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Abstract. Over the last decade many climate models have evolved into earth system models (ESMs), which are able to simulate

both physical and biogeochemical processes through the inclusion of additional components such as the carbon cycle. The

Australian Community Climate and Earth System Simulator (ACCESS) has been recently extended to include land and ocean

carbon cycle components in its ACCESS-ESM1 version. A detailed description of ACCESS-ESM1 components including

results from pre-industrial simulations is provided in Part 1. Here, we focus on the evaluation of ACCESS-ESM1 over the5

historical period (1850-2005) in terms of its capability to reproduce climate and carbon related variables. Comparisons are

performed with observations, if available, but also with other ESMs to highlight common weaknesses. We find that climate

variables controlling the exchange of carbon are well reproduced. However, the aerosol forcing in ACCESS-ESM1 is somewhat

larger than in other models, which leads to an overly strong cooling response in the land from about 1960 onwards. The land

carbon cycle is evaluated for two scenarios: running with a prescribed leaf area index (LAI) and running with a prognostic10

LAI. We overestimate the seasonal mean (1.7 vs. 1.4) and peak amplitude (2.0 vs. 1.8) of the prognostic LAI at the global

scale, which is common amongst CMIP5 ESMs. However, the prognostic LAI is our preferred choice, because it allows for

the vegetation feedback through the coupling between LAI and the leaf carbon pool. Our globally integrated land-atmosphere

flux over the historical period is 98PgC for prescribed LAI and 137PgC for prognostic LAI, which is in line with estimates

of land-use emissions (ACCESS-ESM1 does not include land-use change). The integrated ocean-atmosphere flux is 83PgC,15

which is in agreement with a recent estimate of 82PgC from the Global Carbon Project for the period 1959 to 2005. The

seasonal cycle of simulated atmospheric CO2 is close to the observed seasonal cycle (up to 1ppm difference for station at

Mace Head and up to 2ppm for station at Mauna Loa), but shows a larger amplitude (up to 6ppm) in the high northern

latitudes. Overall, ACCESS-ESM1 performs well over the historical period, making it a useful tool to explore the change in

land and oceanic carbon uptake in the future.20

1 Introduction

Climate models are continuously evolving to include more processes and interactions at higher resolutions and their number

has increased rapidly in recent years. In addition, a number of institutes worldwide have been developing earth system models
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(ESMs), which are able to simulate both physical and biogeochemical processes through the inclusion of the land and ocean

carbon cycles.

The evaluation of ESMs in terms of their capability to reproduce climate and carbon related variables over the historical

period (i.e. 1850 to 2005) is crucial prior to using such models for future predictions. Comparisons are usually performed with

observation based products, if available, but also with other ESMs to identify common weaknesses.5

The performance of 18 ESMs that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) (Taylor et al.,

2012) has been evaluated in Anav et al. (2013) for the present day climate. They found that all models correctly reproduce the

main climate variables controlling the spatial and temporal variability of the carbon cycle. However, large differences exist

when reproducing specific fields. In terms of the land carbon cycle, an overestimation of photosynthesis and leaf area index

(LAI) was found for most of the models. In contrast, for the ocean an underestimation of the net primary production (NPP)10

was noted for a number of models. Anav et al. (2013) also found significant regional variations in model performance.

Eight of these CMIP5 ESMs were also evaluated in Shao et al. (2013), highlighting that temporal correlations between

annual-mean carbon cycle and climate variables vary substantially among the 8 models. Large inter-model disagreements were

found for NPP and heterotrophic respiration (Rh). In agreement with Anav et al. (2013), Shao et al. (2013) also noted that the

CMIP5 historical simulations tend to overestimate photosynthesis and LAI.15

Todd-Brown et al. (2013) compared and evaluated 11 CMIP5 ESMs in terms of their variations in soil carbon. The correct

representation of soil carbon in the model is important in order to accurately predict future climate-carbon feedbacks. Soil

carbon simulations of the 11 models were compared against empirical data from the Harmonized World Soil Database (HWSD)

and from the Northern Circumpolar Soil Carbon Database (NCSCD). A large spread across all models was found (nearly 6

fold) and the spatial distribution of soil carbon, especially in the northern latitudes was found to be poor in comparison to20

HWSD and NCSCD, which means that most ESMs were poorly representing grid-scale soil carbon.

Frölicher et al. (2015) showed that CMIP5 models appeared to capture the observed pattern of anthropogenic carbon storage

in the ocean, particularly in the Southern Ocean. However, overall they underestimate the magnitude of the observed oceanic

global anthropogenic carbon storage since the pre-industrial.

The representation of the global carbon cycle in ESMs continues to be challenging. For example, large uncertainties exist25

for the climate-carbon feedback, which can be mainly attributed to terrestrial carbon cycle components (Friedlingstein et al.,

2006; Arora et al., 2013). Terrestrial ecosystem models show large variations when driven with future climate scenarios (Shao

et al., 2013; Friend et al., 2014) due to differences in model formulation and uncertainties in process parameters (Knorr and

Heimann, 2001; Booth et al., 2012).

The Australian Community Climate and Earth System Simulator (ACCESS) participated in CMIP5, but in a climate model30

only version. A selection of CMIP5 simulations have now been performed with the ESM version of ACCESS, ACCESS-ESM1

(Law et al., 2015). Here, we present the performance of the land and ocean carbon cycle components of ACCESS-ESM1 over

the historical period (1850-2005). First, we briefly assess ACCESS-ESM1 simulation of climate variables that are relevant to

the carbon cycle (Sect. 3). We then focus on the response of the carbon cycle to the historical forcing (Sect. 4) and comparison
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of various present-day simulated carbon variables with observations (Sect. 5). Law et al. (2015) provides complementary

analysis of the ACCESS-ESM1 pre-industrial simulation.

2 Model configuration, simulations and comparison data

Historical simulations (Sect. 2.2) are performed with two model configurations (Sect. 2.1) and the results compared with other

CMIP5 ESMs (Sect. 2.3) and a number of observed data products (Sect. 2.4).5

2.1 Model configuration

ACCESS-ESM1 is based on the ACCESS climate model (Bi et al., 2013), but with the addition of biogeochemical components

for ocean and land as described in part 1 of this paper (Law et al., 2015). The climate model version underlying the ESM

version is ACCESS1.4, a minor update of the ACCESS1.3 version submitted to CMIP5 (Bi et al., 2013; Dix et al., 2013). The

relationship between the ACCESS1.3, ACCESS1.4 and ACCESS-ESM1 versions is illustrated in Law et al. (2015, Fig. 1).10

Law et al. (2015) also showed that the climate simulations of the three model versions are very similar.

For the ACCESS-ESM1 version, ocean carbon fluxes are simulated by the World Ocean Model of Biogeochemistry And

Trophic dynamics (WOMBAT) (Oke et al., 2013) and land carbon fluxes are simulated by the Community Atmosphere Bio-

sphere Land Exchange (CABLE) model (Kowalczyk et al., 2006; Wang et al., 2011), which optionally includes nutrient limi-

tation (nitrogen and phosphorus) for the terrestrial biosphere through its biogeochemical module, denoted CASA-CNP (Wang15

et al., 2010). This capability is important because nitrogen, phosphorus and carbon biogeochemical cycles are strongly coupled,

and it has been demonstrated that nutrient limitation has a large impact on the productivity of terrestrial ecosystems (Wang

et al., 2010; Goll et al., 2012; Zhang et al., 2013). Consequently, global land carbon uptake can be altered significantly. Here

we run CASA-CNP in ‘CNP’ mode with both nitrogen and phosphorus limitation active. This differentiates the ACCESS-

ESM1 simulations presented here from other ESM simulations for CMIP5, few of which included nitrogen and none of which20

included phosphorus.

As in Law et al. (2015), two model configurations are used, differing in their treatment of leaf area index (LAI). LAI is an

important variable in climate models for describing the biophysical and biogeochemical properties of the land cover and in

CABLE it can either be prescribed or simulated. When prescribed, monthly values based on MODIS observations are read

in through an external file (Law et al., 2015, Sec. 3.1.1). The dataset used here is limited by having no interannual or longer25

time-scale variability. Additionally the same LAI is assigned to all plant funtional types (PFTs) within a grid-cell even though

CABLE simulates multiple PFTs per grid-cell. With prescribed LAI there is no coupling between the LAI and the leaf carbon

pool which means that vegetation feedbacks cannot be included. These limitations are removed by making LAI a prognostic

variable with the LAI dependent on the simulated size of the leaf carbon pool. However if the leaf carbon pool is not well

simulated then this would lead to a poor LAI simulation with consequent impacts for the climate simulation.30
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2.2 Simulations

All experiments are set up as concentration driven simulations, which means that (historical) atmospheric CO2 concentra-

tions are prescribed as an input to ACCESS-ESM1 and changes in the land and ocean carbon pools do not feed back on to

atmospheric CO2 concentrations following CMIP5 protocols (Taylor et al., 2012).

