulting spatial and temporal reuse in a

representative set of both continuous-Galerkin and discontinuous-Galerkin discretisations. On meshes with realistic numbers10

of layers the performance achieved is between 70% and 90% of a theoretical hardware-specific limit.

Keywords: extruded meshes, code generation, finite elements, locality optimisation

1 Introduction

In the field of numerical simulation of fluids and structures, there is traditionally considered to be a tension between the

computational efficiency and ease of implementation of structured grid models, and the flexible geometry and resolution offered15

by unstructured meshes.

In particular, one of the grand challenges in simulation science is modelling the ocean and atmosphere for the purposes

of predicting the weather or understanding the Earth’s climate system. The current generation of large-scale operational at-

mosphere and ocean models almost all employ structured meshes (Slingo et al., 2009). However, requirements for geometric

flexibility as well as the need to overcome scalability issues created by the poles of structured meshes has led in recent years20
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to a number of national projects to create unstructured mesh models (Ford et al., 2013; Zängl et al., 2015; Skamarock et al.,

2012).

The ocean and atmosphere are thin shells on the Earth’s surface, with typical domain aspect ratios in the thousands (oceans

are a few kilometres deep but thousands of kilometres across). Additionally the direction of gravity and the stratification of

the ocean and atmosphere create important scale separations between the vertical and horizontal directions. The consequence5

of this is that even unstructured mesh models of the ocean and atmosphere are in fact only unstructured in the horizontal

direction, while the mesh is composed of aligned layers in the vertical direction. In other words, the meshes employed in the

new generation of models are the result of extruding an unstructured two-dimensional mesh to form a layered mesh of prismatic

elements.

This layered structure was exploited in Macdonald et al. (2011) to create a numbering for a finite volume atmospheric10

model such that iteration from one cell to the next within a vertical column required only direct addressing. They show that

when only paying the price of indirect addressing on the base mesh there is less than 5% performance difference between two

implementations of an atmospheric model which treat the same icosahedral mesh first as fully structured and then as partially

structured (extruded). One of the caveats of that comparison is that the underlying mesh is fully structured in both cases which

presents an advantage to the indirect addressing scheme which is not present for more general unstructured meshes.15

::::::::
Exploiting

:::
the

::::::::::
anisotropic

:::::
nature

::
of

::::::::
domains

:::
has

::::
seen

::::::
various

::::::::
software

:::::::::::
developments

::
in

::::::
various

::::::
fields.

:::
For

:::::::
example

:::::::
p6est

::::::::::::::::::
(Isaac et al., 2015) and

::::::::::::::::
(Isaac, 2015, §2.3),

:
a
:::::::
package

:::
for

:::
2+1

:::::::::::
dimensional

:::::::
adaptive

::::
mesh

::::::::::
refinement,

:::
was

:::::::::
developed

::
to

:::::::
maintain

::::::::::
columnwise

:::::::::
numbering

:::
for

::::::::
numerical

:::::::
reasons

::
in

:::
ice

:::::
sheet

:::::::::
modelling,

:::
but

::::
does

:::
not

:::::::
support

::::::
general

:::::::::::
unstructured

::::
base

:::::::
meshes.

:::
The

:::::::::::::::
DUNE-PrismGrid

:::::::
module

:::::::::::::::::::::::
(Gersbacher, 2012) provides

:::::::
extruded

:::::::
meshes

::
for

::::
any

::::
base

::::::
DUNE

::::
grid,

:::
but

::::
does

:::
not

:::::::
describe

::
a

:::::
degree

::
of
::::::::

freedom
:::::::::
numbering

::
or

:::::::
provide

:::::::
detailed

::::::::::
performance

::::::::::::
characteristics

::
of

:::
the

:::::::
iteration

:::
on

:::::::
extruded

:::::::
meshes.

::::
The

::::::
Model20

::
for

:::::::::
Prediction

:::::::
Across

::::::
Scales

:::::::
(MPAS)

::::
uses

::
a
:::::::
column

::::::::
innermost

::::::::::
numbering

:::
for

::::
their

::::::
C-grid

:::::::::::
atmospheric

::::
and

:::::
ocean

::::::
model

::::::::::::::::
(Koziel et al., 2015).

:::::
Their

:::::::::::::
implementation

::
is
::::::
limited

::
to
:::
the

::::::
single

:::::::::::
discretisation

::::::::
employed

:::
by

:::
that

::::::
model.

:

A key motivation for this work was to provide an efficient mechanism for the implementation of the layered finite element

numerics which have been adopted by the UK Met Office’s Gung Ho programme to develop a new atmospheric dynamical core.

The algorithms here have been adopted by the Met Office for this purpose (Ford et al., 2013). While geophysical applications25

motivate this work, the algorithms and their implementation in Firedrake (Rathgeber et al., 2015) are more general and could

be applied to any high aspect ratio domain.

1.1 Contributions

– We generalize the numbering algorithm in Macdonald et al. (2011) to the full range of finite element discretisations.

– We demonstrate the effectiveness of the algorithm with respect to absolute hardware performance limits.30
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2 Unstructured Meshes

In this section we briefly restate the data model for unstructured meshes introduced in Logg (2009); Knepley and Karpeev

(2009). In Section 2.2 we rigorously define a mesh, explain mesh topology, geometry and numbering. In Section 2.3 we

explain how data may be associated with meshes.

2.1 Terminology5

When describing a mesh, we need some way of specifying the neighbours of a given entity. This is always possible using

indirect addressing in which the neighbours are explicitly enumerated, and sometimes possible with direct addressing where a

closed form mathematical expression suffices.

In what follows we start with a base mesh which we will extrude to form a mesh of higher topological dimension. Due to

geophysical considerations, we refer to the plane of the base mesh as the horizontal and to the layers as the vertical.10

We will also employ the definition of a graph as a set V and a set E of edges where each edge represents the relationships

between the elements of the set V .