As noted above we run ACCESS-ESM1 in two configurations, with prescribed LAI (PresLAI) and prognostic LAI (ProgLAI).5

For PresLAI, the carbon cycle has no impact on the simulated climate whereas for ProgLAI, there is a small impact on the

climate through biogeophysical feedbacks related to surface albedo, evaporation and transpiration (Law et al., 2015, Sec. 4.1).

The difference in LAI will also have an impact on the land carbon fluxes, whereas the impact on the ocean carbon cycle is

negligible, and therefore our analysis of the ocean carbon fluxes focuses only on one scenario (i.e. PresLAI).

Both configurations of ACCESS-ESM1 were run for 1000 years under pre-industrial climate conditions (year 1850) (Law10

et al., 2015) with the historical simulations starting from year 800 of these control runs. As noted in Law et al. (2015) the net

carbon fluxes for land and ocean did not equilibrate to zero. At the end of the control run (i.e. year 800 to 955), global NEE

is 0.3PgCyr−1 for PresLAI and 0.08PgCyr−1 for ProgLAI. The net autgassing from the ocean is about 0.6PgCyr−1 at the

end of the control run. We take this drift into account when we calculate the net uptake of carbon for land and ocean.

The historical simulations use external forcing for 1850-2005 such as increasing greenhouse gases, aerosols, changes in15

solar radiation and volcanic eruptions as used in previous ACCESS versions (Dix et al., 2013). For example, the prescribed

atmospheric CO2 increases from 285 ppm in 1850 to 379 ppm in 2005.

Volcanic eruptions in ACCESS-ESM1 are prescribed based on monthly global mean stratospheric volcanic aerosol optical

depth (Sato et al., 2002) which is then averaged over four equal-area latitude zones, similar to the way it is done in the

Hadley Centre Global Environmental Model (HadGEM) (Stott et al., 2006; Jones et al., 2011). Globally significant volcanoes20

within the historical period are Krakatoa (1883), Santa Maria (1903), Agung (1963), El Chichón (1982) and Pinatubo (1991).

Tropospheric aerosols are either calculated interactively (i.e. sea salt and mineral dust) or are based on emission datasets (i.e.

sulphate and organic carbon) and increase rapidly from 1950 (Dix et al., 2013, Fig. 4).

The simulations do not include any land-use change; the distribution of PFTs used in the pre-industrial simulation is used

throughout the historical period.25

2.3 Comparison with CMIP5 models

ACCESS-ESM1 is compared against other ESMs that participated in CMIP5 and are available on the Earth System Grid. The

models used in this paper are shown in Table 1 with the references provided in Lenton et al. (2015). As not all years were

available for these simulations, we focused on the period 1870-2005 and used only the first ensemble member for each ESM.

In assessing the response of the CMIP5 models, we calculated the median and the 10th and 90th percentiles following Lenton30

et al. (2015). This allows us to both assess how well ACCESS-ESM1 captures the median and whether it falls into the range of

existing CMIP5 models.
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2.4 Observations

We use the following observational data products to compare against ACCESS-ESM1 outputs. Climate variables are assessed,

where this is helpful for interpreting the carbon simulation. For example, the land carbon balance is mainly controlled by

surface temperature and precipitation (Piao et al., 2009), whereas the ocean carbon balance is mainly influenced by sea surface

temperature (SST) and mixed layer depth (MLD) (Martinez et al., 2009).5

Land surface temperature and precipitation: Climate Research Unit (CRU) 1901-2013 time-series (TS) data set at version

3.22 (Harris et al., 2014; Jones and Harris, 2014), statistically interpolated to 0.5◦ x 0.5◦ from monthly observations at meteoro-

logical stations across the world’s land area (excluding Antarctica). A low resolution version at 5◦ for land surface temperature

anomalies (CRUTEM4, (Jones et al., 2012)) is used for the period 1850-1900.

Sea surface temperatures (SST): the high-resolution (1◦ x 1◦) Hadley SST1 (Rayner et al., 2003) in the period 1870-2006.10

We also use data from the World Ocean Atlas climatology (WOA2005; Garcia et al., 2006a, b) in the Taylor diagram.

Climatological mixed layer depths: de Boyer Montégut et al. (2004) for the historical period, based on the density mixed

layer criteria of a change density of 0.03 kgm−3 from the surface.

Ocean net primary productivity (NPP): from SeaWIFS calculated with the VPGM algorithm of Behrenfeld and Falkowski

(1997).15

Global ocean and land carbon flux: Global Carbon Project (GCP) estimates of annual global carbon budget components and

their uncertainties using a combination of data, algorithms, statistics and model estimates (Le Quéré et al., 2015). The GCP

residual land sink is estimated as the difference of emissions from fossil fuel and cement production, emissions from land use

and land cover change (LULCC), atmospheric CO2 growth rate and the mean ocean CO2 sink. The 2014 global carbon budget

(Le Quéré et al., 2015) provides annual values for the period 1959 to 2013.20

Gross primary production (GPP): upscaled data from the Flux Network (FLUXNET) using eddy covariance flux data and

various diagnostic models (Beer et al., 2010). Gridded data at the global scale is provided by Jung et al. (2011) using a machine

learning technique called model tree ensemble (MTE) to scale up FLUXNET observations. Global flux fields are available at a

0.5◦ x 0.5◦ spatial resolution and a monthly temporal resolution from 1982 to 2008.

LAI: global LAI derived from the third generation (3g) Global Inventory Modeling and Mapping Studies (GIMMS) normal-25

ized difference vegetation index (NDVI)3g data set. Neural networks were trained first with best-quality and significantly post-

processed Moderate Resolution Imaging Spectroradiometer (MODIS) LAI and Very High Resolution Radiometer (AVHRR)

GIMMS NDVI3g data for the overlapping period (2000 to 2009) to derive the final data set at 1/12◦ resolution and a temporal

resolution of 15 days for the period 1981 to 2011 (Zhu et al., 2013).

Soil organic carbon (SOC): the Harmonized World Soil Database (HWSD) (FAO, 2012) represents the most comprehensive30

and detailed globally consistent database of soil characteristics that is currently available for global analysis. We use an upscaled

and regridded version of the HWSD with the area weighted SOC calculated from the soil organic carbon (%), bulk density and

soil depth (Wieder et al., 2014).
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Salinity, DIC and alkalinity: observations for salinity come from the World Ocean Atlas climatology (WOA2005; Garcia

et al., 2006b), while DIC and alkalinity are from GLODAP (Key et al., 2004).

Sea-air CO2 fluxes: seasonal climatology of Wanninkhof et al. (2013) based on the 1◦ x 1◦ global measurements of oceanic

pCO2 of Takahashi et al. (2009).

Anthropogenic carbon uptake: column inventory estimated from Sabine et al. (2004) from GLobal Ocean Data Analysis5

Project (GLODAP) (Key et al., 2004).

Atmospheric CO2 concentrations: mean atmospheric CO2 seasonal cycles derived from NOAA/ESRL flask samples as

processed in the GLOBALVIEW (GLOBALVIEW-CO2, 2011) data product. These seasonal cycles are designed to be repre-

sentative of background, clean-air at any given location. Here, we assess the seasonal cycle for 4 locations with an averaging

period of about 20 years for Mace Head (53.33◦ N, 9.90◦ W), about 25 years for Alert (82.45◦ N, 62.52◦ W), about 35 years10

for South Pole (89.98◦ S, 24.80◦ W) and about 40 years for Mauna Loa (19.53◦ N, 155.58◦ W).

2.5 Performance evaluation

For climate variables such as land surface temperature and precipitation we calculate the model variability index (MVI) (Gleck-

ler et al., 2008; Scherrer, 2011). The models (mod) variability at every grid point i is compared against the observed (obs)

variability and then averaged over the globe in the following way:15

MVI =
1

n

n∑
i=1

(
smod
i

sobsi

− sobsi

smod
i

)2

, (1)

where s is the standard deviation and n the number of grid cells. Perfect model - observations agreement would result in an

MVI of zero. The definition of a limit to decide if a model performs well or poor is rather arbitrary. However, Scherrer (2011)

and Anav et al. (2013) have used a threshold of MVI< 0.5.

For a number of carbon related variables we calculate the inter-annual variability (IAV), defined as the standard deviation of20

detrended annual mean values.

To assess the performance of the ocean carbon cycle against observations we use a Taylor diagram (Taylor, 2001). We also

apply the same analysis to archived CMIP5 simulations (Taylor et al., 2012) to benchmark the performance of ACCESS-ESM1

relative to other CMIP5 models. A Taylor diagram allows us to summarise the bias, relative variability and correlations of the

simulations with the observations. In the plot, the radial distance of a given simulation from the origin gives the standard devi-25

ation of the simulation normalised by the standard deviation of the observations. The angle from the x axis provides the spatial

correlation coefficient between the simulations and the observations. The radial distance from the point marked observations

gives a measure of the RMS difference between the simulation and observations normalised by the standard deviation of the

observations. The point’s colour represent the bias in the simulation given as the relative difference in the globally averaged

values between simulation and observations calculated as (mean_model – mean_observations)/mean_observations; positive30

values show the model is overestimating the observed value.
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3 ACCESS-ESM1 climatology

3.1 Land temperature and precipitation

Carbon fluxes across the historical period will be directly influenced by increasing atmospheric CO2 and indirectly influenced

by changes in the climate, driven by the increasing atmospheric CO2 and modulated by other external forcings, such as

anthropogenic and volcanic aerosols. In addition, each climate simulation generates its own internal variability, with major5

modes of climate variability such as the El Niño Southern Oscillation (ENSO) known to generate large variability in carbon

exchange between the atmosphere and both the ocean and land (Zeng et al., 2005).

The evolution of temperature and precipitation in ACCESS-ESM1 (Fig. 1) over land shows similar characteristics to AC-

CESS1.3 historical simulations (Dix et al., 2013; Lewis and Karoly, 2014) as well as those of ACCESS1.4 (P. Vohlarik, pers.

comm.). Global land surface air temperature anomalies (relative to 1901-1930) are shown in Fig. 1. Both ACCESS-ESM1 sim-10

ulation scenarios (PresLAI and ProgLAI) show similar temperature anomalies over most of the historical period, being close to

the observed anomalies through most of the period (decadal mean difference smaller than 0.2K), apart from the 1940s where

the PresLAI scenario shows a larger negative anomaly (decadal mean difference of about 0.37K), which will be discussed later.

From about 1965-2005 anomalies are by up to 0.4K (decadal mean difference) lower than observations for both scenarios. This

is attributed by Lewis and Karoly (2014) to a likely overly strong cooling response in ACCESS1.3 to anthropogenic aerosols,15

offsetting the warming due to greenhouse gas increases for which ACCESS1.3 responds similarly to a CMIP5 mean (Lewis and

Karoly, 2014, Figs. 2a, 3a). Strong aerosol cooling is supported by Rotstayn et al. (2015) who found that ACCESS1.3 showed

a large global mean aerosol effective radiative forcing (ERF) over the historical period of −1.56Wm−2 which is much larger

than the IPCC best estimate (−0.9Wm−2) (Boucher et al., 2013) but still within the uncertainty range.

The interannual variability in temperature is well reproduced by both ACCESS-ESM1 scenarios, showing an MVI of 0.320

(PresLAI) and 0.4 (ProgLAI) for the period 1901-2005. According to Anav et al. (2013) only a few CMIP5 models show an

MVI of lower than 0.5 (although their calculation is based on present day, i.e. 1986-2005).

Both ACCESS-ESM1 simulations exhibit cooling following major volcanic eruptions (marked in Fig. 1). At first sight, the

ProgLAI run seems to be more sensitive to volcanic eruptions, showing a stronger cooling particularly for the two most recent

major eruptions, El Chichón in 1982 and Mt. Pinatubo in 1991. However, this difference might be due to a different ENSO phase25

for the two runs at the time of the eruptions. Lewis and Karoly (2014) assessed the temperature impact of Agung, El Chichón

and Pinatubo in three ACCESS1.3 simulations (e.g. their Fig. 7) and mean temperature anomalies from the two ACCESS-

ESM1 simulations lie within or only slightly outside the ACCESS1.3 ensemble range. It is worth noting that Lewis and Karoly

(2014) found that the simulated temperature anomalies from volcanoes tended to be larger in ACCESS than observed, and this

was common across CMIP5 models.30

Differences in the year to year temperature anomalies between the two ACCESS-ESM1 scenarios are likely due to inter-

nal climate variability. For example, between the years 1940 and 1950, the PresLAI run shows a large negative temperature

anomaly and the ProgLAI run shows a positive anomaly. The negative anomaly for the PresLAI is probably related to a strong
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La Niña event (Nino3 index of -1.2) around the year 1945 (Fig. 1c), whereas in the ProgLAI case we see a small El Niño event

(Nino3 index of 0.6) around the same time.

The temperature anomalies hide an absolute temperature difference between the two ACCESS-ESM1 simulations; the

ProgLAI scenario produces a slightly warmer climate (0.56 K difference in mean land surface air temperature averaged over

1850-2005) than the PresLAI run. This is consistent with the difference in surface air temperature found for the pre-industrial5

simulations (Law et al., 2015, Sec. 4.1). As noted in Law et al. (2015) the warmer climate can be explained by the difference in

LAI, which is generally higher in the prognostic case. This leads to a lower albedo, especially for evergreen needleleaf forests

during the winter months in the northern hemisphere, and consequently to an increase in absorbed radiation. The difference in

LAI for both scenarios is explored in more detail in section 5.1.2. Compared to the observations the ACCESS-ESM1 runs show

a cooler land surface air temperature by about 0.5 K for the ProgLAI scenario and 1.1 K for the PresLAI scenario averaged10

over 1901-2005.

Precipitation anomalies over the land are presented in Fig. 1b. Larger differences in the anomalies for the two ACCESS-

ESM1 simulations can be observed around the years 1870 to 1880, where the PresLAI scenario shows a positive anomaly and

the ProgLAI scenario shows a mainly negative anomaly. The difference over the remaining time period for the two runs is

generally small. ACCESS-ESM1 simulations compare well with observed rainfall anomalies until about 1960 (decadal mean15

difference smaller than 8mmyr−1), with the exeption of the period 1911-1920 for PresLAI (decadal mean difference of about

12mmyr−1) and the period 1951-1960 for ProgLAI (decadal mean difference of about 17mmyr−1). After that, observed

anomalies are mostly higher than the simulation results (decadal mean difference of up to 41mmyr−1), a feature also seen

in the ACCESS1.3 historical ensemble (Lewis and Karoly, 2014, Fig. 6a). The comparison of absolute rainfall for the two

ACCESS-ESM1 scenarios suggests a dryer climate (approx. 20 mmyr−1) for the ProgLAI run.20

For precipitation we calculate an MVI of 1.7 (PresLAI) and 1.8 (ProgLAI) for the period 1901-2005, which suggests that

the IAV is not well represented in ACCESS-ESM1. However, according to Anav et al. (2013) none of the CMIP5 models had

an MVI close to the threshold of 0.5. Also note that for the calculation of the MVI for precipitation we had to exclude 60 land

points (mainly coastal points) due to inconsistancies in the regridding.

A reduction in precipitation can be observed following the eruption of major volcanoes for both ACCESS-ESM1 scenarios,25

apart from the 1903 Santa Maria eruption and the 1982 El Chichón eruption, where the PresLAI scenario does not show a

strong anomaly and the ProgLAI anomaly is likely too late to be due to the volcano. As for temperature, the precipitation

anomalies lie within or close to the ACCESS1.3 ensemble of anomalies presented by Lewis and Karoly (2014, Fig. 9).

3.2 Sea surface temperature and mixed layer depth

To assist in the assessment of responses of the ocean NPP and sea-air CO2 fluxes, the responses of SST and mixed layer depth30

are first assessed.

The ocean response from ACCESS-ESM1 is compared with the time series of HadiSST v1 (Rayner et al., 2003) in Figure 2.

Here we see, that there is a warm bias in the early part of the historical period. This warm bias in ACCESS-ESM1 is the

same as reported by Bi et al. (2013) over the period 1870-1899 in ACCESS 1.3 (0.26 K). In the period 1870-1970 we see that
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the warming of the oceans appears to be less climate sensitive than the observations. However, by the end of the historical

simulation (1970-2005) we notice that ACCESS-ESM1 captures well the observed response of HadiSST in the later period.

However, despite little global bias in the latter period we see that the ACCESS-ESM1 SST response, consistent with AC-

CESS 1.3 (Bi et al., 2013), produces strong spatial differences from observations. Fig. 3 shows clear spatially coherent dif-

ferences between ACCESS-ESM1 and observations (1986-2005). Some of these regions show a strong summer warming bias5

(>3 K) in areas such as the high latitude Southern and Pacific Ocean, while in other regions such as the subtropical Atlantic,

a strong cooling bias is present during the same season. This is in contrast to other regions, such as the high latitude North

Atlantic, that has a strong year round warming bias. These biases are broadly consistent with known errors associated with the

UK Met Office Unified Model (Williams et al., 2015), which is employed as the atmospheric model in ACCESS-ESM1. Our

SST response is also broadly consistent with other ESMs such as HadGEM2 (Martin et al., 2011) that also use the UK Met10

Office Unified Model.

The magnitude of the interannual variability of simulated SST is of similar magnitude as the observations. In response

to large aerosol injections associated with volcanic eruptions, overlain on Fig. 2, we see that the ocean does capture a net

cooling, as expected (e.g. Stenchikov et al., 2009) and consistent with observations. Interestingly, the magnitude of the cooling

is sometimes less than observed in HadiSST v1 despite the stronger than observed aerosol response in ACCESS-ESM1.15

Ocean mixed layer depths are compared with the observations following de Boyer Montégut et al. (2004), based on more

than 880000 depth profiles from research ships and ARGO profiles, and based on a 0.03 kgm−3 density change from the

surface. Significant advances in autonomous measurement platforms have allowed the mixed layer to be increasingly well

constrained in all seasons across the global ocean.