2.2 Meshes

A mesh is a decomposition of a simulation domain into non-overlapping polygonal or polyhedral cells. We consider meshes

used in algorithms for the automatic numerical solution of partial differential equations. These meshes combine topology and15

geometry. The topology of a mesh is composed of mesh entities (such as vertices, edges, cells) and the adjacency relationships

between them (cells to vertices or edges to cells). The geometry of the mesh is represented by coordinates which define the

position of the mesh entities in space.

Every mesh entity has a topological dimension given by the minimum number of spatial dimensions required to represent that

entity. We define D to be the minimum number of spatial dimensions needed to represent a mesh and all its entities. A vertex20

is representable in zero-dimensional space, similarly an edge is a one-dimensional entity and a cell a D-dimensional entity.

In a two-dimensional mesh of triangles, for example, the entities are the vertices, edges and triangle cells with topological

dimensions 0, 1 and 2 respectively. The minimum number of geometric dimensions needed to represent the mesh and all its

entities is D = 2.

A mesh can be represented by several graphs. Each graph consists of a multi-type set V and a typed adjacency relationship25

Adjd1,d2
between d1- and d2-typed elements in V . The type of an entity in V is simply its dimension. The adjacency graphs

will always map from a set of uniform dimension to a set of uniform dimension. Attaching types to elements of V enables

graphs to capture the relationships between different mesh entities, for example cells and vertices, edges and vertices.

We write Vd to mean the set of mesh entities of topological dimension d where 0  d  D:

Vd = {(d, i) | 0  i  Nd � 1}, (1)30
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where Nd is the number of entities of dimension d. The set V is then simply the union of the Vds:

V =
[

0dD

Vd. (2)

Every mesh entity has a number of adjacent entities. The mesh-element connectivity relationships are used to specify the

way mesh entities are connected. For a given mesh of topological dimension D there are (D+1)2 different types of adjacency

relationships. To define the mesh, only a minimal subset of relationships from which all the others can be derived is required.5

For example, as shown in Logg (2009), the complete set of adjacency relationships may be derived from the cell-vertex

adjacency.

We write

Adjd1,d2
(v) = (v1,v2, . . . ,vk), (3)

to specify the entities v1,v2, . . . ,vk 2 Vd2 adjacent to v 2 Vd1 .10

In a mesh with a very regular topology, there may be a closed form mathematical expression for the adjacency relationship

Adjd1,d2
(v). Such meshes are termed structured. However since we are also interested in supporting more general unstructured

meshes, we must store the lists of adjacent entities explicitly.

2.3 Attaching data to meshes

Every mesh entity has a number of values associated with it. These values are also known as degrees of freedom and they15

are the discrete representation of the continuous data fields of the domain. As the degrees of freedom are uniquely associated

with mesh entities, the mesh topology can be used to access the degrees of freedom local to any entity using the connectivity

relationships.

A finite element discretisation associates a number of degrees of freedom with each entity of the mesh. A function space

uses the discretisation to define a numbering for all the degrees of freedom. Multiple different function spaces may be defined20

on a mesh and each function space may have several data fields associated with it. In the case of a triangular mesh for example,

a piecewise linear function space will associate a degree of freedom with every vertex of the mesh while a cubic function space

will associate one degree of freedom with every vertex, two degrees of freedom with every edge and one degree of freedom

with every cell. In the former case there will be three degrees of freedom adjacent to a cell, and a total of ten in the latter case.

The data associated with the mesh also needs to be numbered. The choice of numbering can have a significant effect on the25

computational efficiency of calculations over the mesh (Günther et al., 2006; Lange et al., 2015; Yoon et al., 2005).

2.4
::::::
Kernels

::::
and

:::::::
stencils

The most common operation performed on meshes is the local application of a function or kernel while traversing, or iterating

over a homogeneous subset of mesh entities. When iterating over a specific mesh entity type, the kernel often consists of a

stencil-like operation accessing nearby
:::
The

::::::
kernel

:
is
::::::::
executed

::::
once

:::
for

::::
each

::::
such

::::
mesh

:::::
entity

:::
and

::::
acts

::
on

:::
the

:
degrees of freedom30
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::
in

:
a
::::::
stencil

::::::::
composed

:::
of

:::
the

::::
mesh

:::::::
entities

:::::::
adjacent

::
to

:::
the

:::
the

:::::::
iterated

:::::
entity. For example, in a finite element simulation over

a triangle mesh, when iterating over a cell, the kernel might require the
:::::::
operator

:::::::::
evaluating

::
an

:::::::
integral

::::
over

:::
the

::::::
domain

::::::
would

:::::
iterate

::::
over

:::
the

:::::
mesh

::::
cells

::::
and

:::::
access

::::
data

:::::::
through

:
a
::::::
stencil

::::::::::
comprising

:::
the degrees of freedom on the vertices, edgesand the

interior of the triangle
:::
that

::::
cell

:::
and

::
its

::::::::
adjacent

:::::
facets,

::::::
edges,

:::
and

:::::::
vertices.

:::
For

::
a

::::
more

:::::::
in-depth

:::::::::
discussion

::
on

:::
the

:::::::::::
construction

::
of

::::::
stencils

::
on

:::::::::::
unstructured

:::::::
meshes,

:::
the

:::::
reader

::
is

:::::::
referred

::
to

:::::::::::::
Logg (2009) and

::::::::::::::::::::::::
Knepley and Karpeev (2009). In theory, this requires5

:::::::::::
cell-to-facets, cell-to-edges,

:
and cell-to-vertices adjacency relationships (cell-to-cell is implicit). In practice the three different

relationships may be composed into a single adjacency relationship which references the data associated with all the different

adjacent entity types.

In the unstructured case, we store an explicit list (also known as
:
a map) L(e) for each type of stencil operation which given

a topological entity e returns the set of degrees of freedom in the stencil at that entity.10

3 Extruded Meshes

In Section 3.1 we introduce extruded meshes and in Section 3.2 we show how the entities and the data are to be numbered.