Overall we see in the mid and lower latitudes that the mixed layer depth is deeper than observed in all seasons (Figure 4).20

However the very large values likely represent the differences in the positions of fronts between the relatively coarse resolution

model relative to the observations rather than very large differences (Lenton et al., 2013). In the higher latitudes winter mixed

layers are well captured by ACCESS-ESM1 (Figure 4). This is encouraging given that many ocean models tend to underesti-

mate winter mixed layer depths (Sallée et al., 2013; Downes et al., 2015). Simulating winter mixed layers correctly is critical for

setting interior ocean properties supplying nutrients to the upper ocean to fuel the biologically active growing season (Rodgers25

et al., 2014). However in contrast to the winter, ACCESS-ESM1 appears to systematically underestimate mixed layer depths

in the high latitude ocean in summer, 60% (or 30-40 m) in the Southern Ocean, Pacific and Atlantic Oceans. In the Southern

Ocean, in particular, the underestimation of summer mixed layer depths is consistent with Sallée et al. (2013) and Huang et al.

(2014) who showed that most CMIP5 models underestimate summer mixed layer depths. Huang et al. (2014) attributed this to

a lack of vertical mixing in CMIP5 rather than sea surface forcing related to individual models, this is consistent with Downes30

et al. (2015), who showed that these biases are also present in the ocean only simulations of ACCESS-ESM1.
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4 ACCESS-ESM1 carbon cycle response to historical forcing

The increase in atmospheric CO2 over the historical period is expected to have a direct impact on both land and ocean carbon

fluxes. Additionally there may be indirect impacts from the change in climate caused by the increasing atmospheric CO2.

These impacts are explored firstly for land carbon and then for ocean carbon.

4.1 Land carbon response5

The direct impact of increasing atmospheric CO2 is seen clearly in the simulated global land gross primary production (GPP)

(Fig. 5a), with increasing GPP for both simulations. The ProgLAI case gives the larger increase, with fluxes for the final 10

years of the simulation being 19% larger than for the first 10 years, compared to an increase of 11% in the PresLAI case. This

is due to increasing LAI in the ProgLAI simulation (Fig. 5b) compared to the prescribed LAI which is annually repeating with

no increase. Thus the PresLAI case captures only the direct CO2 fertilisation effect of more efficient photosynthesis per leaf10

area while the ProgLAI case also allows the growing leaf biomass to increase the global total assimilation. The inter-annual

variability (IAV) in GPP over the whole historical period for the ProgLAI run is 2.6PgCyr−1, considerably larger than in

the PresLAI case (1.7PgCyr−1), but within the range of other CMIP5 models. We also notice a large decadal variability of

global GPP for the ProgLAI case, which is much weaker in the PresLAI case (1.9 vs. 1.3 PgCyr−1 ). Natural variability of

the climate is the main driver for the IAV in GPP for the PresLAI case. The larger variability in the ProgLAI case is due to the15

stronger response to volcanic cooling and climate, causing an increase in LAI and a positive feedback through increased GPP.

In the PresLAI case, without the LAI feedback, the impact of volcanic cooling is sometimes largely offset by natural climate

variability, for example in the Pinatubo (1991) case.

The difference between the two simulations is less obvious for the net ecosystem exchange (Fig. 5c). NEE is a relatively

small flux that represents the difference between respiration (heterotrophic and autotrophic) and GPP. In the current set up of20

ACCESS-ESM1 we do not include disturbances such as fire and LULCC, which means that in this case NEE also represents

the net flux of carbon from the land to the atmosphere. Both simulations generally produce small land sinks over most of the

historical period, with some tendency to an increasing sink from the 1920s, followed by a possible reduction in the sink from

the mid 1990s to 2005. The IAV is relatively large and similar for both scenarios (1.4 vs. 1.3 PgCyr−1) and likely caused by

variations in GPP (Piao et al., 2009; Jung et al., 2011) that are moderated by respiration, especially in the ProgLAI case. Law25

et al. (2015, Table 2) found similar IAV in the preindustrial simulation with larger GPP IAV in the ProgLAI case offset by

positively correlated leaf respiration IAV. Decadal variability for the ProgLAI run is larger than for the PresLAI run (0.7 vs.

0.3 PgCyr−1).

Larger decadal variability in the ProgLAI run can be explained by the stronger response to volcanic eruptions. In principle,

aerosols scatter incoming solar radiation and therefore have a mainly cooling effect. Hence, an increase in aerosol emissions30

leads to a decrease in global temperature which in turn increases GPP in the tropics and reduces plant respiration globally in

both cases (PresLAI and ProgLAI) and therefore increases NEE. However, whereas in the PresLAI case the LAI is kept at a
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constant level, in the ProgLAI case the LAI is allowed to increase with the leaf carbon pools (Fig. 5b). This leads to a further

increase in GPP at the same time (Fig. 5a) which further increases NEE in the ProgLAI case.

Due to the fact that during the control run our net carbon flux did not equilibrate to zero (Law et al., 2015, Sec. 4.2.2), we

calculate the carbon uptake for both scenarios by subtracting the mean net flux over the corresponding part of the control run.

We estimate a total uptake of carbon to the land (using the net ecosystem production (NEP), with NEP =−1×NEE) over5

the historical period of 98PgC for the PresLAI scenario and 137PgC for the ProgLAI scenario. The increase in biomass over

the historical period is 70PgC for PresLAI and 87PgC for ProgLAI, (see also Table 2). This is similar to results from CMIP5

models that also do not consider LULCC. For, example the Beijing Climate Center Climate System Model (BCC-CSM1.1)

estimates an increase in biomass of about 83PgC over the historical period and the Institute of Numerical Mathematics Coupled

Model (INM-CM4.0) reports an increase of about 70PgC (Jones et al., 2013). The increase in combined soil and litter carbon10

over the historical period is smaller in ACCESS-ESM1 (28PgC for PresLAI and 49PgC for ProgLAI) than in the two CMIP5

models without LULCC (64PgC for both, BCC-CSM1.1 and INM-CM4.0).

We can compare the total carbon uptake (here cumulative NEP) from ACCESS-ESM1 with other models and estimates in

two ways:

1. Comparison against land-use emission estimates:15

The observation based cumulative historical land carbon uptake is estimated to be −11± 47PgC (Arora et al., 2011),

which suggests an almost neutral behaviour of the land over that period. Since we do not include disturbances in our

model, we do not expect our simulations to match those results. However, we can compare our calculated cumulative

uptake against estimates of land-use emissions to see if they are in a similar range. For example, Houghton (2010) reports

land-use emissions of 108–188 PgC for 1850-2000, comparable to the ACCESS-ESM1 cumulative uptakes.20

2. Comparison against CMIP5 estimates of cumulative NEP:

Simulation results from CMIP5 ESMs that include LULCC provide a large range for the total carbon uptake. Shao et al.

(2013, Table 4), for example, reports the separate contributions of NEP and disturbance to cumulative land carbon uptake

for eight CMIP5 models. While NEP ranges from 24-1730 (median 387) PgC and disturbance ranges from 3-1729 PgC,

the range for land uptake is smaller with two outlying models (-120 and 211 PgC) and the remainder ranging from -5925

to 18 PgC. The estimates of cumulative NEP from ACCESS-ESM1 are at the low end of the CMIP5 range reported in

Shao et al. (2013), possibly due to the inclusion of nitrogen (N) and phosphorus (P) limitation; Zhang et al. (2013) found

a reduction of 1850-2005 NEP from 210 PgC for a carbon-only simulation to 85 PgC with N and P limitation when

using CABLE in a low resolution earth system model.

4.2 Ocean carbon response30

Figure 6 shows that, consistent with other CMIP5 models, there is no statistically significant trend of ocean NPP globally over

the historical period. The global mean NPP from ACCESS-ESM1 of 51PgCyr−1 is close to that calculated from the SeaWIFS

data of 50PgCyr−1 for 1998-2005. Furthermore it is also in agreement with estimates, based on observations, of global NPP
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of between 45-50PgCyr−1 (Behrenfeld and Falkowski, 1997). The ACCESS-ESM1 NPP is larger than the median CMIP5

model value of 37 PgC, however NPP in CMIP5 models is associated with a very large range (Anav et al., 2013).

The evolution of sea-air CO2 fluxes in the period 1850-2005 is shown in Fig. 7. Overlain on this plot is the timing of the

major volcanic eruptions, the estimated sea-air CO2 flux from the Global Carbon Project (GCP) (Le Quéré et al., 2015) and

results from the CMIP5 model archive. We also take into account the drift over the corresponding part of the control run. Here5

we see very good agreement with the CMIP5 models in the period 1870-1960, with the ACCESS-ESM1 sitting close to the

median of the CMIP5 models, and well within the range of the CMIP5 models. After 1960, ACCESS-ESM1 shows greater

uptake than the median of CMIP5 models, and appears to more closely follow the observed value from the GCP, lying at the

10th percentile of the CMIP5 range. For 1960-2005, ACCESS-ESM1 gives a mean sea-air CO2 flux of 1.8± 0.1PgCyr−1

in good agreement with the estimated GCP value of 1.9± 0.3PgCyr−1, and larger than the estimate from CMIP5 models10

of 1.56± 0.1PgCyr−1. For 1986-2005, the sea-air CO2 is 2.2± 0.1PgCyr−1 from ACCESS-ESM1, the same as from the

GCP (2.2± 0.2PgCyr−1), and larger than the median CMIP5 model value of 1.8± 0.1PgCyr−1. The cumulative uptake of

carbon by air-sea CO2 fluxes in the period 1959-2005 from ACCESS-ESM1 is 83 PgC which is good agreement with the GCP

value of 82 PgC (Le Quéré et al., 2015) over the same period. These results highlight that ACCESS-ESM1 show good skill at

capturing the globally integrated ocean carbon uptake at the global scale.15

5 Evaluation of the present day carbon cycle

The last 20 years of the historical simulation (1986-2005) is used to evaluate the simulated carbon cycle against observation

based products. Analysis considers the land, ocean and atmosphere in turn.

5.1 Land carbon

5.1.1 GPP20

Both ACCESS-ESM1 runs (PresLAI and ProgLAI) provide a mean GPP of about 130PgCyr−1 for 1986-2005. The observa-

tion based estimate of Jung et al. (2011) suggests a GPP of about 119PgCyr−1 for the same period. Other studies also suggest

a global GPP within the same range: Beer et al. (2010) reports an estimate also based on FLUXNET data of 123±8PgCyr−1

for the period 1998-2005; Ziehn et al. (2011) used plant traits to constrain parameters of the Farquhar photosynthesis model

and estimated the global GPP for the same period to be 121PgCyr−1 (95% confidence interval from 110 to 130PgCyr−1)25

and the IPCC in its AR4 report states a global value of 120 PgC for 1995 (Denman et al., 2007). If compared with other CMIP5

earth system models which were divided into two groups by Anav et al. (2013), ACCESS-ESM1 lies in the middle of the lower

group with the range 106 to 140PgCyr−1. It was also noted by Anav et al. (2013), that the group of CMIP5 models with

a GPP above 150 PgC did not include nitrogen limitation and might therefore overestimate GPP. ACCESS-ESM1 contains

both nitrogen and phosphorus limitation, which may provide a more realistic simulation of carbon uptake by the terrestrial30

biosphere.
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A number of studies that base their estimates on observations suggest that a global GPP of about 120PgCyr−1 may be

somewhat too low. For example, Welp et al. (2011) provides a best guess of 150-175PgCyr−1 and (Koffi et al., 2012) an

estimate of 146±19PgCyr−1. However, the estimate by Jung et al. (2011) is based on the largest set of observations and also

provides a spatial distribution of GPP. In the following, we therefore use this product for the validation of the ACCESS-ESM1

land carbon component.5

The mean annual cycle of GPP as simulated by the ACCESS-ESM1 is shown in Fig. 8 for both scenarios as Anav et al. (2013,

Fig. 8). Observation based estimates by Jung et al. (2011) are also shown for comparison. At the global scale both ACCESS-

ESM1 runs show a similar behaviour and they both overestimate GPP by about 2PgCmonth−1 (peak amplitude) if compared

with the observations as discussed earlier. However, when we split GPP into its contributions from three latitudinal regions

we notice larger differences between the two ACCESS-ESM1 simulations. The ProgLAI simulation shows a much more10

productive northern region (by about 2PgCmonth−1) and a lower GPP in the tropics (by about 0.2PgCmonth−1), which

compensated for at the global scale. Overall, both ACCESS-ESM1 simulations show good agreement with the observations

in terms of the amplitude, with only a small bias of up to 2.2PgCmonth−1 for the globe and the northern hemisphere. In

contrast, a large number of CMIP5 models produce a strong positive bias during June-August on a global scale and for the

northern hemisphere (Anav et al., 2013). Agreement with observations in terms of the phase is generally good, accept for15

the Tropics, where ACCESS-ESM1 fails to accurately reproduce the phase. However, as noted by Anav et al. (2013) this is

common amongst CMIP5 models.

The spatial distribution of GPP is presented in Fig. 9 along with its IAV for the last 20 years of the historical period. Generally

there is good agreement in the spatial pattern of GPP between ACCESS-ESM1 with prescribed LAI and the observation based

estimate (95% of all land points have errors smaller than 0.5 kgCm−2 yr−1). However, there are some small differences20

mainly in tropical regions (i.e. central Africa). The ACCESS-ESM1 ProgLAI run shows a larger GPP in the NH, mostly

in the boreal regions, and a lower GPP for large parts of South-America (86% of all land points have errors smaller than

0.5 kgCm−2 yr−1). Comparing the IAV of GPP for the two ACCESS-ESM1 runs reveals large differences. Whereas the

PresLAI run shows little variability for most areas, the ProgLAI run shows large hotspots in South-America and Southeast

Australia of up to 0.5 kgCm−2 yr−1 which are caused by the LAI feedback as discussed previously. The observation based25

estimate of GPP shows large areas of variability over the continents, but the distribution and magnitude are quite different to

the ACCESS-ESM1 runs. However, as pointed out in Anav et al. (2013) one of the limitations of the GPP observational product

is the magnitude of the IAV.

5.1.2 LAI

Global LAI estimates are mainly derived from satellite observations and various products are available. The prescribed LAI30

in ACCESS-ESM1 is based on MODIS observations (Yang et al., 2006) with no IAV. If compared with the observation based

estimates of Zhu et al. (2013), which uses a combination of MODIS and AVHRR data, over the last 20 years of the historical

period (mean of 1.4), we notice that our current prescribed LAI is somewhat smaller (mean of 1.3), but agrees well in terms of
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its seasonal cycle (Fig. 10). There is a number of reasons why remote sensing LAI products differ from each other, i.e. because

different sensors and algorithms are used (Los et al., 2000).

The prognostic LAI which is calculated by CASA-CNP is significantly higher at the global scale (mean: 1.7) and also shows

a different seasonality with its peak in August, whereas the observations suggest the peak is in July (Fig. 10). In CABLE the

phenology phase is currently prescribed and the leaf onset might be defined as too late for deciduous vegetation which leads to5

a shift in the LAI peak by about one month.

The global seasonal cycle of LAI is mainly influenced by the northern extra-tropics and we notice that leaf coverage through-

out the year and especially in autumn and winter is too high in the ProgLAI case. We clearly overestimate the mean LAI

(observations suggest a mean of 1.3) and underestimate the seasonal variability. On a PFT level the main contributor to this is

evergreen needle leaf forest which produces a large value (mean 3.8) over the whole year with only a very small seasonal cycle.10

In the tropics we underestimate LAI by a significant amount (mean of 1.5 in comparison to 2.3 as suggested by observations).

This is mainly due to C4 grass showing an LAI which is about a factor of 5 smaller than the observations. Law et al. (2015)

attributes the low simulated LAI of C4 grass to a large sensitivity to rainfall and the inability of CABLE to grow back C4 grass

after a die back.

The overestimation of the LAI for evergreen needle leaf forest and the underestimation for C4 grass have a direct impact on15

GPP, which is also too large for evergreen needle leaf and too low for C4 grass. In CABLE, the calculation of GPP is related to

APAR (absorbed photosynthetic active radiation) which is the product of FPAR (fraction of photosynthetically active radiation

) and PAR (photosynthetically active radiation) with FPAR calculated from the LAI.

At the global scale, most CMIP5 earth system models also tend to overestimate LAI (Anav et al., 2013, Fig. 11), ranging

from 1.5 in December-January to almost 3.5 in June-August. Anav et al. (2013) reports that only 2 models captured the main20

feature of the global LAI pattern, whereas the remaining 16 models overestimate the global LAI with some even exceeding a

mean of 2.4. At the regional scale the ACCESS-ESM1 prognostic LAI is within the CMIP5 range for both hemispheres, but

below the CMIP5 range for the Tropics.

5.1.3 NEE

We compare our NEE results against estimates of the residual land sink from the global carbon project (GCP) (Le Quéré et al.,25

2015) for 1959–2005 (Fig. 5c). The mean residual land sink and interannual variability for this period is estimated to be about

1.9±1.0 PgCy−1 compared to 1.4±1.3 PgCy−1 for PresLAI and 1.8±1.6 PgCy−1 for ProgLAI. In all cases the IAV is large

relative to the mean uptake, but more so in the ACCESS-ESM1 simulations. The large IAV makes it difficult to be definitive

about land uptake trends over this period, though there is some suggestion of slightly increasing uptake in the GCP budget

estimates but slightly decreasing uptake in the ACCESS-ESM1 simulations. This might be better assessed using an ensemble30

of simulations and extending the analysis closer to 2015 through use of the RCP scenario simulations. Simulations without

anthropogenic aerosols would also be useful to determine whether the relatively strong cooling due to tropospheric aerosols in

ACCESS-ESM1 is impacting the decadal evolution of land carbon uptake.
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5.1.4 CNP pool sizes

The amount of carbon, nitrogen and phosphorus stored in the biomass and soil of terrestrial ecosystems as simulated by

ACCESS-ESM1 is compared against other estimates from the literature. Here, we refer to the terrestrial biomass as the sum of

living above ground (leaf and wood) and below ground (roots) material. All mean pool sizes and spatial distributions derived

from ACCESS-ESM1 are calculated over the last 20 years of the historical period (1986-2005).5

Carbon pool sizes simulated with ACCESS-ESM1 are in general smaller for the PresLAI scenario as shown in Table 2.