In Section 3.3 we present the extruded mesh iteration algorithm and the offset computation for the direct addressing scheme

along the vertical direction.

3.1 Definition of an Extruded Mesh15

An extruded mesh consists of a base mesh which is replicated a fixed number of times in a layered structure1. A mesh of

topological dimension D becomes an extruded mesh of topological dimension D + 1.

The mesh definition can be extended to include extruded meshes. Let mesh M = (V,Adj) be a non-extruded mesh where

Adj stands for all the valid adjacency relationships of M . An extruded mesh which has M as the base mesh can be defined

as a triple (V extr
,Adjextr

,�) where Adjextr is the set of valid adjacency relationships and � 2 N+ is the number of layers of the20

extruded mesh .
:::::::
intervals

::::
over

:::::
which

:::
the

:::::
mesh

::
is

::::::::
extruded.

::::
This

::::::
implies

::::
that

:::::
there

::
are

:::::
� + 1

:::::::
vertices

::
in

:::
the

::::::::
extruded

::::::::
direction.

Before we can define V

extr and Adjextr several concepts have to be introduced.

3.1.1 Tensor product cells

The effect of the extrusion process on the base mesh can always be captured by associating a line segment with the vertical

direction. We write Db for the topological dimension of the base mesh while the topological dimension of the vertical mesh is25

always equal to 1.

As a consequence, the cells of the extruded mesh are prisms formed by taking the tensor product of the base mesh cell with

the vertical line segment. For example, each triangle becoems
:::::::
becomes

:
a triangular prism. The construction of tensor product

cells and finite element spaces on them is considered in more detail in McRae et al. (2016).
1For ease of exposition, we discuss the case where each mesh column contains the same number of layers, however this is not a limitation of the method

and algorithms presented here
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3.1.2 Extruded Mesh Entities

The extrusion process introduces new types of mesh entities reflecting the connectivity between layers. The pairs of corre-

sponding entities of dimension d in adjacent layers are connected using entities of dimension d + 1. In a triangular mesh for

example (Fig. 1), the corresponding vertices are connected using vertical edges, edges contained in each layer are connected

by quadrilateral facets and the 2D triangle faces are connected by a 3D triangular prism (Fig. 2).

Figure 1. Extruded mesh entities belonging to the base mesh to be extruded (left to right): vertices, horizontal edges, horizontal facets.
5

Figure 2. Mesh entities used in the extrusion process to connect entities in Fig. 1 (left to right): vertical edges, vertical facets, 3D cells.

The topological dimension on its own is no longer enough to distinguish between the different types of entities and their

orientation. Instead entities are characterised by a pair composed of the horizontal and vertical dimensions. In the case of a

2D triangular base mesh the set of dimensions is {0,1,2}. The line segment of the vertical can be described by the set of

dimensions {0,1}. The Cartesian product of the two sets yields a set of pairs (4) which can be used to uniquely identify mesh

entities.10

{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)} (4)

We refer to the components of each pair as the horizontal and vertical dimension of the entity respectively. Table 1 shows the

mapping between the mesh entity types and their descriptor.
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3.1.3 Extruded Mesh Entity Numbering

We write Vd1,d2 to denote the set of topological entities which are the tensor product of entities of dimensions d1 in the

horizontal and d2 in the vertical (0  d1  Db and 0  d2  1):

Vd1,d2 = {((d1,d2),(i, l)) | 0  i  Nd1 � 1, 0  l  �� d2}, (5)

where Nd1 is the number of entities of dimension d1 in the base mesh and � is the number of extruded layers
::::
edges

:::
in

:::
the5

:::::::
extruded

::::::::
direction. The subtraction of d2 from the number of layers

:
�

:
accounts for the fencepost error caused by the fact that

there is always one fewer edge than vertex in the vertical direction.

The complete set of extruded mesh entities is then

V

extr =
[

0d1Db
0d21

Vd1,d2 . (6)

:::::
These

::::::
entities

:::
are

:::
the

:::::
drawn

:::
for

:::
the

::::
case

::
of

:::
an

:::::::
extruded

:::::::
triangle

::
in

:::
Fig.

::
3.
:
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Figure 3.
::::::::
Numbering

::
of

:::
the

:::::::::
topological

::::::
entities

::
of

::
an

:::::::
extruded

::::
cell

::
for

:::
the

::::
case

::
of

:::
an

::::::
extruded

:::::::
triangle.

::::
The

:::
cell

::::
itself

:::
has

:::::::::
numbering

::::::::::
((2,1),(0,0))

::::
(not

::::::
shown),

::
the

::::
other

::::::
entities

:::
are

:::::::
numbered

::
as
:::::
shown

::::
with

::::::
vertices

::
in

:::::
black,

::::
edges

::
in

:::::
green,

:::
and

::::
faces

::
in

::::
blue.

10
Similarly we must extend the indexing of the adjacency relationships, writing:

Adjextr
(d1,d2),(d3,d4)(v) = (v1,v2, . . . ,vk), (7)

where v 2 Vd1,d2 and v1,v2, . . . ,vk 2 Vd3,d4 .

3.2 Attaching data to extruded meshes

Identically to the case of non-extruded meshes, function spaces over an extruded mesh associate degrees of freedom with the15

(extended) set of mesh entities. A constant number of degrees of freedom is associated with each entity of a given type.
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If we can arrange that the degrees of freedom are numbered such that the vertical entities are “innermost”, it is possible to

use direct addressing for the vertical part of any mesh iteration, significantly reducing the computational penalty introduced by

using an indirectly addressed, unstructured base mesh. Algorithm 1 implements this “vertical innermost” numbering algorithm.

The critical feature of this algorithm is that degrees of freedom associated with vertically adjacent entities have adjacent global

numbers. The outcome of this vertical numbering is shown in Fig. 4. The global numbering algorithm is orthogonal to any base5

mesh decomposition strategy used to support execution on distributed memory parallel systems.
:::
The

:::::::::
numbering

:::::
order

::::::
within

::::
each

:::::
entity

::::::
column

::
is
:::
not

:::::::
unique,

:::
for

:::::::
example

::::
one

:::::
could

:::::::::
interchange

:::
the

::
l

:::
and

:::
d2 ::::

loops
:::

in
::::::::
Algorithm

:::
1.

::::::::
However,

:::
our

::::::
choice

:::::::::
maximises

::::::::
cache-line

:::::
usage

:::
on

:
a
::::::::::
per-element

:::::
basis.

:

Algorithm 1 Computing the global numbering for degrees of freedom on an extruded mesh

Input: V : the set of base mesh entities

Input: � : the number of layers
::::::
vertical

::::::
intervals

Input: �((d1,d2)) : the number of DoFs associated with each (d1,d2) entity

Output: dofsfs: the degrees of freedom associated with each entity

c 0 {Loop over base mesh entities}

for (d1, i) in V do

{Loop over layers}

for l in {0,1, ...,�� 1} do

{Number the horizontal layer, then the connecting entity above it}

for d2 in {0,1} do

{Assign the next �((d1,d2)) global DoF numbers to this entity}

dofsfs((d1,d2),(i, l)) c,c+1, ..., c+ �((d1,d2))� 1

c c+ �((d1,d2))

end for

end for

{Number the top horizontal layer of this column}

dofsfs[(d1,0),(i, l)] c,c+1, ..., c+ �((d1,0))� 1
:::::::::::::::::::::::::::::::::::::::
dofsfs((d1,0),(i,�)) c,c+1, ..., c+ �((d1,0))� 1

c c+ �((d1,0))

end for

3.3 Iterating over extruded meshes

Iterating over the mesh and applying a kernel to a set of connected entities (stencil) is the key operation used in mesh-based10

computations.

The global numbering of the degrees of freedom allows stencils to be calculated using a direct addressing scheme when

accessing the degrees of freedom of vertically adjacent entities. We assume that the traversal of the mesh occurs over a set

of mesh entities which is homogeneous (a set containing only cells for example). Degrees of freedom belonging to vertically

8
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Figure 4. Vertical numbering of degrees of freedom (shown in filled circles) associated with vertices and horizontal edges. Only one set of

vertically aligned degrees of freedom of each type is shown. The arrows outline the order in which the degrees of freedom are numbered.

adjacent entities, accessed by two consecutive kernel applications on the same column, have a constant offset between them.

The offset is given by the sum of degrees of freedom attached to the two vertically adjacent entities contained in the stencil:

�((d,0)) + �((d,1)) (8)

Let S be the stencil of a kernel which needs to access the values of the degrees of freedom of a field f defined on a function

space fs. Let Lfs(v) = (dof0,dof1, ...,dofk�1) be the list of degrees of freedom of the stencil for an input entity v 2 Vd1,d2 .5

The lists of degrees of freedom accessed by S could be provided explicitly for all the input entities v. Using the previous

result we can instead reduce the number of explicitly provided lists by a factor of �. For each column we visit, the only explicit

accesses required are the ones to the degrees of freedom at the bottom of the column. The degrees of freedom identifiers for

the rest of the stencil applications in the same column can be obtained by adding a multiple of the constant vertical offset to

each degree of freedom in the bottom explicit list.10

For a given stencil function S an offset can be computed for each degree of freedom in the corresponding explicit list Lfs.

As the ordering of the degrees of freedom in the stencil is fixed (by consistent ordering of mesh entities) the vertical offset only

needs to be computed once for a particular function space fs.

The algorithm for computing the vertical offset is presented in Algorithm 2. Note that since the offset for two vertically

aligned entity types is the same, only the base mesh entity type is considered.15
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Algorithm 2 Computation of vertical offsets

Input: k : number of degrees of freedom accessed by stencil function S

Input: ES(i): the base mesh entity type of the i-th degree of freedom accessed by S

Input:
::::::::
�((d1,d2)):::::

the
::::::
number

::
of

::::
DoFs

::::::::
associated

:::
with

::::
each

::::::
(d1,d2):::::

entity

Output: o↵setS,fs : the vertical offset for function space fs given stencil S

for i in {0,1, ...,k� 1} do

d ES(i)

o↵setS,fs(i) �((d,0))+ �((d,1))

end for

If (dof0,dof1, ...,dofk�1) is the explicit list of degrees of freedom for the initial layer to which the stencil can be applied,

then the list of degrees of freedom for the n

th application of the stencil along the vertical (n < �) is given by:

(dof0 + n⇥ (o↵setS,f (0)), ...,dofk�1 + n⇥ (o↵setS,f (k� 1))) (9)

Algorithm 3 shows the iteration algorithm working for a single field f on a function space fs. The stencil function S is

applied to the entities of each column in turn. Each time the algorithm moves on to the next vertically adjacent entity, the5

indices of the degrees of freedom accessed are incremented by the vertical offset o↵setS,fs. The algorithm is also applicable to

stencil functions of multiple fields defined on the same function space since the data associated with each field is accessible

using the same set of degree of freedom numbers. The extension to fields from different function spaces just requires explicit

lists Lfs for each space.

4 Performance Evaluation10

In this section, we test the hypothesis that iteration exploiting the extruded structure of the mesh amortizes the unstructured base

mesh overhead of accessing memory through explicit neighbour lists. We also show that the more layers the mesh contains,

the closer its performance is to the hardware limits of the machine.

We validate our hypotheses in the Firedrake finite element framework (Rathgeber et al., 2015). Although we restrict our

performance evaluation to examples drawn from finite element discretisations, the algorithms we have presented can be applied15

to any mesh-based discretisation.

In Section 4.1 we describe the design of the experiments undertaken. The hardware platforms and the methodology used are

described in Section 4.2 followed by results and discussion in Sections 4.3 and 4.4 respectively.