The total carbon in the terrestrial biomass amounts to 670 PgC (PresLAI) and 807 PgC (ProgLAI). The IPCC (Prentice et al.,

2001) reports two different estimates of 466 PgC and 654 PgC for the global plant carbon stock, depending on the data being

used. This would imply that our plant carbon pools are somewhat to large, especially for the ProgLAI scenario. However, we

have to take into account account that we do not consider LULCC, which might be the reason why we overestimate the size10

of our carbon pools. Other studies such as Houghton et al. (2009) suggest a range of 800-1300 PgC for the global terrestrial

biomass. The large range is a result of inconsistent definitions of forest, uncertain estimates of forest area, paucity of ground

measurements and the lack of reliable mechanisms for upscaling ground measurements to larger areas (Houghton et al., 2009).

A large number of observational based estimates for global soil organic carbon (SOC) exists with most studies reporting a

global estimate of about 1500 PgC (Scharlemann et al., 2014). SOC pools simulated by ACCESS-ESM1 are somewhat smaller15

with 1050 PgC for the PresLAI scenario and about 1200 PgC for the ProgLAI scenario. However, these numbers agree well

with the best estimate of 1260 PgC derived from the HWSD (FAO, 2012) and considering the large range of 510 - 3040 PgC of

global SOC simulated by CMIP5 models (Todd-Brown et al., 2013) this is an encouraging result.

The Harmonized World Soil Database (HWSD) also provides a spatial distribution of the SOC density which is shown in

Fig.11 along with the results from ACCESS-ESM1. In general there is good agreement between the two ACCESS-ESM120

scenarios, showing a similar pattern, but with a slightly larger density in the NH boreal region for the ProgLAI run. The

agreement between the HWSD and ACCESS-ESM1 is also generally good. However, the HWSD suggest localized hot spots

of high SOC density in North America and Siberia which are not covered by ACCESS-ESM1. We also underestimate SOC in

the tropics especially in the maritime continent region. On the other hand, both ACCESS-ESM1 scenarios suggest a high SOC

density in the north Asian region, which is not apparent in the HWSD.25

In addition to other environmental constraints such as water, light and temperature, carbon storage by terrestrial ecosys-

tems may also be limited by nutrients, predominantly nitrogen and phosphorus (Wang and Houlton, 2009; Wang et al., 2010;

Zhang et al., 2013). However, few estimates are available of total nitrogen and phosphorus pool sizes and their global spatial

distribution is even more uncertain.

Simulated nitrogen pool sizes are shown in Table 2, and there is only a small difference between the two ACCESS-ESM130

scenarios. Our estimate for the nitrogen in the terrestrial biomass is about 6.5 PgN. Estimates based on field data reconstructions

range from about 3.5 PgN (Schlesinger, 1997) to 10 PgN (Davidson, 1994) which places the ACCESS-ESM1 results right in

the middle of that range. Soil organic nitrogen pools are simulated to be about 85 PgN for both ACCESS-ESM1 scenarios

which is slightly low if compared with estimates based on field data (95 PgC (Post et al., 1985) to 140 PgC (Batjes, 1996)).
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The terrestrial phosphorus cycle at present day is even less constrained than the nitrogen cycle and modelling and empirical

estimates vary greatly. ACCESS-ESM1 results suggest a total of 0.35 PgP in the terrestrial biosphere which is lower than the

estimated range of 0.5 - 1 PgP by Smil (2000). Organic soil phosphorus pool sizes differ to some extent between the two

ACCESS-ESM1 scenarios. The PresLAI model run simulates a pool size of about 10 PgP and the ProgLAI model run gives a

pool size of about 12 PgP (see Table 2). Other estimates range from about 5 PgP to about 200 PgP with the upper end being5

assessed as unrealistic (Smil, 2000).

5.2 Ocean carbon

5.2.1 Surface field assessment

Figure 12 shows the Taylor diagram comparing the mean surface alkalinity, DIC, temperature and salinity fields. The ACCESS-

ESM1 surface fields are 20-year averages (1986-2005), assessed against observations. Overlain on this plot are median values10

from CMIP5. The individual CMIP5 models are listed in Table 1.

For all variables considered, ACCESS-ESM1 simulations show good spatial correlations with the observations of better than

0.7. SST shows the highest correlation (R> 0.98) with the observations, demonstrates a similar magnitude of variability with

only a small positive bias. This is very similar to the response of CMIP5 median that shows a similar negative bias. ACCESS-

ESM1 sea surface salinity (SSS) shows a reasonable correlation with observations, of similar magnitude to CMIP5 median15

(about 0.82). However, the magnitude of the spatial variability is underestimated and there is a bias of similar magnitude to the

CMIP5 median value. ACCESS-ESM1 has known large regional biases in surface salinity (Bi et al., 2013, Fig. 16) and these

biases will in turn also impact the simulated alkalinity. Biases in SSS are not surprising given the challenges with capturing

well the hydrological cycle in ESMs (Trenberth et al., 2003).

As anticipated alkalinity shows the poorest correlation with the observations of all the variables at 0.72. While this is clearly20

less than the median value from CMIP5, we note that with for all the CMIP5 median values presented here, alkalinity also

shows the poorest correlation. Encouragingly the bias in alkalinity is closer to the observations, and while the variability is also

overestimated it is consistent with CMIP5 values. While some of these biases are clearly attributable to salinity, to improve

alkalinity in ACCESS-ESM1 will also require further tuning of the export of calcium carbonate from the upper ocean. For DIC,

ACCESS-ESM1 shows a similar correlation with observations (Fig. 12) as the CMIP5 median, but overestimates the magnitude25

of the variability when compared with CMIP5 and observations. The underestimation of the mean value, can be attributed to

the negative alkalinity bias reducing the surface DIC concentration that would be in equilibrium with the atmosphere.

While assessing the simulated values with the median CMIP5 values provides valuable insights, it does not allow us to

assess the skill of our model with individual CMIP5 models. To do this the simulated surface DIC and alkalinity values are

compared with individual CMIP5 models (Fig. 13). For alkalinity (Fig. 13a), the correlation between ACCESS-ESM1 slightly30

underestimates correlation returned by the CMIP5 models, but shows a similar, and in some cases better, magnitude of spatial

variability. At the same time the bias in surface alkalinity it is still within the range of the CMIP5 models, and many cases

lower than individual CMIP5 models, but of opposite sign overestimate alkalinity. For DIC, we see that our simulation sits
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in the spread of the CMIP5 correlation and magnitude (Fig. 13b). Consistent with alkalinity simulations we see negative DIC

biases and the ACCESS-ESM1 is not a significant outlier in terms of its magnitude. Overall, our simulation has comparable

skill to the existing CMIP5 models.

5.2.2 Net primary production

To assess the seasonal anomaly of ocean NPP, calculated as the anomaly of vertically integrated primary productivity through5

the water column, the global ocean is broken down into 5 regions, following (Anav et al., 2013). Figure 14 shows the NPP

seasonal anomaly from ACCESS-ESM1, CMIP5 models and SeaWIFS over the (SeaWIFS) observational period 1998-2005.

At the global ocean scale, seasonally we see that the magnitude of NPP from ACCESS-ESM1 is less than the amplitude of

CMIP5 and SeaWIFS, with poor phasing. This likely reflects the biases in ACCESS-ESM1 toward lower latitudes, reflecting

excess nutrient supply, and utilization, to the upper oligotrophic ocean (Law et al., 2015) associated with deeper than observed10

mixed layers. In the northern and southern subtropical gyres ACCESS-ESM1 (18 N-49 N and 19 S-44 S respectively) appears

to overestimate the amplitude of the observed seasonal cycle when compared with SeaWIFS. Again this overestimate of NPP

is associated with deeper than observed mixed layers which increase nutrient supply to the oligotrophic upper ocean. The

phase of the NPP in these regions, where agreement between observations and CMIP5 is very good, is delayed by about three

months. This delay may also be explained by a combination of higher (than observed) concentrations of nutrients and slower15

than expected biological productions associated with cool biases, particularly in the Atlantic Ocean allowing the bloom to

occur later.

In the high latitude northern hemisphere, the magnitude of the seasonal cycle of NPP is not well captured in ACCESS-ESM1.

While CMIP5 appears also to underestimate the magnitude of the seasonal cycle, ACCESS-ESM1 is lower again. In contrast, in

the Southern Ocean the amplitude of the seasonal cycle of NPP in ACCESS-ESM1 shows good agreement with observations.20

However in the high latitude oceans the phase of NPP is delayed by about 2 months. This delay may be attributed to the too

shallow mixed layers that exist in these regions, which means that it is only when mixed layers start to deepen that biological

productivity can start to occur. As a result the remaining growing season is shorter (than observed) leading to a reduced total

productivity. This may in part explain why the total NPP northern hemisphere is much less than observed.