4.1 Experimental Design

The design space to be explored is parameterized by number of layers and the manner in which the data is associated with20

the mesh and therefore accessed. In establishing the relationship between the performance and the hardware we examine

performance on two generations of processors and varying process counts.
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Algorithm 3 Iteration of a stencil function over an extruded mesh

Input: V : iteration set of base mesh entities

Input:
::
d2 :

:
::
the

::::::::
dimension

::
of

::::::
vertical

:::::::
iteration

:::::
entities

Input:
:
�
:
:
:::
the

::::::
number

::
of

:::::
vertical

:::::::
intervals

Input: S: stencil function to be applied to the degrees of freedom of field f

Input: Lfs: set of explicit lists of degrees of freedom for function space fs

Input: o↵setS,fs: the vertical offset for function space fs given stencil S

for v in V do

(dof0,dof1, ...,dofk�1) L(v)
:::::::::::::::::::::::::
(dof0,dof1, ...,dofk�1) Lfs(v)

for l in {0,1, ...,�� d2} do

S(f(dof0),f(dof1), ...,f(dofk�1))

for j in {0,1, ...,k� 1} do

dofj  dofj + o↵setS,fs(j)

end for

end for

end for

4.1.1 Choosing the computation

Numerical computations of integrals are the core mesh iteration operation in the finite element method. We focus on residual

(vector) assembly for two reasons. First, in contrast to Jacobian assembly, there are no overheads due to sparse matrix insertion;

the experiment is purely a test of data access via the mesh indirections. Second, residual evaluation is the assembly operation

with the lowest computational intensity and therefore constitutes a worst-case scenario for data layout performance exploration.5

Since we are interested in data accesses, we choose the simplest non-trivial residual assembly operation:

I1 =

Z

⌦

fvdx, 8v 2 V (10)

for f in the finite element space V .
::
For

::::
this

:::::
study

:::
we

::::::
choose

:::::::::
⌦ = [0,1]3

::
to

::
be

:::
the

::::
unit

:::::
cube.

:::
The

::::
base

:::::
mesh

::
is

::::::::
generated

::
in

:::
an

::::::::::
unstructured

::::::
manner

:::::
using

::::::
Gmsh

:::::::::::::::::::::::::
(Geuzaine and Remacle, 2009),

::::
and

::::
then

:::::::
extruded

::
to

:::::
form

:
a
:::::::::::::::
three-dimensional

:::::::
domain.

In addition to the output field I1 and the input field f this computation accesses the coordinate field, x. Regardless of the10

choice of V , we always represent x by a d-vector at each vertex of the d-dimensional mesh.

4.1.2 Choosing the discretisations

The construction of a wide variety of finite element spaces on extruded meshes was introduced in McRae et al. (2016). This

enables us to select the horizontal and vertical data discretisations independently.

For the purposes of data access, the distinguishing feature of different finite element spaces is the extent to which degrees of15

freedom are shared between adjacent cells.
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(a) CG1⇥CG1 horizontal and

vertical reuse

(b) CG1⇥DG0, horizontal reuse (c) CG1⇥DG1, horizontal reuse

(d) DG0⇥CG1 vertical reuse (e) DG0⇥DG0, no reuse (f) DG0⇥DG1, no reuse

(g) DG1⇥CG1 vertical reuse (h) DG1⇥DG0, no reuse (i) DG1⇥DG1, no reuse

Figure 5. Tensor product finite elements with different data layout and cell-to-cell data re-use.

We choose a set of finite element spaces spanning the combinations of horizontal and vertical reuse patterns found on

extruded meshes: horizontal and vertical reuse, only horizontal, only vertical, or no reuse at all.

We employ low order continuous and discontinuous discretisations (abbreviated as CG and DG respectively) in both the

horizontal and vertical directions.

The set of discretisations is A = {CG1,DG0,DG1} where the number indicates the degree of polynomials in the space. We5

examine all pairs of discretisations (h,v) 2 A⇥A. Since the cells of the base mesh are triangles, the extruded mesh consists

of triangular prisms. Fig. 5 shows the data layout of each of these finite elements.

Both Firedrake and our numbering algorithm support a much larger range of finite element spaces than this. However, the

more complex and higher degree spaces will result in more computationally intensive kernels but not materially different data

reuse. The lowest order spaces are the most severe test of our approach since they are more likely to be memory bound.10
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4.1.3 Layer count and problem size

We vary the number of layers between 1 and 100. This is a realistic range for current ocean and atmosphere simulations.

The number of cells in the extruded mesh is kept approximately constant by shrinking the base mesh as the number of layers

increases. The mesh size is chosen such that the data volume far exceeds the total last level cache capacity of each chosen

architecture (L3 cache in all cases). This minimizes caching benefits and is therefore the strongest test of our algorithms. The5

overall mesh size is fixed at approximately 15 million cells which yields a data volume of between 300 and 840 MB depending

on discretisation.

4.1.4 Base mesh numbering

The order in which the entities of the unstructured mesh are numbered is known to be critical for data access performance. To

characterize this effect and distinguish it from the impact of the number of layers, we employ two variants of each base mesh.10

The first is a mesh for which the traversal is optimised using a reverse Cuthill-McKee ordering (Lange et al., 2015). The second

is a badly ordered mesh with a random numbering. This represents a pathological case for temporal locality.

4.2 Experimental Setup

The specification of the hardware used to conduct the experiments is shown in Table 2. Following Ofenbeck et al. (2014) we

disable the Intel turbo boost and frequency scaling. This is intended to prevent our performance results from being subject to15

fluctuations due to processor temperature.

The experiments we are considering are run on a single two-socket machine and use MPI (Message Passing Interface)

parallelism. The number of MPI processes varies from one up to 2 processes per physical core (exploiting hyperthreading). We

pin the processes evenly across physical cores to ensure load balance and prevent process migration between cores.