Interestingly, in the tropical ocean we see very good agreement in the amplitude of the seasonal cycle with CMIP5 and25

SeaWIFS. We note however, that comparing the phase of the seasonal cycle from ESMs (ACCESS-ESM1 and CMIP5) with

SeaWIFS is not very meaningful in this region, as they all simulate their own ENSO cycle with their own timing. Therefore,

any comparison over a 20 year period between models has the potential to be biased by the number of El Niño or La Niña

events.

5.2.3 Sea-air CO2 fluxes30

Figure 15 shows that, in the period 1986-2005, ACCESS-ESM1 is in good agreement with the spatial pattern and the magnitude

of sea-air CO2 fluxes of Wanninkhof et al. (2013), hereafter referred to as W13. In the Southern Ocean (44 S-90 S), which is

an important net sink of carbon, ACCESS-ESM1 (-0.77PgCyr−1) captures a larger annual mean uptake than the sea-air CO2

17



flux of W13 who only estimated an uptake of -0.18PgCyr−1. In the Southern subtropical gyres (44 S-18 S) ACCESS-ESM1

(-0.39PgCyr−1) captures, but overestimates, the observed sea-air flux of W13 (-0.23PgCyr−1). In contrast in the Northern

Hemisphere ACCESS-ESM1 underestimates the uptake at -0.36PgCyr−1 and -0.19 PgCyr−1 in the subtropical, and (sub)

polar regions respectively, while W13 estimated the uptake at -0.69PgCyr−1 and -0.54PgCyr−1 over the same regions. The

uptake in the tropical ocean is well captured, showing very good agreement between ACESS-ESM1 and W13 who estimate5

an uptake of -0.56PgCyr−1 and -0.57PgCyr−1. Spatially the interannual variability in sea-air CO2 flux is presented in a

companion paper (Law et al., 2015).

The anomaly of the seasonal cycle of the sea-air CO2 fluxes was assessed against observations of W13 and CMIP5, shown

in Fig.16 for the period 1986-2005. Here, we see that ACCESS-ESM1 has a larger global amplitude of sea-air CO2 fluxes than

observed (W13) and simulated, but close to the upper value of the range from CMIP5 models. We also see that globally the10

phase of sea-air CO2 fluxes is not well captured in ACCESS-ESM1, lying outside the range of the CMIP5 models. To better

understand why there are differences between ACCESS-ESM1, CMIP5 and W13 we separate the response of sea-air CO2 into

the same regions as for NPP, again following Anav et al. (2013).

ACCESS-ESM1 appears to capture well the phase of sea-air CO2 fluxes in the subtropical gyres. In the northern subtropical

gyre in particular, we see that the amplitude and phase of the seasonal cycle in ACCESS-ESM1 shows very good agreement15

with W13, in contrast with other ESMs (CMIP5). In the southern subtropical gyres, while the ACCESS-ESM1 appears to

overestimate the amplitude relative to the observations, we see very good agreement with CMIP5 models. As anticipated

the tropical ocean shows very little seasonality, nevertheless we do see good agreement with CMIP5 models. However, the

comparison of ACCESS-ESM1 against observations (while shown) is not very meaningful as W13 is based on values of

oceanic pCO2 from Takahashi et al. (2009), which does not include El Niño years.20

The largest differences are seen in the representation of sea-air CO2 fluxes in the high latitude ocean. In the high latitude

northern hemisphere, we see that the magnitude is larger than either CMIP5 or W13 and shows poor phasing. While the

magnitude of the seasonal cycle in the Southern Ocean lies within the upper range of CMIP5 again poor phasing is seen.

That the seasonal cycle is out of phase suggests that during the summer the solubility response likely dominates over the NPP

response, leading to an out-gassing in the summer and uptake in the winter, as discussed in Lenton et al. (2013). Consequently,25

we see that the poor global phasing in global sea-air CO2 fluxes is likely due to the solubility dominated response of the high

latitudes during the summer.

5.2.4 Anthropogenic inventory

The global inventory of anthropogenic carbon from ACCESS-ESM1 is compared with the uptake from GLODAP (Sabine et al.,

2004) for the year 1994 in Fig. 17. Here we see that the spatial pattern of the column inventory of anthropogenic carbon is very30

well reproduced, with the large storage occurring in the North Atlantic and large uptake in the Southern Ocean. The inventory

for the period 1850–1994 in ACCESS-ESM1 is 132 PgC, which is close to the estimated value from GLODAP of 118±19PgC

(Sabine et al., 2004) over the same domain. This suggests that despite a somewhat limited representation of the seasonal cycle

of sea-air CO2 fluxes in key regions of anthropogenic uptake such as the Southern Ocean, that ACCESS-ESM1 is doing a very
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good job, spatially and temporally, of capturing and storing anthropogenic carbon. If the entire domain (including the Arctic

Ocean) the is integrated the anthropogenic uptake is 143 PgC over the same period.

5.3 Atmospheric CO2

The land and ocean carbon fluxes have been put into two atmospheric tracers as described in Law et al. (2015, Sec. 2.4).

These tracers have no impact on the model simulation but allow the atmospheric CO2 distribution to be assessed. A reasonable5

simulation of known features of atmospheric CO2 can increase our confidence in the simulated carbon fluxes. For example

the seasonal cycle of atmospheric CO2 is strongly driven by the seasonality in land carbon fluxes. Therefore, our simulated

seasonality can be realistically compared to present day atmospheric CO2 observations.

The seasonal cycle of atmospheric CO2 is shown for four locations at different latitudes (Fig. 18, note the different vertical

scale in the upper and lower panels). Seasonal cycles from the PresLAI and ProgLAI cases are calculated as the mean over the10

last 20 years of the historical period (1986-2005) with the annual mean removed from each year. The seasonality is plotted for

the contribution from the land carbon fluxes only and for both the land and ocean carbon fluxes combined. The model output

was taken from the nearest grid point to each location with the exception of Mace Head, where the model was sampled further

west to better approximate the observations which are selected for clean-air (ocean) conditions.

As observed, the amplitude of the seasonal cycle decreases from north to south. At Alert (82◦ N, Fig.18(a)) both model sim-15

ulations overestimate the seasonal amplitude by up to 6ppm with the growing season starting earlier than currently observed.

The ocean carbon fluxes contribute little to seasonality at this latitude. At Mace Head (53◦ N, Fig.18(b)) the simulated seasonal

cycle is comparable to that observed with only a small difference in the seasonal amplitude (smaller than 2ppm), while at

Mauna Loa (20◦ N,Fig.18(c)) the ProgLAI case better represents the observed seasonality than the PresLAI case.

Seasonal cycles in the southern hemisphere (e.g. South Pole) are more challenging to simulate correctly as they are made20

up of roughly equal contributions from local land fluxes, northern hemisphere land fluxes and ocean fluxes. Figure18(d) shows

for the PresLAI case that the simulated seasonality from the land carbon fluxes is shifted in phase when the ocean carbon

contribution is included but the phase shift is away from the observed seasonality. This phase shift is not apparent for the case

with ProgLAI.

6 Conclusions25

The evaluation of ACCESS-ESM1 over the historical period is an essential step before using the model to predict future uptake

of carbon by land and oceans. Here, we performed two different scenarios for the evaluation of the land carbon cycle: running

ACCESS-ESM1 with a prescribed LAI and a prognostic LAI. Running with a prognostic LAI is our preferred choice, since this

includes the vegetation feedback through the coupling between LAI and the leaf carbon pool. However, results have shown that

we overestimate the amplitude of the prognostic LAI annual cycle in the northern and southern hemisphere and underestimate30

it in the tropics. In future versions we need to improve the performance of the prognostic LAI, particularly for evergreen needle

leaf and C4 grass.
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ACCESS-ESM1 shows a strong cooling response to anthropogenic aerosols, which is offsetting the warming due to increases

in greenhouse gases. The aerosol radiative forcing over the historical period is much stronger than the IPCC best estimate, but

still within the uncertainty range. The impact of the cooling due to anthropogenic aerosols in ACCESS-ESM1 needs to be

quantified in future work.

The land carbon uptake over the historical period is about 40% larger for the run with prognostic LAI in comparison to the5

run with prescribed LAI. This is mainly due to the stronger response to volcanic eruptions which increases GPP in the tropics

and reduces plant respiration globally, therefore increases NEE.

Globally integrated sea-air CO2 fluxes are well captured and we reproduce very well the cumulative uptake estimate from

the Global Carbon Project (Le Quéré et al., 2015) and our anthropogenic uptake agrees very well with observed GLODAP

value of Sabine et al. (2004). The spatial distribution of sea-air CO2 fluxes is also well reproduced by CMIP5 models and10

observations. At the same time global ocean NPP also shows good agreement with observations and lies well within the range

of CMIP5 models. However, seasonal biases do exist in sea-air CO2 fluxes and NPP, potentially related to biases in mixed

layer depth and surface temperature that are present in ACCESS-ESM1; and will need to be addressed in later versions of

ACCESS-ESM1.

Simulated carbon pool sizes are generally within the range of estimates provided in the literature. Simulated soil organic15

carbon has been compared against the Harmonized World Soil Database, finding very good agreement in the spatial distribution

and the total size. Nitrogen and phosphorus limitation were active in our simulations and pool sizes seem reasonable if com-

pared with other estimates. However, nitrogen and phosphorus cycles are poorly constrained and only a few global estimates

exist with large uncertainties.

ACCESS-ESM1 has the capability of putting land and ocean carbon fluxes into tracers, which provides a way of assessing20

simulated atmospheric CO2 concentrations. The simulated seasonal cycle is close to the observed, but we overestimate the

amplitude in the high northern latitude by up to 6ppm and we also notice small phase shifts.

Overall, land and ocean carbon modules provide realistic simulations of land and ocean carbon exchange, suggesting that

ACCESS-ESM1 is a valuable tool to explore the change in land and oceanic uptake in the future.

Code availability25

Code availability varies for different components of ACCESS-ESM1. The UM is licensed by the UK Met Office and is

not freely available. CABLE2 is available from https://trac.nci.org.au/svn/cable/. See https://trac.nci.org.au/trac/cable/wiki/

CableRegistration for information on registering to use the CABLE repository. MOM4p1 and CICE are freely available un-

der applicable registration or copyright conditions. For MOM4p1 see http://data1.gfdl.noaa.gov/~arl/pubrel/r/mom4p1/src/

mom4p1/doc/mom4_manual.html. For CICE see http://oceans11.lanl.gov/trac/CICE. For access to the MOM4p1 code with30

WOMBAT as used for ACCESS-ESM1, please contact Hailin Yan (Hailin.Yan@csiro.au). The OASIS3-MCT 2.0 coupler

code is available from http://oasis.enes.org.
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Figure 1. Anomalies (reference period: 1901-1930) for (a) globally averaged surface air temperature and (b) globally averaged precipitation

for land points only for ACCESS-ESM1 (PresLAI, blue; ProgLAI, red) and observed CRU (black, dashed before 1901). Major volcanic

eruptions are marked with dashed lines: Krakatoa (1983), Santa Maria (1903), Mt. Agung (1963), El Chichón (1982) and Mt. Pinatubo

(1991).
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Figure 2. Globally averaged sea surface temperature (K) between 1850- 2005, red is ACCESS-ESM1 and black is HadiSST (Rayner et al.,

2003). Major volcanic eruptions are marked with dashed lines: Krakatoa (1983), Santa Maria (1903), Mt. Agung (1963), El Chichón (1982)

and Mt. Pinatubo (1991).
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Figure 3. Differences in sea surface temperature (K) between ACCESS-ESM1 and HadiSST for (a) February and (b) August.
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Figure 4. Differences in mixed layer depth between ACCESS-ESM1 and observations de Boyer Montégut et al. (2004) for(a,c) February

and for (b,d) August. Panels (e,f) show the percentage difference between de Boyer Montégut et al. (2004) and ACCESS-ESM1 calculated

as ((OBS–ACCESS-ESM1)/OBS)*100. The mixed layer is calculated based on a 0.03 kg m−3 density change from the surface ocean.
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Figure 5. Temporal evolution of (a) GPP (PgC yr−1), (b) LAI and (c) NEE (PgC yr−1). GCP estimates for NEE are shown for comparison

in black for the years 1959-2005. ACCESS-ESM1 results are shown for PresLAI (blue line) and ProgLAI (red line) with annual values

marked in thin dashed lines and a 5 yr running mean in heavy solid lines. Major volcanic eruptions are marked with dashed lines: Krakatoa

(1983), Santa Maria (1903), Mt. Agung (1963), El Chichón (1982) and Mt. Pinatubo (1991).
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Figure 6. Comparison of Integrated Net Primary Production (PgC yr−1) in the period 1850-2005 between CMIP5 and ACCESS-ESM1.

The solid red line represents the integrated carbon uptake in PgC yr−1 from ACCESS-ESM1, while the green line represents the median of

the CMIP5, model with the range overlain (as shaded area) as the 10th and 90th percentiles. Overlain on this plot are the observed values

from SeaWIFS over the period 1998-2005 in black.

Figure 7. Comparison of sea-air CO2 fluxes (PgC yr−1) in the period 1850-2005 carbon uptake from ACCESS-ESM1. The solid green line

represents the median of the CMIP5, while the shaded are represents the 10th and 90th percentiles of the CMIP5 model. Overlain on this is

the estimated sea-air fluxes from the Global Carbon Project (Le Quéré et al., 2015) in black; and the timing of major volcano eruptions over

the historical period.
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Figure 8. Mean annual cycle of GPP (PgC month−1) for the period 1986-2005. ACCESS-ESM1 results are shown in blue (PresLAI) and

red (ProgLAI). Observation based estimates are shown in black.
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Figure 9. Spatial distribution of (a,c,e) GPP and (b,d,f) GPP IAV (kgC m−2 yr−1) for (a,b) PresLAI, (c,d) ProgLAI and (e,f) observation

based estimates.
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Figure 10. Mean annual cycle of LAI for the period 1986-2005. ACCESS-ESM1 results are shown in blue (scenario with prescribed LAI)

and red (scenario with prognostic LAI). Observation based estimates are shown in black.
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Figure 11. Spatial distribution of organic soil carbon (kgC m−2) (a) using prescribed LAI, (b) using prognostic LAI and (c) observation

based estimated from HWSD.
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Figure 12. Taylor diagram assessing the response of the ACCESS-ESM1 simulations (circles), and the median of CMIP5 models (diamonds)

with observations. The numbers correspond to: (1) Alkalinity, (3) DIC, (3) SST, and (4) (sea surface) Salinity. For explanation of how to

interpret the diagram please see the text.
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Figure 13. Taylor diagram assessing the alkalinity (a) and DIC (b) of the ACCESS-ESM1 simulation (circle), the median of CMIP5 models

(diamond), and the individual members of the CMIP5 ensemble (crosses) with observations.
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Figure 14. The seasonal cycle of NPP anomalies (PgC month−1) from ACCESS-ESM1 in red and SeaWIFS (Behrenfeld and Falkowski,

1997) in black calculated over the period 1998-2005. Overlain on this plot is the CMIP5 the median (solid green line) and the range 10th and

90th percentiles (shaded).

41



a) b)

Figure 15. The integrated sea-air CO2 fluxes over the period 1986-2005 from (a) ACCESS-ESM1 and (b) Wanninkhof et al. (2013).
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Figure 16. The seasonal cycle (1986-2005) of sea-air CO2 flux anomalies (PgC month−1) from ACCESS-ESM1 (red line) and observations

((Wanninkhof et al., 2013); black line). Overlain is the CMIP5 median (solid green line) and the range as the 10th and 90th percentiles

(shaded).
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Figure 17. Column inventory of Anthropogenic Carbon in the ocean (molC m−2) from (a) ACCESS-ESM1 and from (b) GLODAP (Key

et al. (2004) for 1994.
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Figure 18. Mean seasonal cycle of atmospheric CO2 for the period 1986-2005 from land carbon fluxes (dashed lines) and both land and

ocean carbon fluxes (solid line). The prescribed LAI case is shown in blue, the prognostic LAI case in red and observations based on flask

data from GLOBALVIEW in black for (a) Alert (82.45◦ N, 62.52◦ W), (b) Mace Head (53.33◦ N, 9.90◦ W), (c) Mauna Loa (19.53◦ N,

155.58◦ W) and (d) South Pole (89.98◦ S, 24.80◦ W).
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Table 1. The CMIP5 models used to assess the ocean response of ACCESS-ESM1 over the historical period in the study. Reference for all

models are provided in Lenton et al. (2015).

Model Name Institute ID Modelling Group

CanESM2 CCCMA Canadian Centre for Climate Modelling and Analysis

HadGEM-ES MOHC Met Office Hadley Centre (additional HadGEM2-ES

(additional realizations by INPE) realizations contributed by Instituto Nacional de Pesquisas Espaciais)

GFDL-ESM2M NOAA GFDL NOAA Geophysical Fluid Dynamics Laboratory

ISPL-CM5A-LR IPSL Institut Pierre-Simon Laplace

IPSL-CM5A-MR IPSL Institut Pierre-Simon Laplace

MPI-ESM-LR MPI-M Max-Planck-Institut für Meteorologie

(Max Planck Institute for Meteorology)

Table 2. Mean carbon (C), Nitrogen (N) and phosphorus (P) pools sizes in Pg for pre-industrial (780-799) and present day (1986-2005).

Historical changes (1850-2005) for C are also shown. Biomass comprises leaf, wood and root pool.

Pre-industrial Present day Historical change C

PresLAI ProgLAI PresLAI ProgLAI PresLAI ProgLAI

Pool C N P C N P C N P C N P ∆C ∆C

Biomass 611 5.7 0.31 731 6.15 0.33 670 6.2 0.34 807 6.8 0.37 69.5 87.2

Litter 117 0.85 0.04 149 1.02 0.05 126 0.9 0.05 163 1.1 0.06 7.6 12.3

SOC 1034 82 9.6 1187 86.1 11.9 1050 83.4 10.1 1217 88.5 12.6 20.5 37∑
1762 88.6 10.0 2067 93.3 12.3 1846 90.5 10.5 2187 96.4 13.0 97.6 136.5
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