The Firedrake platform performs integral computations by automatically generating C code. The compiler used is GCC20

version 4.9.1 (-O3 -march=native -ffast-math -fassociative-math). We also assessed the performance of

the Intel C Compiler version 15.0.2 (-O3 -xAVX -ip -xHost), however we only report results from GCC in this paper

since the performance of the Intel compiler was inferior.

4.2.1 Runtime, data volume, bandwidth and FLOPs

Runtime is measured using a nanosecond precision timer. Each experiment is performed ten times and we report the minimum25

runtime. Exclusive access to the hardware has been ensured for all experiments.

Different discretisations lead to different data volumes due to the way data is shared between cells. DG based discretisations

require the movement of larger data volumes while CG discretisations lead to smaller volumes due to data reuse. To evaluate

the impact of different data volumes we compare the valuable bandwidth with the achieved STREAM bandwidth.

We model the data transfer from main memory to CPU assuming a perfect cache: each piece of data is only loaded from30

main memory once. We define the valuable data volume as the total size of the input, output and coordinate fields. This gives
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a lower bound on the memory traffic to and from main memory. The valuable data volume divided by the runtime yields the

valuable bandwidth.

The
::::::::
Different

::::::::::::
discretisations

:::
lead

::
to

:::::::
different

::::
data

:::::::
volumes

::::
due

:
to
:::
the

::::
way

::::
data

:
is
::::::
shared

:::::::
between

:::::
cells.

:::
DG

:::::
based

::::::::::::
discretisations

::::::
require

:::
the

::::::::
movement

:::
of

:::::
larger

::::
data

:::::::
volumes

:::::
while

:::
CG

::::::::::::
discretisations

::::
lead

::
to

:::::::
smaller

:::::::
volumes

:::
due

::
to

::::
data

:::::
reuse.

:

::
To

:::::::
evaluate

:::
the

::::::
impact

::
of

:::::::
different

::::
data

:::::::
volumes

:::
we

:::::::
compare

:::
the

:::::::
valuable

:::::::::
bandwidth

::::
with

:::
the maximum bandwidth achieved5

for the STREAM triad benchmark (McCalpin, 1995)is
:
, shown in Table 3. The

:::::::
valuable

:::::::::
bandwidth

:::::::
achieved

::
as

:
percentage of

STREAM bandwidth achieved by the valuable bandwidth shows how prone the code is to becoming bandwidth bound as the

::
its floating point performance of the payload is improved.

The floating point operations – adds, multiplies and, on Haswell, fused multiply-add (FMA) operations – are counted auto-

matically using the Intel Architecture Code Analyzer (Intel, 2012) whose results are verified with PAPI (Mucci et al., 1999)10

which accesses the hardware counters.

4.2.2 Theoretical performance bounds

The performance of the extruded iteration depends on the efficiency of the generated finite element kernel (payload) code which

for some cases may not be vectorized
::::::::
vectorised

:
(as outlined in Luporini et al. (2015)) or may not have a perfectly balanced

number of floating point additions and multiplications. Kernel
:
A

:::::::::
discussion

::
of

::::::
kernel code optimality is outside the scope of15

this paper.

To a first approximation the performance of a numerical algorithm will be limited by either the memory bandwidth or the

floating point throughput. The STREAM benchmark provides an effective upper bound on the achievable memory bandwidth.

The floating point bounds employed are based on the theoretical maximum given the clock frequency of the processor.

The Intel architectures considered are capable of executing both a floating point addition and a floating point multiplication20

on each clock cycle. The Haswell processor can execute a fused multiply-add instruction (FMA) instead of either an addition

or multiplication operation.

The achievable FLOP rate may therefore be as much as twice the clock rate depending on the mix of instructions executed.

The achievable speed-up over the clock rate, fb, for the Sandy Bridge platform is therefore bounded by the balance factor

fb = 1 +
min(add FLOPs,multiplication FLOPs)

max(add FLOPs,multiplication FLOPs)
, (11)25

while for Haswell it is bounded by

fb = 1 +
min(add FLOPs,multiplication FLOPs) + k

max(add FLOPs,multiplication FLOPs) + k

, (12)

where k is half the number of FMAs.

4.2.3 Vectorization

The processors employed support 256-bit wide vector floating point instructions. The double precision FLOP rate of a fully30

vectorized
::::::::
vectorised

:
code can be as much as four times the clock rate

:::
that

::
of

:::
an

:::::::::::
unvectorised

:::::
code. GCC automatically
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vectorized
::::::::
vectorised

:
only a part of the total number of floating point instructions. The ratio between the number of vector

(packed) floating point instructions and the total number of floating point instructions (scalar and packed) characterizes the

impact of partial vectorization on the floating point bound through the vectorization factor

fv = 1 + (4� 1)⇥ vector FLOPs

total FLOPs
. (13)

To control the impact of the kernel computation (payload) on the evaluation, we compare the measured floating point5

throughput with a theoretical peak which incorporates the payload instruction balance and the degree of vectorization. Let c be

the number of active CPU physical
::::::
physical

:::::
CPU cores during the computation of interest. The base (theoretical )

:::::::::
theoretical

::::
base floating point performance Bc is the same for all discretisations and assumes one floating point instruction per cycle for

each (active )
:::::
active physical CPU core. The peak theoretical floating point throughput Pd is different for each discretisation d

as it depends on the properties of the payload and is given by10

Pd = Bc ⇥ fb ⇥ fv. (14)

4.3 Experimental Results

4.3.1
:::::::::
Percentage

:::
of

:::::::::
theoretical

::::::::::::
performance

:::
For

:::
the

:::::
Sandy

:::::::
Bridge

:::
and

:::::::
Haswell

::::::::::::
architectures,

:::
the

:::
best

:::::::::::
performance

::
is
::::::::
achieved

::
in

:::
the

::::::::
100-layer

::::
case

::::
run

::::
with

:::
24

:::
and

:::
32

::::::::
processes

::::::::::
respectively

:::::::::::::
(hyperthreading

::::::::
enabled).

::::
The

:::::
results

::
in
::::::

Tables
::
4

:::
and

::
5
:::::
show

::::::::::
percentages

::
of

:::
the

:::::::::
STREAM

:::::::::
bandwidth15

:::
and

:::
the

:::::::::
theoretical

::::::
floating

:::::
point

:::::::::
throughput

::::::
which

::::::::::
incorporates

:::
the

:::::::::
instruction

:::::::
balance

:::
and

:::::::::::
vectorization

::::::
factors.

:

::
On

::::::
Sandy

::::::
Bridge,

:::
the

:::::::::
proportion

::
of

::::
peak

:::::::::
theoretical

:::::::
floating

::::
point

::::::::::
throughput

:
is
::::::::
between

::
71

:::
and

:::::
85%,

:::::
while

::
on

:::::::
Haswell

::
it
::
is

:::::::
between

::
71

::::
and

::::
92%.

::
In
::::::::
contrast,

:::
the

:::::::::
proportion

::
of

::::
peak

:::::::::
bandwidth

::::::::
achieved

:::::
varies

:::::::
between

::
7

:::
and

::::
51%

:::
on

:::::
Sandy

::::::
Bridge

::::
and

:
9
:::
and

:::::
75%

::
on

::::::::
Haswell.

::::
The

::::::
higher,

:::
and

:::::
much

:::::
more

::::::::
consistent

:::::
peak

:::::
FLOP

::::::
results

::::
lead

::
us

::
to
:::
the

::::::::::
conclusion

:::
that

:::
we

:::
are

::
in

:::
an

::::::::
operation-

:::::
rather

::::
than

::::::::::::::::
bandwidth-limited

::::::
regime.

::::
The

::::::::::
performance

::::::
figures

:::
are

::::::::
therefore

::::::::
presented

::::
with

::::::
respect

::
to
::::
this

::::::
metric.20

4.3.2 Amortizing the cost of indirect accesses

When the base mesh is well ordered (Fig. 7), the number of layers required to reach a performance plateau is between 10 and

20 for all discretisations. When the base mesh is badly ordered (Fig. 6) the required number of layers can be as large as fifty

or more. For example, in the case of discretisations employing DG0 either horizontally or vertically, the FLOP rate plateau

is
::::::
plateau

::
is

::::::::
frequently

:
not reached even at a hundred layers.

::::
with

::::
100

:::::
layers.

::
A
:::::::
striking

::::::
feature

::
of

:::::
Figs.

:
6
::::

and
:
7
::

is
::::
that

:::::
cases25

::
in

:::::
which

:::
the

:::::
local

:::::
kernel

:::::::::::
calculations

:::
are

:::::::
identical

:::::::
produce

::::
very

:::::::
similar

:::::::
achieved

::::::
FLOP

:::::
rates,

::::::
despite

::::::
having

::::::::
different

::::
data

::::::
sharing

:::::::
patterns.

::::
This

::::::::
supports

::
the

::::::::::
hypothesis

:::
that

:::
the

::::::
results

:::
are

::::::::
operation

::::::
bound.

4.3.3 Percentage of theoretical performance
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(a) Sandy Bridge, 1 process, c= 1
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(b) Sandy Bridge, 6 processes, c= 6

0 20 40 60 80 100
Number of layers

0.0

10.0

20.0

30.0

40.0

50.0

Pe
rfo

rm
an

ce
[G

FL
O

P
S

]

E5-2620 Xeon Sandy Bridge EP

CG1xCG1
CG1xDG0
CG1xDG1
DG0xCG1
DG0xDG0
DG0xDG1
DG1xCG1
DG1xDG0
DG1xDG1

(c) Sandy Bridge, 12 processes, c= 12
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(d) Sandy Bridge, 24 processes, c= 12

Figure 6. Performance of the I integral computation with varying number of layers and number of processes on a badly-ordered base mesh.

The horizontal line is the base FLOP throughput for fb = fv = 1 and the number of physical cores used.
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(a) Sandy Bridge, 1 process, c= 1
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(b) Sandy Bridge, 6 processes , c= 6
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(c) Sandy Bridge, 12 processes, c= 12
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(d) Sandy Bridge, 24 processes, c= 12

Figure 7. Performance of the I integral computation with varying number of layers and number of processes
:

on
::
a
:::::::::
well-ordered

::::
base

::::
mesh.

The star-shaped markers show the performance of the 1-layer badly-ordered mesh for comparison. The horizontal line is the base FLOP

throughput for fb = fv = 1 and the number of physical cores used.
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Figure 8. Performance of the I integral computations on different data discretisations with varying number of layers on the Haswell archi-

tecture
::
for

::
a
:::::::::
well-ordered

::::
base

::::
mesh. The star-shaped markers show the performance of the 1-layer badly-ordered mesh for comparison. The

horizontal line is the base FLOP throughput for fb = fv = 1 and the number of physical cores used.
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For the Sandy Bridge and Haswell architectures, the best performance is achieved in the 100-layer case run with 24 and 32

processes respectively (hyperthreading enabled). The results in Tables 4 and 5 show percentages of the STREAM bandwidth

and the theoretical floating point throughput which incorporates the instruction balance and vectorization factors.

4.4 Discussion

The performance of the extruded mesh iteration is constrained by the properties of the mesh and the kernel computation. The5

total number of computations is based on the number of degrees of freedom per cell. The range of discretisations used in this

paper (Fig. 5) leads to four cases: one, two, three or six degrees of freedom per cell. In compute bound situations, discretisations

with the same number of computations have the same performance (Fig. 8).

4.4.1 Temporal locality

The numbering algorithm ensures good temporal locality between vertically aligned cells. Any degrees of freedom which10

are shared vertically are reused when the iteration algorithm visits the next element. The reuse distance along the vertical is

therefore minimal.

For CG discretisations, where degrees of freedom are shared horizontally with other vertical columns, the overall perfor-

mance depends on the ordering of cells in the base mesh. Assuming a perfect ordering of the base mesh, the numbering

algorithm ensures a minimal reuse distance while guaranteeing a minimum number of indirect accesses and satisfying all the15

previously introduced spatial and temporal locality requirements.

Figures 7 and 6 demonstrate the combined impact of horizontal mesh ordering and extrusion. In the extreme case the flop

rate increases up to 14 times between the badly ordered single-layer case and the 100 layer well ordered case. This is consistent

with the widely held belief that unstructured mesh models are an order of magnitude slower than structured mesh models.

The difference between well- and badly-ordered mesh performance outlines the benefits responsible for the boost in per-20

formance. Horizontal data reuse dominates performance for low number of layers while spatial locality and vertical temporal

locality (ensured by the numbering and iteration algorithms) are responsible for most of the performance gains as the number

of layers increases.

:::
We

::::
note,

::::
once

::::::
again,

:::
that

:::::
these

::::::
results

:::
are

:::
for

:::
the

::::::
lowest

::::
order

::::::
spaces

::::::
which

:::::::
represent

::
a
:::::
worst

::::
case.

:::::::::::
Higher-order

::::::::
methods

::::
both

:::::
access

:::::
more

::::::::::
contiguous

::::
data

::
in

:::::
each

::::::
column

::::
and

::::::
require

::::::
many

::::
more

:::::::
FLOPs.

:::
As

::
a
::::::
result,

:::
we

:::::
would

::::::
expect

:::
to

:::::
reach25

::::::::::
performance

:::::::
plateaus

::
at

:::::
lower

:::::::
numbers

:::
of

:::::
layers.

:

5 Conclusions

In this paper we have presented efficient, locality-aware algorithms for numbering and iterating over extruded meshes. For a

sufficient number of layers, the cost of using an unstructured base mesh is amortized. Achieved performance ranges from 70%

to 90% of our best estimate for the hardware’s performance capabilities and current level of kernel optimisation. Benefits of30

19



spatial and temporal locality vary with number of layers: as the number of layers is increased the benefits of spatial locality

increase while those of temporal locality decrease.

This paper employed two simplifying constraints: that there are a constant number of layers in each column, and that the

number of degrees of freedom associated with each entity type is a constant. These assumptions are not fundamental to the

numbering algorithm presented here, or to its performance. We intend to relax those constraints as they become important for5

the use cases for which Firedrake is employed.

The current code generation scheme can be extended to include inter-kernel vectorization (an optimisation mentioned in

Meister and Bader (2015)) for the operations which cannot be vectorized
::::::::
vectorised

:
at intra-kernel level. The efficiency of such

a generic scheme applicable to different data discretisations is currently being explored.

In future work we intend to generalize some of the optimisations which extrusion enables for both residual and Jacobian10

assembly: inter-kernel optimisations, grouping of addition of contributions to the global system and exploiting the vertical

alignment at the level of the sparse representation of the global system matrix. In addition to the CPU results presented in this

paper, we also plan to explore the performance portability issues of extruded meshes on Graphical Processing Units and Intel

Xeon Phi accelerators.
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8 Data availability
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(Bercea, 2016b).

::::
The

::::::
meshes

::::
used

::
in

:::
the

::::::::::
experiments

:::
are

::::::::
available

:::
also

::::::::::::::
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Table 1. Topological dimensions of extruded mesh entities. Db denotes the topological dimension of the base mesh.

Mesh entity Dimensions

Vertex (0,0)

Vertical Edge (0,1)

Horizontal Edge (1,0)

Vertical Facet (Db� 1,1)

Horizontal Facet (Db,0)

Cell (Db,1)
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Table 2. Hardware used.

Name Intel Sandy Bridge Intel Haswell

Model Xeon E5-2620 Xeon E5-2640 v3

Frequency 2.0 GHz 2.6 GHz

Sockets 2 2

Cores per socket 6 8

Bandwidth per socket 42.6 GB/s 56.0 GB/s
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Table 3. Maximum STREAM triad (ai = bi +↵ci) performance achieved by varying the number of MPI processes from one to twice the

number of physical cores.

Platform STREAM bandwidth

Intel Sandy Bridge 55.3 GB/s

Intel Haswell 80.2 GB/s
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Table 4. Percentage of STREAM bandwidth and theoretical throughput achieved by the computation of integral I over 100 layers on Sandy

Bridge with 24 MPI processes.

Discretisation fb fv Pd (%) Bandwidth (%)

CG1⇥CG1 1.7 1.58 73.45 7.092

CG1⇥DG0 1.81 1.0 78.96 14.70

CG1⇥DG1 1.7 1.58 73.03 10.50

DG0⇥CG1 1.65 1.0 76.01 27.86

DG0⇥DG0 1.5 1.0 85.14 34.86

DG0⇥DG1 1.65 1.0 75.45 45.68

DG1⇥CG1 1.7 1.58 73.20 24.60

DG1⇥DG0 1.81 1.0 78.93 50.98

DG1⇥DG1 1.7 1.58 71.78 44.37
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Table 5. Percentage of STREAM bandwidth and theoretical throughput achieved by the computation of integral I over 100 layers on Haswell

with 32 MPI processes.

Discretisation fb fv Pd (%) Bandwidth (%)

CG1⇥CG1 1.76 1.61 72.43 9.015

CG1⇥DG0 1.97 1.0 88.57 21.92

CG1⇥DG1 1.76 1.61 72.20 13.39

DG0⇥CG1 1.87 1.0 73.94 38.74

DG0⇥DG0 1.66 1.0 91.93 53.10

DG0⇥DG1 1.87 1.0 72.89 63.11

DG1⇥CG1 1.76 1.61 71.99 31.19

DG1⇥DG0 1.97 1.0 87.55 75.17

DG1⇥DG1 1.76 1.61 71.50 56.98
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